JP5636913B2 - Continuous casting method for slabs - Google Patents

Continuous casting method for slabs Download PDF

Info

Publication number
JP5636913B2
JP5636913B2 JP2010263736A JP2010263736A JP5636913B2 JP 5636913 B2 JP5636913 B2 JP 5636913B2 JP 2010263736 A JP2010263736 A JP 2010263736A JP 2010263736 A JP2010263736 A JP 2010263736A JP 5636913 B2 JP5636913 B2 JP 5636913B2
Authority
JP
Japan
Prior art keywords
molten steel
slab
mold
reduction
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010263736A
Other languages
Japanese (ja)
Other versions
JP2012110952A (en
Inventor
水野 泰宏
泰宏 水野
太田 晃三
晃三 太田
山中 章裕
章裕 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010263736A priority Critical patent/JP5636913B2/en
Publication of JP2012110952A publication Critical patent/JP2012110952A/en
Application granted granted Critical
Publication of JP5636913B2 publication Critical patent/JP5636913B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、鋳片の連続鋳造方法に関し、特に全幅にわたり中心偏析のない鋳片を得ることが可能な連続鋳造方法に関する。   The present invention relates to a continuous casting method of a slab, and more particularly to a continuous casting method capable of obtaining a slab having no center segregation over the entire width.

連続鋳造法を用いて鋳片を製造する場合には、しばしば中心偏析と呼ばれる内部欠陥の発生が問題となる。この中心偏析は、鋳片の厚さ方向中心部(最終凝固部)で、C、S、PおよびMn等の溶鋼成分が正偏析する現象である。この現象は、厚板素材において特に深刻な問題であり、中心偏析が発生した部分における靭性の低下や水素誘起割れの原因となることが知られている。   When a slab is manufactured using a continuous casting method, the occurrence of internal defects often called center segregation becomes a problem. This center segregation is a phenomenon in which molten steel components such as C, S, P, and Mn are positively segregated at the center part (final solidified part) in the thickness direction of the slab. This phenomenon is a particularly serious problem in a thick plate material, and it is known that it causes a decrease in toughness and hydrogen-induced cracking in a portion where center segregation occurs.

中心偏析は、溶鋼の凝固末期におけるデンドライト(樹脂状晶)樹間の未凝固溶鋼(以下「残溶鋼」という。)が、溶鋼の凝固収縮または凝固シェルのバルジング等に起因して、最終凝固部の凝固完了点に向かってマクロ的に移動し、かつ、C、S、PおよびMn等が濃化した溶鋼(以下「濃化溶鋼」という。)が局部的に集積するために起こることがわかっている。   Central segregation is caused by unsolidified molten steel (hereinafter referred to as “residual molten steel”) between dendrites (resin-like crystals) at the end of solidification of the molten steel due to solidification shrinkage of the molten steel or bulging of the solidified shell. It is found that this occurs because the molten steel that has moved macroscopically toward the solidification completion point of C and concentrated in C, S, P, Mn, etc. (hereinafter referred to as “concentrated molten steel”) is locally accumulated. ing.

中心偏析の発生の防止対策としては、凝固完了点付近を、ロールを用いて圧下すること、または金型等を用いて何らかの方法で圧下等することにより、残溶鋼の移動や濃化溶鋼の集積を阻止する方法があり、種々の技術思想に基づく方法が提案されてきた。   As measures to prevent the occurrence of center segregation, the movement of residual molten steel and the accumulation of concentrated molten steel can be achieved by rolling down the vicinity of the solidification completion point with a roll or by using a mold or the like to reduce the concentration of molten steel. There are methods for preventing this, and methods based on various technical ideas have been proposed.

例えば特許文献1では、鋳片表面に噴射される二次冷却水量を増加させることにより、鋳片の最終凝固部の表面温度を700〜800℃の範囲とし、凝固シェルの厚さを増加させることにより、ロール間バルジングを抑制し、さらに軽圧下ロール群で毎分0.2〜0.4%の歪み速度の圧下力を鋳片に加えることにより、濃化溶鋼の流動を阻止し、中心偏析を防止する方法が提案されている。このような圧下ロール群による軽圧下では、鋳片長手方向に対して点状にしか圧下できないため、凝固収縮やロール間のバルジングを十分に抑制することができないという問題がある。   For example, in Patent Document 1, by increasing the amount of secondary cooling water sprayed on the surface of the slab, the surface temperature of the final solidified portion of the slab is set in the range of 700 to 800 ° C., and the thickness of the solidified shell is increased. By suppressing the bulging between rolls, and further applying a rolling force with a strain rate of 0.2 to 0.4% per minute to the slab in the group of lightly rolling rolls, the flow of the concentrated molten steel is prevented, and the center segregation A method for preventing this problem has been proposed. Such light rolling by the group of rolling rolls has a problem in that solidification shrinkage and bulging between rolls cannot be sufficiently suppressed because rolling can be performed only in a point shape with respect to the longitudinal direction of the slab.

特許文献2では、鋳片の凝固完了点近傍を加工面が平坦な金型で連続的に鍛圧加工する方法が開示されている。しかし、この方法には、金型を用いた鍛圧加工装置を設ける必要があるため、設備コストが非常に高いという欠点がある。   Patent Document 2 discloses a method of continuously forging the vicinity of a solidification completion point of a slab with a mold having a flat work surface. However, this method has a drawback that the equipment cost is very high because it is necessary to provide a forging machine using a mold.

特許文献3では、未凝固部を含む鋳片を一旦バルジングさせ、凝固完了直前の時点でバルジング量相当分を圧下して中心偏析を防止する方法が開示されている。しかしながら、この方法では、凝固遅れにより未凝固層の大きい領域が存在した状態で、鋳片幅方向の両端部近傍での圧下が不足した場合に、鋳片幅方向における両端部分近傍での中心偏析の防止は十分でないことがあり、さらなる幅方向の均一凝固への改善が望まれている。   Patent Document 3 discloses a method for preventing central segregation by temporarily bulging a slab including an unsolidified portion and reducing the amount corresponding to the bulging amount immediately before completion of solidification. However, in this method, when there is a large area of the unsolidified layer due to the solidification delay and the reduction in the vicinity of both ends in the slab width direction is insufficient, the center segregation in the vicinity of both ends in the slab width direction is insufficient. This may not be sufficient, and further improvements to uniform solidification in the width direction are desired.

特許文献4では、未凝固部を有する鋳片をバルジングさせた後、圧下ロールで圧下する方法であって、バルジングさせることに伴ってロールと非接触となる鋳片両端部を、適切に水量を増加させた二次冷却水で冷却することにより、未凝固部の厚さを鋳片幅方向で均一にする方法が開示されている。しかしながら、割れ感受性の高い鋼では、積極的に二次冷却水量を増加させても、ロールと非接触となることによる冷却不足を補償することができない。さらに、上述の未凝固鋳片をバルジングした際に発生する軽微な内部割れが製品欠陥となることがある。   In Patent Document 4, after bulging a slab having an unsolidified portion, the slab is squeezed with a squeezing roll. A method is disclosed in which the thickness of the unsolidified portion is made uniform in the slab width direction by cooling with the increased secondary cooling water. However, in steel with high crack sensitivity, even if the amount of secondary cooling water is positively increased, insufficient cooling due to non-contact with the roll cannot be compensated. Furthermore, a slight internal crack generated when the above-mentioned unsolidified slab is bulged may become a product defect.

以上のような鋳片幅方向の凝固の不均一対策として、本出願人は、特許文献5では、浸漬ノズルを鋳型内に2本以上配置することで、溶鋼の吐出流を制御し、これにより鋳片幅方向の不均一凝固を解消し、最適な形状の未凝固領域を有する鋳片を連続的に圧下することで、中心偏析を防止する方法を提案した。   As a countermeasure against uneven solidification in the width direction of the slab as described above, the applicant of Patent Document 5 controls the discharge flow of the molten steel by disposing two or more immersion nozzles in the mold. We proposed a method to prevent center segregation by eliminating uneven solidification in the width direction of the slab and continuously rolling down a slab having an unsolidified region of optimal shape.

特開昭63−252655号公報JP 63-252655 A 特許第2915544号公報Japanese Patent No. 2915544 特開平9−57410号公報JP-A-9-57410 特許第3960249号公報Japanese Patent No. 3960249 特許第3077572号公報Japanese Patent No. 3077572

本出願人が特許文献5で提案した方法では、一定の中心偏析の改善が得られるものの、各浸漬ノズルからの吐出流量の制御が困難であり、吐出流量の乱れにより、溶鋼下降流のゆらぎ(流速のばらつき)が生じ、鋳片幅方向の不均一凝固を解消するには至らない場合が散発し、その安定化に改善の余地が残っていた。   Although the method proposed by the present applicant in Patent Document 5 can improve the center segregation, it is difficult to control the discharge flow rate from each immersion nozzle, and the fluctuation of the discharge flow rate causes fluctuations in the molten steel downward flow ( Variations in the flow velocity) occurred, and there were sporadic cases in which uneven solidification in the width direction of the slab could not be resolved, and there was room for improvement in its stabilization.

このように、従来の連続鋳造方法では、中心偏析のレベルを、鋳片の幅方向では改善することができるものの、幅方向で常に安定的に均一とするには困難さが伴う。   As described above, in the conventional continuous casting method, the level of center segregation can be improved in the width direction of the slab, but it is difficult to always make it uniform uniformly in the width direction.

そのため、通常はインゴットで製造されるような割れ感受性の高い高強度鋼や、UOE製管用等のように大きな曲げ歪を生じる厚肉材の素材を連続鋳造する場合には、中心偏析レベルが全体に比較的軽微であっても、一部での強いレベルの中心偏析の残存が製管時の割れの原因となる課題が残っていた。   Therefore, when continuously casting high-strength steels with high cracking sensitivity, such as those manufactured by ingots, and thick-walled materials that generate large bending strains, such as those for UOE pipes, the center segregation level is However, even if it is relatively minor, there remains a problem that a strong segregation of a part of the center causes a crack at the time of pipe making.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、鋳片全幅にわたって中心偏析を皆無とすることが可能な連続鋳造方法を提供することにある。   This invention is made | formed in view of said subject, The objective is to provide the continuous casting method which can eliminate center segregation over the slab full width.

本発明者らは、上記の課題を解決するため、鋳片幅方向の未凝固部の厚さを均一に確保しつつ、クレーターエンド(未凝固部先端)の形状を圧下時に濃化溶鋼が残存しにくい形状に制御することについて検討した。   In order to solve the above-mentioned problems, the inventors have ensured that the thickness of the unsolidified portion in the slab width direction is uniform, and the concentrated molten steel remains when the shape of the crater end (tip of the unsolidified portion) is reduced. We investigated the control to a shape that is difficult to perform.

その結果、鋳型に溶鋼を供給する浸漬ノズルを鋳型の幅方向に2本並列して配置し、各浸漬ノズルからの溶鋼の吐出流を対向、衝突させることによって、溶鋼の鋳型の幅方向の速度分布を鋳込み方向下向きに凸の状態(U字状の状態)に制御するのが有効であることを知見した。このように溶鋼の吐出流を制御することにより、鋳片幅方向の未凝固部の厚さを均一にすることができ、しかも、鋳片厚さ方向の中心を含む縦断面でクレーターエンドの形状を、鋳片の圧下時に濃化溶鋼が残存しにくいU字状とすることができるからである。さらに、この鋳片を凝固完了までに圧下することによって、鋳片の最終凝固位置における濃化溶鋼の流入を防止し、中心偏析を皆無にできることを知見した。   As a result, two immersion nozzles for supplying molten steel to the mold are arranged in parallel in the width direction of the mold, and the discharge speed of the molten steel from each immersion nozzle faces and collides with each other, so that the speed in the width direction of the molten steel mold It has been found that it is effective to control the distribution so that it is convex downward in the casting direction (U-shaped state). By controlling the discharge flow of the molten steel in this way, the thickness of the unsolidified part in the slab width direction can be made uniform, and the shape of the crater end in the longitudinal section including the center in the slab thickness direction This is because when the cast slab is reduced, the concentrated molten steel is less likely to remain in a U shape. Furthermore, it has been found that by reducing the slab to the completion of solidification, inflow of concentrated molten steel at the final solidification position of the slab can be prevented, and central segregation can be eliminated.

さらに、各浸漬ノズルからの対向する吐出流を、全ては衝突させず、一部をわずかに逃がすことで、全てを衝突させた場合と比較して、鋳型幅方向により均一な下降流を形成できること、および鋳造された鋳片には中心偏析が観察されず、かつ偏析度も低減し、偏析度のばらつきも小さくなることを知見した。   Furthermore, it is possible to form a uniform downward flow in the mold width direction compared to the case where all of the opposed discharge flows from each immersion nozzle do not collide, and a part of them is allowed to escape slightly. In the cast slab, no center segregation was observed, the segregation degree was reduced, and the variation in the segregation degree was found to be small.

本発明は、上記知見に基づいてなされたものであり、その要旨は下記の(1)〜(3)に示す鋳片の連続鋳造方法にある。 This invention is made | formed based on the said knowledge, The summary exists in the continuous casting method of the slab shown to following ( 1)- (3) .

(1)浸漬ノズルから鋳型内に溶鋼を供給し、供給した溶鋼を凝固させながら引き抜き、未凝固部を含む鋳片を凝固完了までに圧下ロールを用いて圧下する連続鋳造方法において、前記浸漬ノズルとして、側面に溶鋼の吐出孔を1個有する浸漬ノズルを2本用い、各浸漬ノズルは前記吐出孔から吐出される溶鋼が互いに衝突するように前記鋳型の幅方向に配置されるとともに、前記吐出孔からの溶鋼の吐出方向が、鋳型内の溶鋼湯面に対して鋳込み方向下向きに5°〜25°の角度に傾斜し、同時に鋳型内の溶鋼湯面に平行な方向の成分が互いに平行であり、かつ前記鋳型の幅方向に対して5°〜15°の角度に偏向しており、前記各浸漬ノズルにArガスを1本当たり5NL/min以上15NL/min以下の流量で吹き込みながら、前記吐出孔からArガスが混入した溶鋼を吐出させることを特徴とする鋳片の連続鋳造方法。 (1) In the continuous casting method in which the molten steel is supplied from the immersion nozzle into the mold, the supplied molten steel is pulled out while solidifying, and the slab including the unsolidified portion is reduced using a reduction roll until solidification is completed, the immersion nozzle As described above, two immersion nozzles having one discharge hole for molten steel on the side surface are used, and each immersion nozzle is arranged in the width direction of the mold so that the molten steel discharged from the discharge hole collides with each other. The discharge direction of the molten steel from the hole is inclined at an angle of 5 ° to 25 ° downward in the casting direction with respect to the molten steel surface in the mold, and at the same time, the components in the direction parallel to the molten steel surface in the mold are parallel to each other. There, and are deflected at an angle of 5 ° to 15 ° with respect to the width direction of the mold, the while blowing with the following flow rates each immersion nozzle Ar gas per one of 5 NL / min or more 15 NL / min, the Continuous casting method of the slab, characterized in that Ar gas Deana is ejected molten steel mixed.

(2)前記圧下ロールとして、鋳片を支持し、案内するロール群のうち最大の直径のものの1.5倍以上の直径を有する大径ロールを用い、圧下量を鋳片厚さの5〜20%として圧下することを特徴とする前記(1)の鋳片の連続鋳造方法。 (2) As the reduction roll, a large diameter roll having a diameter 1.5 times or more that of the largest diameter among the roll groups that support and guide the slab, and the amount of reduction is 5 to 5 of the slab thickness. The slab continuous casting method according to (1 ), wherein the reduction is performed as 20%.

(3)前記圧下ロールとして、鋳片を支持し、案内するロール群のうち最大の直径のものの1.5倍未満の直径を有する小径ロールを複数対用い、圧下量を鋳片厚さの5%以下として圧下することを特徴とする前記(1)の鋳片の連続鋳造方法。 (3) As the reduction roll, a plurality of pairs of small-diameter rolls having a diameter less than 1.5 times that of the largest diameter among the group of rolls that support and guide the slab, and the reduction amount is 5 of the slab thickness. The method for continuous casting of a slab according to (1 ), wherein the reduction is performed as% or less.

本発明の鋳片の連続鋳造方法によれば、浸漬ノズルからの溶鋼吐出流によって形成される、鋳片内における溶鋼の流動を制御することにより、鋳片幅方向の未凝固部の厚さを均一に確保しつつ、クレーターエンドの形状を圧下時に濃化溶鋼が残存しにくい形状に制御することができ、さらに、鋳片最終凝固位置における濃化溶鋼の流入を防止するのに十分な圧下量を付与することが可能であるため、全幅で中心偏析を皆無とした鋳片を得ることができる。   According to the continuous casting method of the slab of the present invention, the thickness of the unsolidified portion in the slab width direction is controlled by controlling the flow of the molten steel in the slab formed by the molten steel discharge flow from the immersion nozzle. While ensuring uniform, the shape of the crater end can be controlled so that the concentrated molten steel does not remain when reduced, and the amount of reduction sufficient to prevent inflow of the concentrated molten steel at the final solidification position of the slab Therefore, it is possible to obtain a slab with no center segregation in the entire width.

本発明の鋳片の連続鋳造方法に用いることのできる垂直曲げ型の連続鋳造機の縦断面の概略を示す図であり、同図(a)は鋳片を大圧下するために大径ロールを採用する場合、同図(b)は鋳片を軽圧下するために小径ロールを採用する場合をそれぞれ示す。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the outline of the longitudinal cross-section of the vertical bending type continuous casting machine which can be used for the continuous casting method of the slab of this invention, The figure (a) shows a large diameter roll in order to greatly squeeze a slab. When employed, FIG. 4B shows a case where a small-diameter roll is employed to lightly reduce the slab. 鋳型の正面方向から見た浸漬ノズルおよび鋳型周辺の概略図であり、同図(a)は従来の連続鋳造方法を適用した場合の一例を示し、同図(b)は本発明の鋳片の連続鋳造方法を適用した場合の一例を示す。It is the schematic of the immersion nozzle and mold periphery seen from the front direction of the casting_mold | template, The figure (a) shows an example at the time of applying the conventional continuous casting method, The figure (b) is the slab of this invention. An example when the continuous casting method is applied is shown. 未凝固部を有する鋳片横断面の概略図であり、同図(a)は前記図2(a)で説明する方法を用いた場合を示し、同図(b)は前記図2(b)で説明する方法を用いた場合を示す。It is the schematic of the slab cross section which has an unsolidified part, The figure (a) shows the case where the method demonstrated in the said FIG. 2 (a) is used, The same figure (b) is the said FIG.2 (b). A case where the method described in the above is used is shown. 鋳込み方向から見た鋳型および2本の浸漬ノズルの配置関係を示す図であり、同図(a)は吐出孔が偏向していない場合、同図(b)は吐出孔の偏向角度が5°である場合、同図(c)は吐出孔の偏向角度が10°である場合を示す。It is a figure which shows the arrangement | positioning relationship of the casting_mold | template and two immersion nozzles seen from the casting direction, The figure (a) shows the case where the discharge hole is not deflected, The figure (b) shows that the deflection angle of the discharge hole is 5 degrees. (C) in the figure shows a case where the deflection angle of the ejection hole is 10 °.

本発明の鋳片の連続鋳造方法は、上述の通り、浸漬ノズルから鋳型内に溶鋼を供給し、供給した溶鋼を凝固させながら引き抜き、未凝固部を含む鋳片を凝固完了までに圧下ロールを用いて圧下する連続鋳造方法において、前記浸漬ノズルとして、側面に溶鋼の吐出孔を1個有する浸漬ノズルを2本用い、各浸漬ノズルは前記吐出孔から吐出される溶鋼が互いに衝突するように前記鋳型の幅方向に配置されるとともに、前記吐出孔からの溶鋼の吐出方向が、鋳型内の溶鋼湯面に対して鋳込み方向下向きに5°〜25°の角度に傾斜し、同時に鋳型内の溶鋼湯面に平行な方向の成分が互いに平行であり、かつ前記鋳型の幅方向に対して5°〜15°の角度に偏向しており、前記各浸漬ノズルにArガスを1本当たり5NL/min以上15NL/min以下の流量で吹き込みながら、前記吐出孔からArガスが混入した溶鋼を吐出させる方法である。以下、本発明の内容について従来例と比較しながら説明する。 As described above, the continuous casting method of the slab of the present invention supplies molten steel from the immersion nozzle into the mold, pulls out the supplied molten steel while solidifying it, and rolls the slab including the unsolidified part until the solidification is completed. In the continuous casting method that uses and presses down, as the immersion nozzle, two immersion nozzles each having one discharge hole for molten steel are used on the side surface, and each immersion nozzle is arranged so that the molten steel discharged from the discharge hole collides with each other. The molten steel is disposed in the width direction of the mold, and the discharge direction of the molten steel from the discharge holes is inclined at an angle of 5 ° to 25 ° downward in the casting direction with respect to the molten steel surface in the mold, and at the same time, the molten steel in the mold The components in the direction parallel to the molten metal surface are parallel to each other and are deflected at an angle of 5 ° to 15 ° with respect to the width direction of the mold, and Ar gas is supplied to each immersion nozzle at a rate of 5 NL / min. 15 NL / m While blowing in the following flow rate n, Ar gas from the discharge hole is a method of ejecting a molten steel mixed. Hereinafter, the contents of the present invention will be described in comparison with a conventional example.

図1は、本発明の鋳片の連続鋳造方法に用いることのできる垂直曲げ型の連続鋳造機の縦断面の概略を示す図であり、同図(a)は鋳片を大圧下するために大径ロールを採用する場合、同図(b)は鋳片を軽圧下するために小径ロールを採用する場合それぞれ示す。同図(a)および(b)に示すように、レードルおよびタンディッシュ(いずれも不図示)から供給された溶鋼1は、浸漬ノズル3から鋳型4内に注入される。浸漬ノズル3内には、Ar等の不活性ガスが、溶鋼1に混入するように吹き込まれる。溶鋼1は、鋳型4内での一次冷却により凝固して、鋳片2の表面を構成する凝固シェル2aを形成する。内部に未凝固部(溶鋼1)を保持した鋳片2は、続くサポートロール群5で支持され、案内されながら、冷却水のスプレー等による二次冷却により凝固が促進され、サポートロール群5内で完全に凝固し、ピンチロール(不図示)で引き出される。   FIG. 1 is a diagram showing an outline of a vertical section of a vertical bending die continuous casting machine that can be used in the continuous casting method of a slab according to the present invention. FIG. When a large-diameter roll is employed, FIG. 5B shows a case where a small-diameter roll is employed in order to lightly reduce the slab. As shown in FIGS. 2A and 2B, molten steel 1 supplied from a ladle and a tundish (both not shown) is injected into a mold 4 from an immersion nozzle 3. An inert gas such as Ar is blown into the immersion nozzle 3 so as to be mixed into the molten steel 1. The molten steel 1 is solidified by primary cooling in the mold 4 to form a solidified shell 2 a that constitutes the surface of the slab 2. The slab 2 holding the unsolidified portion (molten steel 1) inside is supported and guided by the following support roll group 5, and solidification is promoted by secondary cooling by spraying cooling water or the like. And then completely solidified and pulled out by a pinch roll (not shown).

また、鋳片2は、凝固完了までに圧下される。鋳片2の圧下は、同図(a)に示す連続鋳造機では、上下1対の大径ロール6によって行われ、同図(b)に示す連続鋳造機では複数の小径ロール7によって行われる。圧下量は、大径ロールを用いる場合には鋳片厚さの5〜20%とすることが好ましく、小径ロールを用いる場合には鋳片厚さの5%以下とすることが好ましい。ここで、大径ロールとは、サポートロール群5を構成するロールのうち最大の直径のものの1.5倍以上の直径を有するものをいう。小径ロールとは、サポートロール群5を構成するロールのうち最大の直径のものの1.5倍未満の直径を有するものをいう。   Moreover, the slab 2 is rolled down by completion of solidification. The slab 2 is reduced by a pair of upper and lower large-diameter rolls 6 in the continuous casting machine shown in FIG. 5A, and by a plurality of small-diameter rolls 7 in the continuous casting machine shown in FIG. . The amount of reduction is preferably 5 to 20% of the slab thickness when a large diameter roll is used, and is preferably 5% or less of the slab thickness when a small diameter roll is used. Here, the large-diameter roll means a roll having a diameter 1.5 times or more that of the largest diameter among the rolls constituting the support roll group 5. The small diameter roll means a roll having a diameter less than 1.5 times that of the largest diameter among the rolls constituting the support roll group 5.

図2は、鋳型の正面方向から見た浸漬ノズルおよび鋳型周辺の概略図であり、同図(a)は従来の連続鋳造方法を適用した場合の一例を示し、同図(b)は本発明の鋳片の連続鋳造方法を適用した場合の一例を示す。図3は、未凝固部を有する鋳片横断面の概略図であり、同図(a)は前記図2(a)で説明する方法を用いた場合を示し、同図(b)は前記図2(b)で説明する方法を用いた場合を示す。   FIG. 2 is a schematic view of the immersion nozzle and the periphery of the mold as viewed from the front direction of the mold. FIG. 2 (a) shows an example in which a conventional continuous casting method is applied, and FIG. 2 (b) shows the present invention. An example in the case of applying the continuous casting method of slabs is shown. FIG. 3 is a schematic view of a cross section of a slab having an unsolidified portion. FIG. 3A shows a case where the method described in FIG. 2A is used, and FIG. The case where the method demonstrated in 2 (b) is used is shown.

図2(a)には、従来の連続鋳造方法として、側面に2個の吐出孔3aを有する浸漬ノズル3を1本、鋳型4内に配置した場合を示す。2個の吐出孔3aは、それぞれ鋳型4の短辺面(鋳型幅方向に垂直な面)に対向し、かつ溶鋼の吐出方向が鋳型内の溶鋼湯面に対して鋳込み方向下向きに所定の角度に傾斜するように設けられている。各吐出孔3aからの溶鋼の吐出流は、同図に示すように、鋳込み方向下向きの下降流a2および鋳込み方向上向きの上昇流a1に分離し、下降流a2によって、鋳片2の幅方向中央部と端部との中間部分に向かう下降流a3が形成される。そのため、凝固シェル2a内における未凝固部(溶鋼1)の鋳型幅方向の速度分布Vaは、中央部および凝固シェル2aに接する部分で極小となり、中央部と端部との中間部分で極大となる、W字状の不均一な分布となる。   FIG. 2A shows a case where one immersion nozzle 3 having two discharge holes 3 a on the side surface is arranged in the mold 4 as a conventional continuous casting method. The two discharge holes 3a are respectively opposed to the short side surface (surface perpendicular to the mold width direction) of the mold 4, and the discharge direction of the molten steel is a predetermined angle downward with respect to the molten steel surface in the mold in the casting direction. It is provided so as to be inclined. As shown in the figure, the discharge flow of molten steel from each discharge hole 3a is separated into a downward flow a2 downward in the casting direction and an upward flow a1 upward in the casting direction, and the center in the width direction of the slab 2 by the downward flow a2. A downward flow a <b> 3 toward the intermediate portion between the portion and the end portion is formed. Therefore, the velocity distribution Va in the mold width direction of the unsolidified portion (molten steel 1) in the solidified shell 2a is minimized at the central portion and a portion in contact with the solidified shell 2a, and is maximized at an intermediate portion between the central portion and the end portion. , W-shaped non-uniform distribution.

その結果、鋳片2のクレーターエンドにおいても、鋳片厚さ方向の中心を含む縦断面がW字状となる。また、その溶鋼流に起因し、鋳片2の凝固シェル2aは、図3(a)に示すように、横断面が鋳片2の幅方向の中央部では厚く、中央部と端部との中間部分では薄い形状となる。この場合、鋳片2の圧下量が、鋳片2の幅方向中央部の未凝固部の厚さ程度であると、鋳片2の幅方向中央部では凝固シェル2aが十分に圧下され、未凝固溶鋼1が排出されるものの、中央部と端部との中間部分では圧下が不十分となることから、排出されなかった未凝固溶鋼1は凝固後に偏析として残存する。   As a result, also in the crater end of the slab 2, the longitudinal section including the center in the slab thickness direction is W-shaped. Further, due to the molten steel flow, the solidified shell 2a of the slab 2 has a thick cross-section at the center in the width direction of the slab 2 as shown in FIG. The middle part is thin. In this case, if the amount of reduction of the slab 2 is about the thickness of the unsolidified portion at the center in the width direction of the slab 2, the solidified shell 2a is sufficiently reduced at the center of the slab 2 in the width direction. Although the solidified molten steel 1 is discharged, since the reduction is insufficient at an intermediate portion between the center portion and the end portion, the unsolidified molten steel 1 that has not been discharged remains as segregation after solidification.

図2(b)には、本発明の鋳片の連続鋳造方法である、浸漬ノズル3を2本、鋳型4内に配置した場合を示す。2本の浸漬ノズル3は、後述する図4に示すように、鋳型厚さ方向の中心線上に、鋳型幅方向の中心線に対して対称に配置されることが好ましい。   FIG. 2B shows a case where two immersion nozzles 3 are arranged in the mold 4, which is a continuous casting method of a slab according to the present invention. As shown in FIG. 4 described later, the two immersion nozzles 3 are preferably arranged symmetrically with respect to the center line in the mold width direction on the center line in the mold thickness direction.

各浸漬ノズル3には側面に1個の吐出孔3aが、溶鋼の吐出方向が鋳型内の溶鋼湯面に対して鋳込み方向下向きに5°〜25°の角度で傾斜するように設けられている。この傾斜角度が5°未満であると吐出流の鋳込み方向下向きの速度が十分に得られず、25°を超えると吐出流がゆらぎを伴って不安定となり、鋳片の凝固が不均一となる。   Each immersion nozzle 3 is provided with one discharge hole 3a on the side surface so that the discharge direction of the molten steel is inclined at an angle of 5 ° to 25 ° downward in the casting direction with respect to the molten steel surface in the mold. . If the inclination angle is less than 5 °, the downward speed of the discharge flow in the casting direction cannot be obtained sufficiently, and if it exceeds 25 °, the discharge flow becomes unstable with fluctuations, and the solidification of the slab becomes uneven. .

各浸漬ノズル3の吐出孔3aは、溶鋼の吐出方向が、互いに対向するように配置される。以下、浸漬ノズル3の側面に吐出孔3aが1個だけ設けられている状態を「片孔」という。   The discharge holes 3a of the respective immersion nozzles 3 are arranged so that the discharge directions of the molten steel face each other. Hereinafter, a state in which only one discharge hole 3 a is provided on the side surface of the immersion nozzle 3 is referred to as “one hole”.

このように片孔の浸漬ノズル3を2本、吐出孔3aが対向するように配置することにより、各吐出孔3aからの溶鋼の吐出流b1は、図2(b)に示すように、鋳込み方向下向きの下降流b3および鋳込み方向上向きの上昇流b2に分離する。上昇流b2は溶鋼の液面に接すると溶鋼方向に反転し、鋳型4の側壁に沿って下降流b4を形成する。鋳込み方向下向きの下降流b3は、鋳片2の幅方向中央部において合流し、速度の大きい流れを形成する。凝固シェル2a近傍では、鋳込み方向上向きの速度の小さい上昇流b5が発生する。このようにして、各吐出孔3aから吐出された溶鋼が形成する、凝固シェル2a内における未凝固部(溶鋼1)の鋳型幅方向の速度分布Vbは、凝固シェル2aに接する部分で極小、中央部で極大の、概ね平坦な下に凸(U字状)の分布となる。   By disposing two single-hole immersion nozzles 3 so that the discharge holes 3a face each other, the molten steel discharge flow b1 from each discharge hole 3a is cast as shown in FIG. The downward flow b3 in the direction downward and the upward flow b2 in the casting direction upward are separated. When the upward flow b <b> 2 comes into contact with the liquid surface of the molten steel, the upward flow b <b> 2 reverses in the molten steel direction, and forms a downward flow b <b> 4 along the side wall of the mold 4. The downward flow b3 downward in the casting direction merges at the center in the width direction of the slab 2 to form a flow having a high speed. In the vicinity of the solidified shell 2a, an upward flow b5 having a small upward speed in the casting direction is generated. In this way, the velocity distribution Vb in the mold width direction of the unsolidified portion (molten steel 1) in the solidified shell 2a formed by the molten steel discharged from each discharge hole 3a is minimal and central at the portion in contact with the solidified shell 2a. The distribution is maximally flat and has a substantially flat bottom (U-shaped) distribution.

その結果、鋳片2のクレーターエンドでも、鋳片厚さ方向の中心を含む縦断面がU字状となる。また、その溶鋼流に起因し、鋳片2の凝固シェル2aは、図3(b)に示すように、中央部がほぼ均一の厚さであり、端部に近づくほど厚い形状となる。クレーターエンドおよび凝固シェルがこのような形状である場合には、鋳片2の凝固完了位置の鋳込み方向上流側近傍においては、圧下位置によらず、鋳片2の全体で幅方向全域にわたり凝固シェル2aが十分かつ均一に圧下され、未凝固溶鋼1が排出されるため、偏析は発生しない。   As a result, even in the crater end of the slab 2, the longitudinal section including the center in the slab thickness direction is U-shaped. Further, due to the molten steel flow, the solidified shell 2a of the slab 2 has a substantially uniform thickness at the center as shown in FIG. 3 (b), and becomes thicker toward the end. When the crater end and the solidified shell have such a shape, the solidified shell over the entire width direction of the entire slab 2 in the vicinity of the casting direction upstream of the solidification completion position of the slab 2 regardless of the reduction position. Since 2a is sufficiently and uniformly reduced and the unsolidified molten steel 1 is discharged, segregation does not occur.

2本の吐出孔3aからの溶鋼の吐出方向の、鋳込み方向からの傾斜角度は、両方の浸漬ノズル3で同じであることが好ましい。ただし、連続鋳造機における浸漬ノズル3と鋳型4の配置の関係上、鋳型4の横断面の中心と2本の浸漬ノズル3の中点とを一致させることができない場合には、各浸漬ノズル3からの溶鋼流が鋳型の幅方向の中心線に対して対称となるようにするため、浸漬ノズル3ごとに異なる角度としても差し支えない。   The inclination angle from the casting direction of the molten steel discharge direction from the two discharge holes 3a is preferably the same for both immersion nozzles 3. However, if the center of the cross section of the mold 4 and the midpoint of the two immersion nozzles 3 cannot be matched due to the arrangement of the immersion nozzle 3 and the mold 4 in the continuous casting machine, each immersion nozzle 3 In order to make the molten steel flow from symmetric with respect to the center line in the mold width direction, the immersion nozzle 3 may have a different angle.

さらに、本発明の鋳片の連続鋳造方法では、吐出孔3aから吐出される溶鋼に不活性ガスが混入するように、浸漬ノズル3に不活性ガスを吹き込む。これにより、介在物による浸漬ノズル3の閉塞をきたすことなく溶鋼の流動を安定させることができるため、クレーターエンドの形状を高い精度でU字状に制御すること、前記図3(b)に示す形状の凝固シェル2aを形成すること、および偏析の発生を抑制することを、安定して行うことができる。   Furthermore, in the continuous casting method of the slab of the present invention, the inert gas is blown into the immersion nozzle 3 so that the inert gas is mixed into the molten steel discharged from the discharge hole 3a. Thereby, since the flow of the molten steel can be stabilized without causing the immersion nozzle 3 to be blocked by inclusions, the shape of the crater end is controlled to be U-shaped with high accuracy, as shown in FIG. 3 (b). It is possible to stably form the solidified shell 2a having a shape and suppress the occurrence of segregation.

浸漬ノズル3に吹き込む不活性ガスとしてはArを使用する。浸漬ノズル3に吹き込むArガスの流量は、浸漬ノズル1本当たり、5〜15NL/minとする。これは、5NL/min未満では鋳型内の溶鋼湯面に皮張りが発生する懸念があり、15NL/minを超えると外乱が増加して湯面の状態が不安定となり、パウダー巻き込みが発生する懸念があるためである。Arガスの流量は、8〜10NL/minが好ましい。   Ar is used as the inert gas blown into the immersion nozzle 3. The flow rate of Ar gas blown into the immersion nozzle 3 is 5 to 15 NL / min per immersion nozzle. If it is less than 5 NL / min, there is a concern that the molten steel surface in the mold will be covered, and if it exceeds 15 NL / min, the disturbance will increase and the state of the molten metal will become unstable, which may cause powder entrainment. Because there is. The flow rate of Ar gas is preferably 8 to 10 NL / min.

図4は、鋳込み方向から見た鋳型および2本の浸漬ノズルの配置関係を示す図であり、同図(a)は吐出孔が偏向していない場合、同図(b)は吐出孔の偏向角度が5°である場合、同図(c)は吐出孔の偏向角度が10°である場合を示す。同図に示すように、浸漬ノズル3は、鋳込み方向から見て、鋳型厚さ方向の中心線上に、鋳型幅方向の中心線に対して対称に配置されることが好ましい。   FIG. 4 is a diagram showing the positional relationship between the casting mold and the two immersion nozzles as seen from the casting direction. FIG. 4A shows the case where the discharge holes are not deflected, and FIG. 4B shows the deflection of the discharge holes. When the angle is 5 °, FIG. 7C shows the case where the deflection angle of the ejection hole is 10 °. As shown in the figure, the immersion nozzle 3 is preferably arranged symmetrically with respect to the center line in the mold width direction on the center line in the mold thickness direction when viewed from the casting direction.

また、本発明の連続鋳造方法では、各浸漬ノズル3の吐出孔3aからの溶鋼の吐出方向は鋳型4の中心方向に向かう成分を有し、鋳型内の溶鋼湯面に平行な方向の成分が互いに平行であり、かつ鋳型の幅方向に対して所定の角度に偏向している。そのため、溶鋼の吐出方向がこのような角度となるように、吐出孔3aの偏向角度を設定する。ここで、偏向角度とは、鋳型4の横断面において、鋳型幅方向を基準とした溶鋼の吐出方向および吐出孔3aの角度をいう。前述のように、図4(a)は、吐出孔が偏向していない場合、すなわち偏向角度が0°の場合、同図(b)は偏向角度が5°である場合、同図(c)は偏向角度が10°である場合を示す。 Moreover, in the continuous casting method of this invention, the discharge direction of the molten steel from the discharge hole 3a of each immersion nozzle 3 has a component which goes to the center direction of the casting_mold | template 4, and the component of a direction parallel to the molten steel surface in a casting_mold | template is included. They are parallel to each other, and that are deflected at a predetermined angle with respect to the width direction of the mold. Therefore, as in the discharge direction of the molten steel is such an angle, to set the deflection angle of the discharge hole 3a. Here, the deflection angle refers to the discharge direction of the molten steel and the angle of the discharge hole 3a with respect to the mold width direction in the cross section of the mold 4. As described above, FIG. 4A shows a case where the ejection hole is not deflected, that is, when the deflection angle is 0 °, and FIG. 4B shows a case where the deflection angle is 5 °. Indicates a case where the deflection angle is 10 °.

このように浸漬ノズル3の吐出孔3aを偏向させることにより、対向する浸漬ノズル3からの溶鋼の吐出流を全ては互いに衝突させず、一部をわずかに逃がすこととなる。この場合、溶鋼流を全て衝突させた場合(偏向させていない場合)と比較して、より均一に近い、下に凸の鋳型の幅方向の速度分布を有する下降流を形成することができる。そのため、鋳片のクレーターエンドの縦断面の形状をU字状に制御し、凝固シェルを中央部がほぼ均一の厚さであり、端部に近づくほど厚い形状に制御することができる。   By deflecting the discharge hole 3a of the immersion nozzle 3 in this way, all of the discharge flows of the molten steel from the opposing immersion nozzle 3 do not collide with each other, and some of them are allowed to escape slightly. In this case, it is possible to form a downward flow having a velocity distribution in the width direction of the downwardly convex mold, which is more uniform than when the molten steel flow is caused to collide (when the molten steel flow is not deflected). Therefore, the shape of the longitudinal section of the crater end of the slab can be controlled to be U-shaped, and the solidified shell can be controlled to have a substantially uniform thickness at the center and thicker toward the end.

溶鋼の吐出方向の偏向角度は、5°〜15°である。偏向角度が15°を超えると、溶鋼の下降流の均一性が乱れることとなり、クレーターエンドおよび凝固シェルの形状を正確に制御することができないからである。 Deflection angle of the discharge direction of the molten steel is 5 ° to 15 °. This is because if the deflection angle exceeds 15 °, the uniformity of the downflow of the molten steel is disturbed, and the shapes of the crater end and the solidified shell cannot be accurately controlled.

本発明の方法が適用可能な連続鋳造装置は、垂直型に限らず、湾曲型、垂直曲げ型等のいずれの型にも適用することができる。   The continuous casting apparatus to which the method of the present invention can be applied is not limited to a vertical mold, but can be applied to any mold such as a curved mold and a vertical bending mold.

本発明の鋳片の連続鋳造方法の効果を確認するため、以下に示すスラブの連続鋳造試験を実施してその結果を評価した。   In order to confirm the effect of the continuous casting method of the slab according to the present invention, the following continuous slab casting test was performed and the result was evaluated.

1.試験条件
連続鋳造機として、前記図1に示す垂直曲げ型連続鋳造機を用いた。連続鋳造機は、垂直部2.5m、湾曲半径9.4m、機長28mであった。スラブの圧下は同図(a)に示す上下1対の大径ロールまたは同図(b)に示す複数の小径ロールを用いて行った。大径ロールを用いた圧下では、凝固完了までに鋳片厚さの5〜20%を圧下した。小径ロールを用いた圧下では、凝固完了までに鋳片厚さの5%以内を圧下した。スラブの鋳造サイズは厚さ250mm、幅2300mmとし、鋳造速度は0.80m/minとした。また、浸漬ノズルから溶鋼とともに吹き込む不活性ガスはArとした。
1. Test conditions The vertical bending type continuous casting machine shown in FIG. 1 was used as the continuous casting machine. The continuous casting machine had a vertical part of 2.5 m, a bending radius of 9.4 m, and a machine length of 28 m. The reduction of the slab was performed using a pair of upper and lower large-diameter rolls shown in (a) or a plurality of small-diameter rolls shown in (b). In the reduction using a large-diameter roll, 5 to 20% of the slab thickness was reduced before the completion of solidification. In the reduction using a small-diameter roll, 5% or less of the slab thickness was reduced until the completion of solidification. The casting size of the slab was 250 mm thick and 2300 mm wide, and the casting speed was 0.80 m / min. Further, Ar was used as the inert gas blown together with the molten steel from the immersion nozzle.

鋳造に用いた鋼は、質量%で、C:0.02〜0.50%、Si:0.04〜0.60%、Mn:0.50〜2.50%、P:0.050%以下、S:0.01%以下を含有し、残部Feおよび不可避的不純物からなる組成(鋳片状態)であった。これは、厚鋼板として用いられている鋼種である。   The steel used for casting is mass%, C: 0.02-0.50%, Si: 0.04-0.60%, Mn: 0.50-2.50%, P: 0.050% Hereinafter, S was a composition (slab state) containing 0.01% or less, the balance being Fe and inevitable impurities. This is a steel type used as a thick steel plate.

また、溶鋼過熱度、使用した浸漬ノズルおよびその吐出孔からの溶鋼の吐出流の鋳型内の溶鋼湯面に対する傾き(吐出角度)、圧下方法ならびに圧下ゾーンの長さは表1に示す通りとした。表1中の圧下方法の欄に記載の「大圧下」とは大径ロールを用いて行った圧下であり、「軽圧下」とは小径ロールを用いて行った圧下である。また、圧下ゾーンの欄に記載の「−」とは、1箇所での圧下であることを示す。   Further, the degree of superheated molten steel, the immersion nozzle used and the inclination (discharge angle) of the discharge flow of molten steel from the discharge hole to the molten steel surface in the mold, the reduction method and the length of the reduction zone are as shown in Table 1. . “Large reduction” described in the column of the reduction method in Table 1 is reduction performed using a large diameter roll, and “light reduction” is reduction performed using a small diameter roll. Further, “−” in the column of the reduction zone indicates that the reduction is performed at one place.

Figure 0005636913
Figure 0005636913

試験A、BおよびGは、本発明の規定を満足する本発明例である。試験C〜FおよびHは本発明の規定を満足しない比較例である。試験CはArの吹き込み量が、試験DはArの吹き込み量および溶鋼の吐出角度が、試験Eは浸漬ノズルの本数が、試験Fは浸漬ノズルの本数および圧下量が、試験Hは浸漬ノズルの傾斜角が、それぞれ本発明の規定を満足しない。   Tests A, B and G are examples of the present invention that satisfy the provisions of the present invention. Tests C to F and H are comparative examples that do not satisfy the provisions of the present invention. Test C has an Ar blowing amount, Test D has an Ar blowing amount and molten steel discharge angle, Test E has a number of dipping nozzles, Test F has a number of dipping nozzles and a reduction amount, and Test H has a dipping nozzle number. Each inclination angle does not satisfy the provisions of the present invention.

また、試験A〜Fは、対向する浸漬ノズルからの吐出流の鋳型内の溶鋼湯面に平行な方向の成分を互いに平行とし、かつ前記鋳型の幅方向に対する偏向角度を0°とし、試験GおよびHは偏向角度をそれぞれ10°および20°とした。すなわち試験A〜Fでは対向する浸漬ノズルからの吐出流を偏向させず、試験GおよびHでは偏向させた。偏向角度とは、前記図4に示される角度である。   In tests A to F, the components in the direction parallel to the molten steel surface in the mold of the discharge flow from the opposed immersion nozzles are parallel to each other, and the deflection angle with respect to the width direction of the mold is 0 °. And H have deflection angles of 10 ° and 20 °, respectively. That is, in the tests A to F, the discharge flow from the opposed immersion nozzle was not deflected, but was deflected in the tests G and H. The deflection angle is the angle shown in FIG.

各試験について、完全凝固後の鋳片を鋳込み方向に垂直な断面における、炭素濃度の分布を測定し、以下の項目について評価した。炭素濃度はマッピングアナライザを用いて測定した。   For each test, the distribution of carbon concentration in the cross section perpendicular to the casting direction of the slab after complete solidification was measured, and the following items were evaluated. The carbon concentration was measured using a mapping analyzer.

2.評価項目
表2に評価項目およびその結果を示す。評価項目は、目視により観察した「中心偏析分布」、「偏析面積」、「炭素の最大偏析度」および「炭素偏析度のばらつき」とした。偏析度とは、測定箇所の炭素濃度Cを、タンディッシュ内の溶鋼の炭素濃度の分析値C0で除した値C/C0である。炭素の最大偏析度とは、中心偏析部における最大炭素濃度CMについての偏析度、すなわちCM/C0である。偏析面積とはC/C0>1.0である領域の面積である。炭素偏析度のばらつきとは、最大炭素濃度CMと最小炭素濃度Cmとの差CM−Cmである。
2. Evaluation items Table 2 shows the evaluation items and the results. The evaluation items were “central segregation distribution”, “segregation area”, “maximum segregation degree of carbon”, and “variation of carbon segregation degree” observed visually. The degree of segregation is a value C / C 0 obtained by dividing the carbon concentration C at the measurement location by the analysis value C 0 of the carbon concentration of the molten steel in the tundish. The maximum segregation degree of carbon is the segregation degree with respect to the maximum carbon concentration C M at the center segregation portion, that is, C M / C 0 . The segregation area is an area of a region where C / C 0 > 1.0. The variation in the degree of carbon segregation is the difference C M -C m between the maximum carbon concentration C M and the minimum carbon concentration C m .

Figure 0005636913
Figure 0005636913

2−1.試験A〜Fの比較
まず、比較例である試験C〜Fの結果について説明する。表2に示すように、片孔の浸漬ノズルを2本使用した試験CおよびDでは、2孔の浸漬ノズルを1本使用した試験EおよびFと比較して、偏析面積および炭素の最大偏析度はいずれも小さく、良好な値であったものの、中心偏析がわずかに残存し、中心偏析の皆無化には至らなかった。
2-1. Comparison of Tests A to F First, the results of tests C to F, which are comparative examples, will be described. As shown in Table 2, in tests C and D using two single-hole immersion nozzles, compared to tests E and F using one two-hole immersion nozzle, the segregation area and the maximum degree of carbon segregation Although all were small and good values, the center segregation remained slightly, and the center segregation was not completely eliminated.

試験Cおよび試験Dで中心偏析がわずかに残存した理由は、試験Cでは溶鋼とともにArガスを流さなかったこと、試験Dでは溶鋼とともにArガスを流さなかったことに加えて溶鋼の吐出流の鉛直下向き方向への傾斜が過剰であったことから、浸漬ノズルからの溶鋼の吐出流がゆらぎを伴うこととなり、溶鋼の凝固が不均一であったためと考えられる。   The reason why the center segregation remained slightly in Test C and Test D was that Ar gas was not flowed together with the molten steel in Test C, Ar gas was not flowed together with the molten steel in Test D, and the vertical flow of the molten steel discharge flow. Since the downward inclination was excessive, the discharge flow of the molten steel from the immersion nozzle was accompanied by fluctuations, and it was considered that the solidification of the molten steel was uneven.

これらの比較例に対して、本発明例である試験AおよびBは、中心偏析は確認されず、また、炭素の最大偏析度および炭素偏析度のばらつきも小さかった。   In contrast to these comparative examples, in the tests A and B which are examples of the present invention, no central segregation was confirmed, and the maximum segregation degree of carbon and the variation of the carbon segregation degree were small.

2−2.試験A、GおよびHの比較
さらに、対向する浸漬ノズルからの吐出流を鋳型の幅方向に対して偏向させた場合について説明する。本発明例である試験Aと試験Gを比較すると、いずれも中心偏析が確認されなかったことに加え、偏向させた試験Gでは、偏向させなかった試験Aと比較して、炭素の最大偏析度が小さく、炭素偏析度のばらつきも小さかった。これは、対向する浸漬ノズルからの吐出流を全て衝突させず、互いにわずかに逃がすことで、鋳片の幅方向により均一な溶鋼の下降流を形成できたためである。
2-2. Comparison of Tests A, G, and H Further, a case where the discharge flow from the opposed immersion nozzle is deflected with respect to the width direction of the mold will be described. When test A and test G, which are examples of the present invention, were compared, no center segregation was confirmed, and in the deflected test G, the maximum degree of segregation of carbon compared to test A which was not deflected. And the variation in the degree of segregation of carbon was small. This is because a uniform downflow of the molten steel can be formed in the width direction of the slab by causing the discharge flows from the opposed immersion nozzles not to collide with each other and causing them to escape slightly.

一方、比較例である試験Hでは、中心偏析が存在していた。これは、偏向角度が大きすぎたため、溶鋼の下降流の均一性が乱れたためである。   On the other hand, center segregation was present in Test H, which is a comparative example. This is because the uniformity of the downward flow of the molten steel is disturbed because the deflection angle is too large.

本発明の鋳片の連続鋳造方法によれば、浸漬ノズルからの溶鋼吐出流によって形成される鋳片内流動を制御することにより、鋳片幅方向の未凝固部の厚さを均一とし、クレーターエンドの形状を圧下時に濃化溶鋼が残存しにくい形状に制御し、さらに、鋳片最終凝固位置における濃化溶鋼の流入を防止するのに十分な圧下量を付与することが可能であるため、全幅で中心偏析を皆無とした鋳片を得ることができる。本発明は、内部品質の良好な鋳片を容易に得られるという点で、産業上、非常に価値が高い。   According to the continuous casting method of the slab of the present invention, by controlling the flow in the slab formed by the molten steel discharge flow from the immersion nozzle, the thickness of the unsolidified portion in the slab width direction is made uniform, and the crater Because it is possible to control the shape of the end to a shape in which the concentrated molten steel hardly remains at the time of rolling down, and furthermore, it is possible to provide a rolling amount sufficient to prevent the flow of the concentrated molten steel at the final solidification position of the slab, It is possible to obtain a slab having no center segregation in the entire width. The present invention is very valuable industrially in that a slab having good internal quality can be easily obtained.

1:溶鋼、 2:鋳片、 2a:凝固シェル、 3:浸漬ノズル、 3a:吐出孔、
4:鋳型、 5:サポートロール群、 6:大径ロール、 7:小径ロール、
a1:上昇流、 a2:下降流、 a3:下降流、 b1:吐出流、 b2:上昇流、
b3:下降流、 b4:下降流、 b5:上昇流
1: molten steel, 2: slab, 2a: solidified shell, 3: immersion nozzle, 3a: discharge hole,
4: Mold, 5: Support roll group, 6: Large diameter roll, 7: Small diameter roll,
a1: Upflow, a2: Downflow, a3: Downflow, b1: Discharge flow, b2: Upflow,
b3: Downflow, b4: Downflow, b5: Upflow

Claims (3)

浸漬ノズルから鋳型内に溶鋼を供給し、供給した溶鋼を凝固させながら引き抜き、未凝固部を含む鋳片を凝固完了までに圧下ロールを用いて圧下する連続鋳造方法において、
前記浸漬ノズルとして、側面に溶鋼の吐出孔を1個有する浸漬ノズルを2本用い、各浸漬ノズルは前記吐出孔から吐出される溶鋼が互いに衝突するように前記鋳型の幅方向に配置されるとともに、
前記吐出孔からの溶鋼の吐出方向が、鋳型内の溶鋼湯面に対して鋳込み方向下向きに5°〜25°の角度に傾斜し、同時に鋳型内の溶鋼湯面に平行な方向の成分が互いに平行であり、かつ前記鋳型の幅方向に対して5°〜15°の角度に偏向しており、
前記各浸漬ノズルにArガスを1本当たり5NL/min以上15NL/min以下の流量で吹き込みながら、前記吐出孔からArガスが混入した溶鋼を吐出させることを特徴とする鋳片の連続鋳造方法。
In the continuous casting method of supplying molten steel from the immersion nozzle into the mold, drawing it out while solidifying the supplied molten steel, and rolling down the slab containing the unsolidified part using a reduction roll until solidification is completed.
As the immersion nozzle, two immersion nozzles having one molten steel discharge hole on the side surface are used, and each immersion nozzle is arranged in the width direction of the mold so that the molten steel discharged from the discharge hole collides with each other. ,
The discharge direction of the molten steel from the discharge hole is inclined at an angle of 5 ° to 25 ° downward in the casting direction with respect to the molten steel surface in the mold, and at the same time, the components in the direction parallel to the molten steel surface in the mold are mutually Parallel and deflected at an angle of 5 ° to 15 ° with respect to the width direction of the mold,
A continuous casting method for a slab, characterized in that molten steel mixed with Ar gas is discharged from the discharge hole while Ar gas is blown into each of the immersion nozzles at a flow rate of 5 NL / min to 15 NL / min.
前記圧下ロールとして、鋳片を支持し、案内するロール群のうち最大の直径のものの1.5倍以上の直径を有する大径ロールを用い、圧下量を鋳片厚さの5〜20%として圧下することを特徴とする請求項1に記載の鋳片の連続鋳造方法。 As the reduction roll, a large-diameter roll having a diameter 1.5 times or more that of the largest diameter among the roll group that supports and guides the slab, and the reduction amount is 5 to 20% of the slab thickness. 2. The method for continuously casting a slab according to claim 1 , wherein the reduction is performed. 前記圧下ロールとして、鋳片を支持し、案内するロール群のうち最大の直径のものの1.5倍未満の直径を有する小径ロールを複数対用い、圧下量を鋳片厚さの5%以下として圧下することを特徴とする請求項1に記載の鋳片の連続鋳造方法。 As the reduction roll, a plurality of pairs of small-diameter rolls having a diameter less than 1.5 times the maximum diameter of the roll group that supports and guides the slab, and the reduction amount is 5% or less of the slab thickness. 2. The method for continuously casting a slab according to claim 1 , wherein the reduction is performed.
JP2010263736A 2010-11-26 2010-11-26 Continuous casting method for slabs Active JP5636913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010263736A JP5636913B2 (en) 2010-11-26 2010-11-26 Continuous casting method for slabs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010263736A JP5636913B2 (en) 2010-11-26 2010-11-26 Continuous casting method for slabs

Publications (2)

Publication Number Publication Date
JP2012110952A JP2012110952A (en) 2012-06-14
JP5636913B2 true JP5636913B2 (en) 2014-12-10

Family

ID=46495729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010263736A Active JP5636913B2 (en) 2010-11-26 2010-11-26 Continuous casting method for slabs

Country Status (1)

Country Link
JP (1) JP5636913B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2867894B2 (en) * 1994-09-30 1999-03-10 住友金属工業株式会社 Continuous casting method
JPH09269626A (en) * 1996-04-01 1997-10-14 Ricoh Co Ltd Color image forming device
JPH1128553A (en) * 1997-07-07 1999-02-02 Sumitomo Metal Ind Ltd Method for supplying molten metal into continuous casting
JP3298525B2 (en) * 1998-11-10 2002-07-02 住友金属工業株式会社 Continuous casting equipment with exchangeable roll equipment
JP3835185B2 (en) * 2001-03-19 2006-10-18 住友金属工業株式会社 Steel continuous casting method
JP4214014B2 (en) * 2003-08-07 2009-01-28 新日本製鐵株式会社 Continuous casting method
JP5217785B2 (en) * 2008-08-26 2013-06-19 Jfeスチール株式会社 Steel continuous casting method

Also Published As

Publication number Publication date
JP2012110952A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
JP4609330B2 (en) Continuous casting method of ultra-thick steel plates with excellent internal quality and slabs for ultra-thick steel plates
JP4296985B2 (en) Ultra-thick steel plate with excellent internal quality and its manufacturing method
JP2007302908A (en) High tensile strength steel plate and its manufacturing method
JP2018089644A (en) Method for improving central segregation of spring steel
JP3427794B2 (en) Continuous casting method
JP5636913B2 (en) Continuous casting method for slabs
JP5402678B2 (en) Steel continuous casting method
JP2019155419A (en) Continuous casting method for slab
JP5018441B2 (en) Method of drawing slab after completion of casting in continuous casting
KR101949351B1 (en) Method of producing continuous-cast steel product using continuous casting machine
JP5131662B2 (en) Continuous casting method for slabs
JP6497200B2 (en) Immersion nozzle for strip casting apparatus and strip casting apparatus
JP3365362B2 (en) Continuous casting method
JP5443203B2 (en) Continuous casting method using a cooling method for rolls arranged in an air cooling zone
JP3275835B2 (en) Continuous casting method and continuous casting machine
JP2001321901A (en) Method for continuously casting steel
JP2016179485A (en) Continuous casting method
JP7230597B2 (en) Pouring nozzle, twin roll type continuous casting apparatus, and method for producing thin cast slab
JPWO2019203137A1 (en) Continuous casting method for steel
JP6094368B2 (en) Continuous casting slab and continuous casting method
CN114364471B (en) Crystallizer for continuous casting of metal products and corresponding casting method
CN111394656B (en) Crystallizer
JP6933158B2 (en) Continuous steel casting method
JP3275828B2 (en) Continuous casting method
JP2007301609A (en) Continuous casting method for steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140129

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140516

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141007

R151 Written notification of patent or utility model registration

Ref document number: 5636913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350