JP5625694B2 - High-strength, high-toughness thick-walled steel plate with excellent material uniformity in the steel plate and method for producing the same - Google Patents

High-strength, high-toughness thick-walled steel plate with excellent material uniformity in the steel plate and method for producing the same Download PDF

Info

Publication number
JP5625694B2
JP5625694B2 JP2010221512A JP2010221512A JP5625694B2 JP 5625694 B2 JP5625694 B2 JP 5625694B2 JP 2010221512 A JP2010221512 A JP 2010221512A JP 2010221512 A JP2010221512 A JP 2010221512A JP 5625694 B2 JP5625694 B2 JP 5625694B2
Authority
JP
Japan
Prior art keywords
cooling
steel sheet
temperature
steel
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010221512A
Other languages
Japanese (ja)
Other versions
JP2012077326A (en
Inventor
諏訪 稔
稔 諏訪
仁 末吉
仁 末吉
石川 信行
信行 石川
伸夫 鹿内
伸夫 鹿内
直樹 中田
直樹 中田
健二 平田
健二 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010221512A priority Critical patent/JP5625694B2/en
Publication of JP2012077326A publication Critical patent/JP2012077326A/en
Application granted granted Critical
Publication of JP5625694B2 publication Critical patent/JP5625694B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Description

本発明は、建築、海洋構造物、造船、土木、建設産業用機械及びラインパイプ等の分野に使用して好適な、鋼板内の材質均一性に優れた高強度高靭性厚肉鋼板及びその製造方法に関するものである。
本発明において、厚肉鋼板とは板厚が40mm以上の鋼板を意味する。
The present invention is suitable for use in the fields of architecture, offshore structures, shipbuilding, civil engineering, construction industry machines, line pipes, and the like, and is a high-strength, high-toughness thick-walled steel plate excellent in material uniformity in the steel plate and its production It is about the method.
In the present invention, the thick steel plate means a steel plate having a thickness of 40 mm or more.

鋼構造物の大型化やコスト削減の観点から、より高強度や高靭性を有する鋼板の需要が高まっている。鋼板の特性の向上や合金元素の削減、さらには熱処理の省略などを目的として、通常、高強度鋼板の製造に際しては、制御圧延と制御冷却を組み合わせた、いわゆるTMCP技術が適用されている。このTMCP技術を用いて鋼材の高強度化を行うには、制御冷却時の冷却速度を大きくすること、および冷却の停止温度を低くすることが有効である。
しかしながら、高冷却速度で制御冷却した場合、鋼板表層部が急冷されるため、鋼板内部に比べて表層部の硬さが高くなり、板厚方向の硬さ分布にばらつきが生じる。また、この板厚方向の硬さ分布のばらつきは、冷却停止温度を低くするにつれて、および/または、板厚が厚くなるにつれて大きくなる傾向がある。したがって、鋼板内の材質均一性を確保する観点で問題となる。
From the viewpoint of increasing the size of steel structures and reducing costs, there is an increasing demand for steel sheets having higher strength and higher toughness. For the purpose of improving the properties of steel sheets, reducing alloy elements, and omitting heat treatment, the so-called TMCP technique, which combines controlled rolling and controlled cooling, is usually applied in the production of high-strength steel sheets. In order to increase the strength of steel using this TMCP technology, it is effective to increase the cooling rate during controlled cooling and to decrease the cooling stop temperature.
However, when controlled cooling is performed at a high cooling rate, the surface layer portion of the steel sheet is rapidly cooled, so that the hardness of the surface layer portion is higher than that inside the steel plate, and the hardness distribution in the thickness direction varies. Further, the variation in the hardness distribution in the thickness direction tends to increase as the cooling stop temperature is lowered and / or as the thickness increases. Therefore, it becomes a problem from the viewpoint of ensuring the material uniformity in the steel plate.

上記の問題を解決するため、従来から種々の解決策が提案されており、例えば特許文献1には、制御冷却に際して、冷却速度を3〜12℃/sという比較的低い冷却速度に制御することにより、板厚中心部に対する表面の硬さ上昇を抑える方法が開示されている。
また、特許文献2には、冷却過程で、フェライトが析出する温度域で待機を行うことにより、鋼板の組織をフェライトとベイナイトの2相組織とし、表層と板厚中心部の硬さの差を低減した、板厚方向の材質差が小さい鋼板の製造方法が開示されている。
さらに、特許文献3,4には、圧延後、表層部がベイナイト変態を完了する前に表面を復熱させる高冷却速度の制御冷却を行うことにより、板厚方向の材質差が小さい鋼板の製造方法が開示されている。
In order to solve the above problems, various solutions have been proposed in the past. For example, in Patent Document 1, the cooling rate is controlled to a relatively low cooling rate of 3 to 12 ° C./s during controlled cooling. Thus, a method of suppressing an increase in surface hardness with respect to the center portion of the plate thickness is disclosed.
Patent Document 2 discloses that the structure of the steel sheet is made into a two-phase structure of ferrite and bainite by waiting in the temperature range where ferrite precipitates during the cooling process, and the difference in hardness between the surface layer and the center of the sheet thickness is indicated. A method for producing a reduced steel sheet with a small material difference in the thickness direction is disclosed.
Furthermore, in Patent Documents 3 and 4, after rolling, by performing controlled cooling at a high cooling rate that reheats the surface before the surface layer portion completes the bainite transformation, the manufacture of a steel sheet with a small material difference in the thickness direction is produced. A method is disclosed.

一方、鋼板表面のスケール性状にむらがあると、冷却時にスケール厚さに応じてその下部の鋼板の冷却速度に違いを生じ、ひいては鋼板内で局所的に冷却停止温度のばらつきが生じる結果、スケール性状に対応して板幅方向に鋼板材質のばらつきが生じる。
これに対し、特許文献5,6には、冷却直前にデスケーリングを行うことにより、スケール性状に起因した冷却むらを低減し、鋼板形状を改善する方法が開示されている。
On the other hand, if there is unevenness in the scale properties on the surface of the steel plate, the cooling rate of the steel plate underneath will vary depending on the thickness of the scale during cooling, and as a result, the cooling stop temperature will vary locally within the steel plate. Corresponding to the properties, the steel plate material varies in the plate width direction.
On the other hand, Patent Documents 5 and 6 disclose a method of reducing the cooling unevenness caused by the scale properties and improving the steel plate shape by performing descaling immediately before cooling.

特公平7−116504号公報Japanese Patent Publication No.7-116504 特許第3911834号公報Japanese Patent No. 3911834 特許第3951428号公報Japanese Patent No. 3951428 特許第3951429号公報Japanese Patent No. 3951429 特開平9−57327号公報JP-A-9-57327 特許第3796133号公報Japanese Patent No. 3796133

しかしながら、特許文献1に記載の技術では、冷却速度が制限され、しかも冷却停止温度が400℃以上と比較的高いため、高冷却速度による高強度化や合金元素の削減、制御圧延の簡略化等といった制御冷却の効果を十分に活用することができない。また、特許文献2に開示の製造方法は、Ar3変態点以下での冷却待機でフェライトを析出させるものであるため、強度が低下するだけでなく、冷却待機時間が必要になるため製造効率が悪化する。さらに、特許文献3,4に記載の製造方法では、鋼板の成分により変態挙動が異なると、復熱による十分な材質均質化の効果が得られない場合がある。しかも、高精度な冷却制御を必要とするため、適用範囲が限られると共に、製造効率の低下を余儀なくされる。 However, in the technique described in Patent Document 1, since the cooling rate is limited and the cooling stop temperature is relatively high at 400 ° C. or higher, the strength is increased by the high cooling rate, the number of alloy elements is reduced, the control rolling is simplified, etc. The effect of control cooling cannot be fully utilized. In addition, since the manufacturing method disclosed in Patent Document 2 deposits ferrite in a cooling standby at an Ar 3 transformation point or lower, not only the strength is reduced, but a cooling standby time is required, so that the manufacturing efficiency is improved. Getting worse. Furthermore, in the manufacturing methods described in Patent Documents 3 and 4, if the transformation behavior differs depending on the components of the steel sheet, sufficient material homogenization effect due to recuperation may not be obtained. In addition, since highly accurate cooling control is required, the application range is limited, and the production efficiency is inevitably reduced.

他方、特許文献5,6に記載の方法では、デスケーリングにより、鋼板の冷却むらを低減して鋼板形状を改善しているが、板厚方向の硬度分布に対しては何ら考慮が払われていない。   On the other hand, in the methods described in Patent Documents 5 and 6, the cooling unevenness of the steel plate is reduced by descaling to improve the steel plate shape, but no consideration is given to the hardness distribution in the plate thickness direction. Absent.

本発明は、上記の現状に鑑み開発されたもので、鋼板の板厚方向および板幅方向の硬さのばらつきを効果的に軽減して、鋼板内の材質均一性を向上させた高強度高靭性厚肉鋼板を、その有利な製造方法と共に提案することを目的とする。   The present invention has been developed in view of the above-mentioned present situation, effectively reducing the variation in hardness in the plate thickness direction and the plate width direction of the steel plate, and improving the material uniformity in the steel plate. The object is to propose a tough thick steel plate together with its advantageous production method.

本発明は、高強度鋼板の板厚方向および板幅方向の硬さのばらつきを低減し、鋼板内の材質均一性を向上させるために、鋼材の化学成分、ミクロ組織および製造条件について、数多くの実験と検討を繰り返した末に、開発されたものである。   In order to reduce the variation in hardness in the plate thickness direction and the plate width direction of the high-strength steel sheet and to improve the material uniformity in the steel sheet, the present invention provides a large number of chemical components, microstructures and manufacturing conditions of the steel material. It was developed after repeated experiments and examinations.

すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、C:0.02〜0.15%、Si:0.01〜1.0%及びMn:0.5〜2.0%を含有し、残部がFeおよび不可避的不純物の組成からなり、鋼組織がフェライトとベイナイト組織であり、しかも板厚方向の硬さのばらつきがビッカース硬さΔHVで50以下で、かつ板幅方向の硬さのばらつきがビッカース硬さΔHVで50以下であるとともに、引張強度が490MPa以上で、かつ−40℃でのシャルピー衝撃試験値vE(−40℃)が27J以上であり、さらには板厚が40mm以上であることを特徴とする、鋼板内の材質均一性に優れた高強度高靭性厚肉鋼板。
That is, the gist configuration of the present invention is as follows.
1. In mass%, C: 0.02 to 0.15%, Si: 0.01 to 1.0% and Mn: 0.5 to 2.0%, with the balance from the composition of Fe and inevitable impurities The steel structure is a ferrite and bainite structure, and the hardness variation in the plate thickness direction is 50 or less in terms of Vickers hardness ΔHV, and the hardness variation in the plate width direction is 50 or less in terms of Vickers hardness ΔHV. In addition , the material in the steel sheet is characterized in that the tensile strength is 490 MPa or more, the Charpy impact test value vE (−40 ° C.) at −40 ° C. is 27 J or more, and the plate thickness is 40 mm or more. High strength, high toughness thick steel plate with excellent uniformity.

2.前記鋼が、さらに、質量%で、Cu:1.0%以下、Ni:1.0%以下、Cr:1.0%以下及びMo:0.5%以下のうちから選んだ1種又は2種以上を含有することを特徴とする、前記1に記載の高強度高靭性厚肉鋼板。 2. Further, the steel is one or two selected from the following by mass: Cu: 1.0% or less, Ni: 1.0% or less, Cr: 1.0% or less, and Mo: 0.5% or less. 2. The high-strength, high-toughness thick steel plate according to 1 above, which contains seeds or more.

3.前記鋼が、さらに、質量%で、Nb:0.005〜0.1%、V:0.005〜0.1%及びTi:0.005〜0.1%のうちから選んだ1種又は2種以上を含有することを特徴とする、前記1または2に記載の高強度高靭性厚肉鋼板。 3. Further, the steel may be one selected from Nb: 0.005 to 0.1%, V: 0.005 to 0.1%, and Ti: 0.005 to 0.1% by mass%. 2. The high-strength, high-toughness thick steel plate according to 1 or 2 above, which contains two or more kinds.

4.前記鋼が、さらに、質量%で、B:0.0003〜0.002%を含有することを特徴とする、前記1乃至3のいずれかに記載の高強度高靭性厚肉鋼板。 4). 4. The high-strength and high-toughness thick steel plate according to any one of 1 to 3, wherein the steel further contains B: 0.0003 to 0.002% by mass%.

5.前記1乃至4のいずれかに記載の高強度高靭性厚肉鋼板を製造する方法であって、
前記1乃至4のいずれかに記載の成分組成からなる鋼片を、900℃以上1300℃以下の温度に加熱し、圧延終了温度が鋼板表面温度で700℃以上900℃以下で熱間圧延したのち、鋼板表面温度が700℃以上の温度域から、鋼板表面の冷却速度が20℃/s以上100℃/s以下の速度で鋼板表面温度が400℃以上600℃以下の温度域まで下記(1)式を満たす条件で1段目の冷却を行い、ついで鋼板平均の冷却速度が4℃/s以上で冷却後の復熱温度が600℃以下となる2段目の冷却を行うことを特徴とする、鋼板内の材質均一性に優れた高強度高靭性厚肉鋼板の製造方法。

3≦(700−T)/V ・・・(1)
ここで、T:1段目冷却における鋼板表面の冷却終了温度(℃)
V:1段目冷却における鋼板表面の冷却速度(℃/s)
5. A method for producing the high-strength, high-toughness thick steel plate according to any one of 1 to 4,
After heating the steel slab comprising the component composition according to any one of 1 to 4 to a temperature of 900 ° C. to 1300 ° C. and hot rolling at a rolling end temperature of 700 ° C. to 900 ° C. at the steel sheet surface temperature. From the temperature range where the steel sheet surface temperature is 700 ° C. or higher to the temperature range where the steel sheet surface temperature is 400 ° C. or higher and 600 ° C. or lower at a cooling rate of the steel sheet surface of 20 ° C./s or higher and 100 ° C./s or lower (1) The first stage cooling is performed under the condition satisfying the equation, and then the second stage cooling is performed such that the average cooling rate of the steel sheet is 4 ° C./s or more and the recuperated temperature after cooling is 600 ° C. or less. A method for producing a high-strength, high-toughness thick steel plate with excellent material uniformity in the steel plate.
Record
3 ≦ (700−T) / V (1)
Here, T: cooling end temperature (° C.) of the steel sheet surface in the first stage cooling
V: Cooling rate of steel sheet surface in 1st stage cooling (° C / s)

6.前記1乃至4のいずれかに記載の高強度高靭性厚肉鋼板を製造する方法であって、
前記1乃至4のいずれかに記載の成分組成からなる鋼片を、900℃以上1300℃以下の温度に加熱し、圧延終了温度が鋼板表面温度で700℃以上900℃以下で熱間圧延し、引き続く制御冷却の直前に鋼板表面での噴射流の衝突圧が1MPa以上の条件でデスケーリングを行い、その後5秒以内に、鋼板表面温度が700℃以上の温度域から、鋼板表面の冷却速度が20℃/s以上100℃/s以下の速度で鋼板表面温度が400℃以上600℃以下の温度域まで下記(1)式を満たす条件で1段目の冷却を行い、ついで鋼板平均の冷却速度が4℃/s以上で冷却後の復熱温度が600℃以下となる2段目の冷却を行うことを特徴とする、鋼板内の材質均一性に優れた高強度高靭性厚肉鋼板の製造方法。

3≦(700−T)/V ・・・(1)
ここで、T:1段目冷却における鋼板表面の冷却終了温度(℃)
V:1段目冷却における鋼板表面の冷却速度(℃/s)
6). A method for producing the high-strength, high-toughness thick steel plate according to any one of 1 to 4,
The steel slab comprising the component composition according to any one of 1 to 4 is heated to a temperature of 900 ° C. or higher and 1300 ° C. or lower, and the rolling end temperature is hot rolled at a steel sheet surface temperature of 700 ° C. or higher and 900 ° C. or lower, Immediately before the subsequent controlled cooling, descaling is performed under the condition that the impinging pressure of the jet flow on the steel sheet surface is 1 MPa or more, and within 5 seconds, the steel sheet surface cooling rate is within the temperature range of 700 ° C. or more. The first stage of cooling is performed at a rate of 20 ° C./s or more and 100 ° C./s or less to a temperature range where the steel sheet surface temperature is 400 ° C. or more and 600 ° C. or less, and then the average cooling rate of the steel plate. Of high strength and high toughness thick steel plate excellent in material uniformity in the steel plate, characterized in that the second stage cooling is performed at a cooling rate of 4 ° C./s or higher and the recuperated temperature after cooling is 600 ° C. or lower. Method.
Record
3 ≦ (700−T) / V (1)
Here, T: cooling end temperature (° C.) of the steel sheet surface in the first stage cooling
V: Cooling rate of steel sheet surface in 1st stage cooling (° C / s)

本発明に従い、制御冷却技術、さらにはデスケーリング技術を活用することにより、従来の制御冷却技術では達成が困難とされた、低廉な成分系を用いて高冷却速度で冷却を行う場合であっても、材質均一性に優れ、しかも高強度・高靱性の厚肉鋼板を得ることができる。   According to the present invention, by utilizing controlled cooling technology and further descaling technology, cooling is performed at a high cooling rate using a low-cost component system, which has been difficult to achieve with conventional controlled cooling technology. However, it is possible to obtain a thick steel plate having excellent material uniformity and high strength and high toughness.

以下、本発明を具体的に説明する。
[化学成分]
まず、本発明の高強度鋼板の化学成分について説明する。以下の説明において%で示す単位は全て質量%である。
C:0.02〜0.15%
Cは、強度の向上に有効に寄与するが、含有量が0.02%未満では十分な強度が確保できず、一方0.15%を超えると靭性の劣化を招くため、C量は0.02〜0.15%の範囲に限定する。
Hereinafter, the present invention will be specifically described.
[Chemical composition]
First, chemical components of the high-strength steel plate of the present invention will be described. In the following description, all units represented by% are mass%.
C: 0.02-0.15%
C contributes effectively to the improvement of strength. However, if the content is less than 0.02%, sufficient strength cannot be secured. On the other hand, if it exceeds 0.15%, the toughness is deteriorated. It is limited to the range of 02 to 0.15%.

Si:0.01〜1.0%
Siは、脱酸のため添加するが、含有量が0.01%未満では脱酸効果が十分でなく、一方1.0%を超えると靭性や溶接性を劣化させるため、Si量は0.01〜1.0%の範囲に限定する。
Si: 0.01 to 1.0%
Si is added for deoxidation, but if the content is less than 0.01%, the deoxidation effect is not sufficient. On the other hand, if it exceeds 1.0%, the toughness and weldability are deteriorated. It is limited to the range of 01 to 1.0%.

Mn:0.5〜2.0%
Mnは、強度、靭性の向上に有効に寄与するが、含有量が0.5%未満ではその添加効果に乏しく、一方2.0%を超えると溶接性が劣化するため、Mn量は0.5〜2.0%の範囲に限定する。
Mn: 0.5 to 2.0%
Mn contributes effectively to the improvement of strength and toughness. However, if the content is less than 0.5%, the effect of addition is poor. On the other hand, if it exceeds 2.0%, the weldability deteriorates. It is limited to a range of 5 to 2.0%.

以上、本発明の基本成分について説明したが、本発明では、鋼板の強度や靱性の一層の改善のために、Cu,Ni,Cr及びMoのうちから選んだ1種又は2種以上を、以下の範囲で適宜含有させることができる。
Cu:1.0%以下
Cuは、靭性の改善と強度の上昇に有効な元素であり、この効果を得るには0.03%以上を含有することが好ましいが、含有量が多すぎると表面に割れが生じ易くなるため、Cuを添加する場合は1.0%を上限とする。
The basic components of the present invention have been described above. In the present invention, one or more selected from Cu, Ni, Cr, and Mo are selected in order to further improve the strength and toughness of the steel sheet. It can contain suitably in the range.
Cu: 1.0% or less Cu is an element effective for improving toughness and increasing strength. To obtain this effect, it is preferable to contain 0.03% or more, but if the content is too large, the surface Therefore, when Cu is added, the upper limit is 1.0%.

Ni:1.0%以下
Niは、靭性の改善と強度の上昇に有効な元素であり、この効果を得るには0.03%以上を含有することが好ましいが、含有量が多すぎるとコスト的に著しく不利になるので、Niを添加する場合は1.0%を上限とする。
Ni: 1.0% or less Ni is an element effective for improving toughness and increasing strength. To obtain this effect, Ni is preferably contained in an amount of 0.03% or more. Therefore, when Ni is added, the upper limit is 1.0%.

Cr:1.0%以下
Crは、Mnと同様、低Cでも十分な強度を得るために有効な元素であり、この効果を得るには0.02%以上を含有することが好ましいが、含有量が多すぎると溶接性が劣化するため、Crを添加する場合は1.0%を上限とする。
Cr: 1.0% or less Cr, like Mn, is an element effective for obtaining sufficient strength even at low C. To obtain this effect, it is preferable to contain 0.02% or more. If the amount is too large, weldability deteriorates, so when adding Cr, the upper limit is 1.0%.

Mo:0.5%以下
Moは、靭性の改善と強度の上昇に有効な元素であり、この効果を得るには0.02%以上を含有することが好ましいが、含有量が多すぎると溶接性が劣化するため、Moを添加する場合は0.5%を上限とする。
Mo: 0.5% or less Mo is an element effective for improving toughness and increasing strength. To obtain this effect, it is preferable to contain 0.02% or more, but if the content is too large, welding is performed. When the Mo is added, the upper limit is 0.5%.

本発明では、さらに、Nb,VおよびTiのうちから選んだ1種又は2種以上を、以下の範囲で含有させることもできる。
Nb:0.005〜0.1%、V:0.005〜0.1%及びTi:0.005〜0.1%のうちから選んだ1種又は2種以上
Nb,VおよびTiはいずれも、鋼板の強度および靭性を高めるために添加することができる任意元素であり、要求強度に応じて、1種または2種以上を添加することができる。各元素とも、含有量が0.005%未満ではその添加効果に乏しく、一方0.1%を超えると溶接部の靭性が劣化するので、これらの元素を添加する場合はいずれも0.005〜0.1%の範囲とするのが好ましい。
In the present invention, one or more selected from Nb, V and Ti can be further contained in the following range.
Nb: 0.005 to 0.1%, V: 0.005 to 0.1% and Ti: One or more selected from 0.005 to 0.1% Nb, V and Ti are either Is an optional element that can be added to increase the strength and toughness of the steel sheet, and one or more elements can be added depending on the required strength. When the content of each element is less than 0.005%, the effect of addition is poor. On the other hand, when the content exceeds 0.1%, the toughness of the welded portion deteriorates. A range of 0.1% is preferable.

さらに、本発明では、Bを以下の範囲で含有させることもできる。
B:0.0003〜0.002%
Bは、強度を高めるのに有効な元素であるが、含有量が0.0003%未満ではその効果が十分でなく、一方0.002%を超えると溶接部の靱性を著しく劣化させるため、Bを添加する場合は0.0003〜0.002%の範囲とする。
Furthermore, in this invention, B can also be contained in the following ranges.
B: 0.0003 to 0.002%
B is an element effective for increasing the strength. However, if the content is less than 0.0003%, the effect is not sufficient. On the other hand, if it exceeds 0.002%, the toughness of the welded portion is significantly deteriorated. Is added in the range of 0.0003 to 0.002%.

その他、不純物として鋼中に不可避的に混入する元素としてPやSがあるが、これらの元素はいずれも、鋼母材や、溶接熱影響部の靭性を劣化させるため、経済性を考慮して可能な範囲で低減することが好ましく、P量、S量はそれぞれ0.05%以下、0.01%以下とすることが好ましい。   In addition, there are P and S as elements inevitably mixed in the steel as impurities, but these elements deteriorate the toughness of the steel base material and the weld heat affected zone. It is preferable to reduce as much as possible, and the P content and S content are preferably 0.05% or less and 0.01% or less, respectively.

上記した元素以外の残部は、Feおよび不可避的不純物からなる。
ただし、本発明の作用効果を害しない限り、他の微量元素の含有を妨げない。たとえば、靱性改善の観点から、Ca:0.003%以下、Mg:0.02%以下、REM(希土類金属):0.02%以下の1種または2種以上を含有させることができる。
The balance other than the above elements is made of Fe and inevitable impurities.
However, the content of other trace elements is not hindered unless the effects of the present invention are impaired. For example, from the viewpoint of improving toughness, one or more of Ca: 0.003% or less, Mg: 0.02% or less, and REM (rare earth metal): 0.02% or less can be contained.

次に、本発明鋼の鋼組織(ミクロ組織)について説明する。
本発明で目標とする引張強さ:490MPa以上の高強度化を図るために、鋼組織は、実質的にフェライトとベイナイト組織とする。特に、表層部は、マルテンサイトや島状マルテンサイト(MA)等の硬質相が生成した場合、表層硬さが上昇し、鋼板内の硬さのばらつきが増大して材質均一性が劣化する。表層硬さの上昇を抑制するために、鋼板組織とくに表層部はフェライトとベイナイト組織とする。フェライトとベイナイト組織中に、マルテンサイトやパーライト、島状マルテンサイト、残留オーステナイトなどの異種組織が混在すると、強度の低下や靭性の劣化、表層硬さの上昇などが生じるため、フェライトとベイナイト相以外の組織分率は少ない程良い。ただし、フェライトとベイナイト相以外の組織の体積分率が低い場合には、それらの影響が無視できるので、ある程度の量であれば許容される。具体的には、トータルの体積分率で5%以下であれば、他の鋼組織すなわちマルテンサイトやパーライト、島状マルテンサイト、残留オーステナイト等の混在も許容される。
Next, the steel structure (microstructure) of the steel of the present invention will be described.
Tensile strength targeted in the present invention: In order to achieve a high strength of 490 MPa or more, the steel structure is substantially made of a ferrite and bainite structure. In particular, in the surface layer portion, when a hard phase such as martensite or island martensite (MA) is generated, the surface layer hardness increases, the hardness variation in the steel sheet increases, and the material uniformity deteriorates. In order to suppress the increase in the surface hardness, the steel sheet structure, particularly the surface layer part, has a ferrite and bainite structure. When heterogeneous structures such as martensite, pearlite, island martensite, and retained austenite are mixed in ferrite and bainite structures, strength decreases, toughness deteriorates, and surface hardness increases. The smaller the tissue fraction, the better. However, when the volume fraction of the structure other than the ferrite and the bainite phase is low, the influence thereof can be ignored, so that a certain amount is allowed. Specifically, if the total volume fraction is 5% or less, mixing of other steel structures, that is, martensite, pearlite, island martensite, retained austenite, and the like is allowed.

〔硬さのばらつき〕
板厚方向の硬さのばらつき:ビッカース硬さΔHVで50以下で、かつ板幅方向の硬さのばらつき:ビッカース硬さΔHVで50以下
鋼板の強度や伸び、成形性、耐HIC性、耐SSCC性能などの観点から、鋼板内の硬さのばらつきを抑制することが要求される。板厚方向の硬さのばらつきがビッカース硬さΔHVで50を超えた場合や、板幅方向の硬さのばらつきがビッカース硬さΔHVで50を超えた場合は、上記特性に悪影響を及ぼす。例えば、鋼板表層部の硬さが鋼板内部に比べてΔHV50を超えて硬くなった場合は、成形後にスプリングバックが起こり易くなったり、硫化水素に対する割れ感受性が高まったりする。また、板幅方向の硬さ分布がΔHV50を超えた場合は、成形時に硬い部分と軟らかい部分とで変形の仕方に差が生じて所望の形状が得られなかったり、小板に切断した場合にそれぞれの小板で強度や伸びが異なったりする。
そこで、鋼板内の材質均一性の観点から、板厚方向および板幅方向の硬さのばらつきはいずれもビッカース硬さΔHVで50以下とした。好ましくは、ΔHVで40以下である。さらに好ましくは、ΔHVで30以下である。
[Hardness variation]
Hardness variation in the plate thickness direction: Vickers hardness ΔHV of 50 or less and hardness variation in the plate width direction: Vickers hardness ΔHV of 50 or less Steel strength and elongation, formability, HIC resistance, SSCC resistance From the viewpoint of performance and the like, it is required to suppress variation in hardness in the steel sheet. When the variation in hardness in the plate thickness direction exceeds 50 in terms of Vickers hardness ΔHV, or if the variation in hardness in the plate width direction exceeds 50 in terms of Vickers hardness ΔHV, the above characteristics are adversely affected. For example, when the hardness of the steel plate surface layer portion exceeds ΔHV50 compared to the inside of the steel plate, springback is likely to occur after forming, and cracking susceptibility to hydrogen sulfide is increased. In addition, if the hardness distribution in the plate width direction exceeds ΔHV50, a difference occurs in the way of deformation between the hard part and the soft part during molding, and the desired shape cannot be obtained, or when it is cut into small plates Each plate has different strength and elongation.
Therefore, from the viewpoint of material uniformity in the steel plate, the hardness variation in the plate thickness direction and the plate width direction is set to 50 or less in terms of Vickers hardness ΔHV. Preferably, ΔHV is 40 or less. More preferably, ΔHV is 30 or less.

次に、本発明に係る高強度鋼板の製造条件について説明する。
本発明の工程的特徴は、冷却工程を2段階に分けたことである。すなわち、1段目の冷却で鋼板全体の高強度化を図りつつ、鋼板表層部において硬化を抑制したミクロ組織を造り込み、2段目の冷却においては専ら鋼板を高強度化高靭性化することに努める。
Next, manufacturing conditions for the high-strength steel sheet according to the present invention will be described.
The process feature of the present invention is that the cooling process is divided into two stages. In other words, the first stage of cooling is intended to increase the strength of the entire steel sheet, while building a microstructure that suppresses hardening in the surface layer of the steel sheet, and in the second stage of cooling, the steel sheet is made to have higher strength and higher toughness. Strive to

〔スラブ加熱温度〕
スラブ加熱温度:900〜1300℃
加熱温度が900℃未満では、ミクロ組織の均質化が不十分で、必要な強度、靱性が得られず、一方1300℃を超えると靭性が劣化するため、スラブ加熱温度は900〜1300℃とする。なお、この温度は加熱炉の炉内温度であり、スラブは中心部までこの温度に加熱されるものとする。
[Slab heating temperature]
Slab heating temperature: 900-1300 ° C
If the heating temperature is less than 900 ° C., the microstructure is not sufficiently homogenized, and the necessary strength and toughness cannot be obtained. On the other hand, if the heating temperature exceeds 1300 ° C., the toughness deteriorates, so the slab heating temperature is 900 to 1300 ° C. . This temperature is the furnace temperature of the heating furnace, and the slab is heated to this temperature up to the center.

〔圧延終了温度〕
圧延終了温度:鋼板の表面温度で700℃以上900℃以下
圧延終了温度が鋼板の表面温度で700℃を下回ると、冷却の開始が遅れ十分な強度を得ることができず、一方900℃を超えるとミクロ組織が粗くなり靱性が劣化するため、圧延終了温度は鋼板の表面温度で700℃以上900℃以下とする。なお、鋼板の表面温度は放射温度計等で測定することができる。
[Rolling end temperature]
Rolling end temperature: 700 ° C. or more and 900 ° C. or less at the surface temperature of the steel sheet When the rolling end temperature falls below 700 ° C. at the surface temperature of the steel sheet, the start of cooling is delayed and sufficient strength cannot be obtained, whereas it exceeds 900 ° C. Since the microstructure becomes coarse and the toughness deteriorates, the rolling end temperature is set to 700 ° C. or more and 900 ° C. or less at the surface temperature of the steel sheet. In addition, the surface temperature of a steel plate can be measured with a radiation thermometer or the like.

〔冷却1段目の冷却開始温度〕
冷却開始温度は、鋼板の表面温度で700℃以上の温度域から行うものとする。冷却開始温度が700℃未満では十分な強度が得られない。
[Cooling start temperature of the first cooling stage]
Cooling start temperature shall be performed from the temperature range of 700 degreeC or more with the surface temperature of a steel plate. If the cooling start temperature is less than 700 ° C., sufficient strength cannot be obtained.

〔冷却1段目の冷却速度〕
鋼板表面の冷却速度:20℃/s以上100℃/s以下
高強度化を図りつつ、鋼板内の硬さのばらつきを低減し、材質均一性を向上させるためには、冷却速度を制御することが重要である。鋼板表面の冷却速度が20℃/s未満では鋼板全体で十分な高強度化が得られず、一方100℃/sを超えると鋼板表層部でマルテンサイトや島状マルテンサイト(MA)等の硬質相が生成して、表層硬さが著しく上昇するため、冷却速度は鋼板表面で20℃/s以上100℃/s以下の範囲とする。
[Cooling speed of the first cooling stage]
Steel plate surface cooling rate: 20 ° C./s or more and 100 ° C./s or less In order to reduce the hardness variation in the steel plate and improve the material uniformity while increasing the strength, the cooling rate should be controlled. is important. If the cooling rate of the steel sheet surface is less than 20 ° C./s, sufficient strength cannot be obtained in the whole steel sheet. On the other hand, if it exceeds 100 ° C./s, hard surface such as martensite or island martensite (MA) is formed in the steel sheet surface layer. Since the phase is generated and the surface hardness is remarkably increased, the cooling rate is set in the range of 20 ° C./s to 100 ° C./s on the steel sheet surface.

〔冷却1段目の冷却停止温度〕
冷却停止温度:鋼板の表面温度で400℃以上600℃以下
700℃以上の温度域から、20℃/s以上100℃/s以下の速度で冷却して、鋼板表層部にフェライトとベイナイト相を生成させるが、冷却停止温度が400℃を下回ると、引き続く2段目の冷却の開始が遅れて冷却の効果が不十分となり、高強度高靭性化が得られなくなる。一方、冷却停止温度が600℃を超えているとフェライトとベイナイトの生成が十分ではなく、その状態で2段目の冷却を開始すると表層部にマルテンサイトや島状マルテンサイト(MA)が生成してしまう。したがって、1段目の冷却停止温度は、鋼板の表面温度で400℃以上600℃以下の範囲とする。
[Cooling stop temperature at first stage of cooling]
Cooling stop temperature: 400 ° C or higher and 600 ° C or lower at the surface temperature of the steel plate. Cooling at a rate of 20 ° C / s or higher and 100 ° C / s or lower from a temperature range of 700 ° C or higher to generate ferrite and bainite phases on the surface layer of the steel plate. However, if the cooling stop temperature falls below 400 ° C., the start of the subsequent second-stage cooling is delayed and the cooling effect becomes insufficient, and high strength and toughness cannot be obtained. On the other hand, when the cooling stop temperature exceeds 600 ° C., ferrite and bainite are not sufficiently generated, and when the second stage cooling is started in that state, martensite and island martensite (MA) are generated in the surface layer portion. End up. Accordingly, the cooling stop temperature at the first stage is set to a range of 400 ° C. or more and 600 ° C. or less at the surface temperature of the steel plate.

〔冷却1段目の制約条件〕
上記した1段目の冷却において、Tを1段目冷却における鋼板表面の冷却終了温度(℃)、Vを1段目冷却における鋼板表面の冷却速度(℃/s)としたとき、これらが次式(1)を満たす条件で1段目の冷却を行うことが重要である。
3≦(700−T)/V ・・・(1)
上記(1)式の右辺が意味するところは、1段目冷却の冷却時間である。すなわち、1段目冷却は3秒以上継続する必要があることを示している。これは、表層の組織が硬質とならないように、フェライトやベイナイト相が十分に生成するためには、3秒以上の時間を要するためである。
(1)式が満たされない場合は、鋼板表層部にマルテンサイトや島状マルテンサイト(MA)が生成し、表層部の硬さ上昇が著しくなり、硬さのばらつきが大きくなるため、冷却1段目の制約条件として(1)式を満足させる必要がある。
[Restriction conditions for the first cooling stage]
In the first stage cooling described above, when T is the cooling end temperature (° C.) of the steel sheet surface in the first stage cooling and V is the cooling rate (° C./s) of the steel sheet surface in the first stage cooling, these are the following: It is important to perform the first stage cooling under the condition satisfying the formula (1).
3 ≦ (700−T) / V (1)
The right side of the above equation (1) means the cooling time of the first stage cooling. That is, the first stage cooling needs to be continued for 3 seconds or more. This is because a time of 3 seconds or more is required for the ferrite and bainite phases to be sufficiently generated so that the surface layer structure is not hard.
When the formula (1) is not satisfied, martensite and island-like martensite (MA) are generated in the steel sheet surface layer, the hardness of the surface layer increases significantly, and the variation in hardness increases. It is necessary to satisfy the expression (1) as the eye constraint.

〔冷却2段目の冷却速度〕
鋼板平均の冷却速度:4℃/s以上
冷却2段目の冷却速度とは、(「2段目冷却開始時の鋼板平均温度」−「2段目冷却が終了して鋼板表面が復熱したときの鋼板平均温度」)/(「2段目冷却が終了して鋼板表面が復熱したときの時刻」−「2段目冷却開始時刻」)である。2段目の冷却が終了した時点で、鋼板表面は鋼板の板厚方向中央部に比べて温度が低いが、その後、温度の高い板厚中央部から表面に熱が伝わるので、表面温度は上昇し、表面温度は極大値を取る。この現象は復熱と称され、復熱した状態、すなわち、表面温度が極大値となった状態では、鋼板の板厚方向温度差は小さくなる。2段目冷却開始時の鋼板平均温度から、鋼板表面が復熱したときの鋼板平均温度を差し引いた温度差を、冷却開始から復熱完了までの所要時間で割ることにより、鋼板平均の冷却速度を計算することができる。
鋼板平均の冷却速度が4℃/sに満たないと強度上昇効果が十分得られなくなるため、4℃/s以上とする。なお、鋼板の厚みが大きくなると、板厚方向中央部の冷却速度は鋼中の熱伝達律速となるため、板厚:100mmの鋼板平均冷却速度の物理限界はおおよそ4℃/sである。また、この冷却条件を厚肉鋼板で得ようとする場合には、鋼板表面でその温度が200℃以上の温度域において鋼板表面の冷却速度として100℃/sを超える冷却を行う必要がある。
[Cooling speed of the second stage of cooling]
Average cooling rate of steel sheet: 4 ° C./s or more The cooling rate of the second stage of cooling is “(the average temperature of the steel sheet at the start of second stage cooling” − “the second stage cooling is completed and the steel sheet surface is reheated. Steel plate average temperature ”) / (“ time when the second stage cooling is completed and the steel sheet surface is reheated ”−“ second stage cooling start time ”). When the cooling of the second stage is completed, the surface of the steel sheet is lower in temperature than the central part in the thickness direction of the steel sheet, but then the surface temperature rises because heat is transferred from the central part of the thick plate thickness to the surface. The surface temperature takes a maximum value. This phenomenon is called recuperation, and in the reheated state, that is, in the state where the surface temperature reaches the maximum value, the temperature difference in the plate thickness direction of the steel sheet becomes small. By subtracting the temperature difference obtained by subtracting the steel sheet average temperature when the steel sheet surface is reheated from the steel sheet average temperature at the start of the second stage cooling, by the required time from the start of cooling to the completion of reheating, the average steel sheet cooling rate Can be calculated.
If the average cooling rate of the steel sheet is less than 4 ° C./s, the effect of increasing the strength cannot be obtained sufficiently. As the thickness of the steel plate increases, the cooling rate at the central portion in the plate thickness direction becomes the rate of heat transfer in the steel, so the physical limit of the average cooling rate of the steel plate with a plate thickness of 100 mm is approximately 4 ° C./s. Moreover, when it is going to obtain this cooling condition with a thick steel plate, it is necessary to perform cooling exceeding 100 ° C./s as the cooling rate of the steel plate surface in a temperature range of 200 ° C. or more on the steel plate surface.

ところで、1段目の冷却の影響を受けて、2段目冷却開始時の鋼板表面温度がその時点での鋼板板厚中央部の温度よりも低い可能性はある。しかしながら、本発明においては、鋼板平均の冷却速度の計算に用いる2段目冷却開始時の鋼板温度として、上述のように鋼板表面温度を用いるので、本発明で規定する鋼板平均の冷却速度を確保すれば、2段目冷却開始時の温度が鋼板表面よりも高い領域についても、本発明で規定する鋼板冷却速度を確保できるので、十分な強度上昇効果が得られることになり、問題となることはない。
なお、鋼板平均の温度および冷却速度については、物理的に直接測定することはできないが、表面の温度変化を基にしたシミュレーション計算によりリアルタイムで求めることができる。
By the way, under the influence of the first stage cooling, there is a possibility that the steel plate surface temperature at the start of the second stage cooling is lower than the temperature of the steel plate thickness central part at that time. However, in the present invention, the steel sheet surface temperature is used as described above as the steel sheet temperature at the start of the second stage cooling used for calculation of the steel sheet average cooling rate, so the steel sheet average cooling rate specified in the present invention is ensured. Then, even in a region where the temperature at the start of the second stage cooling is higher than the surface of the steel sheet, the steel sheet cooling rate specified in the present invention can be secured, so that a sufficient strength increasing effect can be obtained, which becomes a problem. There is no.
Note that the average temperature and cooling rate of the steel sheet cannot be directly measured physically, but can be obtained in real time by simulation calculation based on the temperature change of the surface.

〔冷却2段目の冷却後の復熱温度〕
冷却後の復熱温度:2段目冷却が終了して鋼板表面が復熱したときの鋼板の平均温度で600℃以下
合金元素を削減し、低合金化した化学成分の鋼においては、2段目の冷却が終了して鋼板表面が復熱したときの鋼板の平均温度が600℃を上回ると十分な高強度化が得られないため、冷却後の復熱温度、すなわち、2段目冷却が終了して鋼板表面が復熱したときの鋼板の平均温度は600℃以下とする。
[Recuperated temperature after cooling the second stage of cooling]
Recuperation temperature after cooling: The average temperature of the steel sheet when the second stage cooling is completed and the steel sheet surface is reheated is 600 ° C or less. If the average temperature of the steel sheet when the surface of the steel sheet is reheated after the cooling of the eyes is over 600 ° C., sufficient strength cannot be obtained, so the reheat temperature after cooling, that is, the second stage cooling is When finished, the average temperature of the steel sheet when the steel sheet surface is reheated is 600 ° C. or less.

〔デスケーリング〕
また、本発明では、上述したような2段階の制御冷却の直前に高衝突圧の噴射流によるデスケーリングを行うことが好ましい。
圧延後の鋼板においては、圧延前および圧延中のデスケーリング等により幅方向にスケールの厚みにムラが生じることがある。また、スケール厚みが大きい場合には、部分的にスケールの剥離が生じることがある。圧延後の冷却の際に、スケール厚みにばらつきが生じていると、その厚みに応じて鋼板表面の冷却速度も変化してしまい、その冷却速度に応じて鋼板表面の硬さも変化してしまう。その対策として、制御冷却の直前に高衝突圧の噴射流によるデスケーリングを実施し、これによりスケール厚みを冷却速度に大きな差が生じない程度に薄くすることにより、上記の問題を解消するのである。
ここに、制御冷却後の鋼板のスケール厚みが15μm以下の場合には、板幅方向および板厚方向の硬さのばらつきがいずれもΔHVで30以下となる。制御冷却直前の鋼板のスケール厚みを測ることは事実上困難であるが、制御冷却前のスケール厚みは制御冷却後のスケール厚みによって推定することができ、冷却後の鋼板のスケール厚みが15μm以下となるように冷却直前にデスケーリングを行うことによって、所望の効果が得られることが解明された。
[Descaling]
In the present invention, it is preferable to perform the descaling by the high collision pressure injection flow immediately before the two-stage control cooling as described above.
In the steel sheet after rolling, unevenness in the thickness of the scale may occur in the width direction due to descaling or the like before and during rolling. Further, when the scale thickness is large, the scale may be partially peeled off. When the scale thickness varies during cooling after rolling, the cooling rate of the steel sheet surface also changes according to the thickness, and the hardness of the steel sheet surface also changes according to the cooling rate. As a countermeasure, the above problem is solved by performing descaling with the jet flow of high collision pressure immediately before the control cooling, thereby reducing the thickness of the scale to such a degree that a large difference in the cooling rate does not occur. .
Here, when the scale thickness of the steel sheet after controlled cooling is 15 μm or less, the variation in hardness in the plate width direction and the plate thickness direction is ΔHV of 30 or less. Although it is practically difficult to measure the scale thickness of the steel sheet immediately before the controlled cooling, the scale thickness before the controlled cooling can be estimated by the scale thickness after the controlled cooling, and the scale thickness of the steel sheet after the cooling is 15 μm or less. It has been clarified that the desired effect can be obtained by performing descaling immediately before cooling.

デスケーリング圧(鋼板表面での噴射流の衝突圧):1MPa以上
本発明では、制御冷却の直前に鋼板表面での噴射流の衝突圧が1MPa以上となる条件でデスケーリングを行う。鋼板表面での噴射流の衝突圧が1MPa未満では、デスケーリングが不十分でスケールむらが生じる場合があり、表層硬さのばらつきが生じるため、噴射流の衝突圧は1MPa以上とする。デスケーリングは高圧水を用いて行うが、鋼板表面での噴射流の衝突圧が1MPa以上であれば、他の噴射流を用いても問題はない。より好ましくは2MPa以上である。
Descaling pressure (impact pressure of jet flow on steel plate surface): 1 MPa or more In the present invention, descaling is performed under the condition that the impingement pressure of jet flow on the steel plate surface is 1 MPa or more immediately before control cooling. If the collision pressure of the jet flow on the surface of the steel sheet is less than 1 MPa, the descaling may be insufficient and unevenness in scale may occur, resulting in variations in surface hardness. Therefore, the collision pressure of the jet flow is 1 MPa or more. Although descaling is performed using high-pressure water, there is no problem even if another jet flow is used as long as the collision pressure of the jet flow on the steel plate surface is 1 MPa or more. More preferably, it is 2 MPa or more.

また、デスケーリング後、5秒以内に制御冷却を行うことが望ましい。デスケーリング後、制御冷却を行うまでの時間が5秒を超えると、スケールが成長するため表層部の冷却速度が上昇し、硬さのばらつきが大きくなる。特に、スケール厚さが15μmを超える場合、表層硬さばらつきが顕著となる。この点、デスケーリング後、5秒以内に制御冷却を開始すれば、スケール厚さを15μm以下とすることができる。従って、制御冷却の直前にデスケーリングを行う場合には、デスケーリングから制御冷却までの時間は5秒以内とする必要がある。   Moreover, it is desirable to perform control cooling within 5 seconds after descaling. If the time until the controlled cooling is performed after descaling exceeds 5 seconds, the scale grows, the cooling rate of the surface layer portion increases, and the variation in hardness increases. In particular, when the scale thickness exceeds 15 μm, the surface layer hardness variation becomes significant. In this regard, if controlled cooling is started within 5 seconds after descaling, the scale thickness can be reduced to 15 μm or less. Therefore, when descaling is performed immediately before control cooling, the time from descaling to control cooling must be within 5 seconds.

本発明鋼板の製造に使用して好適な圧延ラインとの一例としては、上流から下流側に向かって、熱間圧延機、高衝突圧デスケーリング装置、1段目冷却用の制御冷却装置、2段目冷却用の制御冷却装置をこの順に配置する構成が挙げられる。また、デスケーリング装置の前に熱間矯正機を設置することもできる。この熱間矯正機で鋼板の形状を改善することにより、噴射流の衝突圧を増大させることができるため、低コストでより効率的なデスケーリングの実施が可能となる。
また、デスケーリング装置の前に熱間矯正機を設置することもできる。この熱間矯正機で鋼板の形状を改善することにより、噴射流の衝突圧を増大させることができるため、低コストでより効率的なデスケーリングの実施が可能となる。
As an example of a rolling line suitable for use in the production of the steel sheet of the present invention, a hot rolling mill, a high collision pressure descaling device, a control cooling device for first stage cooling, from the upstream to the downstream side, The structure which arrange | positions the control cooling apparatus for a stage cooling in this order is mentioned. A hot straightening machine can also be installed in front of the descaling device. By improving the shape of the steel sheet with this hot straightening machine, it is possible to increase the collision pressure of the jet flow, so that more efficient descaling can be performed at low cost.
A hot straightening machine can also be installed in front of the descaling device. By improving the shape of the steel sheet with this hot straightening machine, it is possible to increase the collision pressure of the jet flow, so that more efficient descaling can be performed at low cost.

表1に示す化学成分になる鋼(鋼種A〜G)を、連続鋳造法によりスラブとし、これを用いて板厚:60mmから100mmの厚鋼板(No.1〜15)を製造した。
ついで、スラブを加熱後、熱間圧延により所定の板厚としたのち、あるいはその後高衝突圧のデスケーリングを行ったのち、水冷型の制御冷却装置を用いて2段階の制御冷却を行った。各鋼板(No.1〜15)の製造条件を表2に示す。
Steel (steel types A to G) having chemical components shown in Table 1 was made into a slab by a continuous casting method, and using this, a thick steel plate (No. 1 to 15 ) having a thickness of 60 mm to 100 mm was manufactured.
Next, after heating the slab to a predetermined thickness by hot rolling, or after descaling with high impact pressure, two-stage controlled cooling was performed using a water-cooled control cooling device. Table 2 shows the production conditions of each steel plate (No. 1 to 15 ).

得られた鋼板のミクロ組織およびスケール性状を、光学顕微鏡および走査型電子顕微鏡により観察した。10視野の断面組織写真を得て、画像解析装置を用いて相分率を測定した。また、スケール厚さを測定し、10視野の平均値で評価した。特性は、圧延方向に直角の方向、t/4位置(板厚1/4位置)の丸棒試験片を引張試験片として、引張強度を測定した。また、圧延方向に直角な断面について、JIS Z 2244に準拠して、ビッカース硬さを測定し、板厚方向の硬さ分布と板幅方向の硬さ分布を求めた。板厚方向については、1mmピッチで全厚の硬さを測定し、板幅方向については、20mmピッチで全幅の硬さを測定した。なお、板幅方向の硬さは、表面下1mm位置、t/4位置(板厚1/4位置)、t/2位置(板厚中心部)で測定したが、いずれの鋼板も表面下1mm位置において硬さのばらつきが最大を示したので、板幅方向の硬さのばらつきは表面下1mm位置で評価した。
本発明の目標範囲は、高強度鋼板として引張強度が490MPa以上、−40℃でのシャルピー衝撃試験値vE(−40℃)が27J以上、ミクロ組織はフェライトとベイナイトの複相組織、板厚方向および板幅方向の硬さのばらつきはいずれもΔHV50以下である。
得られた結果を表3に示す。
The microstructure and scale properties of the obtained steel sheet were observed with an optical microscope and a scanning electron microscope. Ten cross-sectional structure photographs were obtained, and the phase fraction was measured using an image analyzer. Moreover, the scale thickness was measured and evaluated by the average value of 10 fields of view. The tensile strength was measured by using a round bar test piece in a direction perpendicular to the rolling direction and at a t / 4 position (plate thickness 1/4 position) as a tensile test piece. Moreover, the Vickers hardness was measured about the cross section orthogonal to a rolling direction based on JISZ2244, and the hardness distribution of the board thickness direction and the hardness distribution of the board width direction were calculated | required. For the plate thickness direction, the hardness of the entire thickness was measured at a pitch of 1 mm, and for the plate width direction, the hardness of the full width was measured at a pitch of 20 mm. The hardness in the plate width direction was measured at a position 1 mm below the surface, t / 4 position (plate thickness 1/4 position), and t / 2 position (plate thickness center). Since the variation in hardness showed the maximum at the position, the variation in hardness in the plate width direction was evaluated at a position 1 mm below the surface.
The target range of the present invention is a high strength steel plate with a tensile strength of 490 MPa or more, a Charpy impact test value vE (−40 ° C.) at −40 ° C. of 27 J or more, a microstructure of a ferrite and bainite multiphase structure, a thickness direction The variation in hardness in the plate width direction is ΔHV50 or less.
The obtained results are shown in Table 3.

Figure 0005625694
Figure 0005625694

Figure 0005625694
Figure 0005625694

Figure 0005625694
Figure 0005625694

No.1〜5は、化学成分および製造条件が本発明の適正範囲を満足する発明例である。いずれも、引張強度:490MPa以上、−40℃でのシャルピー衝撃試験値vE(−40℃):27J以上、板厚方向と板幅方向の硬さのばらつきΔHV:50以下であり、鋼板のミクロ組織は実質的にフェライトとベイナイト組織であった。特に、制御冷却直前に高衝突圧のデスケーリングを実施したNo.5においては、制御冷却後のスケール厚さが15μm以下となり、板厚方向と板幅方向の硬さのばらつきΔHV:30以下の良好な結果となった。
一方、No.6,7は、化学成分が本発明の範囲外の比較例であり、No.6はCが、またNo.7はSiが、それぞれ本発明の適正範囲を超えているため、十分な靭性が得られなかった。No.8〜15はいずれも、化学成分は本発明の適正範囲内であるが、製造条件が本発明の適正範囲を逸脱した比較例である。No.8は、スラブ加熱温度が低いため、ミクロ組織の均質化が不十分であり、十分な強度および靭性が得られなかった。No.9は、圧延終了温度が本発明の適正範囲を下回り、同時に制御冷却の開始温度も本発明の適正範囲を下回ったため、満足いく強度が得られなかった。No.10は、1段目冷却の冷却速度が本発明の下限に満たないため、低い強度しか得られなかった。No.11,12,14は、1段目冷却の冷却条件が本発明の適正範囲を逸脱し、ミクロ組織としてフェライトとベイナイトの複相組織が得られなかったため、いずれも板厚方向と板幅方向の硬さのばらつきがΔHV50を超えていた。No.13は、1段目冷却の停止温度が本発明の上限を超えているため、2段目冷却における冷却効果を十分に得ることができず、満足いく強度が得られなかった。No.15は、2段目冷却の冷却条件が本発明の適正範囲を逸脱しているため、低い強度しか得られなかった。
No. 1-5 are invention examples in which chemical components and production conditions satisfy the appropriate range of the present invention. In either case, tensile strength: 490 MPa or more, Charpy impact test value at −40 ° C. vE (−40 ° C.): 27 J or more, variation in hardness in sheet thickness direction and sheet width direction ΔHV: 50 or less, The structure was substantially ferrite and bainite structure. In particular, no. In No. 5, the scale thickness after controlled cooling was 15 μm or less, and the hardness variation between the plate thickness direction and the plate width direction was ΔHV: 30 or less.
On the other hand, no. Nos. 6 and 7 are comparative examples in which chemical components are outside the scope of the present invention. 6 is C. In No. 7, since Si exceeded the appropriate range of the present invention, sufficient toughness could not be obtained. No. 8 to 15 are comparative examples in which the chemical components are within the proper range of the present invention, but the production conditions deviate from the proper range of the present invention. No. In No. 8, since the slab heating temperature was low, homogenization of the microstructure was insufficient, and sufficient strength and toughness could not be obtained. No. In No. 9, the rolling end temperature was lower than the appropriate range of the present invention, and at the same time, the control cooling start temperature was also lower than the appropriate range of the present invention. No. No. 10 had only a low strength because the cooling rate of the first stage cooling was less than the lower limit of the present invention. No. 11, 12 and 14, the cooling conditions of the first stage cooling deviated from the appropriate range of the present invention, and a ferrite and bainite multiphase structure was not obtained as a microstructure. The hardness variation exceeded ΔHV50. No. In No. 13, the first stage cooling stop temperature exceeded the upper limit of the present invention, so that the cooling effect in the second stage cooling could not be sufficiently obtained, and a satisfactory strength could not be obtained. No. For No. 15 , only a low strength was obtained because the cooling conditions of the second stage cooling deviated from the appropriate range of the present invention.

Claims (6)

質量%で、C:0.02〜0.15%、Si:0.01〜1.0%及びMn:0.5〜2.0%を含有し、残部がFeおよび不可避的不純物の組成からなり、鋼組織がフェライトとベイナイト組織であり、しかも板厚方向の硬さのばらつきがビッカース硬さΔHVで50以下で、かつ板幅方向の硬さのばらつきがビッカース硬さΔHVで50以下であるとともに、引張強度が490MPa以上で、かつ−40℃でのシャルピー衝撃試験値vE(−40℃)が27J以上であり、さらには板厚が40mm以上であることを特徴とする、鋼板内の材質均一性に優れた高強度高靭性厚肉鋼板。 In mass%, C: 0.02 to 0.15%, Si: 0.01 to 1.0% and Mn: 0.5 to 2.0%, with the balance from the composition of Fe and inevitable impurities The steel structure is a ferrite and bainite structure, and the hardness variation in the plate thickness direction is 50 or less in terms of Vickers hardness ΔHV, and the hardness variation in the plate width direction is 50 or less in terms of Vickers hardness ΔHV. In addition , the material in the steel sheet is characterized in that the tensile strength is 490 MPa or more, the Charpy impact test value vE (−40 ° C.) at −40 ° C. is 27 J or more, and the plate thickness is 40 mm or more. High strength, high toughness thick steel plate with excellent uniformity. 前記鋼が、さらに、質量%で、Cu:1.0%以下、Ni:1.0%以下、Cr:1.0%以下及びMo:0.5%以下のうちから選んだ1種又は2種以上を含有することを特徴とする、請求項1に記載の高強度高靭性厚肉鋼板。   Further, the steel is one or two selected from the following by mass: Cu: 1.0% or less, Ni: 1.0% or less, Cr: 1.0% or less, and Mo: 0.5% or less. The high-strength, high-toughness thick steel plate according to claim 1, comprising at least a seed. 前記鋼が、さらに、質量%で、Nb:0.005〜0.1%、V:0.005〜0.1%及びTi:0.005〜0.1%のうちから選んだ1種又は2種以上を含有することを特徴とする、請求項1または請求項2に記載の高強度高靭性厚肉鋼板。   Further, the steel may be one selected from Nb: 0.005 to 0.1%, V: 0.005 to 0.1%, and Ti: 0.005 to 0.1% by mass%. The high-strength, high-toughness thick-walled steel sheet according to claim 1, comprising two or more kinds. 前記鋼が、さらに、質量%で、B:0.0003〜0.002%を含有することを特徴とする、請求項1乃至3のいずれかに記載の高強度高靭性厚肉鋼板。   The high-strength, high-toughness thick steel plate according to any one of claims 1 to 3, wherein the steel further contains B: 0.0003 to 0.002% by mass%. 請求項1乃至4のいずれかに記載の高強度高靭性厚肉鋼板を製造する方法であって、
請求項1乃至4のいずれかに記載の成分組成からなる鋼片を、900℃以上1300℃以下の温度に加熱し、圧延終了温度が鋼板表面温度で700℃以上900℃以下で熱間圧延したのち、鋼板表面温度が700℃以上の温度域から、鋼板表面の冷却速度が20℃/s以上100℃/s以下の速度で鋼板表面温度が400℃以上600℃以下の温度域まで下記(1)式を満たす条件で1段目の冷却を行い、ついで鋼板平均の冷却速度が4℃/s以上で冷却後の復熱温度が600℃以下となる2段目の冷却を行うことを特徴とする、鋼板内の材質均一性に優れた高強度高靭性厚肉鋼板の製造方法。

3≦(700−T)/V ・・・(1)
ここで、T:1段目冷却における鋼板表面の冷却終了温度(℃)
V:1段目冷却における鋼板表面の冷却速度(℃/s)
A method for producing the high-strength, high-toughness thick steel plate according to any one of claims 1 to 4,
A steel slab comprising the component composition according to any one of claims 1 to 4 is heated to a temperature of 900 ° C or higher and 1300 ° C or lower and hot rolled at a rolling end temperature of 700 ° C or higher and 900 ° C or lower at a steel sheet surface temperature. Then, from the temperature range where the steel sheet surface temperature is 700 ° C. or higher, to the temperature range where the steel sheet surface temperature is 400 ° C. or higher and 600 ° C. or lower at a cooling rate of the steel sheet surface of 20 ° C./s or higher and 100 ° C./s or lower (1 ), The first stage cooling is performed under the condition satisfying the equation, and then the second stage cooling is performed such that the average cooling rate of the steel sheet is 4 ° C./s or more and the recuperated temperature after cooling is 600 ° C. or less. The manufacturing method of the high strength high toughness thick-walled steel plate excellent in the material uniformity in the steel plate.
Record
3 ≦ (700−T) / V (1)
Here, T: cooling end temperature (° C.) of the steel sheet surface in the first stage cooling
V: Cooling rate of steel sheet surface in 1st stage cooling (° C / s)
請求項1乃至4のいずれかに記載の高強度高靭性厚肉鋼板を製造する方法であって、
請求項1乃至4のいずれかに記載の成分組成からなる鋼片を、900℃以上1300℃以下の温度に加熱し、圧延終了温度が鋼板表面温度で700℃以上900℃以下で熱間圧延し、引き続く制御冷却の直前に鋼板表面での噴射流の衝突圧が1MPa以上の条件でデスケーリングを行い、その後5秒以内に、鋼板表面温度が700℃以上の温度域から、鋼板表面の冷却速度が20℃/s以上100℃/s以下の速度で鋼板表面温度が400℃以上600℃以下の温度域まで下記(1)式を満たす条件で1段目の冷却を行い、ついで鋼板平均の冷却速度が4℃/s以上で冷却後の復熱温度が600℃以下となる2段目の冷却を行うことを特徴とする、鋼板内の材質均一性に優れた高強度高靭性厚肉鋼板の製造方法。

3≦(700−T)/V ・・・(1)
ここで、T:1段目冷却における鋼板表面の冷却終了温度(℃)
V:1段目冷却における鋼板表面の冷却速度(℃/s)
A method for producing the high-strength, high-toughness thick steel plate according to any one of claims 1 to 4,
A steel slab comprising the composition according to any one of claims 1 to 4 is heated to a temperature of 900 ° C or higher and 1300 ° C or lower and hot rolled at a rolling end temperature of 700 ° C or higher and 900 ° C or lower at a steel sheet surface temperature. The descaling is performed under the condition that the impinging pressure of the jet flow on the steel sheet surface is 1 MPa or more immediately before the subsequent controlled cooling, and within 5 seconds, the steel sheet surface temperature is cooled from the temperature range of 700 ° C. or more. Is cooled at a rate of 20 ° C./s or higher and 100 ° C./s or lower to a temperature range where the steel sheet surface temperature is 400 ° C. or higher and 600 ° C. or lower, satisfying the following formula (1), and then the average cooling of the steel plate. A high-strength, high-toughness thick steel plate excellent in material uniformity in a steel plate, characterized by performing second-stage cooling at a rate of 4 ° C./s or more and a reheat temperature after cooling of 600 ° C. or less. Production method.
Record
3 ≦ (700−T) / V (1)
Here, T: cooling end temperature (° C.) of the steel sheet surface in the first stage cooling
V: Cooling rate of steel sheet surface in 1st stage cooling (° C / s)
JP2010221512A 2010-09-30 2010-09-30 High-strength, high-toughness thick-walled steel plate with excellent material uniformity in the steel plate and method for producing the same Active JP5625694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010221512A JP5625694B2 (en) 2010-09-30 2010-09-30 High-strength, high-toughness thick-walled steel plate with excellent material uniformity in the steel plate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010221512A JP5625694B2 (en) 2010-09-30 2010-09-30 High-strength, high-toughness thick-walled steel plate with excellent material uniformity in the steel plate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012077326A JP2012077326A (en) 2012-04-19
JP5625694B2 true JP5625694B2 (en) 2014-11-19

Family

ID=46237913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010221512A Active JP5625694B2 (en) 2010-09-30 2010-09-30 High-strength, high-toughness thick-walled steel plate with excellent material uniformity in the steel plate and method for producing the same

Country Status (1)

Country Link
JP (1) JP5625694B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3677698A4 (en) * 2017-09-28 2020-07-08 JFE Steel Corporation High-strength steel plate for sour resistant line pipe, method for manufacturing same, and high-strength steel pipe using high-strength steel plate for sour resistant line pipe

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5857683B2 (en) * 2011-11-30 2016-02-10 Jfeスチール株式会社 High-strength, high-toughness thick-walled steel plate with excellent material uniformity in the steel plate and method for producing the same
JP5891748B2 (en) * 2011-11-30 2016-03-23 Jfeスチール株式会社 High-strength, high-toughness thick-walled steel plate with excellent material uniformity in the steel plate and method for producing the same
JP5867381B2 (en) * 2011-12-22 2016-02-24 Jfeスチール株式会社 High strength steel plate for high heat input welding with excellent material uniformity in steel plate and method for producing the same
CN104694836B (en) * 2015-03-23 2016-07-06 苏州劲元油压机械有限公司 A kind of antiacid steel plate for structural steelwork
CN106756517B (en) * 2017-02-17 2018-06-01 上海海事大学 A kind of steel plate and its manufacturing method for polar region ship
CN108570594B (en) * 2018-05-16 2022-04-19 黑冻科技有限公司 Empty rail way

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0957327A (en) * 1995-08-22 1997-03-04 Sumitomo Metal Ind Ltd Scale removal method of steel plate
JP4819185B2 (en) * 2008-11-06 2011-11-24 新日本製鐵株式会社 Steel sheet for ultra-high strength line pipe and method for manufacturing steel pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3677698A4 (en) * 2017-09-28 2020-07-08 JFE Steel Corporation High-strength steel plate for sour resistant line pipe, method for manufacturing same, and high-strength steel pipe using high-strength steel plate for sour resistant line pipe

Also Published As

Publication number Publication date
JP2012077326A (en) 2012-04-19

Similar Documents

Publication Publication Date Title
JP5672916B2 (en) High-strength steel sheet for sour line pipes, method for producing the same, and high-strength steel pipe using high-strength steel sheets for sour line pipes
JP5625694B2 (en) High-strength, high-toughness thick-walled steel plate with excellent material uniformity in the steel plate and method for producing the same
JP5900303B2 (en) High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP5348386B2 (en) Thick high-strength steel sheet with excellent low yield ratio and brittle crack resistance and its manufacturing method
US9644372B2 (en) High-strength H-beam steel exhibiting excellent low-temperature toughness and method of manufacturing same
US9863022B2 (en) High-strength ultra-thick H-beam steel
JP5910219B2 (en) High strength steel plate for high heat input welding with excellent material uniformity in steel plate and method for producing the same
JP5867381B2 (en) High strength steel plate for high heat input welding with excellent material uniformity in steel plate and method for producing the same
JP4830330B2 (en) Manufacturing method of thick-walled low yield ratio high-tensile steel sheet
JP4379085B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP5347827B2 (en) High yield point 490 MPa class welded structural steel excellent in acoustic anisotropy and method for producing the same
JP5640614B2 (en) High-strength steel pipe for line pipe, its manufacturing method, and high-strength steel pipe using high-strength steel sheet for line pipe
JP5630321B2 (en) High-tensile steel plate with excellent toughness and manufacturing method thereof
JP5605136B2 (en) High strength steel plate with excellent material uniformity in steel plate and method for producing the same
JP3896061B2 (en) Steel sheet with excellent curability after hot forming and method of using the same
JP6094139B2 (en) High strength steel plate with excellent strength-elongation balance and method for producing the same
JP5891748B2 (en) High-strength, high-toughness thick-walled steel plate with excellent material uniformity in the steel plate and method for producing the same
JP5895772B2 (en) High-strength hot-rolled steel sheet with excellent appearance and excellent isotropic toughness and yield strength and method for producing the same
JP5228963B2 (en) Cold rolled steel sheet and method for producing the same
JP3737300B2 (en) Non-tempered low yield ratio high tensile strength steel plate with excellent weldability
JP2008280602A (en) High productivity type high-strength high-toughness steel plate and its production method
JP6213098B2 (en) High-strength hot-rolled steel sheet with excellent fatigue characteristics and method for producing the same
JP2005298962A (en) Method for manufacturing high-strength steel plate superior in workability
JP6112064B2 (en) High-strength 13Cr stainless steel plate with excellent toughness and workability and manufacturing method thereof
JP2011144455A (en) Method for producing large thickness low yield ratio high-tensile steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140915

R150 Certificate of patent or registration of utility model

Ref document number: 5625694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250