JP5629272B2 - 生物学的構造における時変パラメータの視覚化 - Google Patents

生物学的構造における時変パラメータの視覚化 Download PDF

Info

Publication number
JP5629272B2
JP5629272B2 JP2011547024A JP2011547024A JP5629272B2 JP 5629272 B2 JP5629272 B2 JP 5629272B2 JP 2011547024 A JP2011547024 A JP 2011547024A JP 2011547024 A JP2011547024 A JP 2011547024A JP 5629272 B2 JP5629272 B2 JP 5629272B2
Authority
JP
Japan
Prior art keywords
visualization
volume
parameter
time
representation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011547024A
Other languages
English (en)
Other versions
JP2012516179A (ja
Inventor
ハイゥラウメ エル ティー エフ ハウトファスト
ハイゥラウメ エル ティー エフ ハウトファスト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips NV
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips NV, Koninklijke Philips Electronics NV filed Critical Koninklijke Philips NV
Publication of JP2012516179A publication Critical patent/JP2012516179A/ja
Application granted granted Critical
Publication of JP5629272B2 publication Critical patent/JP5629272B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/20Drawing from basic elements, e.g. lines or circles
    • G06T11/206Drawing of charts or graphs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/08Volume rendering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/20Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/507Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for determination of haemodynamic parameters, e.g. perfusion CT
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/24Indexing scheme for image data processing or generation, in general involving graphical user interfaces [GUIs]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30048Heart; Cardiac
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2219/00Indexing scheme for manipulating 3D models or images for computer graphics
    • G06T2219/20Indexing scheme for editing of 3D models
    • G06T2219/2012Colour editing, changing, or manipulating; Use of colour codes

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Graphics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Architecture (AREA)
  • Quality & Reliability (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)

Description

本発明は、生物学的構造における時変パラメータの視覚化のためのシステム及び方法に関する。
医用画像診断及び分析技術が継続的に改良するにつれて、医療専門家は視覚化に利用可能なデータの増加し続ける複雑性を経験している。関心ボリューム内のパラメータの測定をはじめとして、パラメータは異なる定量的方法で、関心ボリュームの任意の所望の一部分に対して、例えば最大強度、平均強度、最小強度、平均勾配値、最大勾配値、最小勾配値を抽出するために分析され得る。そして専門家は有意義な方法でデータを視覚化することができなければならない。例えば、時間強度曲線及び関連する定量分析データの視覚化は、例えば初回通過増強(first pass enhancement)心臓磁気共鳴画像法(MRI)で取得される罹患心臓の画像など、医用画像から得られる。
現在、こうした時間強度曲線及び関連する定量分析データを視覚化するために二次元(2D)視覚化技術が典型的に使用される。
例えば、生物学的構造に対する灌流図(perfusogram)として知られる視覚化表現が米国特許出願2005/0124861から知られている。こうした灌流図表現10は図7に描かれ、これは画素15の2Dアレイを有し、各画素は平均強度レベルをあらわすグレー値又はカラー値を持つ。各グレー値又はカラー値と関連する平均強度を示すキー20も描かれる。水平方向30における画素の数は平均強度値が決定される時間間隔の数によって決定される。垂直方向40における画素の数は分析のために選択されるセグメントの数によって決定される。言い換えれば、垂直方向は空間的情報を提供し、水平方向は時間的情報を提供する。
こうした灌流図は、医療専門家が空間的情報を患者の生体構造に関連づけ得るように、解剖学的グレー値画像上のカラーオーバーレイと併せて視覚化され得る。色分けされたセグメントを解剖学的グレー値画像にオーバーレイし、そのセグメントに対するパラメータの値が、そのセグメントを描くために選ばれる色に関連づけられ得るようになっていることもまた当該技術分野で知られている。例えば図6に示される通り、カラーオーバーレイ表現50は、少なくとも1つの色セグメント70によって心筋の領域にオーバーレイされた人の心臓の解剖学的グレー値画像60を有する。セグメント70の色は灌流の測度としての平均セグメント強度の指標であり、各色に関連する平均強度を示すキー80も描かれる。
図6及び7は複雑な多次元データをユーザへ提示することの難しさを説明する。図7は表現を患者の実際の生体構造に関連づけることを困難にし、図6は経時的に観察される強度の変化を示さない。
本発明の目的は複数の位置において時変パラメータを視覚化するためのシステムを提供することである。
本発明は独立クレームによって定義される。有利な実施形態は従属クレームに定義される。
本発明の第1の態様によれば、生物学的構造内の複数の位置において時変パラメータを視覚化するためのシステムが提供され、該システムは、
互いに直交するX,Y及びZ方向にひろがる生物学的構造内の複数の位置における時変パラメータの値を決定し、Z方向にひろがる第1及び第2の境界の位置、並びに第1及び第2の境界の間に配置されるZにひろがる第1のボリュームの位置を決定し、X方向における第1のボリュームを第1及び第2のXY境界の両方にひろげることによって生成される第2のボリュームの位置を決定し、第1のボリューム内の複数の位置における時変パラメータから複数の時間間隔に対する第1の視覚化パラメータを決定し、第2のボリューム内の複数の位置における時変パラメータから第2の視覚化パラメータを決定するように構成される、決定ユニットと、
複数の時間間隔における第1の視覚化パラメータを示す第1の表現を表示し、第1及び第2の視覚化パラメータを示す第2の表現を表示するように構成される視覚化ディスプレイとを有する。
この2つの表現の組み合わせをユーザへ提供することによって、より高解像度のデータが処理され、第1及び第2の境界の間の中間ボリュームに対して有意義に視覚化され得る。これは構造を通じた異なる位置においてだけでなく、構造の境界の間のデータを見ることが望ましいという見識に基づく。しかしながら、視覚化の単純な手段無しに、より高解像度のデータを処理することは実現不可能である。これは第1及び第2の境界における構造間に性能差が存在し得るときに特に有用である。例えば、心筋内の灌流測定は心内膜及び心外膜層で異なる。従って、これらの層に対する測定の相対位置は灌流の評価において有益なデータをもたらす。これは視覚化に必要な表現を複雑化することなく医療専門家が画像データから抽出することができる情報を増加する。
本発明のさらなる態様によれば、視覚化ディスプレイはさらに、構造を通るXY断面に対応する第1及び第2の境界のXY断面、及び構造を通るXY断面に対応する第1のボリュームを通るXY断面とオーバーレイされる、生物学的構造を通るXY断面を有する解剖学的グレー値画像を有する第3の表現を表示するように構成される。
表現の決定に使用されるパラメータの一部をあらわす輪郭を解剖学的画像上にオーバーレイすることによって、表現と患者の生体構造の関係がさらに明らかになる。
本発明のさらなる態様によれば、システムはさらに、複数の第1のボリュームのうちの1つの空間的インジケータと、複数の時間間隔のうちの1つの時間的インジケータを有する第1の表現を表示するように構成される。
付加的に又は代替的に、システムは複数の第1のボリュームのうちの1つの空間的インジケータを有する第2の表現を表示するように構成される。
有意義なインジケータをユーザへ提供することにより、異なる表現間の関係が明らかになる。これは表示される情報の直感的感覚を改良し、医療専門家が表示される情報を病状に関連付けることを容易にする。
本発明の一態様によれば、システムは、第1の境界の位置、第2の境界の位置、第1のボリュームの位置、XYにおける第1のボリュームの範囲、Zにおける生物学的構造の範囲、複数の時間間隔、第1の視覚化パラメータ、第2の視覚化パラメータ、生物学的構造を通るXY断面、及びそれらの任意の組み合わせから成る群から、ユーザが決定ユニット又は視覚化ディスプレイにおいてパラメータを決定するインタラクティブ手段をさらに有する。
高解像度で有意義なデータを提供することにより、システムは、データの決定及び視覚化に使用されるパラメータをユーザが直接変更することを可能にすることによって、より有利で直観的なものにされることができる。
本発明のなおもさらなる態様によれば、視覚化ディスプレイはさらにボリュームレンダリングを用いて第2の表現を表示するように構成される。
生物学的構造に対する高解像度データ分析の可能性に医療専門家を引き合わせることにより、データ表現の全く新しい方法が可能になる。ボリュームレンダリング技術は、構造内のこうした中間ボリュームについては今まで考えられなかったが、さらにより有利な表現を提供するために採用され得る。
本発明の一態様によれば、生物学的構造内の複数の位置において時変パラメータを視覚化するための方法が提供され、該方法は、互いに直交するX,Y及びZ方向にひろがる生物学的構造内の複数の位置における時変パラメータの値を決定するステップ、Z方向にひろがる第1及び第2の境界の位置、並びに、第1及び第2の境界の間に配置されるZにひろがる第1のボリュームの位置を決定するステップ、X方向における第1のボリュームを第1及び第2のXY境界の両方にひろげることによって生成される第2のボリュームの位置を決定するステップ、第1のボリューム内の複数の位置における時変パラメータから複数の時間間隔に対する第1の視覚化パラメータを決定するステップ、第2のボリューム内の複数の位置における時変パラメータから第2の視覚化パラメータを決定するステップ、複数の時間間隔における第1の視覚化パラメータを示す第1の表現を表示するステップ、第1及び第2の視覚化パラメータを示す第2の表現を表示するステップを有する。
本発明のさらなる態様によれば、該方法はさらに、構造を通るXY断面に対応する第1及び第2の境界のXY断面、及び構造を通るXY断面に対応する第1のボリュームを通るXY断面とオーバーレイされる、生物学的構造を通るXY断面を有する解剖学的グレー値画像を有する第3の表現を表示するステップを有する。
本発明の一態様によれば、コンピュータ上にロードされ実行されるときに本発明の方法を実行するためのコンピュータプログラムが提供される。
上述の本発明の実施形態、実施例、及び/又は態様のうちの2つ以上は、有用とみなされる任意の方法で組み合され得ることが当業者によって理解される。
記載された方法の改良及び変更に対応する、画像取得装置、ワークステーション、システム、及び/又はコンピュータプログラムの改良及び変更は、本記載に基づいて当業者によって実行されることができる。
当業者は、システムが、例えば限定されないが標準X線画像、コンピュータ断層撮影(CT)、磁気共鳴画像(MRI)、超音波(US)、陽電子放出断層撮影(PET)、単光子放出コンピュータ断層撮影(SPECT)、及び核医学(NM)などの様々な取得モダリティによって取得される、例えば二次元(2‐D)、三次元(3‐D)、又は四次元(4‐D)画像へ、いかなる形式の時変多次元画像データも視覚化し得ることを理解する。
実施形態は、本願と同日に同一出願人によって出願された同時係属出願整理番号PH‐012697に開示される"System For Analyzing Images and Corresponding Method"とも有利に組み合され得る。この同時係属出願は第1及び第2の境界の間のデータ値における変化率をあらわす勾配を定めることを開示する。この勾配は視覚化パラメータの1つを決定するために本願の実施形態において有利に使用され得る。加えて、本願のシステムをさらに、上記同時係属出願に開示される勾配図(gradientogram)も表示するように、又は第1の表現の代わりに勾配図を表示するように構成することが有利であり得る。特に、心筋における灌流の視覚化は同時係属出願の開示と本願の開示を組み合わせることによって増強され得る。
本発明のこれらの及び他の態様は以下に記載の実施形態から明らかとなり、これらを参照して解明される。
表現が決定され得る生物学的構造の一実施例を示す。 XY平面が観察者に最も近くなるようにZ軸に沿って見た図1の生物学的構造を描く。 視覚化表現の一実施例を示す。 表現が決定され得る生物学的構造の第2の実施例を描く。 XY平面が観察者に最も近くなるようにZ軸に沿って見た図4の生物学的構造例を描く。 カラーオーバーレイ表現の一実施例を示す。 灌流図表現の一実施例を描く。 図1の生物学的構造と、規定され得る異なるボリュームを描く。 データ表現の実施例を描く。 中空円筒ボリュームに近い生物学的構造を描く。 データ表現のさらなる実施例を描く。 データ表現のさらなる実施例を描く。 ユーザに提示され得るディスプレイを描く。 図13Bの表現の組み合わせの可能な実施例を示す。 生物学的構造内の時変パラメータを視覚化する方法の一実施例を描く。 時変パラメータを視覚化するためのシステムを示す。 ボリュメトリックデータ表現を描く。
図面は単なる図示であって縮尺通りではない。特に明瞭化のため、一部の寸法は強く誇張される。図中の類似する構成要素は可能な限り同じ参照数字で示される。
図1は表現が決定され得る生物学的構造100を描く。構造100は互いに直交するX,Y及びZ方向200にひろがる。これらの方向200は任意に選ばれ、いかなる他の座標系又は慣例が使用されてもよい。構造100は第1の境界110と第2の境界120によって規定され、各境界はYZ平面にひろがる。構造はまたXY平面180によっても境界される。
本明細書で記載される構造100とその境界は必ずしも生物組織の解剖学的範囲と一致しないことを当業者は理解するだろう。例えば、構造100の境界は血管壁又は組織壁、例えば心筋の心内膜及び心外膜層と一致し得るが、これらはまたこうした壁の内部又は外部の画像化目的の関心ボリュームを規定するためにも選択され得る。同様に、Z方向の任意の境界もまた任意に選択され得る。しかしながら通常、画像データはデジタルに構築されるXY平面に沿ったスライスとして取得されている。このような場合、Z方向の範囲は選択された数のこうしたXYスライスに等しくなり得る。
本発明の目的のため、XYスライスは同じ時間間隔で作られると仮定されることに留意されたい。
図2は、XY平面180が観察者に最も近くなるようにZ軸に沿って見た同じ構造100を描く。この実施例において、このXY平面180のエッジを規定する第1の境界110及び第2の境界120も描かれる。XY平面180の1つ以上の部分はセグメント131,132,133,134と識別され、これらは任意の好都合なサイズであってよく、互いにサイズが異なってもよい。
各セグメント131,132,133,134は、XY平面180の関連部分と第1の境界110及び第2の境界120によって境界されるセグメントボリュームと関連する。各セグメント131,132,133,134に対して、セグメントボリューム内の位置が決定され、視覚化パラメータを生成するためにセグメントボリューム内の各位置に関連するパラメータが分析される。
典型的には、医療専門家はパラメータがどのように時間変動するかを視覚化したいので、一連の医療スキャンがこうした構造から作られる。これは各セグメントボリュームに対する視覚化パラメータが決定され得、一連の視覚化パラメータが各セグメントボリュームに対して決定され得ることを意味する。
初回通過心筋灌流検査中、心筋中の造影剤の取り込みが動的に観察される。例えば、20‐40秒の期間中に3‐5短軸スライスが1‐2心拍毎にECGトリガリングを用いて取得される。心筋中の個々の位置における時間強度曲線は局所心筋血液灌流についての重要な情報を含む。本発明の目的のため、スライスは同じ時間間隔で作られると仮定されることに留意されたい。
視覚化表現400の一実施例が図3に描かれる。表現400は画素の2Dアレイを有し、各画素は視覚化パラメータの値をあらわすグレー値を持ち、例えば値が高い程画素は白い。カラー値スキームもまた使用され得る。2Dアレイは互いの上に垂直に配置される複数の行431,432,433,434と、水平に配置される複数の列451,452,453,454,455,456,457,458を持ち、行は空間的位置をあらわし列は時間的位置を、言い換えれば時間の瞬間をあらわす。矢印450は左から右へ時間間隔の経過を示す。各行431,432,433,434は複数の時間間隔451,452,453,454,455,456,457,458にわたってセグメント131,132,133,134にそれぞれ関連する各セグメントボリュームに対する視覚化パラメータにおける変化をあらわす。あらわされる時間間隔451,452,453,454,455,456,457,458は取得される全時系列データ又は任意選択を有し得る。
例えば、各位置に関連するパラメータが医療スキャン中に測定される強度である場合、視覚化パラメータは平均セグメント強度であり得る。強度が例えば灌流の測度である場合、視覚化パラメータは灌流図としてユーザに視覚的に提示され得、これは図3に描かれる表現400の具体的実施例である。灌流図表現の一実施例は上記の通り図7に図示される。
生物学的構造100内の複数の位置における時変パラメータを視覚化するためにこうした表現400を作り出すことは、適切なシステムによって実行され得る。こうしたシステム1の一実施例は図16に描かれる。システムは決定ユニット2と視覚化ディスプレイ3を有する。決定ユニット2は生物学的構造100内の複数の位置における時変パラメータの値を決定し、Z方向にひろがる第1の境界100と第2の境界120の位置、及び第1の境界110と第2の境界120の間に配置されるZ方向にひろがるセグメント131,132,133,134と関連するセグメントボリュームの位置を決定し、セグメントボリューム内の複数の位置における時変パラメータから複数の時間間隔451,452,453,454,455,456,457,458に対する視覚化パラメータを決定するように構成される。視覚化ディスプレイ3は複数の時間間隔451,452,453,454,455,456,457,458における視覚化パラメータを示す表現400を表示するように構成される。
典型的に、表示されるものにユーザが影響を与え得るように、ユーザはシステムと相互作用する手段7を提供される。ユーザは例えば画像取得中、画像観察中、画像分析中及び画像修正中にこれらの相互作用を実行するためにワークステーション4を使用し得る。ワークステーション4は1つ以上の表現400を表示するための、通常は解剖学的グレー値画像を表示するための視覚化ディスプレイ3を有する。ユーザ相互作用は例えばアイコン、サムネイル、メニュー、及びプルダウンメニューなどの1つ以上の形式で提供され得る。ワークステーション4はユーザがワークステーション4と相互作用するための手段7も有し、これはキーボード、マウス、トラックボール、ポインタ、描画タブレットを有し得る。
図1及び2の生物試料100は矩形ボリュームに近い。しかしながら、およそ同じ方向性を持つおよそ平行な合同の底辺を持つ3D幾何学的図形に近いいかなる構造に対しても同じ表現が使用され得る。図4は中空円筒ボリュームに近い生物学的構造300を描く。構造300は互いに直交するX,Y及びZ方向200にひろがる。ここでもやはり、これらの方向200は任意に選ばれ、任意の他の座標系又は慣例が使用され得る。特に、動径座標系もまたこうした構造にとって有利であり得る。構造300は第1の境界310と第2の境界320によって規定され、各境界はZ平面に広がる。構造はまたXY平面380によっても境界される。
図5はXY平面380が観察者に最も近くなるようにZ軸に沿って見た同じ構造300を描く。この実施例において、このXY平面380のエッジを規定する第1の境界310と第2の境界320も描かれる。XY平面380の1つ以上の部分はセグメント331,332,333,334と識別される。選ばれるセグメントの数とそのサイズは任意であり、生物学的構造300と所望の分析タイプに応じて選ばれる。
各セグメント331,332,333,334は、XY平面380の関連部分及び第1の境界310と第2の境界320によって境界されるセグメントボリュームと関連する。各セグメント331,332,333,334に対して、セグメントボリューム内の位置が決定され、視覚化パラメータを生成するためにセグメントボリューム内の各位置と関連するパラメータが分析される。
一連の医療スキャンがこうした構造から作られる場合、各セグメントボリュームに対する視覚化パラメータが決定され得、時間的、すなわち時間変化する一連の視覚化パラメータが各セグメントボリュームに対して決定され得る。これはまた、図3に描かれる表現400として医療専門家に視覚的に表示され得る。この場合、各行431,432,433,434は、複数の時間間隔451,452,453,454,455,456,457,458にわたってそれぞれセグメント331,332,333,334と関連するセグメントボリュームの視覚化パラメータにおける変化をあらわす。
円筒構造300の小断面は図1に描かれる矩形ボリューム100に近くてもよく、この技術が多くの種類と形状の生物学的構造に使用されることを可能にすることが当業者には明らかであろう。
例えば、構造は灌流の程度が測定される人の心筋の1つ以上の断面であり得る。最も頻繁に起こる心疾患は冠状動脈の(部分的)閉塞による虚血である。造影剤ボーラスの初回通過後に心筋組織中の造影剤の取り込みを調べることによって、冠状動脈閉塞によって生じる灌流障害の重篤度を評価するために初回通過心臓MRIが使用され得る。灌流障害はしばしばストレス誘導性であるため、この手順は患者に対して安静時とストレス下で(心拍数を増加させる薬剤を用いて)実行されることが多い。心筋は、図3の表現を用いて、灌流計測を実行するため、及び結果の視覚化のために、例えば図2及び5に描かれるように好都合にセグメントに分割され得る。
セグメントボリュームの代わりに、生物学的構造100,300内の層の表現を医療専門家に提供することが有利であり得る。図1のセグメント131,132,133,134及び図5のセグメント331,332,333,334を用いて、ユーザは特定セグメントの選択に制限される。これは視覚化できる解像度を制限する。しかしながら、第1の境界110,310及び第2の境界120,320の間の層の視覚化を提供するように決定が修正される場合、ユーザは生物学的構造を検査するさらなる自由を与えられる。
図8Aは表現が決定され得る図1の生物学的構造100を描く。一部の用途において、第1の境界110と第2の境界120の間にある中間層150に対する生物学的構造100内の時変パラメータを決定することによって追加の自由度を提供することが有利であり得る。
例えば、生物学的構造が心筋である場合、第1の境界110は心外膜(すなわち外側の)層をあらわし、第2の境界120は心内膜(すなわち内側の)層をあらわし得る。灌流を測定するときは、生理学から、心内膜が心外膜よりも高い安静灌流を示すが虚血になりやすいことが知られているため、心内膜層及び心外膜層の間の異なる位置において層を視覚化することが有利となり得る。従って、心筋壁の異なる層における灌流の視覚化は虚血性心疾患の正確な診断と病期分類を提供する。
こうした層150に対するパラメータ値の決定は、生物学的構造100の内側境界120と外側境界110の間に見られる異なる組織間の高解像度の区別を必要とする。それに応じて、測定の空間分解能の増加は視覚化されるべきデータ点の数を増加する。これは、より多くの選択肢が利用可能になり、より多くの情報が同時にユーザへ表示されなければならないため、ユーザとの相互作用を大きく複雑にする。
図8Bは、ユーザが視覚化して見たいと思う層150上の点160が選択されている同じ構造100を描く。点160はXY平面180中の一部分とみなされ得、これは第1の境界110と第2の境界120の間の距離よりもX方向に小さい。任意の好都合なサイズと形状の点160が使用され得、高解像度と高速処理の間で要求のバランスを取る。典型的に、点160は1ボクセルの最小サイズを持つ。点160は、内側境界110と外側境界120の間の位置においてZ方向にひろがる第1のボリューム170、言い換えればY及びZ方向の両方にひろがる中間層150の断面と関連する。第1のボリュームに対して、ボリューム内の位置が決定され、複数の時間間隔に対して第1の視覚的パラメータを生成するためにボリューム内の各位置と関連するパラメータが分析される。
図8Cは同じ構造100を描き、第1の境界110と第2の境界120の両方と交差するまで第1のボリュームをひろげることによって第2のボリューム190が生成される。第2のボリューム内の位置が決定され、複数の時間間隔の1つに対して第2の視覚化パラメータを生成するために第2のボリューム内の各位置と関連するパラメータが分析される。
図9Aは表現900において、時間950における複数の期間、すなわち間隔951,952,953,954,955,956,957,958における第1の視覚化パラメータの1つの行170を描く。この図は第1の境界110と第2の境界120の間に配置される第1のボリュームにおける視覚化パラメータの時間に関する変化をユーザに示す。
図9Bは、複数の時間間隔の1つである選択される時間間隔における、該選択される時間間隔において決定される第1の視覚化パラメータ630と、第2のボリュームのデータ分析から得られる第2の視覚化パラメータ610との間の関係の表現600である。随意に、スケールを示すためにグリッド601が提供され得る。例えば、第2の視覚化パラメータ610は第のボリューム190内で決定される第1の視覚化パラメータの最大値をあらわし得る。これは視覚化される各パラメータが同じスケールを基準とする、好適には同じ測定単位を持つことができる場合に特に有利である。
第2の視覚化パラメータ610もまた、第1の境界110と第2の境界120の間の第2のボリューム190内の特定位置における第1の視覚的パラメータの値をあらわし得る。例えば、心筋中の灌流が測定される場合、心外膜層に対する強度又は心内膜層に対する強度が適切な第2の視覚化パラメータ610として選択され得る。
例えばそれぞれ第2の視覚化パラメータ610及び第3の視覚化パラメータ620を視覚化するために第1の境界110と第2の境界120の両方における第1の視覚化パラメータの値など、第2のボリューム190内の位置から複数の視覚化パラメータを決定することもまた有利であり得る。例えば、心筋中の灌流が測定される場合、心外膜層に対する強度が第2の視覚化パラメータ610に対して使用され得、心内膜層に対する強度が第3の視覚化パラメータ620に対して使用され得る。
視覚化パラメータを決定するために使用され得る他の可能な定量分析技術は、アップスロープ、デコンボリューション、Patlakを含む。加えて当業者は、適切で有意義な表現を提供するためにこうした技術が平均化又は重み付けなどの算術的及び統計的演算と組合され得ることを理解するだろう。
上記の通り、同様の測定は、およそ同じ方向性を持つおよそ平行な合同の底辺を持つ3D幾何学的図形に近い任意の構造で実行され得る。図10は中空円筒ボリュームに近い生物学的構造500を描く。構造500はXY平面580が観察者に最も近くなるようにZ軸に沿って観察される。この実施例において、XY平面580のエッジを規定する第1の境界510と第2の境界520もまた描かれる。
ユーザが視覚化して見たいと思う層550上の点560が選択されている。点560はXY平面580内の一部分と見なされ得、この一部分は第1の境界510と第2の境界520の間の距離よりも小さい。任意の好都合なサイズと形状の点560が使用され得、高解像度と高速処理の間で要求のバランスをとる。典型的には、点560は1ボクセルの最小サイズを持つ。点560は内側境界510と外側境界520の間の位置においてZ方向にひろがる第1のボリュームと関連する。第1のボリュームに対して、ボリューム内の位置が決定され、複数の時間間隔に対する第1の視覚化パラメータを生成するためにボリューム内の各位置と関連するパラメータが分析される。第2のボリュームは第1の境界510と第2の境界520の両方と交差するまで第1のボリュームをひろげることによって生成される。第2のボリュームに対して、第2のボリューム内の位置が決定され、複数の時間間隔の1つに対する第2の視覚化パラメータを生成するために第2のボリューム内の各位置と関連するパラメータが分析される。
図11Aは図9Aに描かれたものと同様の表現900を描き、ここで示される表現900は時間950における複数の期間における第1の視覚化パラメータの複数の行971を有するという違いを持つ。各行971は中間層550に沿った特定スポット位置560に対する第1の視覚化パラメータを表示する。これは第1の境界510と第2の境界520の間に配置される第1のボリューム内の時変パラメータにおける変化をユーザに示す。
図11Bは表現900に代わる表現901を描く。ここで表現901は、時間950における複数の期間における第1の視覚化パラメータの複数の円形セグメント971を有する。各セグメント971は中間層550に沿った特定スポット位置560に対する第1の視覚化パラメータを表示する。これは第1の境界510と第2の境界520の間に配置される第1のボリューム内の時変パラメータにおける変化をユーザに示す。こうした円形表現は生物学的構造300が断面においてもおよそ円形である場合にも有利であり得る。
図12は、中間層550周辺の複数のスポット位置560に対して第1(630)、第2(610)、及び第3(620)の視覚化パラメータが決定されており、極座標プロット表現600を作るためにグリッドが円形になっている点を除き、図9Bに描かれたものと同様の表現600を描く。グリッド601は随意に表示され得、有用である場合は極座標プロットのためのスケールを表示し得る。極座標プロット600は、選択された関心スポット560の半径方向の位置がユーザに示され得るように、例えば極座標プロット600の中心にバー690によってつながれる小矩形660など、インジケータ660,690も有する。これは、視覚化される各パラメータが同じスケールを基準とする、好適には同じ測定単位を持つことができる場合に特に有利である。
例えば、心筋中の灌流が測定される場合、心外膜層に対する強度は第2の視覚化パラメータ610に対して使用され得、心内膜層に対する強度は第3の視覚化パラメータ620に対して使用され得る。
図13Aはユーザに提示され得るディスプレイを描く。ディスプレイは図12に描かれる極座標プロット600と図11Aの2D画素アレイ900を有する。2D画素表現900は時間的インジケータ962を備え、これは第2の視覚化パラメータが決定される選択された時間間隔を示す。2D画素表現900は空間的インジケータ961も備え、これは選択されたスポット位置を示す。極座標プロット600は選択されたスポット位置560を示すインジケータ660,690を有する。
典型的に、表示されるものにユーザが影響を与え得るように、ユーザはシステムと相互作用する手段を提供される。ワークステーション4は、キーボード、マウス、トラックボール、ポインタ、又は描画タブレットなど、ユーザがワークステーション4と相互作用するための入力手段7を有する。入力手段7を用いてこれらのインジケータと関連する設定の1つ以上をユーザが変更することを可能にすることが有利であり得る。
ユーザが異なる時間間隔を選択するために時間的インジケータ962を動かす場合、2D画素アレイ900は同じままである。しかしながら、第1(630)、第2(610)及び第3(620)の視覚化パラメータは選択された時間間隔に対して、中間層550周辺の複数のスポット位置560に対して再度決定される。従ってユーザは、時間的インジケータ962が動かされるにつれて第1(630)、第2(610)及び第3(620)の視覚化パラメータの極座標プロットの形状が変化するのを見ることになる。
ユーザが異なる選択されるスポット位置を選択するために空間的インジケータ961を動かす場合、2D画素アレイ900は同じままである。また、第1(630)、第2(610)及び第3(620)の視覚化パラメータの極座標プロットもまた同じままである。しかしながら、極座標プロット表現600において、選択されるスポットインジケータ660,690は再び決定される。従ってユーザは、空間的インジケータ961が動かされるにつれて、選択されるスポットインジケータ660,690が極座標プロット600の周りを動くのを見ることになる。反対に、異なる選択されるスポット位置を選択するために選択されるスポットインジケータ660,690をユーザが動かす場合、ユーザは空間的インジケータ961が異なる選択されるスポット位置へ動くのを見ることになる。
2D画素アレイ900を極座標プロット600と組み合わせ結びつけることによって、視覚的パラメータを視覚化し、2D画素アレイ900における時系列と、極座標プロット600における関連する定量分析データとの関係を解釈するための直感的手段がユーザに提供される。加えて、中間層550周辺のより多くのスポット位置560のために時系列の数が増加するので、ユーザは2D画素900の密度の増加に直面するのみであり、結び付けられた空間位置インジケータ961と選択されるスポットインジケータ660,690により、極座標プロット600における定量分析データとの関係は明らかなままである。
インジケータのいずれかとのユーザ相互作用によって実現される変化は、表現の生成におけるインジケータによってあらわされる次元の役割に依存することを当業者は理解するだろう。例えば心筋中の灌流が測定される場合、平均又は中間などの何らかの強度の測度が複数の時間間隔にわたって心外膜層に対して決定され得、第2の視覚化パラメータ610のために使用され得る。同様に複数の時間間隔にわたる心内膜層に対する何らかの強度の測度が第3の視覚化パラメータ620のために使用され得る。第1の視覚化パラメータ値630もまた、複数の時間間隔にわたる選択されるスポット位置560と関連する第1のボリューム170における同じ強度の測度をあらわし得る。この場合、ユーザが異なる時間間隔を選択するために時間的インジケータ962を動かす場合、2D画素アレイ900は同じままであり、第1(630)、第2(610)及び第3(620)の視覚化パラメータは同じままである。従って、ユーザは2D画素アレイ表現900又は極座標プロット表現600のいずれにも変化を見ないことになる。
典型的な用途において、ユーザワークステーション4は、アップスロープ、デコンボリューション、Patlak、並びに、平均、中間、最大、最小などの算術的及び統計的演算といったさらなる分析可能性を与えられる。これらは現在選択されたスポット位置と関連する第1及び第2のボリューム内のパラメータ値をさらに分析するためにユーザによって選択され得る。この分析の結果は、図16に示される分析窓5に単純な図として又は任意の適切なグラフ表現として表示され得る。
図13Bに描かれる通り、2D画素アレイ500と極座標プロット600を補完するためにさらなる表現500を加えることが有利であり得る。表現500は、XY平面580がユーザに最も近くなるようにZ軸に沿って見た構造500の境界の表示とオーバーレイされるXY平面200内の画像スライスを描く解剖学的グレー値画像570を有する。特に、第1の境界510、第2の境界520及び中間層530が生物学的構造500の関連する位置の上にオーバーレイされる。これはパラメータが決定される構造500と解剖学的構造との関係の表示をユーザに提供する。中間層上の選択されるスポット560の位置を示すこともまた有利であり得る。
図13Aに関して記載されたユーザ相互作用の実施例は図13Bにおいてわずかに修正される。
ユーザが異なる時間間隔を選択するために時間的インジケータ962を動かす場合、2D画素アレイ900と構造オーバーレイ500は同じままである。極座標プロット600は図13Aに関して記載したように変化する。解剖学的グレー値画像570は選択される時間間隔に対する取得データを表示するように変化する。
ユーザが異なる選択されるスポット位置を選択するために空間的インジケータ961を動かす場合、2D画素アレイ900、構造オーバーレイ500及び極座標プロット600は同じままである。しかしながら、極座標プロット600において、選択されるスポットインジケータ660,690は再度決定される。従って、ユーザは空間的インジケータ961が動かされるにつれて選択されるスポットインジケータ660,690が極座標プロット600の周りを動くのを見ることになる。同様に、構造オーバーレイにおいて選択されるスポット560は空間的インジケータ961が動かされるにつれて中間層530の周りを動くことになる。反対に、ユーザが異なる選択されるスポット位置を選択するために選択されるスポット560又は選択されるスポットインジケータ660,690を動かす場合、ユーザは空間的インジケータ961が異なる選択されるスポット位置へ動くのを見ることになる。
ユーザによるワークステーション5との相互作用は、ユーザが2D画素アレイ900においてマウスカーソルを動かすときに極座標プロット600における対応する角度位置をハイライトすることによって改良され得る。あるいは、ユーザが極座標プロットにおいてマウスカーソルを動かす場合に2D画素の対応する行がハイライトされ得る。
ユーザが第1の境界510と第2の境界520の間の異なる位置へ中間層530を動かす場合、第1のボリューム内の位置は変化し、第1の視覚化パラメータが再決定される。これはユーザが、構造オーバーレイ500内にあらわされる中間層530の位置のシフトと対応する2D画素アレイ900によってあらわされる値の変化を見ることになることを意味する。当業者が理解する通り、中間層530は内側境界510と外側境界520に一致するようにも選択され得る。
ユーザインターフェース手段7の一部として、マウスに通常見られるスクロールホイールを用いて、第1の境界510と第2の境界520の間の中間層530を動かす手段を提供することは、ユーザにとって特に直感的であり得る。
画像データは複数のXY平面スライスから成り得るため、スクロールホイールを用いることによって実際にはZ方向において画像スタックを通過する手段を提供されることもユーザにとって特に直感的であり得る。
これらのスクロールホイール機能は、インターフェースの直感的感覚を増すために、特定領域、又は表現のうちの1つの特定領域の上にカーソルが置かれるときに可能にされ得る。
表現500はまた、血管の位置又は血管中のアーチなどの解剖学的マーカも有し得ることが想定される。これはユーザが表現とデータを実際の解剖学的位置と関連付けるのを助けるのに特に有利であり得る。例えば、心筋の灌流データを分析する上で、冠状動脈の位置と方向は酸素化血液の源として重要であるため、動脈への接近は結果を正確に解釈する上での一要因である。右心室屈曲点のためのマーカもまた有利であると見なされ得る。こうした空間的マーカもまた、2D画素アレイ400,900及び/又は極座標プロット600に適切な位置において示され得る。
図14は図13Bの表現の組み合わせの可能な実施例を描く。図14は図13Bに描かれた追加表現500を示す。表現500は、XY平面がユーザに最も近くなるようにZ軸に沿って見た構造500の境界の表示とオーバーレイされる、XY平面内の画像スライスを描く解剖学的グレー値画像570を有する。具体的には、第1の境界、第2の境界、及び中間層が、生物学的構造、この場合は心筋の関連する位置の上にオーバーレイされる。表現500は関連する2D画素アレイ900と極座標プロット600によって補完される。空間的インジケータ961と時間的インジケータ962は、2D画素アレイ900をオーバーレイする線となるように選ばれている。随意に、画像データの視覚化中に実行される分析についての詳細を提供するため、又は追加の分析可能性へのアクセス及びその結果を提供するために、分析窓5が設けられ得る。
画像データの視覚化中に実行される分析において現在選択されている又は使用されている、或いは追加分析中に選択される又は使用される、基準点を示すために、表現のいずれかにおいて追加インジケータが提供され得る。
2D画素アレイ900を極座標プロット600及び構造オーバーレイ表現500と組み合せ結びつけることによって、ユーザは視覚化パラメータを視覚化する直感的手段を与えられ、これは解剖学的データにより容易に関連付けられることができる。加えて、より多数の可能な中間層550の位置のために時系列の数が増加するにつれて、この増加はユーザから遮蔽される。ユーザは、表現の複雑性の増加なしにはるかに多くの分析可能性を提示される。
中間層550に沿って、及び第1の境界510と第2の境界520の間の両方でこうした高解像度を視覚化する可能性は、組織の非常に薄い断面が分析され得ることを意味する。従って生物学的構造500は、臓器、臓器の一部、臓器の葉、骨格の骨、骨格の骨の一部、筋肉、筋肉の一部、リンパ節、リンパ節の一部、脈管、及び脈管の一部であり得る。加えて、生物学的構造はまた、腫瘍、原発腫瘍、転移性腫瘍、嚢胞、偽嚢胞、新生物、リンパ節、リンパ腫、類線維腫、又は母斑でもあり得る。
高度のデータ密度を視覚化する能力は、新種の表現が可能になり特に有利になることを意味する。図17はボリュメトリック表現として記載され得る別の表現701,702,703,704を描く。
例えば、従来のボリュームレンダリング法は、図1及び8に描かれたような生物学的構造100、又は図4の構造300全体にわたる位置における選択された時間間隔における時変パラメータを視覚化するために使用され得る。ボリュメトリック表現において、生物学的構造100,300の全ボリューム、又は全ボリュームの選択部分が同時に視覚化される。こうした従来のレンダリング法を新種のボリュームに適用することによって、強力な視覚化ツールが提供されている。
選択された時間間隔に対する可能な種類のボリュームレンダリングの一部は、図17に実施例として提供され、その1つは心外膜及び心内膜層の間の心筋における灌流の測定に関連する。
‐表現701は全サンプル値を不透明度と色にマッピングすることによって得られる直接ボリュームレンダリングである。これは"伝達関数"でなされ、これは単純ランプ関数、区分線形関数、又はいかなる任意テーブルであることもできる。RGBA(赤、緑、青、アルファ)値に一旦変換されると、合成されたRGBA結果は表現の対応画素上に投影される。
‐表現702は等値面レンダリングであり、全位置が同じ灌流の測度を持つ表面が得られる。
‐表現703は第2の直接ボリュームレンダリングであり、異なる方向性をあらわし、色と透明度について異なるルックアップテーブルに基づく。
‐表現704は第3の直接ボリュームレンダリングであり、なおさらに異なる方向性をあらわし、色と透明度についてさらに別の異なるルックアップテーブルに基づく。
図8の中間層150に対応するボリュメトリック表現701,702,703,704の部分のみが示されるように、様々な位置及び/又は方向において様々な切断面を規定することが有利であり得る。
図15は生物学的構造において時変パラメータを視覚化する方法800の一実施例を描く。特に、これは人の心筋における灌流を視覚化する方法である。方法の説明は左心室の灌流に焦点を合わせる。しかしながら方法は、初回通過増強MRIを用いて画像化される心臓の他の部分(右心室及び心房)又は他の臓器(腎臓、前立腺)の異なる層において時変パラメータを視覚化するためにも使用され得る。さらに、方法は他の画像診断法(PET,SPECT,CTなど)から得られる時変パラメータにも適用可能である。方法800は以下の部分を有する。
‐視覚化されるべき画像データを取得するステップ810。これは、システムが適切なモダリティを用いて画像取得が可能な場合は、図16に描かれるシステムによって実行され得、又は独立画像取得装置によっていくらか早い時点において取得されていてもよい。システムが画像取得装置に含まれ得ることもまた想定される。
‐不要な動きに対して画像データを修正するステップ820。一部の画像応用の場合、特定の時間依存性の空間的変動を、これらは最終的な視覚化結果に影響を及ぼし得る、従ってアーチファクト生じるため、除去することが重要である。例えば、心臓の画像を作るとき、よくある問題は画像中に存在する患者の呼吸運動である。画像に存在する呼吸運動を補正するために初回通過増強画像がレジストレーションされ得る。適切なレジストレーション法は当業者に既知である。この修正するステップ820は任意であると見なされ、こうした運動は画像取得810中に患者に呼吸を止めるよう頼むことによっても防止され得る。
‐関心のある生物学的構造の所望の輪郭を描くステップ830。言い換えれば、生物学的構造の範囲に対応する位置を決定するステップ。この実施例では、左心室の輪郭が手動で、半自動で、又は全自動で描かれる(830)。
‐生物学的構造内の中間層の輪郭を描くステップ840。言い換えれば、中間層に対応する位置を決定するステップ。輪郭を描くステップ830,840は、当該技術分野で既知の補間又は分割などの任意の従来の手段によって実行され得る。
‐心筋に沿った、及び心筋を横切る位置における画像データから、例えば時間強度曲線の形で時変パラメータをサンプリングするステップ850。任意に、これらの時変パラメータはフィルタリングされ得る。
‐所望の及び/又は適切な分析法を用いて時変パラメータを分析するステップ860。例えば、アップスロープ、デコンボリューション、及びPatlak。
‐分析860の結果として関連する定量分析データを示す極座標プロット600と組み合わせて灌流図表現900,901として時変データを視覚化するステップ870。時変データの分析は生物学的構造における位置に依存し得るため、極座標プロット600における異なるプロット610,620,630は異なる心筋層に関連する。
上述の実施形態は本発明を限定するのではなく例示するものであり、当業者は添付のクレームの範囲から逸脱することなく多くの代替的実施形態を設計することができることに留意すべきである。
例えば、矢印、線、ブロック、点、色分けなど、任意の便利な視覚的手段がインジケータ560,961,962,660,690として利用され得る。インジケータ560,660,690,961,962は関連する表現に隣接して配置され得るか、又はインジケータは、ハイライト、シェーディング、ボックス、線及び破線などの視覚的補助を用いて関連する表現上にオーバーレイされ得る。異なる表現における関連するインジケータとマークは、関連性を説明するために例えば同じ色を用いて同じような又は似たようなインジケータを与えられることもまた想定される。
代替的に、ディスプレイは視覚化されるデータ量を増すために複数の1つ以上の表現を含み得る。
当業者は、開示の方法の詳細を与えられて、コンピュータ上にロードされ実行されるときにこれらの方法を実行するためのコンピュータプログラムを実装することができる。
クレームにおいて丸括弧の間に置かれる任意の参照符号はクレームを限定するものと解釈されてはならない。"有する"という動詞及びその活用の使用は、クレームに列挙されたもの以外の要素又はステップの存在を除外しない。ある要素に先行する冠詞"a"又は"an"はその要素の複数の存在を除外しない。本発明は複数の個別要素を有するハードウェアを用いて、及び適切にプログラムされたコンピュータを用いて実施され得る。
決定ユニットと視覚化ディスプレイを列挙するシステムクレームにおいて、これらの手段のいくつかはハードウェアの1つの同じ項目によって具体化され得る。
特定の手段が相互に異なる従属クレームに列挙されているという単なる事実は、これらの手段の組み合わせが有利に使用されることができないことを示すものではない。

Claims (14)

  1. 生物学的構造内の複数の位置において時変パラメータを視覚化するためのシステムであって、
    ‐互いに直交するX,Y及びZ方向にひろがる前記生物学的構造内の複数の位置において前記時変パラメータの値を決定し、
    ‐Z方向にひろがる第1及び第2の境界の位置、並びに前記第1及び第2の境界の間に配置されるZにひろがる第1のボリュームの位置を決定し、
    ‐X方向における前記第1のボリュームを第1及び第2のXY境界の両方にひろげることによって生成される第2のボリュームの位置を決定し、
    ‐前記第1のボリューム内の複数の位置において前記時変パラメータから複数の時間間隔に対する第1の視覚化パラメータを決定し、
    ‐前記第2のボリューム内の複数の位置において前記時変パラメータから第2の視覚化パラメータを決定する、
    決定ユニットと、
    ‐前記複数の時間間隔における前記第1の視覚化パラメータを示す第1の表現を表示し、
    ‐前記第1及び第2の視覚化パラメータを示す第2の表現を表示する、
    視覚化ディスプレイとを有する、システム。
  2. 前記視覚化ディスプレイがさらに、
    ‐前記構造を通るXY断面に対応する前記第1及び第2の境界のXY断面と、
    ‐前記構造を通るXY断面に対応する前記第1のボリュームを通るXY断面とオーバーレイされる、前記生物学的構造を通るXY断面を有する解剖学的グレー値画像を有する第3の表現を表示する、請求項1に記載のシステム。
  3. 前記決定ユニットがさらに、前記複数の時間間隔の1つにおける前記第2のボリューム内の複数の位置における前記時変パラメータから前記第2の視覚化パラメータを決定する、請求項1又は2に記載のシステム。
  4. 前記決定ユニットがさらに、前記複数の時間間隔における前記第2のボリューム内の複数の位置における前記時変パラメータから前記第2の視覚化パラメータを決定する、請求項1又は2に記載のシステム。
  5. 前記第2の視覚化パラメータが、前記第1の境界上に配置される、Z方向にひろがる複数の位置において決定される、請求項4に記載のシステム。
  6. 前記生物学的構造が心筋であり、前記第1の境界が心筋の心外膜又は心内膜層に対応し、前記時変パラメータが灌流の測度である、請求項5に記載のシステム。
  7. 前記決定ユニットがさらに、複数の第1のボリュームの各々に対して第1の視覚化パラメータを決定し、前記ディスプレイユニットがさらに、前記複数の時間間隔において前記複数の第1のボリュームの各々に対して前記第1の視覚化パラメータを示す前記第1の表現を表示する、請求項1又は2に記載のシステム。
  8. 前記決定ユニットがさらに、
    ‐複数の第1のボリュームの各々に対して第1の視覚化パラメータを決定し、
    ‐前記複数の第1のボリュームに関連する複数の第2のボリュームの各々に対して第2の視覚化パラメータを決定し、
    ‐前記ディスプレイユニットがさらに、前記複数の第1のボリュームの各々に対して前記第1及び第2の視覚化パラメータを示す第2の表現を表示する、請求項1又は2に記載のシステム。
  9. 前記システムがさらに、
    前記第1の境界の位置、前記第2の境界の位置、前記第1のボリュームの位置、XYにおける前記第1のボリュームの範囲、Zにおける前記生物学的構造の範囲、前記複数の時間間隔、前記第1の視覚化パラメータ、前記第2の視覚化パラメータ、及びこれらの任意の組み合わせ
    から成る群から、前記決定ユニット又は視覚化ディスプレイにおけるパラメータをユーザが決定するインタラクティブ手段を有する、請求項1に記載のシステム。
  10. 前記システムがさらに、前記決定ユニット又は視覚化ディスプレイにおいて前記生物学的構造を通るXY断面をユーザが決定するためのインタラクティブ手段を有する、請求項2に記載のシステム。
  11. 請求項1乃至10のいずれか一項に記載のシステムを有する医用画像取得装置。
  12. 生物学的構造内の複数の位置において時変パラメータを視覚化する方法であって、
    互いに直交するX,Y及びZ方向にひろがる前記生物学的構造内の複数の位置において前記時変パラメータの値を決定するステップと、
    Z方向にひろがる第1及び第2の境界の位置、並びに前記第1及び第2の境界の間に配置されるZにひろがる第1のボリュームの位置を決定するステップと、
    X方向の前記第1のボリュームを第1及び第2のXY境界の両方にひろげることによって生成される第2のボリュームの位置を決定するステップと、
    前記第1のボリューム内の複数の位置において前記時変パラメータから複数の時間間隔に対する第1の視覚化パラメータを決定するステップと、
    前記第2のボリューム内の複数の位置において前記時変パラメータから第2の視覚化パラメータを決定するステップと、
    前記複数の時間間隔における前記第1の視覚化パラメータを示す第1の表現を表示するステップと、
    前記第1及び第2の視覚化パラメータを示す第2の表現を表示するステップとを有する、方法。
  13. ‐前記構造を通るXY断面に対応する前記第1の境界及び前記第2の境界のXY断面と、
    ‐前記構造を通るXY断面に対応する前記第1のボリュームを通るXY断面とオーバーレイされる、前記生物学的構造を通るXY断面を有する解剖学的グレー値画像を有する第3の表現を表示するステップをさらに有する、請求項12に記載の方法。
  14. コンピュータ上にロードされ実行されるときに請求項12又は13に記載の方法を実行するためのコンピュータプログラム。
JP2011547024A 2009-01-29 2010-01-22 生物学的構造における時変パラメータの視覚化 Expired - Fee Related JP5629272B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09151668.2 2009-01-29
EP09151668 2009-01-29
PCT/IB2010/050288 WO2010086771A1 (en) 2009-01-29 2010-01-22 Visualizing a time-variant parameter in a biological structure

Publications (2)

Publication Number Publication Date
JP2012516179A JP2012516179A (ja) 2012-07-19
JP5629272B2 true JP5629272B2 (ja) 2014-11-19

Family

ID=42102864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011547024A Expired - Fee Related JP5629272B2 (ja) 2009-01-29 2010-01-22 生物学的構造における時変パラメータの視覚化

Country Status (5)

Country Link
US (1) US8878838B2 (ja)
EP (1) EP2391987B1 (ja)
JP (1) JP5629272B2 (ja)
CN (1) CN102301393B (ja)
WO (1) WO2010086771A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147605A1 (en) * 2008-06-04 2009-12-10 Koninklijke Philips Electronics N.V. Reconstruction of dynamical cardiac spect for measuring tracer uptake and redistribution
CN102301393B (zh) * 2009-01-29 2014-07-09 皇家飞利浦电子股份有限公司 将生物结构中的时变参数可视化
BR112013016409A2 (pt) * 2010-12-29 2016-10-04 Koninkl Philips Electronics Nv sistema (sys) para a classificação de um tumor de interesse, estação de trabalho (ws), método (m) para a classificação de um tumor de interesse e produto de programa de computador
JP5780306B2 (ja) * 2011-08-18 2015-09-16 日本電気株式会社 情報処理システム、情報処理方法、情報処理装置およびその制御方法と制御プログラム
WO2014201052A2 (en) * 2013-06-10 2014-12-18 University Of Mississippi Medical Center Medical image processing method
JP5707457B2 (ja) * 2013-08-29 2015-04-30 日本メジフィジックス株式会社 心筋運動の可視化
US10806367B2 (en) 2013-10-01 2020-10-20 Koninklijke Philips N.V. System and method for myocardial perfusion pathology characterization
CN105684040B (zh) 2013-10-23 2020-04-03 皇家飞利浦有限公司 支持肿瘤响应测量的方法
DE102014203431B4 (de) * 2014-02-26 2024-09-12 Siemens Healthineers Ag Bestimmung eines Messzeitpunkts im Herzzyklus für die Durchführung von Diffusionsmessungen sowie MR-Anlage hierfür und elektronischer Datenträger
AU2015246630A1 (en) 2014-04-15 2016-10-13 4DMedical Limited Method of imaging
USD795925S1 (en) * 2014-04-16 2017-08-29 Hitachi, Ltd. Display screen or portion thereof with icon
JP6566240B2 (ja) * 2015-04-16 2019-08-28 ソニー株式会社 情報処理装置、情報処理方法、およびプログラム
RU2601098C1 (ru) * 2015-06-10 2016-10-27 Федеральное государственное бюджетное учреждение "Российский кардиологический научно-производственный комплекс" Министерства здравоохранения России (ФГБУ "РКНПК" МЗ РФ) Способ количественной оценки начальных нарушений и неоднородности перфузии миокарда по данным однофотонно-эмиссионной компьютерной томографии
US11723617B2 (en) 2016-02-03 2023-08-15 4DMedical Limited Method and system for imaging
AU2017225895B2 (en) 2016-03-04 2022-02-10 4DMedical Limited Method and system for imaging
US10586387B2 (en) * 2016-04-20 2020-03-10 Voxeleron Llc Method and apparatus for generation or editing of layer delineations
JP2020508771A (ja) 2017-02-28 2020-03-26 4ディーエックス リミテッド 肺および血管の健康状態を検査し評価する方法
WO2018202820A1 (en) * 2017-05-03 2018-11-08 Koninklijke Philips N.V. Visualization of volumetric modulated arc therapy (vmat) plans
EP3437559B1 (de) 2017-08-03 2020-06-24 Siemens Healthcare GmbH Ermitteln eines funktionsparameters betreffend eine lokale gewebefunktion für mehrere gewebebereiche
JP7002901B2 (ja) * 2017-09-28 2022-02-10 キヤノンメディカルシステムズ株式会社 医用画像診断装置及び医用画像処理装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5431161A (en) * 1993-04-15 1995-07-11 Adac Laboratories Method and apparatus for information acquistion, processing, and display within a medical camera system
US6892089B1 (en) * 1999-04-22 2005-05-10 Johns Hopkins University Cardiac motion tracking using cine harmonic phase (HARP) magnetic resonance imaging
EP1490825B1 (en) * 2002-03-25 2006-11-02 Koninklijke Philips Electronics N.V. Cardiac perfusion analysis
DE10331098A1 (de) 2003-07-09 2005-02-10 Siemens Ag Verfahren zur kombinatorischen Darstellung der Ergebnisse von MR Herzuntersuchungen
JP4763989B2 (ja) * 2004-09-22 2011-08-31 株式会社東芝 磁気共鳴イメージング装置、磁気共鳴データ処理装置及び磁気共鳴データ処理プログラム
CN100425199C (zh) * 2006-08-25 2008-10-15 北京源德生物医学工程有限公司 永磁磁共振图像导引体外高能聚焦超声系统和方法
CN102301393B (zh) * 2009-01-29 2014-07-09 皇家飞利浦电子股份有限公司 将生物结构中的时变参数可视化

Also Published As

Publication number Publication date
EP2391987A1 (en) 2011-12-07
EP2391987B1 (en) 2015-01-07
US20110285702A1 (en) 2011-11-24
JP2012516179A (ja) 2012-07-19
WO2010086771A1 (en) 2010-08-05
CN102301393B (zh) 2014-07-09
CN102301393A (zh) 2011-12-28
US8878838B2 (en) 2014-11-04

Similar Documents

Publication Publication Date Title
JP5629272B2 (ja) 生物学的構造における時変パラメータの視覚化
US11076770B2 (en) System for vascular assessment
JP5438284B2 (ja) 心臓の関心領域の図解を形成するシステム及び方法
JP5400326B2 (ja) トモシンセシス画像を表示するための方法
CN101243472B (zh) 选择性融合2Dx射线图像和3D超声图像的系统和方法
US20090174729A1 (en) Image display device and control method thereof
US8755575B2 (en) Transmural perfusion gradient image analysis
CA2466811A1 (en) Imaging system and method for cardiac analysis
JP2003091735A (ja) 画像処理装置
US20120169735A1 (en) Improvements to curved planar reformation
US8786594B2 (en) Method and system for rendering a medical image
CN111340934A (zh) 用于生成组合式组织-血管表示的方法和计算机系统
WO2011040015A1 (ja) 医用画像表示装置および方法ならびにプログラム
RU2565521C2 (ru) Обработка набора данных изображения
US9990716B2 (en) Methods for visualizing heart scar tissue
JP6898047B2 (ja) 時変データの定量的評価
WO2010001327A1 (en) Processing anatomy and associated quantitative analysis data of tissue
JP7513405B2 (ja) 医用情報処理装置及び医用情報処理プログラム
Li et al. A new approach of building 3D visualization framework for multimodal medical images display and computed assisted diagnosis
JP2024035096A (ja) 心筋細胞外容積分画の決定方法、処理システム、医用撮像装置、コンピュータプログラム、及びコンピュータ可読記憶媒体
Albrecht et al. Cardiac CT: Contemporary Clinical Image Data Display, Analysis, and Quantification
JP2023056132A (ja) 医用画像処理装置、方法及びプログラム
WO2011062108A1 (ja) 画像処理装置及び画像処理方法
US20100054568A1 (en) Method and apparatus for selecting a volume of interest in one or more image data sets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140523

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141003

R150 Certificate of patent or registration of utility model

Ref document number: 5629272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees