JP4214014B2 - Continuous casting method - Google Patents

Continuous casting method Download PDF

Info

Publication number
JP4214014B2
JP4214014B2 JP2003206413A JP2003206413A JP4214014B2 JP 4214014 B2 JP4214014 B2 JP 4214014B2 JP 2003206413 A JP2003206413 A JP 2003206413A JP 2003206413 A JP2003206413 A JP 2003206413A JP 4214014 B2 JP4214014 B2 JP 4214014B2
Authority
JP
Japan
Prior art keywords
mold
flow
continuous casting
discharge holes
discharge hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003206413A
Other languages
Japanese (ja)
Other versions
JP2005052847A (en
Inventor
眞宏 大崎
康裕 坂本
克己 天田
昌伸 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003206413A priority Critical patent/JP4214014B2/en
Publication of JP2005052847A publication Critical patent/JP2005052847A/en
Application granted granted Critical
Publication of JP4214014B2 publication Critical patent/JP4214014B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は溶鋼の連続鋳造方法に関するものであり、特に介在物集積による表層欠陥および内部欠陥の少ない鋳片を得ることができる連続鋳造方法に関するものである。
【0002】
【従来の技術】
溶鋼の連続鋳造を行うには、図2に示すように鋳型1の中央に1本の浸漬ノズル2を浸漬し、タンディッシュから供給された溶鋼を浸漬ノズル2の両側に形成された吐出孔3から鋳型1内に注入している。これらの吐出孔3からの噴出流4は鋳型1の短辺に衝突し、上向きの反転流5と下向きの浸透流6とに分かれる。
【0003】
この反転流5は溶湯の表層で両側から鋳型中央部に向かう流れとなり、中央部で激しく衝突する。溶湯の液面にはパウダー状のモールドフラックス7の層が形成されているため、図2の平面図に示すようにこの流れに乗ってモールドフラックス7が溶鋼中に巻き込まれ、凝固シェルに捕捉される。この結果、浸漬ノズル2の両側に介在物が集積し、スリバーと呼ばれるパウダー系の表層欠陥を生じ易くなる。
【0004】
また下向きの浸透流6は図2に示すように介在物を下部ストランド内に持ち込み、内部欠陥集積帯を形成する。これらの表層欠陥と内部欠陥は、圧延後のヘゲ疵やプレス成形時のワレにつながるものである。このような欠陥は,特にスループット(溶鋼注入量)の多いときに増加する傾向が認められる。
【0005】
このようなパウダー系の表層欠陥を防止するひとつの方法として、後記の特許文献1には、2本の浸漬ノズルの使用が提案されている。この方法は図3に示すとおりであって、単一の吐出孔8を持つ2本の浸漬ノズル9を鋳型1の長辺方向に2本配置し、これらの吐出孔8から鋳型1の内側に向かって吐出される溶湯の流れを互いに衝突しないように平行としたものである。この方法によれば溶湯の衝突による液面の変動が防止され、モールドフラックス7の巻き込みが防止できるとされている。
【0006】
しかしこの方法においては、吐出孔8の総数は2個であるから各吐出孔8から吐出される溶湯の流速は図2の場合と変わらない。このため図2について述べたと同様に下向きの浸透流6による内部欠陥が発生する。また反転流5は減衰することなく浸漬ノズル9に衝突し、モールドフラックス7の巻き込みを招くような流れの乱れを生ずる。従ってこの特許文献1の方法も、圧延後のヘゲ疵やプレス成形時のワレにつながる表層欠陥や内部欠陥を確実に解消することはできない。
【特許文献1】
特開平11−28553号公報
【0007】
【発明が解決しようとする課題】
本発明は上記した従来の問題点を解決して、スループットが多い場合にも、圧延後のヘゲ疵やプレス成形時のワレにつながる鋳片の表層欠陥や内部欠陥を確実に解消することができる連続鋳造方法を提供するためになされたものである。
【0008】
【課題を解決するための手段】
上記の課題を解決するためになされた本発明の連続鋳造方法は、側面の対向位置に、水平面から0°〜30°の角度で下向きに形成された2個の吐出孔を備えた浸漬ノズルを、鋳型の長辺方向に複数本配置し、各浸漬ノズルのこれらの吐出孔が鋳型の長辺方向に対して15°〜25°の水平角度を持つように配置して各吐出孔からの溶鋼の流れが他の浸漬ノズル及び鋳型の短辺と衝突することを防止しつつ各吐出孔からの溶鋼流出速度を低下させることにより、表層欠陥および内部欠陥を防止しながら連続鋳造を行うことを特徴とするものである。
【0009】
本発明によれば、側面に2個の吐出孔を備えた浸漬ノズルを鋳型内部に2本以上配置するので、吐出孔の総数は4個以上となる。このために各吐出孔から吐出される溶湯の流速は従来の1/2以下となり、上向きの反転流及び下向きの浸透流の流速も1/2以下に低く抑えることができる。このためモールドフラックスの巻き込みによる表層欠陥や、介在物を下部ストランド内に持ち込むことによる内部欠陥が大幅に減少する。なお、吐出孔が鋳型の長辺方向に対して15°〜25°の水平角度を持つように浸漬ノズルを配置することによって、各吐出孔からの溶鋼の流れが他の浸漬ノズル及び鋳型の短辺と衝突することを防止しつつ、凝固界面に淀みのできない程度の流れを全幅にわたって均一に生じさせることができる。また各吐出孔を水平面から0°〜30°の浅い角度で下向きとすることにより、下向きの浸透流が深くまで到達せず、内部欠陥をより効果的に抑制することができる。
【0010】
【発明の実施の形態】
以下に本発明の好ましい実施形態を示す。
図1は本発明の実施形態を示す図であり、連続鋳造用の鋳型1の内部に、2本の浸漬ノズル10が浸漬されている。この実施形態では鋳型1個当たりの浸漬ノズル10の本数を2本としたが、3本や4本などとしてもよい。浸漬ノズル10は側面に2個の吐出孔11を備えたもので、これらの2個の吐出孔11は浸漬ノズル10の中心軸を挟んだ対向位置に設けられている。
【0011】
本発明では、図1に示すように浸漬ノズル10の2個の吐出孔11は、水平面から0°〜30°の浅い角度βで下向きに形成されている。吐出孔11が水平面よりも上向きであると、すなわち角度βがマイナスであると液面に向かう上向きの流速が大きくなり、モールドフラックス7の巻き込みによる表層欠陥を生じ易くなる。また吐出孔11の角度βが30°を越えると下向きの浸透流が深くまで到達し、従来と同様に介在物が下部ストランド内に持ち込まれることにより内部欠陥集積帯を形成し易くなる。
【0012】
2本の浸漬ノズル10は、鋳型1の長辺方向に2本配置されている。このとき浸漬ノズル10の吐出孔11が鋳型1の長辺方向に対して、15°〜25°の水平角度αを持つように浸漬ノズル10を配置するものとする。もし吐出孔11の水平角度αが15°未満であると、吐出孔11から吐出された溶湯の流れが他方の浸漬ノズル10(あるいは他方の浸漬ノズル10からの溶湯の流れ)と衝突し易くなり、液面の乱れを招き易くなる。逆に吐出孔11の水平角度αが25°を越えると、吐出孔11から吐出された溶湯の流れが鋳型1の短辺と衝突し易くなり、液面の乱れを招き易くなる。
【0013】
このように本発明では、それぞれ2個の吐出孔11を備えた複数本の浸漬ノズル10を、鋳型1の長辺方向に2本配置し、タンディッシュから供給された溶湯を4個の吐出孔11から鋳型1内に吐出しつつ連続鋳造を行う。このため従来の2個の吐出孔を用いた方法よりも、各吐出孔11からの溶鋼流出速度を半減させることができる。その結果、上向きの反転流及び下向きの浸透流の流速も半減し、モールドフラックス7の巻き込みによる表層欠陥や、介在物を下部ストランド内に持ち込むことによる内部欠陥を大幅に減少させることができる。
【0014】
本発明の方法により連続鋳造された鋳片は、圧延後のヘゲ疵やプレス成形時のワレが生じにくく、凝固時の介在物に起因するトラブルの大半を解消することができる。
【0015】
【実施例】
長辺が1300mm、短辺が250mmの鋳型の内部に、2本の浸漬ノズルを深さ200mmまで浸漬し、溶鋼の連続鋳造実験を行った。浸漬ノズルの外径は全て170mmであり、それぞれ2個の吐出孔を備えたものとした。なお比較のために、浸漬ノズルを1本とした実験(比較例1)と、吐出孔を1個のみとした実験(比較例2)も行った。表1に示すように吐出孔の水平角度αと下向き角度βを変化させ、それぞれの場合の鋳片の表層欠陥と内部欠陥とを検査し、指標で示した。これらの指標の基準は比較例1である。また操業性の良否も評価した。
【0016】
【表1】

Figure 0004214014
【0017】
表1に示されるように、本発明の実施例はいずれも比較例よりも優れた成績を示した。中でも、水平角度αが15°〜25°であり、下向角度βが0°〜30°の範囲にある実施例1,2,4は最も優れた成績を示した。実施例3は下向角度βが45°と大きいので、他の実施例よりも内部欠陥指標が悪化した。実施例5は水平角度αが5°と小さいので、内向きの吐出流が干渉し、表層欠陥指標が他の実施例よりも悪化し、また操業性も低下した。実施例6は水平角度αが30°と大きいので、鋳型の長辺側凝固シェル異常が発生し、表層欠陥指標が他の実施例よりも悪化しまた操業性も低下した。
【0018】
【発明の効果】
以上に説明したように、本発明の連続鋳造方法によれば、浸漬ノズルの吐出孔の総数は4個以上となるため溶湯の流速は従来の1/2以下となり、上向きの反転流及び下向きの浸透流の流速も1/2以下に低く抑えることができる。このためモールドフラックスの巻き込みによる表層欠陥や、介在物を下部ストランド内に持ち込むことによる鋳片の内部欠陥が減少し、スループットが多い場合にも、圧延後のヘゲ疵やプレス成形時のワレを大幅に減少させることができる。
【図面の簡単な説明】
【図1】本発明の実施形態の説明図であり、(A)は平面図、(B)は縦断面図である。
【図2】従来例の説明図であり、(A)は平面図、(B)は縦断面図である。
【図3】特許文献1の方法の説明図であり、(A)は平面図、(B)は縦断面図である。
【符号の説明】
1 鋳型
2 浸漬ノズル
3 吐出孔
4 噴出流
5 上向きの反転流
6 下向きの浸透流
7 モールドフラックス
8 単一の吐出孔
9 浸漬ノズル
10 浸漬ノズル
11 吐出孔[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous casting method for molten steel, and more particularly to a continuous casting method capable of obtaining a slab having few surface layer defects and internal defects due to inclusion accumulation.
[0002]
[Prior art]
In order to perform continuous casting of molten steel, as shown in FIG. 2, one immersion nozzle 2 is immersed in the center of the mold 1, and the discharge holes 3 formed on both sides of the immersion nozzle 2 are supplied with molten steel supplied from a tundish. Is injected into the mold 1. The jet flow 4 from these discharge holes 3 collides with the short side of the mold 1 and is divided into an upward reversal flow 5 and a downward permeation flow 6.
[0003]
The reversal flow 5 is a surface layer of the molten metal that flows from both sides toward the center of the mold and violently collides with the center. Since a layer of powder-like mold flux 7 is formed on the surface of the molten metal, the mold flux 7 is caught in the molten steel by this flow as shown in the plan view of FIG. 2, and is captured by the solidified shell. The As a result, inclusions accumulate on both sides of the immersion nozzle 2 and powder-type surface defects called slivers are likely to occur.
[0004]
Also, the downward osmotic flow 6 brings inclusions into the lower strand as shown in FIG. 2 to form an internal defect accumulation zone. These surface layer defects and internal defects lead to galling after rolling and cracking during press molding. Such defects tend to increase especially when throughput (molten steel injection amount) is high.
[0005]
As one method for preventing such a powder-type surface layer defect, the use of two immersion nozzles is proposed in Patent Document 1 described later. This method is as shown in FIG. 3, and two immersion nozzles 9 having a single discharge hole 8 are arranged in the long side direction of the mold 1, and from these discharge holes 8 to the inside of the mold 1. The flow of molten metal discharged toward the front is made parallel so as not to collide with each other. According to this method, the fluctuation of the liquid level due to the collision of the molten metal is prevented, and the entrainment of the mold flux 7 can be prevented.
[0006]
However, in this method, since the total number of discharge holes 8 is two, the flow rate of the molten metal discharged from each discharge hole 8 is not different from the case of FIG. Therefore, an internal defect due to the downward osmotic flow 6 occurs as described with reference to FIG. Further, the reversal flow 5 collides with the immersion nozzle 9 without being attenuated, resulting in a flow disturbance that causes the mold flux 7 to be involved. Therefore, the method of Patent Document 1 cannot surely eliminate the surface layer defects and internal defects that lead to baldness after rolling and cracking during press molding.
[Patent Document 1]
Japanese Patent Application Laid-Open No. 11-28553
[Problems to be solved by the invention]
The present invention solves the above-mentioned conventional problems, and can reliably eliminate surface defects and internal defects of slabs that lead to baldness after rolling and cracking during press molding even when throughput is high. It is made in order to provide the continuous casting method which can be performed.
[0008]
[Means for Solving the Problems]
The continuous casting method of the present invention, which has been made to solve the above problems, comprises an immersion nozzle having two discharge holes formed downward at an angle of 0 ° to 30 ° with respect to the horizontal plane at opposite positions on the side surface. A plurality of steel plates are arranged in the long side direction of the mold, and these discharge holes of each immersion nozzle are arranged so as to have a horizontal angle of 15 ° to 25 ° with respect to the long side direction of the mold. It is characterized by performing continuous casting while preventing surface layer defects and internal defects by reducing the flow rate of molten steel from each discharge hole while preventing the flow of steel from colliding with other immersion nozzles and the short side of the mold It is what .
[0009]
According to the present invention, since two or more immersion nozzles having two discharge holes on the side surface are arranged inside the mold, the total number of discharge holes is four or more. For this reason, the flow velocity of the molten metal discharged from each discharge hole becomes 1/2 or less of the conventional one, and the flow velocity of the upward reversing flow and the downward osmotic flow can be suppressed to 1/2 or less. For this reason, surface layer defects due to entrainment of mold flux and internal defects due to inclusions in the lower strand are greatly reduced. In addition, by arranging the immersion nozzle so that the discharge hole has a horizontal angle of 15 ° to 25 ° with respect to the long side direction of the mold, the flow of molten steel from each discharge hole causes the short of the other immersion nozzle and the mold to be short. While preventing collision with the side, it is possible to uniformly generate a flow that does not stagnate at the solidification interface over the entire width. Moreover, by making each discharge hole face downward at a shallow angle of 0 ° to 30 ° from the horizontal plane, the downward osmotic flow does not reach deep, and internal defects can be more effectively suppressed.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the present invention are shown below.
FIG. 1 is a view showing an embodiment of the present invention, in which two immersion nozzles 10 are immersed in a continuous casting mold 1. In this embodiment, the number of immersion nozzles 10 per mold is two, but may be three or four. The immersion nozzle 10 is provided with two discharge holes 11 on the side surface, and these two discharge holes 11 are provided at opposing positions across the central axis of the immersion nozzle 10.
[0011]
In the present invention, as shown in FIG. 1, the two discharge holes 11 of the immersion nozzle 10 are formed downward at a shallow angle β of 0 ° to 30 ° from the horizontal plane. When the discharge hole 11 is upward from the horizontal plane, that is, when the angle β is negative, the upward flow velocity toward the liquid surface is increased, and surface layer defects due to the entrainment of the mold flux 7 are likely to occur. When the angle β of the discharge hole 11 exceeds 30 °, the downward osmotic flow reaches deeply, and inclusions are brought into the lower strand as in the conventional case, so that an internal defect accumulation zone is easily formed.
[0012]
Two immersion nozzles 10 are arranged in the long side direction of the mold 1. At this time, the immersion nozzle 10 is arranged so that the discharge hole 11 of the immersion nozzle 10 has a horizontal angle α of 15 ° to 25 ° with respect to the long side direction of the mold 1 . If the horizontal angle α of the discharge hole 11 is less than 15 °, the flow of the molten metal discharged from the discharge hole 11 easily collides with the other immersion nozzle 10 (or the flow of molten metal from the other immersion nozzle 10). The liquid level is likely to be disturbed. On the other hand, when the horizontal angle α of the discharge hole 11 exceeds 25 °, the flow of the molten metal discharged from the discharge hole 11 easily collides with the short side of the mold 1 and the liquid level is easily disturbed.
[0013]
As described above, in the present invention, two immersion nozzles 10 each having two discharge holes 11 are arranged in the long side direction of the mold 1, and the molten metal supplied from the tundish is discharged into four discharge holes. The continuous casting is performed while discharging into the mold 1 from 11. For this reason, the molten steel outflow rate from each discharge hole 11 can be halved compared with the conventional method using two discharge holes. As a result, the flow rates of the upward reversal flow and the downward osmotic flow are also halved, and surface defects caused by the entrainment of the mold flux 7 and internal defects caused by bringing inclusions into the lower strand can be greatly reduced.
[0014]
The slab continuously cast by the method of the present invention is less prone to baldness after rolling and cracking during press molding, and can eliminate most of the troubles caused by inclusions during solidification.
[0015]
【Example】
Two immersion nozzles were immersed to a depth of 200 mm in a mold having a long side of 1300 mm and a short side of 250 mm, and a continuous casting experiment of molten steel was conducted. All the outer diameters of the immersion nozzles were 170 mm, and each was provided with two discharge holes. For comparison, an experiment with one immersion nozzle (Comparative Example 1) and an experiment with only one discharge hole (Comparative Example 2) were also conducted. As shown in Table 1, the horizontal angle α and the downward angle β of the discharge hole were changed, and the surface layer defect and the internal defect of the slab in each case were inspected and indicated by an index. The reference for these indices is Comparative Example 1. The operability was also evaluated.
[0016]
[Table 1]
Figure 0004214014
[0017]
As shown in Table 1, all of the examples of the present invention showed better results than the comparative examples. Among them, Examples 1, 2, and 4 in which the horizontal angle α is 15 ° to 25 ° and the downward angle β is in the range of 0 ° to 30 ° showed the most excellent results. In Example 3, since the downward angle β was as large as 45 °, the internal defect index was worse than in the other examples. In Example 5, since the horizontal angle α was as small as 5 °, the inward discharge flow interfered, the surface layer defect index was worse than in the other examples, and the operability was also lowered. In Example 6, since the horizontal angle α was as large as 30 °, abnormalities in the solidified shell on the long side of the mold occurred, the surface layer defect index was worse than in the other examples, and the operability was reduced.
[0018]
【The invention's effect】
As described above, according to the continuous casting method of the present invention, since the total number of discharge holes of the immersion nozzle is 4 or more, the flow rate of the molten metal is 1/2 or less of the conventional, the upward reversal flow and the downward flow The flow rate of the osmotic flow can also be suppressed to 1/2 or less. For this reason, surface layer defects due to entrainment of mold flux and internal defects of slabs due to inclusions being brought into the lower strand are reduced, and even when throughput is high, there is a tendency to bend after rolling and cracking during press molding. Can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an embodiment of the present invention, (A) is a plan view, and (B) is a longitudinal sectional view.
2A and 2B are explanatory diagrams of a conventional example, in which FIG. 2A is a plan view and FIG. 2B is a longitudinal sectional view.
3A and 3B are explanatory diagrams of the method of Patent Document 1, in which FIG. 3A is a plan view and FIG. 3B is a longitudinal sectional view.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Mold 2 Immersion nozzle 3 Discharge hole 4 Jetting flow 5 Upward reverse flow 6 Downward osmotic flow 7 Mold flux 8 Single discharge hole 9 Immersion nozzle 10 Immersion nozzle 11 Discharge hole

Claims (1)

側面の対向位置に、水平面から0°〜30°の角度で下向きに形成された2個の吐出孔を備えた浸漬ノズルを、鋳型の長辺方向に複数本配置し、各浸漬ノズルのこれらの吐出孔が鋳型の長辺方向に対して15°〜25°の水平角度を持つように配置して各吐出孔からの溶鋼の流れが他の浸漬ノズル及び鋳型の短辺と衝突することを防止しつつ、各吐出孔からの溶鋼流出速度を低下させることにより、表層欠陥および内部欠陥を防止しながら連続鋳造を行うことを特徴とする連続鋳造方法。A plurality of immersion nozzles having two discharge holes formed downward at an angle of 0 ° to 30 ° with respect to the horizontal plane are arranged at opposite positions on the side surface in the long side direction of the mold . Discharge holes are arranged so as to have a horizontal angle of 15 ° to 25 ° with respect to the long side direction of the mold, and the flow of molten steel from each discharge hole is prevented from colliding with other immersion nozzles and the short side of the mold. and while, by lowering the molten steel outflow rate from the discharge holes, a continuous casting method characterized by performing continuous casting while preventing the surface defects and internal defects.
JP2003206413A 2003-08-07 2003-08-07 Continuous casting method Expired - Fee Related JP4214014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003206413A JP4214014B2 (en) 2003-08-07 2003-08-07 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003206413A JP4214014B2 (en) 2003-08-07 2003-08-07 Continuous casting method

Publications (2)

Publication Number Publication Date
JP2005052847A JP2005052847A (en) 2005-03-03
JP4214014B2 true JP4214014B2 (en) 2009-01-28

Family

ID=34363287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003206413A Expired - Fee Related JP4214014B2 (en) 2003-08-07 2003-08-07 Continuous casting method

Country Status (1)

Country Link
JP (1) JP4214014B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5636913B2 (en) * 2010-11-26 2014-12-10 新日鐵住金株式会社 Continuous casting method for slabs

Also Published As

Publication number Publication date
JP2005052847A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
CN107107175B (en) Method for continuously casting steel
CN101296766A (en) Method for manufacture of ultra-low carbon steel slab
JP4214014B2 (en) Continuous casting method
JP6570738B2 (en) Steel vertical continuous casting equipment
JP2001347348A (en) Immersion nozzle for continuous casting
KR101132944B1 (en) Apparatus for confining the impurities of a molten metal contained into a continuous casting mould
JP4494550B2 (en) Method for controlling flow of molten steel in mold
JPH09108793A (en) Continuous casting method and straight immersion nozzle
JPH08155593A (en) Method for continuously casting thin cast slab and immersion nozzle for continuous casting
JP2004209512A (en) Continuous casting method and immersion nozzle
JP3277858B2 (en) Continuous casting method of beam blank
JP4932985B2 (en) Steel continuous casting method
JP2856960B2 (en) Continuous casting method of steel slab by traveling magnetic field and static magnetic field
JP3817209B2 (en) Continuous casting method for stainless steel slabs to prevent surface and internal defects
JP5239554B2 (en) Immersion nozzle for continuous casting of slabs
JP3093606B2 (en) Nozzle for twin belt type continuous casting machine
JPH05185192A (en) Immersed nozzle for continuous casting
KR101053275B1 (en) Dipping nozzle for thin cast continuous casting device and thin cast continuous casting method using same
JPH0217735Y2 (en)
JP2001314946A (en) Continuous casting method of thin casting piece and apparatus
JP2004283850A (en) Continuous casting method
JPH04127943A (en) Method for preventing clogging of submerged nozzle for continuous casting
JP3726692B2 (en) Continuous casting method
JP4421136B2 (en) Continuous casting method
JP2002301550A (en) Immersion nozzle for continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees