JP5629280B2 - 排熱回収システムおよびその運転方法 - Google Patents

排熱回収システムおよびその運転方法 Download PDF

Info

Publication number
JP5629280B2
JP5629280B2 JP2012046969A JP2012046969A JP5629280B2 JP 5629280 B2 JP5629280 B2 JP 5629280B2 JP 2012046969 A JP2012046969 A JP 2012046969A JP 2012046969 A JP2012046969 A JP 2012046969A JP 5629280 B2 JP5629280 B2 JP 5629280B2
Authority
JP
Japan
Prior art keywords
refrigerant
hot water
water supply
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012046969A
Other languages
English (en)
Other versions
JP2013181713A (ja
Inventor
陽子 國眼
陽子 國眼
小谷 正直
正直 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012046969A priority Critical patent/JP5629280B2/ja
Priority to EP12869886.7A priority patent/EP2821732A4/en
Priority to PCT/JP2012/067420 priority patent/WO2013128668A1/ja
Publication of JP2013181713A publication Critical patent/JP2013181713A/ja
Application granted granted Critical
Publication of JP5629280B2 publication Critical patent/JP5629280B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0096Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater combined with domestic apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0005Domestic hot-water supply systems using recuperation of waste heat
    • F24D17/001Domestic hot-water supply systems using recuperation of waste heat with accumulation of heated water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/22Ventilation air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/18Domestic hot-water supply systems using recuperated or waste heat

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、排熱回収システムおよびその運転方法に関する。
従来、空調用冷媒回路と給湯用冷媒回路が中間熱交換器を介して熱交換可能に接続されて冷房運転と暖房運転が可能な空調サイクルと、給湯運転が可能な給湯サイクルと、からなる多熱源の二元冷凍サイクルを有する排熱回収システム(空調給湯システム)が知られている(例えば、特許文献1〜3参照)。
特許文献1には、高温出力の高温サイクル(給湯サイクル)と、中温出力または低温出力の中温サイクル(空調サイクル)と、を備え、高温サイクルの蒸発器と中温サイクルの蒸発器とが熱交換可能に構成されたヒートポンプが開示されている。特許文献1に開示される技術によると、中温サイクルの排熱を高温サイクルで有効に利用する排熱回収運転が可能であり、経済的にヒートポンプを運用できる。
また、特許文献2には、冷房運転、暖房運転、給湯運転、蓄冷運転、冷暖房給湯運転などが可能な排熱回収システム(空気調和装置)が開示されている。特許文献2に開示される技術によると、複数の切換え弁や膨張弁を備えることによって前記各運転を切り替えることができ、各運転を効率よく切り替えることができる。
また、特許文献3には、自然循環式サイクルの熱交換器を圧縮式サイクルの熱交換器として利用できる排熱回収システム(空調給湯システム)が開示されている。特許文献3に開示される技術によると、冷房運転による排熱が給湯運転による吸熱よりも小さい場合には、空調用冷媒が空調用熱源側熱交換器内を流れないように二方弁で制御することができる。この構成によって、空調排熱を中間熱交換器を介して給湯用冷媒回路へ放熱でき、空調用サイクルの消費電力を低減させることができる。
特開平04−32669号公報 特開2005−299935号公報 WO2011−108068
しかしながら、特許文献1に開示される技術では、中温サイクルの放熱量が高温サイクルの吸熱量より多いときのみ中温サイクルの排熱を高温サイクルの熱源として利用できる。換言すると、中温サイクルの負荷(空調負荷)が高い場合に限って中温サイクルの排熱を高温サイクルの熱源に利用して排熱回収運転できる。
例えば、断熱性能の高い空間や居住者の少ない居住空間など、内部発熱が少ない空間に対する空調運転(冷房)や、夜間など外気温度の低い状態での空調運転(冷房)では、空調負荷が低くなる場合がある。このような場合に、高温サイクルの負荷(給湯負荷)が空調負荷を上回ると、中温サイクルの放熱量が高温サイクルの吸熱量を上回ることになって特許文献1に開示される技術では高温サイクルを要求どおりに運転することができず、排熱回収運転できない。
また、特許文献2に開示される空気調和装置は、メインサイクル(空調サイクル)の排熱を回収するカスケードコンデンサ(中間熱交換器)とメインサイクルにおける室外の熱交換器(空調用熱源側熱交換器)とが並列に配置されて、カスケードコンデンサと室外の熱交換器を同時に運転してメインサイクルの排熱をカスケードコンデンサで回収できる。そして、回収した排熱をサブサイクル(給湯サイクル)に受け渡して排熱回収運転するように構成される。
特許文献2に開示される技術ではメインサイクルが冷房運転する場合、このメインサイクルの排熱をカスケードコンデンサで回収してサブサイクルの熱源に利用するためには、熱量の多いメインサイクルの排熱のうちの必要な熱量をカスケードコンデンサで回収して余剰の熱量を室外の排熱用の熱交換器(空気熱源側熱交換器)から排熱する必要がある。つまり、メインサイクルで熱を含んで流通する冷媒を、カスケードコンデンサと室外の熱交換器(空気熱源側熱交換器)に好適に分配する必要がある。
しかしながら、特許文献2には、メインサイクルでカスケードコンデンサと室外の熱交換器に冷媒を好適に分配する技術については開示されていない。
また、特許文献3に開示される空調給湯システムは、切換弁や膨張弁を備えることによって冷房運転、冷房給湯運転などの各運転を切り替えることができる。
例えば、家庭での空調サイクルへの要求負荷が小さい夏季深夜時間帯では空調給湯システムは断続運転が実施され、またこの時間帯は電力が安価な時間帯でもあるために給湯サイクルは連続運転が実施される場合がある。つまり、空調サイクルでの排熱を給湯サイクルに受け渡す運転と、給湯サイクルの運転と、が繰り返し実施される場合がある。
特許文献3には、空調サイクルの運転と給湯サイクルの運転とを単独の冷凍サイクルで運転するモードと、空調サイクルと給湯サイクルの間で熱の受け渡しが実施される二元の冷凍サイクルで運転するモードと、を切り替える制御の技術については開示されていない。例えば、単独の冷凍サイクルでの運転モードから二元の冷凍サイクルでの運転モードに切り替わった場合など、排熱量の多いサイクルでは中間熱交換器と当該中間熱交換器に並列に配置される空気熱源側熱交換器との間で冷媒が好適に分配されない場合がある。
中間熱交換器に好適な流量の冷媒が分配されない場合、排熱量の少ないサイクルでは熱源を得られず、二元の冷凍サイクルが成立しない。また、冷媒が熱交換器で充分に熱交換されず、中間熱交換器においてガスの状態や二相の状態(気液混合)になる場合がある。このような状態の冷媒が膨張弁の上流で合流すると、冷媒の体積が増大して膨張弁内を通過し、冷媒の流路が閉塞することもある。
そこで本発明は、排熱回収運転の開始時に中間熱交換器にも好適に冷媒を流通できる排熱回収システムおよびその運転方法を提供することを課題とする。
前記課題を解決するため本発明は、第1冷媒が循環する第1冷媒回路と、第2冷媒が循環する第2冷媒回路が、前記第1冷媒と前記第2冷媒が熱交換する中間熱交換器を介して熱的に連結され、前記第1冷媒回路に、前記第1冷媒の流れに対して前記中間熱交換器と並列に配置されて前記第1冷媒と大気が熱交換する第1熱交換器と、前記第1熱交換器への前記第1冷媒の流入を制限する第1制限手段と、が備わり、前記第2冷媒回路に、前記第2冷媒の流れに対して前記中間熱交換器と並列に配置されて前記第2冷媒と大気が熱交換する第2熱交換器と、前記第2熱交換器への前記第2冷媒の流入を制限する第2制限手段と、が備わり、前記第1冷媒が前記第1冷媒回路を循環して冷却対象から吸熱した熱を前記中間熱交換器で前記第2冷媒が吸熱し、前記第2冷媒が前記第2冷媒回路を循環して加熱対象に放熱する排熱回収運転するように制御装置で制御される排熱回収システムとその運転方法とする。そして、前記制御装置が、前記排熱回収運転の開始時に、前記第1制限手段を制御して前記第1冷媒の前記第1熱交換器への流入を制限するとともに、前記第2制限手段を制御して前記第2冷媒の前記第2熱交換器への流入を制限し、前記排熱回収運転の開始後に、前記第1冷媒が放熱可能な放熱量と前記第2冷媒が吸熱可能な吸熱量を比較し、前記放熱量が前記吸熱量より大きい場合は前記第2冷媒の状態に応じて前記第1制限手段による前記第1熱交換器への前記第1冷媒の流入の制限を解除し、前記放熱量が前記吸熱量より小さい場合は前記第1冷媒の状態に応じて前記第2制限手段による前記第2熱交換器への前記第2冷媒の流入の制限を解除し、前記第1制限手段による前記第1熱交換器への前記第1冷媒の流入の制限を解除する前に、前記第1熱交換器に大気を送り込む第1冷媒回路用ファンを運転し、前記第2制限手段による前記第2熱交換器への前記第2冷媒の流入の制限を解除する前に、前記第2熱交換器に大気を送り込む第2冷媒回路用ファンを運転すること、を特徴とする。
本発明によると、排熱回収運転の開始時に中間熱交換器にも好適に冷媒を流通できる排熱回収システムおよびその運転方法を提供できる。
空調給湯システムの構成図である。 第1運転状態、第2運転状態、第3運転状態での、空調給湯システムの状態を示す表である。 第1運転状態で排熱回収運転する空調給湯システムを示す図である。 第2運転状態で排熱回収運転する空調給湯システムを示す図である。 第3運転状態で排熱回収運転する空調給湯システムを示す図である。 排熱回収運転を開始するときの手順を示すフローチャートである。
図1に示すように、本実施形態に係る空調給湯システム1は、空調用圧縮機31(第1冷媒圧縮機)を運転して冷房運転と暖房運転を切り替え可能に構成される空調用冷媒回路3(第1冷媒回路)と、給湯用圧縮機21(第2冷媒圧縮機)を運転して給湯運転を実施可能に構成される給湯用冷媒回路2(第2冷媒回路)と、を含んで構成される排熱回収システムである。また、空調用冷媒回路3に放熱して利用者の居住空間を空調する空調用冷温水回路5と、給湯用冷媒回路2からの吸熱を熱源として利用者に給湯する給湯用温水回路4と、が備わり、制御装置1aによって制御される。
そして、排熱回収運転用の中間熱交換器11を介して空調用冷媒回路3と給湯用冷媒回路2が熱的に接続されて、空調サイクルと給湯サイクルの二元サイクルが構成される。
以下、冷房運転および暖房運転は、空調用冷媒回路3を含んで構成される空調サイクルの冷房運転および暖房運転を示し、給湯運転は、給湯用冷媒回路2を含んで構成される給湯サイクルの給湯運転を示す。
空調給湯システム1は、例えば居住空間の外(室外)に配置される室外ユニット10と、居住空間の内側(室内)に配置される室内ユニット20と、を含んで構成される。
空調用冷媒回路3は、冷房運転時に空調用冷温水回路5から熱を吸熱する第1冷媒(以下、空調用冷媒という)が循環して空調サイクルを形成する回路であり、空調用冷媒を圧縮する空調用圧縮機31、空調用冷媒の流路を切り替える四方弁36、給湯用冷媒回路2を循環する給湯用冷媒と空調用冷媒が熱交換する中間熱交換器11、空調用冷媒を減圧する空調用膨張弁33、および、空調用冷温水回路5を循環する冷媒(以下、空調利用側冷媒という)と空調用冷媒が熱交換する空調用利用側熱交換器34が備わる冷媒配管が環状に接続された空調用メイン回路3aを備える。
さらに、空調用冷媒の流れに対して中間熱交換器11と並列に配置される第1熱交換器(空調用熱源側熱交換器32)が空調用サブ回路3bに備わり、空調用サブ回路3bは空調用メイン回路3aに接続される。空調用熱源側熱交換器32は、第1冷媒回路用ファン(空調用室外ファン35)で送り込まれる大気と空調用冷媒が熱交換して空調用冷媒の熱を大気に放熱する。また、空調用室外ファン35の回転速度は回転速度センサFAで計測される。
空調用圧縮機31は、容量制御が可能な可変容量型であることが好ましく、このような圧縮機として、ピストン式、ロータリー式、スクロール式、スクリュー式、遠心式のものなどがある。本実施形態において空調用圧縮機31はスクロール式の圧縮機とし、インバータ制御によって容量制御が可能で、低速から高速まで回転速度を可変とする。
そして、空調用圧縮機31の回転速度は回転速度センサRAで計測される。
空調用利用側熱交換器34は、空調用冷媒が流通する冷媒管(図示せず)と空調用冷温水回路5を循環する水もしくはブライン等の不凍液(空調利用側冷媒)が流通する空調用低温水伝熱管(図示せず)が熱的に接触するように構成されたものや、プレート式熱交換器で構成される。
空調用膨張弁33は、減圧装置として作用するとともに、弁開度の調節によって空調用冷媒の圧力を所定の圧力まで減圧する機能を有する。そして、空調用膨張弁33の弁開度は弁開度センサPAで計測される。
四方弁36は、空調用圧縮機31と中間熱交換器11の間、および空調用圧縮機31と空調用利用側熱交換器34の間に備わる。そして、圧縮した空調用冷媒を吐出する空調用圧縮機31の吐出口31aを中間熱交換器11に接続するとともに、空調用冷媒を吸い込む空調用圧縮機31の吸込口31bを空調用利用側熱交換器34に接続する状態(第1状態)と、空調用圧縮機31の吐出口31aを空調用利用側熱交換器34に接続するとともに、空調用圧縮機31の吸込口31bを中間熱交換器11に接続する状態(第2状態)が切り替わるように構成される。図1に示す四方弁36は実線で第1状態を示し、破線で第2状態を示す。
また、中間熱交換器11は空調用冷媒回路3に2つの接続口(空調側第1接続口11a、空調側第2接続口11b)を有し、空調用利用側熱交換器34は空調用冷媒回路3に2つの接続口(空調側第1接続口34a、空調側第2接続口34b)を有する。
以上のように構成される空調用冷媒回路3は、四方弁36が第1状態のとき、空調用圧縮機31の吐出口31aが中間熱交換器11の空調側第1接続口11aに接続され、空調用利用側熱交換器34の空調側第2接続口34bは、四方弁36を介して空調用圧縮機31の吸込口31bに接続される。
また、四方弁36が第2状態のとき、空調用圧縮機31の吐出口31aが空調用利用側熱交換器34の空調側第2接続口34bに接続され、中間熱交換器11の空調側第1接続口11aは、四方弁36を介して空調用圧縮機31の吸込口31bに接続される。
さらに、四方弁36と中間熱交換器11の空調側第1接続口11aの間で空調用メイン回路3aから空調用サブ回路3bが分岐する。空調用サブ回路3bは、中間熱交換器11の空調側第2接続口11bと空調用膨張弁33の間で空調用メイン回路3aに合流し、空調用サブ回路3bには空調用熱源側熱交換器32が備わる。
空調用熱源側熱交換器32は2つの接続口(第1接続口32a、第2接続口32b)を有し、四方弁36が第1状態のとき、空調用熱源側熱交換器32の第1接続口32aは空調用圧縮機31の吐出口31aと接続され、第2接続口32bは空調用膨張弁33を介して空調用利用側熱交換器34の空調側第1接続口34aと接続する。一方、四方弁36が第2状態のとき、空調用熱源側熱交換器32の第1接続口32aは空調用圧縮機31の吸込口31bと接続される。
以上のように、四方弁36が第1状態に設定された場合、空調用冷媒回路3は、空調用圧縮機31の吐出口31aを上流とする空調用冷媒の流れに沿って、四方弁36、中間熱交換器11、空調用膨張弁33、空調用利用側熱交換器34、四方弁36、および空調用圧縮機31(吸込口31b)の順に配置される。また、中間熱交換器11と空調用冷媒の流れに対して並列に空調用熱源側熱交換器32が配置される。
また、四方弁36が第2状態に設定された場合、空調用冷媒回路3は、空調用圧縮機31の吐出口31aを上流側とする空調用冷媒の流れに沿って、四方弁36、空調用利用側熱交換器34、空調用膨張弁33、中間熱交換器11、四方弁36、および空調用圧縮機31(吸込口31b)の順に配置される。
また、空調用熱源側熱交換器32は空調用サブ回路3bに備わり空調用冷媒の流れに沿って中間熱交換器11と並列に配置される。そして、空調用熱源側熱交換器32の第1接続口32a側と第2接続口32b側には、それぞれ空調用冷媒の流量を調節する空調用冷媒流量制御弁30a、30bが配置され、中間熱交換器11の空調側第1接続口11a側と空調側第2接続口11b側にも、それぞれ空調用冷媒流量制御弁30c、30dが配置される。
空調用冷媒流量制御弁30a〜30dは開閉弁とすればよいが、空調用熱源側熱交換器32の第1接続口32a側に備わる空調用冷媒流量制御弁30aは、空調用熱源側熱交換器32への空調用冷媒の流入量を調節可能な流量調節弁であってもよい。
さらに、図1に示すように、空調用圧縮機31の吐出口31aおよび吸込口31bと、空調用熱源側熱交換器32の第1接続口32aおよび第2接続口32bと、中間熱交換器11の空調側第1接続口11aおよび空調側第2接続口11bと、空調用利用側熱交換器34の空調側第1接続口34aに、合計で7つの温度センサT31〜T37が備わっている。
また、空調用熱源側熱交換器32における空調用冷媒の温度を計測するための温度センサT38が空調用熱源側熱交換器32に備わる。
温度センサT38は、空調用熱源側熱交換器32の第2接続口32b近傍における空調用冷媒の温度を計測する温度センサである。なお、ここでいう近傍とは、空調用熱源側熱交換器32内を空調用冷媒が流通する経路において、中間よりも第2接続口32bに近い位置を示す。そして、温度センサT38が計測する空調用冷媒の温度を、空調用熱源側熱交換器32における空調用冷媒の飽和温度(空調飽和温度)とする。
空調用冷媒の飽和温度は、空調サイクルが冷房運転するときの凝縮温度(空調凝縮温度)であり、空調サイクルが暖房運転するときの蒸発温度(空調蒸発温度)である。
なお、空調用冷媒には、R410A、R134a、HFO1234vf、HFO1234ze、CO、プロパンなどが使用条件に応じて適宜使用される。
空調用冷温水回路5は空調用冷媒回路3を循環する空調用冷媒と熱交換する水などの空調利用側冷媒(空調用利用側の熱搬送媒体)が循環する回路であり、室内熱交換器51、空調用冷温水循環ポンプ53、四方弁54、および、空調用利用側熱交換器34が冷媒配管で接続されて構成される。
室内熱交換器51は、空調利用側冷媒と居住空間の空気が熱交換する熱交換器であり、室内熱交換器51で空調利用側冷媒と熱交換して温度が低下または上昇した空気を居住空間に拡散するための室内ファン52が室内ユニット20に備わる構成であってもよい。
室内熱交換器51は、空調利用側冷媒を送り出す空調用冷温水循環ポンプ53の吐出口53aと接続されて空調利用側冷媒が流入する接続口(第1接続口51a)と、空調利用側冷媒が流出する接続口(第2接続口51b)を有する。また、空調用利用側熱交換器34は、空調用冷温水回路5に2つの接続口(利用側第1接続口34c、利用側第2接続口34d)を有する。
そして、四方弁54は、空調用利用側熱交換器34の利用側第1接続口34cと空調用冷温水循環ポンプ53の吸込口53bを接続するとともに室内熱交換器51の第2接続口51bと空調用利用側熱交換器34の利用側第2接続口34dを接続する第1状態、および、空調用利用側熱交換器34の利用側第2接続口34dと空調用冷温水循環ポンプ53の吸込口53bを接続するとともに室内熱交換器51の第2接続口51bと空調用利用側熱交換器34の利用側第1接続口34cを接続する第2状態に設定可能に構成される。図1に示す四方弁54は実線で第1状態を示し破線で第2状態を示す。
四方弁54が第1状態に設定された場合、空調用冷温水回路5は、空調用冷温水循環ポンプ53の吐出口53aを上流とする空調利用側冷媒の流れに沿って、室内熱交換器51、四方弁54、空調用利用側熱交換器34、四方弁54、空調用冷温水循環ポンプ53(吸込口53b)の順に配置される。
一方、四方弁54が第2状態に設定された場合、空調用冷温水回路5は、空調用冷温水循環ポンプ53の吐出口53aを上流とする空調利用側冷媒の流れに沿って、室内熱交換器51、四方弁54、空調用利用側熱交換器34、四方弁54、空調用冷温水循環ポンプ53(吸込口53b)の順に配置される。
また、空調用利用側熱交換器34の利用側第1接続口34cと利用側第2接続口34dには、それぞれ温度センサT51、T52が備わり、室内熱交換器51の第2接続口51bには温度センサT53が備わる。さらに、居住空間の屋内の温度を計測する温度センサT54も備わる。
空調用冷温水回路5を循環する空調利用側冷媒は、水(冷水または温水)であって室内熱交換器51で居住空間の空気と熱交換して居住空間を冷房または暖房する。なお、空調サイクルが居住空間を冷房する冷房運転する場合、空調利用側冷媒は冷水となる。そして、空調利用側冷媒は居住空間の熱を吸熱し、空調用利用側熱交換器34で空調用冷媒と熱交換して冷却される。つまり、空調サイクルが冷房運転する場合、空調利用側冷媒は空調用冷媒が冷却する冷却対象となる。
また、空調サイクルが居住空間を暖房する暖房運転する場合、空調利用側冷媒は温水となる。なお、空調利用側冷媒として水の代わりにエチレングリコールなどのブライン(不凍液)も利用可能である。空調利用側冷媒としてブラインを利用することによって、空調給湯システム1を寒冷地でも使用することができる。
給湯用冷媒回路2は、給湯用温水回路4に熱を放熱する第2冷媒(給湯用冷媒)が循環して給湯サイクル(冷凍サイクル)を形成する回路であり、給湯用冷媒を圧縮する給湯用圧縮機21、中間熱交換器11、給湯用冷媒を減圧する給湯用膨張弁23、および、給湯用温水回路4を循環する給湯用利用側の熱搬送媒体(以下、給湯用水と称する)と給湯用冷媒が熱交換する給湯用利用側熱交換器22が備わる冷媒配管が環状に接続された給湯用メイン回路2aを備える。
さらに、給湯用冷媒の流れに対して中間熱交換器11と並列に配置される第2熱交換器(給湯用熱源側熱交換器24)が給湯用サブ回路2bに備わり、給湯用サブ回路2bは給湯用メイン回路2aに接続される。給湯用熱源側熱交換器24は、第2冷媒回路用ファン(給湯用室外ファン25)で送り込まれる大気と給湯用冷媒が熱交換して大気の熱を給湯用冷媒に吸熱する。また、給湯用室外ファン25の回転速度は回転速度センサFHで計測される。
給湯用圧縮機21は、空調用圧縮機31と同様にインバータ制御による容量制御が可能な可変容量型で低速から高速まで回転速度が可変であることが好ましい。例えば、空調用圧縮機31と同様にスクロール式の圧縮機とすればよい。そして、給湯用圧縮機21の回転速度は回転速度センサRHで計測されるように構成される。
また、給湯用利用側熱交換器22は、給湯用冷媒が流通する冷媒管(図示せず)と給湯用温水回路4を循環する給湯用水が流通する給湯用水伝熱管(図示せず)が熱的に接触するように構成されたものや、プレート式熱交換器で構成される。
給湯用膨張弁23は、弁開度の調節によって給湯用冷媒の圧力を所定の圧力まで減圧する機能を有する。そして、給湯用膨張弁23の弁開度は弁開度センサPHで計測される。
中間熱交換器11は給湯用冷媒回路2に2つの接続口(給湯側第1接続口11c、給湯側第2接続口11d)を有し、給湯用利用側熱交換器22は給湯用冷媒回路2に2つの接続口(給湯側第1接続口22a、給湯側第2接続口22b)を有する。
以上のように構成される給湯用冷媒回路2は、給湯用圧縮機21における給湯用冷媒の吐出口21aに、給湯用利用側熱交換器22の給湯側第1接続口22aが接続され、給湯側第2接続口22bには、給湯用膨張弁23を介して中間熱交換器11の給湯側第1接続口11cが接続される。そして、中間熱交換器11の給湯側第2接続口11dに、給湯用圧縮機21の吸込口21bが接続される。
また、給湯用膨張弁23と中間熱交換器11の給湯側第1接続口11cの間で給湯用サブ回路2bが分岐する。給湯用サブ回路2bは、中間熱交換器11の給湯側第2接続口11dと給湯用圧縮機21の吸込口21bの間で給湯用メイン回路2aに合流し、給湯用サブ回路2bには2つの接続口(第1接続口24a、第2接続口24b)を有する給湯用熱源側熱交換器24が備わる。
以上のように、給湯用冷媒回路2は、給湯用圧縮機21の吐出口21aを上流とする給湯用冷媒の流れに沿って、給湯用利用側熱交換器22、給湯用膨張弁23、中間熱交換器11、および給湯用圧縮機21(吸込口21b)の順に配置される。また、給湯用冷媒の流れに対して中間熱交換器11と並列に給湯用熱源側熱交換器24が配置され、第1接続口24aが中間熱交換器11の給湯側第1接続口11cに接続し、第2接続口24bが給湯用圧縮機21の吸込口21bに接続する。
そして、給湯用熱源側熱交換器24の第1接続口24a側と第2接続口24b側には、それぞれ給湯用冷媒流量制御弁20a、20bが配置され、中間熱交換器11の給湯側第1接続口11c側と給湯側第2接続口11d側には、それぞれ給湯用冷媒流量制御弁20c、20dが配置される。
給湯用冷媒流量制御弁20a〜20dは開閉弁とすればよいが、給湯用熱源側熱交換器24の第1接続口24a側に備わる給湯用冷媒流量制御弁20aは、給湯用熱源側熱交換器24への給湯用冷媒の流入量を調節可能な流量調節弁であってもよい。
さらに、図1に示すように、給湯用圧縮機21の吐出口21aおよび吸込口21bと、給湯用熱源側熱交換器24の第2接続口24bと、中間熱交換器11の給湯側第2接続口11dと、給湯用膨張弁23の下流と、に合計で5つの温度センサT21〜T25が備わっている。
また、給湯用熱源側熱交換器24における給湯用冷媒の温度を計測するための温度センサT26が給湯用熱源側熱交換器24に備わる。
温度センサT26は、給湯用熱源側熱交換器24の第2接続口24b近傍における給湯用冷媒の温度を計測する温度センサである。なお、ここでいう近傍とは、給湯用熱源側熱交換器24内を給湯用冷媒が流通する経路において、中間よりも第2接続口24bに近い位置を示す。そして、温度センサT26が計測する給湯用冷媒の温度を、給湯用熱源側熱交換器24における給湯用冷媒の蒸発温度(給湯蒸発温度)とする。
なお、給湯用冷媒には、R410A、R134a、HFO1234fy、HFO1234ze、CO、プロパンなどが使用条件に応じて適宜使用される。
給湯用温水回路4は、給湯用冷媒回路2を循環する給湯用冷媒と熱交換する水(給湯用水)が流通する回路であり、給湯用水循環ポンプ42の吐出口42aを上流とする給湯用水の流れに沿って、給湯用利用側熱交換器22と貯湯タンク41、給湯用水循環ポンプ42(吸込口42b)の順に配置される。
給湯用利用側熱交換器22は給湯用温水回路4に2つの接続口(利用側第1接続口22c、利用側第2接続口22d)を有し、給湯用水循環ポンプ42の吐出口42aから吐出された給湯用水が、利用側第1接続口22cから給湯用利用側熱交換器22に流入する。そして、給湯用利用側熱交換器22で給湯用冷媒回路2を循環する給湯用冷媒と熱交換して加熱され、利用側第2接続口22dから流出して貯湯タンク41に貯湯されるように構成される。つまり、本実施形態において、給湯用水は給湯用冷媒の放熱で加熱される加熱対象となる。
給湯用利用側熱交換器22で加熱された給湯用水は貯湯タンク41の上部に形成される取入口41aから貯湯タンク41に取り入れられて貯湯される。さらに、貯湯タンク41に貯湯される給湯用水は貯湯タンク41の下部に形成される取出口41bから取り出されて給湯用水循環ポンプ42に吸込口42bから吸い込まれ、給湯用温水回路4を流通するように構成される。
また、取入口41aには、水道口(蛇口)などの供給端末100も配管され、貯湯タンク41に貯湯される給湯用水を供給端末100から利用者に供給可能に構成される。
さらに、貯湯タンク41の取出口41bには給水口101が配管され、水道水など低温の給湯用水を取出口41bから貯湯タンク41に取り入れ可能に構成される。この構成によって、貯湯タンク41に貯湯される給湯用水の貯湯量を好適(例えば満水)に維持できる。
また、給水口101と供給端末100は加水用流路43によって直接接続され、貯湯タンク41の取入口41aから取り出された給湯用水と、給水口101に流入した給湯用水と、を混合可能に構成される。この構成によって、利用者が所望する湯温の給湯用水を供給端末100から利用者に供給できる。
貯湯タンク41の取出口41bと給湯用水循環ポンプ42を接続する流路と、給水口101と貯湯タンク41の取出口41bを接続する流路と、貯湯タンク41の取出口41bと、は三方弁4aを介して接続される。そして、貯湯タンク41から給湯用水循環ポンプ42への給湯用水の取り出しと、給水口101から貯湯タンク41への給湯用水の取り込みが三方弁4aによって調節される。
具体的に、三方弁4aが貯湯タンク41の取出口41bと給湯用水循環ポンプ42の吸込口42bを接続する状態のとき(以下、第1状態という)は貯湯タンク41に貯湯された給湯用水が給湯用水循環ポンプ42に吸込口42bから吸い込まれる。また、三方弁4aが貯湯タンク41の取出口41bと給水口101を接続する状態のとき(以下、第2状態という)は給水口101における水圧によって、給水口101に流入した給湯用水が取出口41bから貯湯タンク41に取り込まれる。
また、貯湯タンク41の取入口41aと給湯用利用側熱交換器22を接続する流路と、供給端末100と貯湯タンク41の取入口41aを接続する流路と、貯湯タンク41の取入口41aと、は三方弁4dを介して接続される。そして、貯湯タンク41から供給端末100への給湯用水の取り出しと、給湯用利用側熱交換器22から貯湯タンク41への給湯用水の取り込みが三方弁4dによって調節される。
具体的に、三方弁4dが貯湯タンク41の取入口41aと給湯用利用側熱交換器22の利用側第2接続口22dを接続する状態のとき(以下、第1状態という)は給湯用利用側熱交換器22で加熱された給湯用水が貯湯タンク41に貯湯され、三方弁4dが貯湯タンク41の取入口41aと供給端末100を接続する状態のとき(以下、第2状態という)は、貯湯タンク41に貯湯される給湯用水を利用者に供給可能となる。
さらに、加水用流路43は、給水口101と貯湯タンク41の取出口41bを接続する流路に三方弁4bを介して接続されるとともに、供給端末100と貯湯タンク41の取入口41aを接続する流路に三方弁4cを介して接続される。そして、三方弁4bが給水口101と加水用流路43を接続する状態(以下、第1状態という)に設定され、三方弁4cが加水用流路43と供給端末100を接続する状態(以下、第1状態という)に設定されたときに、貯湯タンク41から取り出されて供給端末100から利用者に供給される給湯用水に、給水口101に流入した給湯用水が混合される。
また、第1状態の三方弁4bと三方弁4cはそれぞれの弁開度によって加水用流路43における給湯用水の流量を調節可能に構成されることが好ましい。この構成によって、供給端末100から利用者に供給される給湯用水の湯温が適宜設定可能となる。つまり、加水用流路43における給湯用水の流量が多いほど、供給端末100から利用者に供給される給湯用水が低温になる。
また、給湯用温水回路4には、給湯用利用側熱交換器22の利用側第1接続口22cと、給水口101の近傍と、に温度センサT41,T42が備わり、さらに、貯湯タンク41に貯湯される給湯用水の湯温(貯湯温度)を計測する温度センサT43が備わる。
以上のように構成される空調給湯システム1は、制御装置1aによって制御される。制御装置1aには、各センサの計測値が信号(計測信号)として入力されるように構成され、制御装置1aはこれらの計測信号に基づいて空調給湯システム1を制御する。ここでいう各センサは、給湯用冷媒回路2に備わる温度センサT21〜T26、回転速度センサFH,RH、弁開度センサPHと、空調用冷媒回路3に備わる温度センサT31〜T38、回転速度センサFA,RA、弁開度センサPAと、給湯用温水回路4に備わる温度センサT41〜T43と、空調用冷温水回路5に備わる温度センサT51〜T53と、を示す。
また、制御装置1aには利用者からの要求が、例えば、リモートコントローラ(図示せず)からの操作指令信号として入力される。
制御装置1aは、利用者から入力される要求や各センサから入力される計測信号に基づいて、空調用圧縮機31および給湯用圧縮機21の運転と停止、四方弁36、54の切り替え、空調用膨張弁33および給湯用膨張弁23の開度調節、空調用冷媒流量制御弁30a〜30dおよび給湯用冷媒流量制御弁20a〜20dの開度設定、空調用冷温水循環ポンプ53および給湯用水循環ポンプ42の運転と停止、など、空調給湯システム1を制御する。
例えば、利用者が居住空間の冷房を要求した場合、制御装置1aは、空調サイクルが冷房運転するように空調給湯システム1を制御する。具体的に制御装置1aは、空調用冷媒回路3の四方弁36を第1状態に設定するとともに空調用冷温水回路5の四方弁54を第2状態に設定する。そして、空調用圧縮機31と空調用冷温水循環ポンプ53を運転する。さらに、制御装置1aは、空調用冷媒流量制御弁30a,30bを制御(開弁)し、空調用室外ファン35を運転する。
また、制御装置1aは、適宜給湯サイクルで給湯運転して貯湯タンク41に貯湯される給湯用水を加熱する(沸き上げる)。具体的に制御装置1aは、三方弁4aを第1状態に設定し三方弁4dを第1状態に設定する。そして制御装置1aは、給湯用圧縮機21と給湯用水循環ポンプ42を運転する。さらに、制御装置1aは、給湯用冷媒流量制御弁20a,20bを開弁し、給湯用室外ファン25を運転する。
制御装置1aは予め設定された時刻になったときや、貯湯タンク41に貯湯される給湯用水の貯湯温度が所定値よりも低くなったときに給湯サイクルで給湯運転する。
そして本実施形態に係る空調給湯システム1は、空調サイクルでの冷房運転と給湯サイクルでの給湯運転を同時に実施するときに、中間熱交換器11において空調用冷媒回路3を循環する空調用冷媒と給湯用冷媒回路2を循環する給湯用冷媒との間で熱交換しながら給湯サイクルで給湯運転する「排熱回収運転」が可能である。
本実施形態に係る空調給湯システム1は、利用者が冷房運転と給湯運転を同時に要求した場合には常に排熱回収運転が可能である。制御装置1aは空調用冷媒回路3の冷房運転で発生して、空調用冷媒が放熱可能な放熱量(以下、「空調放熱量」という)と給湯用冷媒回路2の給湯運転に必要となり、給湯用冷媒が吸熱可能な吸熱量(以下、「給湯吸熱量」という)の大小によって使用する熱交換器や冷媒の流路を選択する。
図2は、空調給湯システム1が排熱回収運転するときの状態(運転状態)を示している。例えば、空調サイクルが冷房運転するときの空調放熱量は、居住空間の室温、利用者が設定する設定温度(冷房運転時の設定温度)等に応じて決定される。また、給湯サイクルが給湯運転するときの給湯吸熱量は、貯湯タンク41(図1参照)に貯湯される給湯用水の貯湯温度、給湯サイクルにおける目標湯温(沸き上げ温度)等に応じて決定される。本実施形態において制御装置1a(図1参照)は、空調放熱量と給湯吸熱量の大小に応じて空調給湯システム1(図1参照)に3つの運転状態を設定する。つまり、給湯吸熱量と空調放熱量が等しい場合(給湯吸熱量=空調放熱量)の運転状態(第1運転状態)と、給湯吸熱量が空調放熱量より大きい場合(給湯吸熱量>空調放熱量)の運転状態(第2運転状態)と、給湯吸熱量が空調放熱量より小さい場合(給湯吸熱量<空調放熱量)の運転状態(第3運転状態)を設定する。
図2〜5を参照して、第1〜3運転状態を説明する。
本実施形態に係る空調給湯システム1は、空調サイクルでの冷房運転と給湯サイクルでの給湯運転が同時に実施される場合に排熱回収運転するように構成される。
なお、図3〜5において、実線で示される熱交換器(給湯用利用側熱交換器22、給湯用熱源側熱交換器24、中間熱交換器11、空調用熱源側熱交換器32、空調用利用側熱交換器34)は熱交換が実施される状態を示し、この場合は黒矢印で熱の移動方向を示す。また、破線で示される熱交換器は熱交換が実施されない状態を示す。
また、空調用冷媒流量制御弁30a〜30d、給湯用冷媒流量制御弁20a〜20dは白抜きが開弁状態、黒塗りが閉弁状態を示し、空調用室外ファン35、給湯用屋外ファン25は白抜きが運転中、黒塗りが停止中を示す。
《第1運転状態》
空調放熱量と給湯吸熱量が等しい場合、制御装置1aは空調給湯システム1を第1運転状態に設定して、空調サイクルで冷房運転するとともに給湯サイクルで給湯運転し、排熱回収運転する。
図2に示すように、第1運転状態では、給湯用冷媒回路2(給湯サイクル)の給湯用熱源側熱交換器24は不使用であり、給湯用利用側熱交換器22は凝縮器、中間熱交換器11は蒸発器として使用される。また、空調用冷媒回路3(空調サイクル)の空調用熱源側熱交換器32は不使用であり、空調用利用側熱交換器34は蒸発器、中間熱交換器11は凝縮器として使用される。さらに、空調用圧縮機31および給湯用圧縮機21は運転される。
具体的に制御装置1aは、図3に示すように、四方弁36を第1状態に設定し、四方弁54を第2状態に設定する。また、制御装置1aは、空調用冷媒流量制御弁30c,30dおよび給湯用冷媒流量制御弁20c,20dを開弁し、空調用冷媒流量制御弁30a,30bおよび給湯用冷媒流量制御弁20a,20bを閉弁する。そして、空調用室外ファン35および給湯用室外ファン25を停止する。
さらに制御装置1aは、三方弁4aを第1状態に設定するとともに三方弁4dを第1状態に設定する。そして、給湯用水循環ポンプ42を運転する。
空調用冷媒流量制御弁30a(30b)が閉弁することによって、空調用熱源側熱交換器32への空調用冷媒の流入が遮断されることから、空調用冷媒流量制御弁30a(30b)は、空調用熱源側熱交換器32への空調用冷媒の流入を制限する冷媒流入制限手段(第1制限手段)として機能する。
同様に、給湯用冷媒流量制御弁20a(20b)が閉弁することによって、給湯用熱源側熱交換器24への給湯用冷媒の流入が遮断されることから、給湯用冷媒流量制御弁20a(20b)は、給湯用熱源側熱交換器24への給湯用冷媒の流入を制限する冷媒流入制限手段(第2制限手段)として機能する。
空調用冷媒回路3では、空調用圧縮機31で圧縮されて高温になったガス状の空調用冷媒(以下必要に応じ、ガス状であることを(G)、液体状であることを(L)、気液二相状態であることを(B)で示す)が四方弁36を経由して中間熱交換器11に流入する。中間熱交換器11で空調用冷媒(G)は低温の給湯用冷媒(B)に放熱して凝縮し液化する。液化した空調用冷媒(L)は高圧の状態で空調用膨張弁33に流入して減圧膨張し、低温低圧の二相状態(気液混合状態)となって空調用利用側熱交換器34に流入する。
空調用利用側熱交換器34に流入した空調用冷媒(B)は、空調用冷温水回路5を循環する、相対的に高温の空調利用側冷媒(L)から吸熱して蒸発して気化し、低圧の空調用冷媒(G)となる。そして、空調用圧縮機31で圧縮される。
空調用冷温水回路5では、空調用利用側熱交換器34を流通する空調用冷媒(B)に放熱した空調利用側冷媒(L)が空調用冷温水循環ポンプ53によって室内熱交換器51に流入する。室内熱交換器51では、空調用冷温水回路5内の空調利用側冷媒(L)が居住空間の高温空気から吸熱して居住空間の高温空気を冷却する。つまり、居住空間が冷房される。
室内熱交換器51での吸熱で昇温した空調利用側冷媒(L)は、空調用冷温水循環ポンプ53によって再び空調用利用側熱交換器34に流入して空調用冷媒(B)に放熱する。空調給湯システム1が冷房運転する場合、空調利用側冷媒(L)はこのように空調用冷温水回路5を循環して居住空間を冷房する。
給湯用冷媒回路2では、給湯用圧縮機21で圧縮されて高温高圧となった給湯用冷媒(G)が給湯用利用側熱交換器22に流入する。給湯用利用側熱交換器22で給湯用冷媒(G)は、給湯用温水回路4を流通する給湯用水に放熱して凝縮し液化する。そして液化した給湯用冷媒(L)は、高圧の状態で所定の開度で開弁している給湯用膨張弁23で膨張減圧し、低温低圧で二相状態になる。この二相状態の給湯用冷媒(B)は、中間熱交換器11で空調用冷媒(G)から吸熱して蒸発し、低圧の給湯用冷媒(G)となって給湯用圧縮機21に吸い込まれ、圧縮された後に給湯用利用側熱交換器22に流入する。
給湯用温水回路4では、貯湯タンク41に貯湯される給湯用水が給湯用水循環ポンプ42によって給湯用利用側熱交換器22に流入し、高温の給湯用冷媒(G)から吸熱して昇温する。昇温した高温の給湯用水は貯湯タンク41に一旦貯湯され、利用者の要求があったときに供給端末100(蛇口等)から利用者に供給される。なお、制御装置1aは給湯用温水回路4に備わる三方弁4a〜4dを適宜制御して、沸き上げおよび利用者への給湯を実行する。
このとき、貯湯タンク41から取り出された給湯用水には、加水用流路43を流通する給湯用水が適宜混合され、利用者が要求する湯温の給湯用水が供給端末100から利用者に供給される。
以上のように空調給湯システム1が第1運転状態に設定され、空調システムで冷房運転するとともに給湯システムで給湯運転して排熱回収運転するとき、空調用冷媒回路3を循環する空調用冷媒と給湯用冷媒回路2を循環する給湯用冷媒の全てが中間熱交換器11に流入して、給湯用冷媒が空調用冷媒から吸熱する。
そして、中間熱交換器11で空調放熱量の全てが給湯吸熱量として給湯用冷媒に吸熱される。
このような構成によって、空調放熱量と給湯吸熱量が等しい場合は居住空間から回収した熱量を給湯用水の加熱源に利用できる。
《第2運転状態》
空調放熱量が給湯吸熱量より小さい場合、制御装置1aは運転状態を第2運転状態に設定して、空調サイクルで冷房運転するとともに給湯サイクルで給湯運転し排熱回収運転する。
図2に示すように、第2運転状態では、給湯用冷媒回路2(給湯サイクル)の給湯用利用側熱交換器22は凝縮器、給湯用熱源側熱交換器24と中間熱交換器11は蒸発器として使用される。また、空調用冷媒回路3(空調サイクル)の空調用熱源側熱交換器32は不使用であり、空調用利用側熱交換器34は蒸発器、中間熱交換器11は凝縮器として使用される。さらに、空調用圧縮機31および給湯用圧縮機21は運転される。
そして、第2運転状態では、給湯用冷媒回路2を循環する給湯用冷媒が、中間熱交換器11と給湯用熱源側熱交換器24に好適に分配されて流通し、中間熱交換器11での給湯用冷媒の吸熱量が空調放熱量と等しくなるように制御装置1aが空調給湯システム1を制御することが好ましい。
具体的に制御装置1aは、図4に示すように、四方弁36を第1状態に設定し、四方弁54を第2状態に設定する。また、制御装置1aは、空調用冷媒流量制御弁30c,30dおよび給湯用冷媒流量制御弁20a〜20dを開弁し、空調用冷媒流量制御弁30a,30bを閉弁する。そして、給湯用室外ファン25を運転して空調用室外ファン35を停止する。
さらに制御装置1aは、三方弁4aを第1状態に設定するとともに三方弁4dを第1状態に設定する。そして、給湯用水循環ポンプ42を運転する。
このとき、並列に配置される中間熱交換器11と給湯用熱源側熱交換器24を、ともに給湯用冷媒の蒸発器として機能させると中間熱交換器11と給湯用熱源側熱交換器24に給湯用冷媒が好適に分配されないという問題が発生する。これは、給湯用冷媒が熱交換する対象が中間熱交換器11では空調用冷媒であり、給湯用熱源側熱交換器24では大気であることに起因する。つまり、給湯用冷媒が熱交換する対象が中間熱交換器11と給湯用熱源側熱交換器24で異なるためである。
例えば、空調給湯システム1の給湯サイクルが単独で給湯運転を実施しているときに、空調給湯システム1が第2運転状態に設定されて空調サイクルでの冷房運転を開始する場合、冷房運転の開始直後は空調用冷媒は充分に放熱できる状態ではなく、中間熱交換器11を流通する給湯用冷媒は充分に吸熱できない。そして、中間熱交換器11では給湯用冷媒の流路で熱抵抗が高まって中間熱交換器11での給湯用冷媒の流通量が減少する。したがって、中間熱交換器11への流入量が少なくなり給湯用熱源側熱交換器24への流入量が多くなるように給湯用冷媒が分配される。
このように給湯用冷媒の分配が好適でない場合、中間熱交換器11を流通する給湯用冷媒はほとんど吸熱できず、液体状で給湯用冷媒(L)が中間熱交換器11から流出し、給湯用熱源側熱交換器24で蒸発(気化)した給湯用冷媒(G)と合流する。そして、ガス状の給湯用冷媒(G)と液体状の給湯用冷媒(L)の混合によって給湯用冷媒の体積が増加し、給湯用冷媒回路2は流路の閉塞が発生しやすい不安定な状態となる。
そこで、本実施形態に係る制御装置1aは、給湯用冷媒回路2を不安定な状態にすることなく、空調給湯システム1を第2運転状態に設定して排熱回収運転を開始するように構成される。
具体的に、制御装置1aは、排熱回収運転の開始時に空調用冷媒流量制御弁30a,30bを制御(閉弁)して空調用熱源側熱交換器32への空調用冷媒の流入を制限し、空調用室外ファン35を停止するとともに、給湯用冷媒流量制御弁20a,20bを制御(閉弁)して給湯用熱源側熱交換器24への給湯用冷媒の流入を制限し、給湯用室外ファン25を停止する。そして、空調用冷媒流量制御弁30c,30dおよび給湯用冷媒流量制御弁20c,20dを開弁し、空調サイクルでの冷房運転と給湯サイクルでの給湯運転を開始する。
この状態で制御装置1aは、空調用圧縮機31および給湯用圧縮機21の回転速度を調節し、さらに、空調用膨張弁33および給湯用膨張弁23の開度を調節する。前記したように、空調用膨張弁33および給湯用膨張弁23の開度は、利用者が設定する居住空間の目標温度(冷房運転時の設定温度)、給湯用水の沸き上げ温度等に応じて調節される。
制御装置1aは、温度センサT36から入力される計測信号で中間熱交換器11における空調用冷媒の温度(空調側第2接続口11bでの空調用冷媒の温度)を監視し、空調用冷媒の温度が所定の目標値になったとき、給湯用室外ファン25の運転を開始した後で給湯用冷媒流量制御弁20a,20bを制御(開弁)し、給湯用熱源側熱交換器24への給湯用冷媒の流入の制限を解除する。
このとき、制御装置1aは給湯用室外ファン25を先に運転してから給湯用冷媒流量制御弁20a,20bを開弁する構成が好ましい。この構成によって、給湯用熱源側熱交換器24では給湯用冷媒が流通する直後から給湯用冷媒と大気の熱交換が可能となり、制御装置1aは給湯サイクルの給湯運転を安定させることができる。
制御装置1aが給湯用冷媒流量制御弁20aを開弁する場合の空調用冷媒の温度の目標値は、利用者が設定する目標室温(冷房運転時の設定温度)、目標風量、居住空間の室温等に基づいて予め実験等で設定される温度であればよい。例えば、目標室温と目標風量と居住空間の室温と空調用冷媒の温度の目標値の関係を示すチャートを参照し、目標室温と目標風量と居住空間の室温とに基づいて制御装置1aが設定する構成とすればよい。
以上のような手順で空調給湯システム1が第2運転状態に設定されて排熱回収運転が開始されると、空調用冷媒回路3では、空調用圧縮機31から吐出した高温高圧の空調用冷媒(G)が四方弁36を経由して中間熱交換器11に流入する。中間熱交換器11に流入した空調用冷媒(G)は低温の給湯用冷媒(B)に放熱して凝縮し液化する。そして、中間熱交換器11で液化した空調用冷媒(L)は、所定の開度で開弁している空調用膨張弁33に高圧の状態で流入して減圧、膨張し、低温低圧の二相状態の空調用冷媒(B)となって空調用利用側熱交換器34に流入する。
空調用利用側熱交換器34に流入した空調用冷媒(B)は、空調用冷温水回路5を循環する、相対的に高温の空調利用側冷媒(L)から吸熱して蒸発して気化し、低圧の空調用冷媒(G)となる。そして、空調用圧縮機31で圧縮される。
給湯用冷媒回路2では、給湯用圧縮機21で圧縮されて高温高圧となった給湯用冷媒(G)が給湯用利用側熱交換器22に流入する。給湯用利用側熱交換器22で給湯用冷媒(G)は、給湯用温水回路4を流通する給湯用水に放熱して凝縮し液化する。そして液化した給湯用冷媒(L)は、高圧の状態で所定の開度で開弁している給湯用膨張弁23で膨張減圧し、低温低圧で二相状態の給湯用冷媒(B)になる。この給湯用冷媒(B)は、中間熱交換器11および給湯用熱源側熱交換器24に流入する。中間熱交換器11に流入した給湯用冷媒(B)は高温の空調用冷媒(G)から吸熱して蒸発して気化し、低圧の給湯用冷媒(G)になる。一方、給湯用熱源側熱交換器24に流入した給湯用冷媒(B)は、相対的に高温の大気から吸熱して蒸発し、低圧の給湯用冷媒(G)となる。そして、中間熱交換器11および給湯用熱源側熱交換器24で気化した給湯用冷媒(G)は合流し、給湯用圧縮機21に吸い込まれて圧縮される。
なお、給湯用温水回路4における給湯用水の流通および空調用冷温水回路5における空調利用側冷媒の循環は、第1運転状態での排熱回収運転時と同等である。
空調給湯システム1が第2運転状態に設定されて空調サイクルが冷房運転するとともに給湯サイクルが給湯運転して排熱回収運転するとき、給湯用冷媒回路2を循環する給湯用冷媒は、中間熱交換器11と給湯用熱源側熱交換器24に分配して流通し、給湯用冷媒は中間熱交換器11を流通する空調用冷媒から吸熱する。
さらに、空調放熱量が給湯吸熱量に不足する熱量は、給湯用熱源側熱交換器24で給湯用冷媒が大気から吸熱できる。
このような構成によって、給湯吸熱量が空調放熱量よりも大きい場合であっても、給湯用温水回路4を流通する給湯用水に供給される熱量が不足することが回避され、居住空間から回収した熱量を給湯用水の加熱源に利用できる。
また、制御装置1aは空調給湯システム1を第2運転状態にして排熱回収運転を開始する場合、空調用冷媒流量制御弁30a,30bおよび給湯用冷媒流量制御弁20a,20bを閉弁した状態で冷房運転と給湯運転を開始する。その後、制御装置1aは、給湯用室外ファン25の運転を開始した後で給湯用冷媒流量制御弁20a,20bを開弁し、給湯用熱源側熱交換器24への給湯用冷媒の流入の制限を解除する。この構成によって、制御装置1aは給湯サイクルの運転が安定した状態で空調給湯システム1を第2運転状態に設定でき、安定した状態で排熱回収運転を開始できる。
《第3運転状態》
空調放熱量が給湯吸熱量より大きい場合、制御装置1aは運転状態を第3運転状態に設定して、空調サイクルで冷房運転するとともに給湯サイクルで給湯運転し、排熱回収運転する。
図2に示すように、第3運転状態では、給湯用冷媒回路2(給湯サイクル)の給湯用熱源側熱交換器24は不使用であり、給湯用利用側熱交換器22は凝縮器、中間熱交換器11は蒸発器として使用される。また、空調用冷媒回路3(空調サイクル)の空調用利用側熱交換器34は蒸発器、空調用熱源側熱交換器32と中間熱交換器11は凝縮器として使用される。さらに、空調用圧縮機31および給湯用圧縮機21は運転される。
そして、第3運転状態では、空調用冷媒回路3を循環する空調用冷媒が、中間熱交換器11と空調用熱源側熱交換器32に好適に分配されて流通し、中間熱交換器11での空調用冷媒の放熱量が給湯吸熱量と等しくなるように制御装置1aが空調給湯システム1を制御することが好ましい。
具体的に制御装置1aは、図5に示すように、四方弁36を第1状態に設定し、四方弁54を第2状態に設定する。また、制御装置1aは、空調用冷媒流量制御弁30a〜30dおよび給湯用冷媒流量制御弁20c,20dを開弁し、給湯用冷媒流量制御弁20a,20bを閉弁する。そして、空調用室外ファン35を運転して給湯用室外ファン25を停止する。
さらに制御装置1aは、三方弁4aを第1状態に設定するとともに三方弁4dを第1状態に設定する。そして、給湯用水循環ポンプ42を運転する。
このとき、並列に配置される中間熱交換器11と空調用熱源側熱交換器32を、ともに空調用冷媒の凝縮器として機能させると中間熱交換器11と空調用熱源側熱交換器32に空調用冷媒が好適に分配されないという問題が発生する。これは、空調用冷媒が熱交換する対象が中間熱交換器11では給湯用冷媒であり、空調用熱源側熱交換器32では大気であることに起因する。つまり、空調用冷媒が熱交換する対象が中間熱交換器11と空調用熱源側熱交換器32で異なるためである。
例えば、空調給湯システム1の空調サイクルが単独で冷房運転を実施しているときに、空調給湯システム1が第3運転状態に設定されて給湯サイクルでの給湯運転を開始する場合、給湯運転の開始直後は給湯用冷媒は充分に吸熱できる状態ではなく、中間熱交換器11を流通する空調用冷媒は充分に放熱できない。そして、中間熱交換器11では空調用冷媒の流路で熱抵抗が高まって中間熱交換器11での空調用冷媒の流通量が減少する。したがって、中間熱交換器11への流入量が少なくなり空調用熱源側熱交換器32への流入量が多くなるように空調用冷媒が分配される。
このように空調用冷媒の分配が好適でない場合、中間熱交換器11を流通する空調用冷媒の熱量はほとんど吸熱されず、高温高圧のガス状の状態で空調用冷媒(G)が中間熱交換器11から流出し、空調用熱源側熱交換器32で凝縮(液化)した空調用冷媒(L)と空調用膨張弁33の上流で合流する。そして、ガス状の空調用冷媒(G)と液体状の空調用冷媒(L)の混合によって空調用膨張弁33を流通する空調用冷媒の体積が増加し、空調用冷媒回路3は流路の閉塞が発生しやすい不安定な状態となる。
本実施形態に係る制御装置1aは、空調用冷媒回路3を不安定な状態にすることなく、空調給湯システム1を第3運転状態に設定して排熱回収運転を開始するように構成される。具体的に制御装置1aは、排熱回収運転の開始時に空調用冷媒流量制御弁30a,30bを制御(閉弁)して空調用熱源側熱交換器32への空調用冷媒の流入を制限し、空調用室外ファン35を停止するとともに、給湯用冷媒流量制御弁20a,20bを制御(閉弁)して給湯用熱源側熱交換器24への給湯用冷媒の流入を制限し、給湯用室外ファン25を停止する。そして、空調用冷媒流量制御弁30c、30dおよび給湯用冷媒流量制御弁20c、20dを開弁し、空調サイクルでの冷房運転と給湯サイクルでの給湯運転を開始する。
この状態で制御装置1aは、空調用圧縮機31および給湯用圧縮機21の回転速度を調節し、さらに、空調用膨張弁33および給湯用膨張弁23の開度を調節する。空調用膨張弁33および給湯用膨張弁23の開度は、利用者が設定する居住空間の目標温度(冷房運転時の設定温度)、給湯用水の沸き上げ温度等に応じて調節される。
制御装置1aは、温度センサT25から入力される計測信号で中間熱交換器11における給湯用冷媒の温度(給湯側第2接続口11dでの給湯用冷媒の温度)を監視し、給湯用冷媒の温度が所定の目標値になったとき、空調用室外ファン35の運転を開始した後で空調用冷媒流量制御弁30a,30bを制御(開弁)し、空調用熱源側熱交換器32への空調用冷媒の流入の制限を解除する。
第3運転状態の場合も、制御装置1aは空調用室外ファン35を先に運転してから空調用冷媒流量制御弁30a,30bを開弁する構成が好ましい。この構成によって、空調用熱源側熱交換器32では空調用冷媒が流通する直後から、空調用冷媒と大気の熱交換が可能となり、制御装置1aは空調サイクルの冷房運転を安定させることができる。
制御装置1aが空調用冷媒流量制御弁30a,30bを開弁する場合の給湯用冷媒の温度の目標値は、給湯サイクルにおける沸き上げ温度、貯湯タンク41に貯湯される給湯用水の貯湯温度等に基づいて予め実験等で設定される温度とすればよい。例えば、沸き上げ温度と貯湯温度と給湯用冷媒の温度の目標値の関係を示すチャートを参照し、沸き上げ温度や貯湯温度に応じて制御装置1aが設定する構成とすればよい。
以上のような手順で空調給湯システム1が第3運転状態に設定されて排熱回収運転が開始されると、空調用冷媒回路3では、空調用圧縮機31から吐出した高温高圧の空調用冷媒(G)が四方弁36を経由して中間熱交換器11および空調用熱源側熱交換器32に流入する。中間熱交換器11に流入した空調用冷媒(G)は低温の給湯用冷媒(B)に放熱して凝縮し液化する。一方、空調用熱源側熱交換器32に流入した空調用冷媒(G)は大気に放熱して凝縮し液化する。そして、中間熱交換器11および空調用熱源側熱交換器32で液化した空調用冷媒(L)は合流し、所定の開度で開弁している空調用膨張弁33に高圧の状態で流入して減圧、膨張し、低温低圧の二相状態の空調用冷媒(B)となって空調用利用側熱交換器34に流入する。
空調用利用側熱交換器34に流入した空調用冷媒(B)は、空調用冷温水回路5を循環する、相対的に高温の空調利用側冷媒(L)から吸熱して蒸発して気化し、低圧の空調用冷媒(G)となる。そして、空調用圧縮機31で圧縮される。
給湯用冷媒回路2では、給湯用圧縮機21で圧縮されて高温高圧となった給湯用冷媒(G)が給湯用利用側熱交換器22に流入する。給湯用利用側熱交換器22で給湯用冷媒(G)は、給湯用温水回路4を流通する給湯用水に放熱して凝縮し液化する。そして液化した給湯用冷媒(L)は、高圧の状態で所定の開度で開弁している給湯用膨張弁23で膨張減圧し、低温低圧で二相状態の給湯用冷媒(B)になる。この給湯用冷媒(B)は、中間熱交換器11で空調用冷媒(G)から吸熱して蒸発し、低圧でガス状の給湯用冷媒(G)となって給湯用圧縮機21に吸い込まれ、圧縮された後に給湯用利用側熱交換器22に流入する。
なお、給湯用温水回路4における給湯用水の流通および空調用冷温水回路5における空調利用側冷媒の循環は、第1運転状態での排熱回収運転時と同等である。
空調給湯システム1が第3運転状態に設定されて空調サイクルが冷房運転するとともに給湯サイクルが給湯運転して排熱回収運転するとき、空調用冷媒回路3を循環する空調用冷媒は、中間熱交換器11と空調用熱源側熱交換器32に分配して流通し、給湯用冷媒は中間熱交換器11を流通する空調用冷媒から吸熱する。
そして、給湯吸熱量に対して余剰となる空調放熱量は空調用熱源側熱交換器32から大気に放熱され、給湯吸熱量に等しい空調放熱量が給湯用冷媒に吸熱される。
このような構成によって、空調放熱量が給湯吸熱量よりも大きい場合であっても、給湯用温水回路4を流通する給湯用水に過剰の熱量が供給されることが回避され、居住空間から回収した熱量を給湯用水の加熱源に利用できる。
また、制御装置1aは空調給湯システム1を第3運転状態にして排熱回収運転を開始する場合、空調用冷媒流量制御弁30a,30bおよび給湯用冷媒流量制御弁20a,20bを閉弁した状態で冷房運転と給湯運転を開始する。その後、制御装置1aは、空調用室外ファン35の運転を開始した後で空調用冷媒流量制御弁30a,30bを開弁し、空調用熱源側熱交換器32への空調用冷媒の流入の制限を解除する。この構成によって、制御装置1aは空調サイクルの運転が安定した状態で空調給湯システム1を第3運転状態に設定でき、安定した状態で排熱回収運転を開始できる。
図6は、制御装置が空調給湯システムを第1運転状態、第2運転状態、第3運転状態のいずれかに設定して排熱回収運転を開始する手順を示すフローチャートである。制御装置1aは、利用者が空調給湯システム1に冷房運転と給湯運転を同時に要求したときに、図6に示す手順で空調給湯システム1での排熱回収運転を開始する(以下、適宜図1〜5参照)。
制御装置1aは排熱回収運転を開始するとデータ受信処理する(ステップS1)。具体的に制御装置1aは、貯湯タンク41の貯湯温度、給湯サイクルにおける目標湯温(沸き上げ温度)、供給端末100から利用者に供給される給湯用水の目標湯量(流量)、および給水口101から流入する給湯用水の水温(給水温度)を示すデータを取得する。また、制御装置1aは、空調サイクルにおける目標室温(冷房運転時の設定温度)、目標風量、居住空間の室温を示すデータを取得する。
給湯サイクルにおける目標湯温および目標湯量と、空調サイクルにおける目標室温および目標風量は利用者が要求する値であり、制御装置1aは、例えば利用者が操作するリモートコントローラから入力される操作指令信号で、目標湯温、目標湯量、目標室温、目標風量を示すデータを受信する。
また、制御装置1aは、温度センサT43から入力される計測信号で貯湯温度を受信し、温度センサT42から入力される計測信号で給湯サイクルにおける給水温度を示すデータを受信し、温度センサT54から入力される計測信号で空調サイクルにおける室温を示すデータを受信する。
制御装置1aは、受信した各データにもとづいて演算処理する(ステップS2)。
具体的に制御装置1aは、空調サイクルにおける目標冷房能力、空調用圧縮機31の目標回転速度と消費電力、空調用冷媒の目標蒸発温度Teを演算する。また制御装置1aは、給湯サイクルにおける目標給湯能力、給湯用圧縮機21の目標回転速度と消費電力、給湯用冷媒の目標吐出温度Tdを演算する。
さらに制御装置1aは、目標給湯能力と給湯用圧縮機21の消費電力の差から給湯吸熱量を演算するとともに、目標冷房能力と空調用圧縮機31の消費電力の和から空調放熱量を演算する(ステップS3)。ステップS2、ステップS3で制御装置1aが実行する演算には、本実施形態に係る空調給湯システム1と同等に構成される空調給湯システムに関する公知の技術を適用できる。
そして制御装置1aは、空調用冷媒流量制御弁30a,30bおよび給湯用冷媒流量制御弁20a,20bを閉弁し(ステップS4)、さらに、ステップS2での演算結果に応じて空調用圧縮機31および給湯用圧縮機21の運転を開始する。具体的に制御装置1aは、ステップS2で演算した回転速度で空調用圧縮機31および給湯用圧縮機21を運転する。また、制御装置1aは、空調用膨張弁33および給湯用膨張弁23の制御を開始する(ステップS5)。
ステップS4で空調用冷媒流量制御弁30aおよび給湯用冷媒流量制御弁20aを閉弁することによって、空調放熱量と給湯吸熱量の大小に関係なく空調用熱源側熱交換器32への空調用冷媒の流入と給湯用熱源側熱交換器24への給湯用冷媒の流入を遮断できる。
また、前記したように、空調用膨張弁33および給湯用膨張弁23は、利用者が設定する居住空間の目標温度(冷房運転時の設定温度)、給湯用水の沸き上げ温度等に応じて弁開度が調節されるように制御される。
そして制御装置1aは、ステップS3で演算した給湯吸熱量と空調放熱量を比較する(ステップS6)。
制御装置1aは、給湯吸熱量と空調放熱量の差が所定の範囲内にあるときに給湯吸熱量と空調放熱量が等しい(給湯吸熱量=空調放熱量)と判定し(ステップS6→Yes)、第1運転状態に設定して排熱回収運転する(ステップS7)。つまり、制御装置1aは、空調用冷媒流量制御弁30a,30bおよび給湯用冷媒流量制御弁20a,20bが閉弁した状態で排熱回収運転する。
また、給湯吸熱量と空調放熱量の差が所定の範囲内にない場合、制御装置1aは給湯吸熱量と空調放熱量が等しくないと判定し(ステップS6→No)、その大小を比較する(ステップS8)。
給湯吸熱量が空調放熱量より小さい場合、すなわち、「給湯吸熱量<空調放熱量」の場合(ステップS8→Yes)、制御装置1aは、中間熱交換器11の給湯側第2接続口11dに備わる温度センサT25から入力される計測信号に基づいて中間熱交換器11における給湯用冷媒の温度(給湯側第2接続口11dでの給湯用冷媒の温度)を演算する。そして、給湯用冷媒の温度が所定の目標値に達するまで待機し(ステップS9→No)、給湯用冷媒の温度が所定の目標値に達したら(ステップS9→Yes)、制御装置1aは空調用室外ファン35の運転を開始し(ステップS10)、さらに、空調用冷媒流量制御弁30a,30bを開弁する(ステップS11)。このとき、制御装置1aは空調用冷媒流量制御弁30a,30bを全開にする。
このように、制御装置1aは第3運転状態に設定して排熱回収運転する(ステップS12)。
なお、制御装置1aは、中間熱交換器11における給湯用冷媒の温度に代えて、例えば中間熱交換器11における給湯用冷媒の圧力が所定の圧力になったときに空調用室外ファン35の運転を開始し、空調用冷媒流量制御弁30a,30bを開弁する構成であってもよい。つまり制御装置1aは、温度や圧力など給湯用冷媒の状態に応じて空調用室外ファン35の運転を開始し、空調用冷媒流量制御弁30a,30bを開弁する構成とすればよい。
ステップS8において、給湯吸熱量が空調放熱量より小さくない場合、すなわち、給湯吸熱量が空調放熱量より大きく、「給湯吸熱量>空調放熱量」の場合(ステップS8→No)、制御装置1aは、中間熱交換器11の空調側第2接続口11bに備わる温度センサT36から入力される計測信号に基づいて中間熱交換器11における空調用冷媒の温度(空調側第2接続口11bでの空調用冷媒の温度)を演算する。そして、制御装置1aは演算した空調用冷媒の温度が目標値に達するまで待機する(ステップS13→No)。空調凝縮温度が目標値に達したら(ステップS13→Yes)、制御装置1aは、給湯用室外ファン25の運転を開始し(ステップS14)、さらに、給湯用冷媒流量制御弁20a,20bを開弁する(ステップS15)。このとき、制御装置1aは、給湯用冷媒流量制御弁20a,20bを全開にする。
このように制御装置1aは第2運転状態に設定して排熱回収運転する(ステップS16)。
なお、制御装置1aは、中間熱交換器11における空調用冷媒の温度に代えて、例えば中間熱交換器11における空調用冷媒の圧力が所定の圧力になったときに給湯用室外ファン25の運転を開始し、給湯用冷媒流量制御弁20a,20bを開弁する構成であってもよい。つまり制御装置1aは、温度や圧力など空調用冷媒の状態に応じて給湯用室外ファン25の運転を開始し、給湯用冷媒流量制御弁20a,20bを開弁する構成とすればよい。
なお、前記したように、空調用冷媒流量制御弁30aおよび給湯用冷媒流量制御弁20aを流量調節弁で構成してもよい。そして、制御装置1aは空調用冷媒流量制御弁30aおよび給湯用冷媒流量制御弁20aを閉弁するのに替えて、ステップS4で、空調用冷媒流量制御弁30aおよび給湯用冷媒流量制御弁20aの開度を小さくする構成であってもよい。制御装置1aは空調用冷媒流量制御弁30aの開度を小さくすることによって、空調用熱源側熱交換器32への空調用冷媒の流入量を制限できる。また、制御装置1aは給湯用冷媒流量制御弁20aの開度を小さくすることによって、給湯用熱源側熱交換器24への給湯用冷媒の流入を制限できる。この場合、制御装置1aは、空調用冷媒流量制御弁30bおよび給湯用冷媒流量制御弁20bを閉弁しない構成とすることが好ましい。
例えば、空調サイクルが単独で冷房運転している場合に、制御装置1aが給湯サイクルの給湯運転を開始して空調給湯システム1が排熱回収運転を開始するとき、空調用熱源側熱交換器32への空調用冷媒の流入が遮断されると、中間熱交換器11での空調用冷媒と給湯用冷媒の熱交換が不十分の場合に空調用冷媒が充分に冷却されず、ひいては、居住空間の室温が上昇する場合がある。
そこで、排熱回収運転の開始時に空調用熱源側熱交換器32へも空調用冷媒が流入する構成とし、空調用熱源側熱交換器32で空調用冷媒を冷却可能にする。この構成によって空調用冷媒が空調用熱源側熱交換器32で冷却されて居住空間の温度上昇を抑制できる。
空調用冷媒流量制御弁30aが流量調節弁の場合に制御装置1aがステップS4で設定する空調用冷媒流量制御弁30aの開度は、例えば、利用者が居住空間の温度変化(温度上昇)を認識できない程度に、温度上昇を抑えられる範囲で設定されることが好ましい。
同様に、給湯サイクルが単独で給湯運転している場合に、制御装置1aが空調サイクルの冷房運転を開始して空調給湯システム1が排熱回収運転を開始するとき、給湯用熱源側熱交換器24への給湯用冷媒の流入が遮断されると、中間熱交換器11での空調用冷媒と給湯用冷媒の熱交換が不十分の場合に給湯用冷媒が昇温せず、ひいては、沸き上げ温度が低下する場合がある。
そこで、排熱回収運転の開始時に給湯用熱源側熱交換器24へも給湯用冷媒が流入する構成とし、給湯用冷媒が給湯用熱源側熱交換器24で吸熱可能にする。この構成によって給湯用冷媒を給湯用熱源側熱交換器24で吸熱して沸き上げ温度の低下を抑制できる。
給湯用冷媒流量制御弁20aが流量調節弁の場合に制御装置1aがステップS4で設定する給湯用冷媒流量制御弁20aの開度は、例えば、沸き上げ温度の低下が許容範囲内になるように設定されることが好ましい。
また、制御装置1aは、例えば、ステップS3で給湯吸熱量および空調放熱量を演算したとき、ステップS4で空調用冷媒流量制御弁30a,30bおよび給湯用冷媒流量制御弁20a,20bを閉弁する前に、空調用冷媒を空調用熱源側熱交換器32から取り出し、給湯用冷媒を給湯用熱源側熱交換器24から取り出す構成であってもよい。これは、排熱回収運転時に空調用熱源側熱交換器32および給湯用熱源側熱交換器24の少なくとも一方が使用されない場合に、使用されない空調用熱源側熱交換器32や給湯用熱源側熱交換器24に空調用冷媒や給湯用冷媒が滞留することなく、全ての冷媒を有効に利用するためである。
具体的に制御装置1aは、空調放熱量が給湯吸熱量よりも小さい場合、四方弁36を第2状態に設定し、空調用冷媒流量制御弁30bと空調用膨張弁33を閉弁し、空調用圧縮機31を運転する。空調用熱源側熱交換器32の空調用冷媒は空調用冷媒流量制御弁30aを経由して空調用圧縮機31に吸引され空調用熱源側熱交換器32から排出される。そして、空調用熱源側熱交換器32から空調用冷媒が排出された時点で制御装置1aは空調用冷媒流量制御弁30aを閉弁するとともに空調用圧縮機31の運転を停止する。さらに、制御装置1aは四方弁3を第1状態に設定する。
例えば、空調用熱源側熱交換器32における空調用冷媒の圧力を計測する圧力計が備わる構成とすれば、制御装置1aは当該圧力計が真空状態を検出した時点で空調用熱源側熱交換器32から全ての空調用冷媒が排出したことを認識できる。
また制御装置1aは、給湯吸熱量が空調放熱量よりも小さい場合、給湯用冷媒流量制御弁20aと給湯用膨張弁23を閉弁して給湯用圧縮機21を運転する。給湯用熱源側熱交換器24の給湯用冷媒は給湯用冷媒流量制御弁20bを経由して給湯用圧縮機21に吸引され給湯用熱源側熱交換器24から排出される。そして、給湯用熱源側熱交換器24から給湯用冷媒が排出された時点で制御装置1aは給湯用冷媒流量制御弁20bを閉弁するとともに給湯用圧縮機21の運転を停止する。
例えば、給湯用熱源側熱交換器24における給湯用冷媒の圧力を計測する圧力計が備わる構成とすれば、制御装置1aは当該圧力計が真空状態を検出した時点で給湯用熱源側熱交換器24から全ての給湯用冷媒が排出したことを認識できる。
以上のように本実施形態に係る空調給湯システム1(図1参照)は、利用者が冷房運転と給湯運転を同時に要求した場合、給湯サイクルの給湯吸熱量と空調サイクルの空調放熱量の大小にかかわらずに排熱回収運転することができる。
また、制御装置1a(図1参照)は、給湯サイクルもしくは空調サイクルの単独運転から排熱回収運転に切り替える場合、排熱回収運転の開始時に、給湯用熱源側熱交換器24(図1参照)および空調用熱源側熱交換器32(図1参照)への冷媒の流入を制限する。この構成によって、排熱回収運転の開始時に熱抵抗で冷媒の流入量が減少しやすい中間熱交換器11(図1参照)に優先的に冷媒を流入させることができる。そして、空調用冷媒回路3(図1参照)が不安定な状態になることを回避できる。
また、制御装置1a(図1参照)は、給湯用熱源側熱交換器24(図1参照)および空調用熱源側熱交換器32(図1参照)への冷媒の流入を制限した状態で、給湯用冷媒の温度および空調用冷媒の温度がそれぞれの目標値になったときに制限を解除して、給湯用熱源側熱交換器24または空調用熱源側熱交換器32へ冷媒を流入させる。
このことによって、排熱量の多い側のサイクルで循環する冷媒を排熱回収用の中間熱交換器11(図1参照)と熱源側熱交換器(空調用熱源側熱交換器32、給湯用熱源側熱交換器24)に好適に分配することができ、安定した排熱回収運転を確保できる。そして、経済的に運転可能な空調給湯システム1とその運転方法を提供できる。
なお、本実施形態では、居住空間の空気から吸熱する空調利用側冷媒を冷却対象とし、利用者に供給される給湯用水を加熱対象とする空調給湯システム1を排熱回収システムとしたがこの構成に限定されるものではない。
つまり、本発明は、冷却対象および加熱対象を限定することなく、冷却対象から吸熱した熱を加熱対象へ放熱する構成の排熱回収システムに広く適用可能である。
1 空調給湯システム(排熱回収システム)
1a 制御装置
2 給湯用冷媒回路(第2冷媒回路)
3 空調用冷媒回路(第1冷媒回路)
11 中間熱交換器
20a,20b 給湯用冷媒流量制御弁(第2制限手段)
21 給湯用圧縮機(第2冷媒圧縮機)
24 給湯用熱源側熱交換器(第2熱交換器)
25 給湯用室外ファン(第2冷媒回路用ファン)
30a,30b 空調用冷媒流量制御弁(第1制限手段)
31 空調用圧縮機(第1冷媒圧縮機)
32 空調用熱源側熱交換器(第1熱交換器)
35 空調用室外ファン(第1冷媒回路用ファン)

Claims (3)

  1. 第1冷媒が循環する第1冷媒回路と、第2冷媒が循環する第2冷媒回路が、前記第1冷媒と前記第2冷媒が熱交換する中間熱交換器を介して熱的に連結され、
    前記第1冷媒回路に、
    前記第1冷媒の流れに対して前記中間熱交換器と並列に配置されて前記第1冷媒と大気が熱交換する第1熱交換器と、
    前記第1熱交換器への前記第1冷媒の流入を制限する第1制限手段と、が備わり、
    前記第2冷媒回路に、
    前記第2冷媒の流れに対して前記中間熱交換器と並列に配置されて前記第2冷媒と大気が熱交換する第2熱交換器と、
    前記第2熱交換器への前記第2冷媒の流入を制限する第2制限手段と、が備わり、
    前記第1冷媒が前記第1冷媒回路を循環して冷却対象から吸熱した熱を前記中間熱交換器で前記第2冷媒が吸熱し、前記第2冷媒が前記第2冷媒回路を循環して加熱対象に放熱する排熱回収運転するように制御装置で制御される排熱回収システムであって、
    前記制御装置が、
    前記排熱回収運転の開始時に、前記第1制限手段を制御して前記第1冷媒の前記第1熱交換器への流入を制限するとともに、前記第2制限手段を制御して前記第2冷媒の前記第2熱交換器への流入を制限し、
    前記排熱回収運転の開始後に、前記第1冷媒が放熱可能な放熱量と前記第2冷媒が吸熱可能な吸熱量を比較し、
    前記放熱量が前記吸熱量より大きい場合は前記第2冷媒の状態に応じて前記第1制限手段による前記第1熱交換器への前記第1冷媒の流入の制限を解除し、
    前記放熱量が前記吸熱量より小さい場合は前記第1冷媒の状態に応じて前記第2制限手段による前記第2熱交換器への前記第2冷媒の流入の制限を解除し、
    前記第1制限手段による前記第1熱交換器への前記第1冷媒の流入の制限を解除する前に、前記第1熱交換器に大気を送り込む第1冷媒回路用ファンを運転し、
    前記第2制限手段による前記第2熱交換器への前記第2冷媒の流入の制限を解除する前に、前記第2熱交換器に大気を送り込む第2冷媒回路用ファンを運転すること、を特徴とする排熱回収システム。
  2. 前記第1冷媒を圧縮して前記第1冷媒回路に循環させる第1冷媒圧縮機と、前記第1熱交換器と、の間に前記第1制限手段が備わり、
    前記第2冷媒を圧縮して前記第2冷媒回路に循環させる第2冷媒圧縮機と、前記第2熱交換器と、の間に前記第2制限手段が備わることを特徴とする請求項1に記載の排熱回収システム。
  3. 第1冷媒が循環する第1冷媒回路と、第2冷媒が循環する第2冷媒回路が、前記第1冷媒と前記第2冷媒が熱交換する中間熱交換器を介して熱的に連結され、
    前記第1冷媒回路に、
    前記第1冷媒の流れに対して前記中間熱交換器と並列に配置されて前記第1冷媒と大気が熱交換する第1熱交換器と、
    前記第1熱交換器への前記第1冷媒の流入を制限する第1制限手段と、が備わり、
    前記第2冷媒回路に、
    前記第2冷媒の流れに対して前記中間熱交換器と並列に配置されて前記第2冷媒と大気が熱交換する第2熱交換器と、
    前記第2熱交換器への前記第2冷媒の流入を制限する第2制限手段と、が備わり、
    前記第1冷媒が前記第1冷媒回路を循環して冷却対象から吸熱した熱を前記中間熱交換器で前記第2冷媒が吸熱し、前記第2冷媒が前記第2冷媒回路を循環して加熱対象に放熱する排熱回収運転するように制御装置で制御される排熱回収システムの運転方法であって、
    前記排熱回収運転の開始時に、
    前記制御装置が、前記第1制限手段を制御して前記第1冷媒の前記第1熱交換器への流入を制限する手順と、
    前記制御装置が、前記第2制限手段を制御して前記第2冷媒の前記第2熱交換器への流入を制限する手順と、
    前記制御装置が、前記第1冷媒が放熱可能な放熱量と前記第2冷媒が吸熱可能な吸熱量を比較する手順と、
    前記放熱量が前記吸熱量より大きい場合に前記第2冷媒の状態に応じて、前記制御装置が、前記第1制限手段を制御して前記第1冷媒の前記第1熱交換器への流入の制限を解除する手順と、
    前記放熱量が前記吸熱量より小さい場合に前記第1冷媒の状態に応じて、前記制御装置が、前記第2制限手段を制御して前記第2冷媒の前記第2熱交換器への流入の制限を解除する手順と、
    前記制御装置が、前記第1冷媒の前記第1熱交換器への流入の制限を解除する前に、前記第1熱交換器に大気を送り込む第1冷媒回路用ファンを運転する手順と、
    前記制御装置が、前記第2冷媒の前記第2熱交換器への流入の制限を解除する前に、前記第2熱交換器に大気を送り込む第2冷媒回路用ファンを運転する手順と、を備えることを特徴とする排熱回収システムの運転方法。
JP2012046969A 2012-03-02 2012-03-02 排熱回収システムおよびその運転方法 Expired - Fee Related JP5629280B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012046969A JP5629280B2 (ja) 2012-03-02 2012-03-02 排熱回収システムおよびその運転方法
EP12869886.7A EP2821732A4 (en) 2012-03-02 2012-07-09 EXHAUST GAS HEAT RECOVERY SYSTEM AND OPERATING METHOD THEREOF
PCT/JP2012/067420 WO2013128668A1 (ja) 2012-03-02 2012-07-09 排熱回収システムおよびその運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012046969A JP5629280B2 (ja) 2012-03-02 2012-03-02 排熱回収システムおよびその運転方法

Publications (2)

Publication Number Publication Date
JP2013181713A JP2013181713A (ja) 2013-09-12
JP5629280B2 true JP5629280B2 (ja) 2014-11-19

Family

ID=49081904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012046969A Expired - Fee Related JP5629280B2 (ja) 2012-03-02 2012-03-02 排熱回収システムおよびその運転方法

Country Status (3)

Country Link
EP (1) EP2821732A4 (ja)
JP (1) JP5629280B2 (ja)
WO (1) WO2013128668A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104819608B (zh) * 2015-05-15 2020-06-09 浙江三花智能控制股份有限公司 制冷系统及其电磁三通阀
WO2017178667A1 (es) * 2016-04-11 2017-10-19 Cardo Cereijo Juan Equipo de aprovechamiento energético
CN107421161B (zh) * 2016-05-23 2020-10-30 三花亚威科电器设备(芜湖)有限公司 热泵式饮水系统及其控制方法、热泵式饮水装置
CN110325806A (zh) * 2016-10-05 2019-10-11 江森自控科技公司 用于hvac&r系统的热泵
JP7019212B1 (ja) 2020-09-11 2022-02-15 オリオン機械株式会社 冷温同時温度調整装置
JP7019214B1 (ja) 2020-09-11 2022-02-15 オリオン機械株式会社 冷温同時温度調整装置
CN113280416B (zh) * 2021-05-11 2022-06-10 深圳宏一建设集团有限公司 一种恒温恒湿实验室

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2553738B2 (ja) 1990-05-25 1996-11-13 松下電器産業株式会社 ヒートポンプシステムとその制御方法
JP2005299935A (ja) 2004-04-06 2005-10-27 Fujitsu General Ltd 空気調和装置
US7310953B2 (en) * 2005-11-09 2007-12-25 Emerson Climate Technologies, Inc. Refrigeration system including thermoelectric module
JP5119513B2 (ja) * 2007-11-28 2013-01-16 オリオン機械株式会社 二元冷凍機
JP5455521B2 (ja) * 2009-09-25 2014-03-26 株式会社日立製作所 空調給湯システム
JP5373964B2 (ja) 2010-03-01 2013-12-18 株式会社日立製作所 空調給湯システム
JP5572711B2 (ja) * 2010-07-29 2014-08-13 株式会社日立製作所 空調給湯システム

Also Published As

Publication number Publication date
JP2013181713A (ja) 2013-09-12
EP2821732A1 (en) 2015-01-07
WO2013128668A1 (ja) 2013-09-06
EP2821732A4 (en) 2015-11-25

Similar Documents

Publication Publication Date Title
JP5629280B2 (ja) 排熱回収システムおよびその運転方法
US8713951B2 (en) Air conditioning apparatus
JP5452628B2 (ja) 空気調和装置
JP5572711B2 (ja) 空調給湯システム
JP5784117B2 (ja) 空気調和装置
WO2014016865A1 (ja) 空気調和装置
WO2012070083A1 (ja) 空気調和装置
JP5121747B2 (ja) 地中熱ヒートポンプ装置
US8800319B2 (en) Refrigerating cycle device used in an air conditioning apparatus, a refrigerating device and the like
JP5855279B2 (ja) 空気調和装置
JP2006283989A (ja) 冷暖房システム
JP5490245B2 (ja) 空気調和装置
WO2011030429A1 (ja) 空気調和装置
JP6000373B2 (ja) 空気調和装置
JP2007163071A (ja) ヒートポンプ式冷暖房装置
JP2004003801A (ja) 二酸化炭素を冷媒として用いた冷凍装置
JP5955409B2 (ja) 空気調和装置
WO2013061473A1 (ja) 給湯空調装置
WO2012114461A1 (ja) 空調給湯システム及び空調給湯システムの制御方法
JP2004003825A (ja) ヒートポンプシステム、ヒートポンプ式給湯機
WO2019017370A1 (ja) 冷凍装置
JP2006010137A (ja) ヒートポンプシステム
WO2011117922A1 (ja) 空気調和装置
JP4661908B2 (ja) ヒートポンプユニット及びヒートポンプ給湯装置
WO2014128971A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141003

R150 Certificate of patent or registration of utility model

Ref document number: 5629280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees