JPH1128553A - Method for supplying molten metal into continuous casting - Google Patents

Method for supplying molten metal into continuous casting

Info

Publication number
JPH1128553A
JPH1128553A JP18111497A JP18111497A JPH1128553A JP H1128553 A JPH1128553 A JP H1128553A JP 18111497 A JP18111497 A JP 18111497A JP 18111497 A JP18111497 A JP 18111497A JP H1128553 A JPH1128553 A JP H1128553A
Authority
JP
Japan
Prior art keywords
mold
discharge
molten steel
immersion nozzle
immersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18111497A
Other languages
Japanese (ja)
Inventor
Masashi Hanao
方史 花尾
Masayuki Kawamoto
正幸 川本
Yoshinori Tanizawa
好徳 谷澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP18111497A priority Critical patent/JPH1128553A/en
Publication of JPH1128553A publication Critical patent/JPH1128553A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the clogging of an immersion nozzle and the entrapment of mold flux and to improve the stabilization of an operation and the quality of a cast slab by arranging the immersion nozzle so that discharging holes of the immersion nozzle are mutually faced and the discharge flows are mutually faced and do not collide heat-on each other. SOLUTION: Molten metal is supplied into a mold by using two pieces of a first and a second immersion nozzles 1a, 1b having the discharging hole in one direction on side surface to produce the cast slab. The first immersion nozzle 1a and the second immersion nozzle 1b are arranged on the center line Y-Y in the mold thickness in parallel with the mold long sides. The first and the second immersion nozzles 1a, 1b are arranged so that the discharging holes 2a, 2b of both immersion nozzles 1a, 1b and the discharge flows 3a, 3b of molten steel become the parallel faced flows. The spouting angles θa , θb formed between the discharge flows 3a, 3b and the center line Y-Y are set to 2-10 deg..

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鋳片を連続鋳造す
る際、特に広幅薄鋳片を鋳造する際、浸漬ノズルにて溶
鋼を鋳型内へ給湯する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for feeding molten steel into a mold by means of an immersion nozzle when continuously casting a slab, particularly when casting a wide thin slab.

【0002】[0002]

【従来の技術】熱間圧延工程の製造コストや設備コスト
の節約および省エネルギの観点から、熱間圧延工程の簡
素化および省略化が志向されるようになった。
2. Description of the Related Art The simplification and omission of the hot rolling process have been pursued from the viewpoints of saving the manufacturing cost and equipment cost of the hot rolling process and saving energy.

【0003】そのため鋳片の広幅化、薄鋳片化が着目さ
れてきたが、最近の精錬技術および鋳造技術の著しい進
歩により、品質の良好な広幅薄鋳片の製造が可能になっ
てきた。
[0003] Therefore, attention has been paid to widening and thinning of slabs. However, recent remarkable advances in refining and casting techniques have made it possible to produce wide and thin slabs of good quality.

【0004】広幅薄鋳片の連続鋳造の操業および品質の
安定化には、鋳型内への給湯方法が重要な技術となり、
そのための浸漬ノズルがこれまでに種々提示されてい
る。
[0004] In order to stabilize the operation and quality of continuous casting of wide thin cast slab, the method of hot water supply into the mold has become an important technology.
Various immersion nozzles have been proposed for this purpose.

【0005】しかし、鋳片厚みの薄い鋳型になると、そ
の鋳型内に浸漬するノズルの厚みも薄くする必要があ
る。これは、鋳型内面と浸漬ノズルとの間隔が狭くなる
と鋳型内への溶鋼の流入が不安定になり、湯面で凝固し
たり、モールドフラックスの滓化不良等の支障が生じる
ためである。
However, when a mold having a thin slab thickness is used, it is necessary to reduce the thickness of a nozzle immersed in the mold. This is because when the distance between the inner surface of the mold and the immersion nozzle is reduced, the flow of molten steel into the mold becomes unstable, causing problems such as solidification on the molten metal surface and poor slagging of the mold flux.

【0006】したがって、通常の浸漬ノズルは円筒状で
あるのに対して、広幅薄鋳片の製造には浸漬ノズルを扁
平状にすることが特開昭62−197252号公報、お
よび特開昭62−292255号公報に開示されてい
る。
[0006] Therefore, while the usual immersion nozzle is cylindrical, it is necessary to make the immersion nozzle flat in the production of wide thin cast pieces, as disclosed in Japanese Patent Application Laid-Open Nos. 62-197252 and 62-197252. -292255.

【0007】しかし、浸漬ノズルの厚みが薄くなるにつ
れて、浸漬ノズル自体に下記のような問題が生じる。
However, as the thickness of the immersion nozzle decreases, the following problems occur in the immersion nozzle itself.

【0008】(1) 溶鋼の吐出口幅(吐出口断面積)が狭
くなり、ノズル詰まりが発生しやすくなる。ノズル詰ま
りが発生した場合には、複数の溶鋼の吐出口(通常使用
されているノズルは吐出口が2ヶ所ある)からの溶鋼の
吐出流量がそれぞれ異なるようになり、片流れの現象に
なる。片流れが生じると、鋳型内の湯面変動が大きくな
り、溶鋼にモールドフラックスの巻き込みや凝固殻の不
均一等を引き起こし、鋳片表面および鋳片内部の品質が
低下する。
(1) The discharge port width (discharge port cross-sectional area) of molten steel is reduced, and nozzle clogging is likely to occur. When nozzle clogging occurs, the discharge flow rate of molten steel from a plurality of discharge ports of molten steel (a commonly used nozzle has two discharge ports) becomes different from each other, resulting in a single flow phenomenon. When the one-sided flow occurs, the fluctuation of the molten metal level in the mold becomes large, which causes the mold flux to be entrained in the molten steel, causes the solidified shell to become non-uniform, and the like, and deteriorates the quality of the surface of the slab and the inside of the slab.

【0009】(2) 溶鋼の吐出口の断面積を十分にとらな
いと、鋳造速度の高速化に必要な溶鋼の給湯量の確保に
限界が生じる。
(2) If the sectional area of the discharge port of molten steel is not sufficient, there is a limit in securing a supply amount of molten steel required for increasing the casting speed.

【0010】(3) 鋳型の幅が広いと、溶鋼の吐出流が鋳
型短辺近傍まで行かなくなり、熱量不足が生じて湯面が
凝固し始め、モールドフラックスの滓化不良(鋳型内面
と鋳片表面間の潤滑不良)や浸漬ノズルの折損等が起こ
り、操業が困難になる。
(3) If the width of the mold is wide, the discharge flow of the molten steel does not reach the vicinity of the short side of the mold, the amount of heat is insufficient, the molten metal surface starts to solidify, and the mold flux is not sufficiently slagged (the inner surface of the mold and the slabs). Insufficient lubrication between the surfaces), breakage of the immersion nozzle, etc. occur, making operation difficult.

【0011】上記により、従来から行われている1本の
浸漬ノズルによる給湯では、広幅薄鋳型を用いた場合、
鋳造操業の安定化、鋳造速度の高速化および鋳片品質の
維持に限界がある。
As described above, in the conventional hot water supply with one immersion nozzle, when a wide and thin mold is used,
There are limits to stabilizing casting operations, increasing casting speed, and maintaining slab quality.

【0012】広幅薄鋳型内への大量給湯の安定化には、
浸漬ノズルは1本でなく、2本を鋳型内の幅方向に並列
して給湯する方法が特開平8−99155号公報および
特開平8−192253号公報に開示されている。
In order to stabilize a large amount of hot water supplied into a wide and thin mold,
Japanese Patent Application Laid-Open Nos. 8-99155 and 8-192253 disclose a method of supplying hot water in parallel with two immersion nozzles in the width direction in the mold.

【0013】これらの方法により、浸漬ノズルから溶鋼
の吐出量が十分確保でき、鋳型幅方向への吐出流の流速
および溶鋼温度が均一になり、広幅薄鋳片の連続鋳造時
において生じていた上記の問題は改善される。
According to these methods, the discharge amount of the molten steel from the immersion nozzle can be sufficiently ensured, the flow velocity of the discharge flow in the width direction of the mold and the molten steel temperature become uniform, and the above-mentioned problems that occur during continuous casting of wide thin slabs are obtained. Problem is improved.

【0014】しかし、これらの方法でも下記のような問
題がまだ残されている。浸漬ノズルを複数本使用し、浸
漬ノズルと鋳型短辺との距離を近づけて、短辺側に吐出
すれば、前記の吐出量と流速の問題は改善される反面、
溶鋼の吐出流が鋳型短辺の凝固殻に衝突して、凝固殻の
再溶解、さらにはブレイクアウトという操業上の問題に
つながる。この現象は鋳造速度が増加し給湯量が増大す
ると発生しやすいため、鋳造速度の増加に制約が生じ
る。したがって、浸漬ノズルと鋳型短辺との距離をある
程度以上確保する必要がある。
However, these methods still have the following problems. Using a plurality of immersion nozzles, shortening the distance between the immersion nozzle and the short side of the mold, and discharging to the short side, while the problem of the discharge amount and the flow rate is improved,
The discharge flow of the molten steel collides with the solidified shell on the short side of the mold, leading to the re-melting of the solidified shell, and furthermore, to the operation problem of breakout. This phenomenon is likely to occur when the casting speed is increased and the amount of hot water is increased, and therefore, the increase in the casting speed is restricted. Therefore, it is necessary to ensure a certain distance or more between the immersion nozzle and the short side of the mold.

【0015】一方、浸漬ノズル同士で溶鋼の吐出口が向
かい合うようにした場合、浸漬ノズル間の中央部分で
は、両ノズルからの吐出流が衝突し、衝突後の上昇流に
より湯面の変動が大きくなる。この変動は、鋳造速度の
増加とともに増大し、モールドフラックスの巻き込みが
発生して、鋳片の品質が低下する。
On the other hand, when the discharge ports of the molten steel are made to face each other between the immersion nozzles, the discharge flows from both nozzles collide in the central portion between the immersion nozzles, and the level of the molten metal surface greatly changes due to the upward flow after the collision. Become. This fluctuation increases as the casting speed increases, and entrainment of the mold flux occurs, thereby reducing the quality of the slab.

【0016】鋳型短辺凝固殻への溶鋼の衝突流および上
昇流の流速の低減は、電磁ブレーキ(直流磁界の印加に
より溶鋼の吐出流を制御する機能)によりある程度可能
であるが、鋳造速度の増加により溶鋼の吐出流量が増大
した場合には、限界がある。
Although the velocity of the collision flow and the upward flow of the molten steel on the solidified shell on the short side of the mold can be reduced to some extent by an electromagnetic brake (a function of controlling the discharge flow of the molten steel by applying a DC magnetic field), the casting speed is reduced. When the discharge flow rate of molten steel increases due to the increase, there is a limit.

【0017】[0017]

【発明が解決しようとする課題】本発明は、広幅薄鋳片
を連続鋳造する際の給湯方法、具体的には、浸漬ノズル
詰まりやモールドフラックスの巻き込みが防止でき、操
業の安定化と鋳片品質の維持、向上が図れる浸漬ノズル
の設置方法等を提供することにある。
SUMMARY OF THE INVENTION The present invention relates to a hot water supply method for continuous casting of wide thin cast slabs. More specifically, it is possible to prevent clogging of a dipping nozzle and entrainment of mold flux, thereby stabilizing operation and improving cast slabs. An object of the present invention is to provide an immersion nozzle installation method that can maintain and improve quality.

【0018】[0018]

【課題を解決するための手段】本発明者等は、種々の実
験を行い検討した結果、下記の知見を得た。側面に1つ
の溶鋼の吐出口を有する浸漬ノズルを2本使用し、これ
らの吐出口をお互いに向き合わせて、鋳型長辺に対して
平行に設置し、所望により溶鋼の吐出角度を選択するこ
とにより、両吐出流の衝突を回避し、浸漬ノズル間に生
ずる湯面変動を抑制することができる。
Means for Solving the Problems The present inventors have conducted various experiments and studied and obtained the following findings. Use two immersion nozzles with one molten steel discharge port on the side, place these discharge ports facing each other and install them parallel to the long side of the mold, and select the discharge angle of molten steel as desired Thereby, the collision between the two discharge flows can be avoided, and the fluctuation of the molten metal level between the immersion nozzles can be suppressed.

【0019】本発明は、このような知見に基づきなされ
たもので、その要旨は下記の(1) および(2) のとおりで
ある。
The present invention has been made based on such findings, and the gist is as follows (1) and (2).

【0020】(1) 側面に1方向の吐出口を有する浸漬ノ
ズルを2本用いて鋳型に溶鋼を給湯し、鋳片を製造する
際、前記浸漬ノズルを、前記吐出口が互いに向き合い、
該吐出口からの吐出流が向流で、かつ吐出流同士が正対
衝突しないように配置したことを特徴とする連続鋳造の
給湯方法。
(1) Molten steel is supplied to a mold by using two immersion nozzles each having a discharge port in one direction on a side surface, and when producing cast slabs, the immersion nozzles face each other with the discharge ports facing each other.
A hot water supply method for continuous casting, characterized in that the discharge flows from the discharge ports are arranged in such a manner as to be countercurrent and the discharge flows do not directly collide with each other.

【0021】(2) 前記吐出口からの吐出流が鋳型長辺に
対して2〜10°の角度を持つ平行向流であることを特
徴とする請求項1記載の連続鋳造の給湯方法。
(2) The hot water supply method for continuous casting according to claim 1, wherein the discharge flow from the discharge port is a parallel counterflow having an angle of 2 to 10 ° with respect to the long side of the mold.

【0022】[0022]

【発明の実施の形態】本発明の浸漬ノズルを用いて溶鋼
を鋳型内へ給湯する方法について、図面に基づいて以下
に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for feeding molten steel into a mold using the immersion nozzle of the present invention will be described below with reference to the drawings.

【0023】図1に、本発明における鋳型内の浸漬ノズ
ル配置の例と、この場合に形成される溶鋼の流れとを横
断面模式図で示す。図1に示すように、鋳型横断面にお
いて、鋳型長辺に平行な鋳型厚みの中心線Y−Y上に、
第一浸漬ノズル1aと第二浸漬ノズル1bの2本を配置
する。その後、それぞれの浸漬ノズル1a、1bに設け
られた溶鋼の吐出口2a、2bをお互いに向き合うよう
にして、溶鋼の吐出流を向流とする。好ましくは溶鋼の
吐出角度θa、θbを鋳型厚みの中心線Y―Yに対して
同じにするとともに溶鋼の吐出流3a、3bを平行向流
になるようにする。
FIG. 1 is a schematic cross-sectional view showing an example of the arrangement of an immersion nozzle in a mold according to the present invention and the flow of molten steel formed in this case. As shown in FIG. 1, in the mold cross section, on the center line YY of the mold thickness parallel to the long side of the mold,
Two immersion nozzles 1a and 1b are arranged. Thereafter, the discharge flow of the molten steel is made countercurrent so that the discharge ports 2a, 2b of the molten steel provided in the respective immersion nozzles 1a, 1b face each other. Preferably, the discharge angles θa and θb of the molten steel are made the same with respect to the center line Y-Y of the thickness of the mold, and the discharge flows 3a and 3b of the molten steel are made to flow in parallel countercurrent.

【0024】このような溶鋼の吐出角度θa、θbを選
択した場合、第一浸漬ノズル1aの吐出口2aからの溶
鋼の吐出流3aは、第二浸漬ノズル1bの溶鋼の吐出流
3bと衝突することなく、第二浸漬ノズル1bの側面か
ら鋳型内面4に沿った旋回流5aを形成する。旋回流5
aはその後、第二浸漬ノズル1bの溶鋼の吐出流3bと
合流する。
When the molten steel discharge angles θa and θb are selected, the molten steel discharge flow 3a from the discharge port 2a of the first immersion nozzle 1a collides with the molten steel discharge flow 3b of the second immersion nozzle 1b. The swirling flow 5a is formed from the side surface of the second immersion nozzle 1b along the inner surface 4 of the mold without the need. Swirling flow 5
Then, a merges with the molten steel discharge flow 3b of the second immersion nozzle 1b.

【0025】この流動様式において、両溶鋼の吐出流3
a、3bの衝突により生じる上昇流は減少し、第一浸漬
ノズル1aと第二浸漬ノズル1b間の湯面変動が減少す
る。さらに、上記の連続的な溶鋼の旋回流5a、5bに
より、凝固殻に一旦捕捉された気泡や非金属介在物等の
離脱を促進し、鋳片の表面品質が向上するという効果も
得られる。
In this flow mode, the discharge flow 3 of both molten steels
The upward flow generated by the collision of the nozzles 3a and 3b decreases, and the fluctuation of the molten metal level between the first immersion nozzle 1a and the second immersion nozzle 1b decreases. Furthermore, the continuous swirling flow 5a, 5b of molten steel promotes the detachment of air bubbles and non-metallic inclusions once trapped in the solidified shell, thereby improving the surface quality of the cast slab.

【0026】本発明において溶鋼の吐出角度θ、つまり
溶鋼の吐出口からの吐出流を、前記のように限定した理
由を以下に説明する。
The reason why the discharge angle θ of the molten steel, that is, the discharge flow from the discharge port of the molten steel in the present invention is limited as described above will be described below.

【0027】図2に、溶鋼の吐出角度θと湯面変動量と
の関係を示す。図2に示すように溶鋼の吐出角度θが2
°未満では吐出口の寸法、浸漬ノズル間距離等によって
は吐出流3a、3b同士の衝突により、溶鋼の上昇流が
起こり湯面変動量が最大振幅で5mmを超え、モールド
フラックスの巻き込みが発生し、鋳片の品質が低下すお
それがあるので2°以上とするのが望ましい。また10
°を超えると、鋳型内の湯面変動量が最大振幅で3mm
と安定するが、溶鋼の吐出流3a、3bの鋳型長辺の凝
固殻への衝突が大きくなり、場合によってはその部分で
凝固殻の再溶解が起こり、ブレイクアウトが発生するの
で10°未満が望ましい。さらに好ましくは3〜7゜で
ある。
FIG. 2 shows the relationship between the molten steel discharge angle θ and the molten metal surface fluctuation amount. As shown in FIG. 2, the discharge angle θ of molten steel is 2
If it is less than °, depending on the size of the discharge port, the distance between the immersion nozzles, etc., the collision of the discharge flows 3a and 3b will cause the molten steel to rise, causing the molten metal level fluctuation to exceed 5 mm at the maximum amplitude, and entrainment of the mold flux will occur. It is preferable to set the angle to 2 ° or more because the quality of the cast slab may be reduced. Also 10
°, the level fluctuation in the mold is 3mm at the maximum amplitude
However, the collision of the molten steel discharge flows 3a and 3b with the solidified shell on the long side of the mold becomes large, and in some cases, the solidified shell re-dissolves in that portion, causing a breakout. desirable. More preferably, it is 3 to 7 degrees.

【0028】浸漬ノズルの形状は、横断面において、幅
100〜500mm、厚み30〜70mm程度がよい。
ただし、この範囲の内でも、鋳型断面サイズとの兼ね合
いで最適値を選択するのがよい。大切なのは、鋳型内溶
湯の流動障害となることを避けることである。そのた
め、可能な範囲で小さくし、また、浸漬ノズルと鋳型長
辺面との間隔を10mm以上確保するのが望ましい。
The shape of the immersion nozzle is preferably about 100 to 500 mm in width and about 30 to 70 mm in thickness in the cross section.
However, even within this range, it is preferable to select an optimum value in consideration of the cross-sectional size of the mold. It is important to avoid the flow of the molten metal in the mold. For this reason, it is desirable that the distance be as small as possible and that the distance between the immersion nozzle and the long side of the mold be 10 mm or more.

【0029】浸漬ノズルの肉厚は、5〜20mm程度が
良い。熱衝撃および熱応力に対して必要な強度があれば
良く、それ以上に厚くする必要はない。
The thickness of the immersion nozzle is preferably about 5 to 20 mm. It is only necessary to have the necessary strength against thermal shock and thermal stress, and it is not necessary to make it thicker.

【0030】図3に、本発明の浸漬ノズルの実施態様例
を示す。溶鋼の吐出角度θを設けるには、図3(a)に
示すように、浸漬ノズルの角度と吐出角度が一致する場
合には、浸漬ノズル全体を回転することにより設けても
良いし、図3(b)に示すように、浸漬ノズル本体は鋳
型長辺に平行にしたままで、溶鋼の吐出口のみにθの角
度を付与して吐出角度を調整しても良い。なお、図3
(a)の浸漬ノズルは必ずしも鋳型厚みの中心線Y−Y
上に設置しなくとも、溶鋼噴出口が鋳型長辺に対し、角
度θを持っていれば良いことはいうまでもない。また図
3(c)に示すように、浸漬ノズルの溶鋼吐出口に角度
θを持たせずに、鋳型長辺に対してそれぞれが平行な向
流で、かつ吐出流同士が正対衝突しないように設置して
も良い。
FIG. 3 shows an embodiment of the immersion nozzle of the present invention. In order to set the discharge angle θ of the molten steel, as shown in FIG. 3A, when the angle of the immersion nozzle and the discharge angle coincide with each other, the molten steel may be provided by rotating the entire immersion nozzle. As shown in (b), while the immersion nozzle body is kept parallel to the long side of the mold, the discharge angle may be adjusted by giving an angle θ only to the discharge port of molten steel. Note that FIG.
The immersion nozzle of (a) is not necessarily the center line Y-Y of the mold thickness.
It is needless to say that the molten steel jet port may have an angle θ with respect to the long side of the mold even if it is not installed above. Further, as shown in FIG. 3 (c), the molten steel discharge port of the immersion nozzle has no angle θ, so that counterflows are parallel to the long sides of the mold and the discharge flows do not directly collide with each other. It may be installed in.

【0031】鉛直断面における溶鋼の吐出角度は、後述
する図6(a)、(b)および(c)に示すように、通
常使用されている浸漬ノズルの溶鋼の吐出角度と同程度
で良く、水平線に対して下向き30〜60゜が一般的で
ある。
As shown in FIGS. 6 (a), 6 (b) and 6 (c), which will be described later, the discharge angle of the molten steel in the vertical cross section may be substantially the same as the discharge angle of the molten steel of a commonly used immersion nozzle. A downward angle of 30 to 60 degrees with respect to the horizontal is common.

【0032】図6に、浸漬ノズルにみられる溶鋼の吐出
口の拡大縦断面図を示す。同図(a)および(b)は、
本発明の広幅薄鋳片の給湯方法に使用する浸漬ノズルの
例で、同図(c)は、従来使用されている浸漬ノズルの
例である。それぞれ下向き角度は30〜60°である。
FIG. 6 is an enlarged vertical sectional view of the molten steel discharge port observed in the immersion nozzle. (A) and (b) of FIG.
FIG. 3C shows an example of a submerged nozzle used in the method for supplying a wide thin cast slab according to the present invention. FIG. Each downward angle is 30 to 60 degrees.

【0033】また、溶湯流動および湯面変動の幅方向に
おける対称性を保持するために、溶鋼の吐出角度θa、
θbは両方の浸漬ノズルとも同じ値にするのが良い。
Further, in order to maintain the symmetry in the width direction of the molten metal flow and the molten metal surface fluctuation, the molten steel discharge angle θa,
θb is preferably set to the same value for both immersion nozzles.

【0034】浸漬ノズルの溶鋼への浸漬深さは、通常の
範囲と同程度で良く、100〜500mmの範囲が一般
的であり、両方の浸漬ノズルとも同じ値にするのがよ
い。
The immersion depth of the immersion nozzle in the molten steel may be approximately the same as the normal range, generally in the range of 100 to 500 mm, and preferably the same value for both immersion nozzles.

【0035】湯面変動抑制のためには、溶鋼の吐出流に
電磁ブレーキを印加するとより効果的であるが、その強
度は2000〜6000Gの範囲で選定し、鋳造速度の
増加とともに増やすのがよい。
To suppress the fluctuation of the molten metal level, it is more effective to apply an electromagnetic brake to the discharge flow of the molten steel. However, the strength is selected in the range of 2000 to 6000 G, and it is preferable to increase the strength as the casting speed increases. .

【0036】[0036]

【実施例】2ストランドの湾曲型連続鋳造機にて、低炭
素アルミキルド鋼を5.0m/minの速度で給湯し、
厚さ100mm、幅2000mmの広幅薄鋳片を製造し
た。
EXAMPLE A low-carbon aluminum-killed steel was supplied at a speed of 5.0 m / min by a two-strand curved continuous casting machine.
A wide thin slab having a thickness of 100 mm and a width of 2000 mm was produced.

【0037】鋳造時に鋳型内の湯面変動量として、最大
振幅を測定し、湯面変動の抑制状況を目視で観察すると
ともに鋳片の表面清浄度を調査した。
At the time of casting, the maximum amplitude was measured as the amount of fluctuation of the molten metal level in the mold, the state of suppression of the fluctuation of the molten metal level was visually observed, and the surface cleanness of the slab was examined.

【0038】鋳造後鋳片の表面清浄度の調査は、全長1
0mの鋳片表皮下3mmまでスラブ表面をスカーフイン
グした後、グラインダーにより手入れを行いJISG0
555(鋼の非金属介在物の顕微鏡試験方法)に従いサ
ンプルを採取して行った。鋳片の表面清浄度の評価は、
一番良い状態をAとし、一番悪い状態をEとして5段階
で行った。
Investigation of the surface cleanliness of the cast slab after casting revealed that the total length was 1
After scarfing the surface of the slab to 3 mm below the surface of the slab of 0 m slab, it was cleaned with a grinder and JIS G0
Samples were taken according to 555 (microscopic test method for non-metallic inclusions in steel). The evaluation of the surface cleanliness of the slab is
The best condition was A and the worst condition was E.

【0039】(実施例1)低炭素キルド鋼(重量%で、
C:0.06、Si:0.050、Mn:0.25、
P:0.015、S:0.004、Al:0.043)
でNo.1のストランドでは、本発明例1として、浸漬
ノズルを2本用い、鋳型長辺に対し溶鋼の吐出角度θを
0°とした。一方、No.2のストランドでは、比較例
1として、従来の浸漬ノズルを2本用いた。この時の給
湯条件と、その結果を表1に示す。
(Example 1) Low carbon killed steel (% by weight,
C: 0.06, Si: 0.050, Mn: 0.25,
(P: 0.015, S: 0.004, Al: 0.043)
No. In one strand, as Example 1 of the present invention, two immersion nozzles were used, and the discharge angle θ of the molten steel with respect to the long side of the mold was set to 0 °. On the other hand, No. In the second strand, as Comparative Example 1, two conventional immersion nozzles were used. Table 1 shows the hot water supply conditions and the results.

【0040】図4に、鋳型内に浸漬ノズルを2本配置し
た場合の横断面模式図を示す。同図(a)および(c)
は、本発明例の状況を示し、同図(b)は比較例の状況
を示す。
FIG. 4 is a schematic cross-sectional view when two immersion nozzles are arranged in a mold. Figures (a) and (c)
Shows the situation of the example of the present invention, and FIG. 3B shows the situation of the comparative example.

【0041】本発明例1は、図4(c)の態様で、比較
例1は図4(b)の態様でそれぞれ行った。
Inventive Example 1 was carried out in the manner shown in FIG. 4C, and Comparative Example 1 was carried out in the manner shown in FIG. 4B.

【0042】本発明例および比較例で用いた浸漬ノズル
は、図6(a)に示すものであり、以下も同じである。
The immersion nozzles used in the examples of the present invention and the comparative examples are those shown in FIG. 6A, and the same applies to the following.

【0043】本発明で定める条件により製造された本発
明例1では、鋳型内の湯面変動量が最大振幅で3mmで
あり、鋳片表面清浄度指数はBと良好であった。
In Example 1 of the present invention produced under the conditions defined in the present invention, the fluctuation amount of the molten metal level in the mold was 3 mm at the maximum amplitude, and the slab surface cleanliness index was as good as B.

【0044】しかし、本発明で定める条件から外れる比
較例1では、鋳型内の湯面変動量が最大振幅で6mmで
あり、鋳片表面清浄度指数はDであった。
However, in Comparative Example 1 out of the conditions defined in the present invention, the fluctuation amount of the molten metal level in the mold was 6 mm at the maximum amplitude, and the slab surface cleanliness index was D.

【0045】したがって、本発明例1は、鋳型内の湯面
変動が抑制されたため鋳片表面清浄度指数は比較例1に
比し向上した。
Therefore, in Example 1 of the present invention, the slab surface cleanliness index was improved as compared with Comparative Example 1 because the fluctuation of the molten metal level in the mold was suppressed.

【0046】[0046]

【表1】 [Table 1]

【0047】(実施例2)低炭素アルミキルド鋼(重量
%で、C:0.05、Si:0.054、Mn:0.2
2、P:0.016、S:0.003、Al:0.04
7)で No.1のストランドでは、本発明例2とし
て、浸漬ノズルを2本用い図4(a)に示す配置で、鋳
型長辺に対し溶鋼の吐出角度θを5°として給湯を行っ
た。一方、No.2のストランドでは、比較例2とし
て、従来の両方向に吐出口を有する浸漬ノズルを2本用
いた。この時の給湯条件と、その結果を表1に示す。
Example 2 Low carbon aluminum killed steel (% by weight, C: 0.05, Si: 0.054, Mn: 0.2)
2, P: 0.016, S: 0.003, Al: 0.04
No. 7). In the case of the first strand, as Example 2 of the present invention, hot water was supplied using two immersion nozzles and the arrangement shown in FIG. On the other hand, No. In the second strand, as Comparative Example 2, two conventional immersion nozzles having discharge ports in both directions were used. Table 1 shows the hot water supply conditions and the results.

【0048】本発明で定める条件により製造された本発
明例2では、鋳型内の湯面変動量が最大振幅で3mmで
あり、鋳片表面清浄度指数はBと良好であった。
In Example 2 of the present invention produced under the conditions defined in the present invention, the fluctuation amount of the molten metal level in the mold was 3 mm at the maximum amplitude, and the slab surface cleanliness index was as good as B.

【0049】しかし、本発明で定める条件から外れる比
較例2では、鋳型内の湯面変動量が最大振幅で6mmで
あり、鋳片表面清浄度指数はCであった。
However, in Comparative Example 2, which deviated from the conditions defined in the present invention, the fluctuation of the molten metal level in the mold was 6 mm at the maximum amplitude, and the slab surface cleanliness index was C.

【0050】したがって、本発明例2は、鋳型内の湯面
変動が抑制されたため鋳片表面清浄度指数は比較例2に
比し向上した。
Therefore, in Example 2 of the present invention, the fluctuation of the molten metal level in the mold was suppressed, so that the slab surface cleanliness index was improved as compared with Comparative Example 2.

【0051】(実施例3)低炭素アルミキルド鋼(重量
%で、C:0.05、Si:0.052、Mn:0.2
4、P:0.018、S:0.005、Al:0.03
9)で No.1のストランドでは、本発明例3として
浸漬ノズルを2本を用い図4(a)型配置で、鋳型長辺
に対し溶鋼の吐出角度θを8°とした。一方、No.2
のストランドでは、比較例3として、従来の両方向に吐
出口を有する浸漬ノズルを1本用い図5に示す配置で行
った。この時の給湯条件と、その結果を表1に示す。な
お、図5は、鋳型内に浸漬ノズルを1本配置した場合の
横断面模式図である。このときの浸漬ノズルは図6
(c)に示すものであった。
Example 3 Low carbon aluminum killed steel (% by weight, C: 0.05, Si: 0.052, Mn: 0.2
4, P: 0.018, S: 0.005, Al: 0.03
No. 9). In one strand, as Example 3 of the present invention, two immersion nozzles were used and the discharge angle θ of the molten steel with respect to the long side of the mold was set to 8 ° in the arrangement shown in FIG. On the other hand, No. 2
As a comparative example 3, a single immersion nozzle having discharge ports in both directions was used as the comparative example 3 in the arrangement shown in FIG. Table 1 shows the hot water supply conditions and the results. FIG. 5 is a schematic cross-sectional view when one immersion nozzle is disposed in the mold. The immersion nozzle at this time is shown in FIG.
(C).

【0052】本発明で定める条件により製造された本発
明例3では、鋳型内の湯面変動量が最大振幅で3mmで
あり、鋳片表面清浄度指数はBであった。
In Example 3 of the present invention produced under the conditions specified in the present invention, the fluctuation of the molten metal level in the mold was 3 mm at the maximum amplitude, and the slab surface cleanliness index was B.

【0053】一方、本発明で定める条件から外れる浸漬
ノズルを1本使用した比較例3では、鋳型内湯面変動量
が最大振幅で3mmであり、鋳片表面清浄度指数はCと
本発明例3より劣っていた。
On the other hand, in Comparative Example 3, in which one immersion nozzle deviating from the conditions stipulated in the present invention was used, the variation in the level of the molten metal in the mold was 3 mm at the maximum amplitude. Was worse.

【0054】しかし、比較例3は湯面変動は本発明例3
と同程度であったが、鋳型の短辺近傍において湯面が皮
張り(凝固)し、モールドフラックスの滓化状態が不良
であったために、鋳片表面に長さ10〜500mm程度
の縦割れが目視で観察された。
However, in Comparative Example 3, the fluctuation of the molten metal level
However, since the surface of the molten metal became skinned (solidified) in the vicinity of the short side of the mold and the slag condition of the mold flux was poor, a vertical crack having a length of about 10 to 500 mm was formed on the slab surface. Was visually observed.

【0055】[0055]

【発明の効果】本発明により、鋳型内の湯面変動が抑制
され、浸漬ノズル詰まりやモールドフラックスの巻き込
み、および凝固殻に捕捉された気泡、非金属介在物等の
再離脱が促進でき、操業の安定化と鋳片品質の維持、向
上がはかれる。
According to the present invention, fluctuations in the molten metal level in the mold can be suppressed, clogging of the immersion nozzle, entrainment of the mold flux, and re-dissociation of bubbles, nonmetallic inclusions, etc. trapped in the solidified shell can be promoted. Stabilization and maintenance and improvement of slab quality.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における鋳型内の浸漬ノズル配置の例
と、この場合に形成される溶鋼の流れを示す横断面模式
図である。
FIG. 1 is a schematic cross-sectional view showing an example of the arrangement of an immersion nozzle in a mold according to the present invention and the flow of molten steel formed in this case.

【図2】溶鋼の吐出角度θと湯面変動量との関係を示す
グラフである。
FIG. 2 is a graph showing the relationship between the molten steel discharge angle θ and the amount of fluctuation in the molten metal level.

【図3】浸漬ノズルの溶鋼吐出口と吐出角度θとの関係
を示す概要図であり、同図(a)は浸漬ノズルの角度を
示し、同図(b)は溶鋼の吐出口の角度を示し、同図
(c)は溶鋼の吐出角度θが0°を示すそれぞれの場合
の概要図である。
FIG. 3 is a schematic diagram showing the relationship between the molten steel discharge port of the immersion nozzle and the discharge angle θ, wherein FIG. 3 (a) shows the angle of the immersion nozzle and FIG. 3 (b) shows the angle of the molten steel discharge port. FIG. 3 (c) is a schematic view in each case where the molten steel discharge angle θ is 0 °.

【図4】鋳型内に浸漬ノズルを2本配置した場合の横断
面模式図であり、同図(a)は本発明例の状況を示し、
同図(b)は比較例の状況を示し、同図(c)は本発明
例の状況を示す。
FIG. 4 is a schematic cross-sectional view of a case where two immersion nozzles are arranged in a mold, and FIG.
FIG. 2B shows the situation of the comparative example, and FIG. 2C shows the situation of the example of the present invention.

【図5】鋳型内に浸漬ノズルを1本配置した場合の横断
面模式図である。
FIG. 5 is a schematic cross-sectional view when one immersion nozzle is arranged in a mold.

【図6】浸漬ノズルの溶鋼の吐出口の拡大縦断面図であ
り、同図(a)および(b)は、本発明の広幅薄鋳片の
給湯方法に使用する浸漬ノズルの例で、同図(c)は、
従来使用されている浸漬ノズルの例である。
FIG. 6 is an enlarged vertical sectional view of a molten steel discharge port of the immersion nozzle. FIGS. 6A and 6B are examples of an immersion nozzle used in the method for supplying a wide thin cast slab according to the present invention. Figure (c)
It is an example of a conventionally used immersion nozzle.

【符号の説明】[Explanation of symbols]

Y―Y:鋳型厚みの中心線、 1a :第一浸漬ノズル、 1b :第二浸漬ノズル、 2a :吐出口、 2b :吐出口、 3a :吐出流、 3b :吐出流、 4 :鋳型内面、 5a :旋回流、 5b :旋回流、 θa :吐出角度、 θb :吐出角度。 YY: center line of mold thickness, 1a: first immersion nozzle, 1b: second immersion nozzle, 2a: discharge port, 2b: discharge port, 3a: discharge flow, 3b: discharge flow, 4: mold inner surface, 5a 5b: swirl flow, θa: discharge angle, θb: discharge angle.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 側面に1方向の吐出口を有する浸漬ノズ
ルを2本用いて鋳型に溶鋼を給湯し、鋳片を製造する
際、前記浸漬ノズルを、前記吐出口が互いに向き合い、
該吐出口からの吐出流が向流で、かつ吐出流同士が正対
衝突しないように配置したことを特徴とする連続鋳造の
給湯方法。
1. When molten steel is supplied to a mold by using two immersion nozzles each having a discharge port in one direction on a side surface, and a slab is manufactured, the immersion nozzles face each other, and the discharge ports face each other.
A hot water supply method for continuous casting, characterized in that the discharge flows from the discharge ports are arranged in such a manner as to be countercurrent and the discharge flows do not directly collide with each other.
【請求項2】 前記吐出口からの吐出流が鋳型長辺に対
して2〜10°の角度を持つ平行向流であることを特徴
とする請求項1記載の連続鋳造の給湯方法。
2. The hot water supply method for continuous casting according to claim 1, wherein the discharge flow from the discharge port is a parallel counterflow having an angle of 2 to 10 ° with respect to the long side of the mold.
JP18111497A 1997-07-07 1997-07-07 Method for supplying molten metal into continuous casting Withdrawn JPH1128553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18111497A JPH1128553A (en) 1997-07-07 1997-07-07 Method for supplying molten metal into continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18111497A JPH1128553A (en) 1997-07-07 1997-07-07 Method for supplying molten metal into continuous casting

Publications (1)

Publication Number Publication Date
JPH1128553A true JPH1128553A (en) 1999-02-02

Family

ID=16095100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18111497A Withdrawn JPH1128553A (en) 1997-07-07 1997-07-07 Method for supplying molten metal into continuous casting

Country Status (1)

Country Link
JP (1) JPH1128553A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110952A (en) * 2010-11-26 2012-06-14 Sumitomo Metal Ind Ltd Continuous casting method for slab

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110952A (en) * 2010-11-26 2012-06-14 Sumitomo Metal Ind Ltd Continuous casting method for slab

Similar Documents

Publication Publication Date Title
JP4746398B2 (en) Steel continuous casting method
JP5073531B2 (en) Slab continuous casting apparatus and method for continuous casting
EP2092998B1 (en) Molten metal continuous casting method
JP4337565B2 (en) Steel slab continuous casting method
JP4079415B2 (en) Submerged nozzle for continuous casting of thin slabs
JPH1128553A (en) Method for supplying molten metal into continuous casting
JP6331757B2 (en) Equipment for continuous casting of steel
JP4301029B2 (en) Continuous casting method of high Ti content steel
JPH10166120A (en) Method for continuously castingmolten metal
JP3817209B2 (en) Continuous casting method for stainless steel slabs to prevent surface and internal defects
JP2868174B2 (en) Continuous casting method for stainless steel
JP2001347348A (en) Immersion nozzle for continuous casting
JP2002248551A (en) Continuous casting method for steel
JP2000015404A (en) Production of continuously cast slab having little inclusion defect
JP6792179B2 (en) Immersion nozzle for continuous casting
JP2004106021A (en) Method for casting molten stainless steel using vertical-bending type continuous caster
JP3726692B2 (en) Continuous casting method
JP2856959B2 (en) Continuous casting method of steel slab using traveling magnetic field and static magnetic field
JP2023178223A (en) Continuous casting method for steel
JP3643460B2 (en) Continuous casting mold and continuous casting method
JP2001087843A (en) Immersion nozzle for continuous casting
JPH11320054A (en) Continuous caster and continuous casting method
JPH01113159A (en) Submerged nozzle for continuous casting
JPH0839208A (en) Immersion nozzle for casting wide witdth thin slab
JPH11267802A (en) Electromagnetic agitating method in continuous casting

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040907