JP5623001B2 - Glass substrate - Google Patents

Glass substrate Download PDF

Info

Publication number
JP5623001B2
JP5623001B2 JP2007332599A JP2007332599A JP5623001B2 JP 5623001 B2 JP5623001 B2 JP 5623001B2 JP 2007332599 A JP2007332599 A JP 2007332599A JP 2007332599 A JP2007332599 A JP 2007332599A JP 5623001 B2 JP5623001 B2 JP 5623001B2
Authority
JP
Japan
Prior art keywords
glass substrate
thickness
point
difference
reference point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007332599A
Other languages
Japanese (ja)
Other versions
JP2009155136A (en
Inventor
平田 千代麿
千代麿 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2007332599A priority Critical patent/JP5623001B2/en
Publication of JP2009155136A publication Critical patent/JP2009155136A/en
Application granted granted Critical
Publication of JP5623001B2 publication Critical patent/JP5623001B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/02Details
    • H01J17/16Vessels; Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/86Vessels; Containers; Vacuum locks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Description

本発明は、フラットディスプレイパネルに用いられるガラス基板に係り、特に縦方向寸法が300mm以上であり且つ横方向寸法が300mm以上であってその板厚の平均値が0.3〜4.0mmの範囲内にあるガラス基板の板厚の特性もしくは表面の平坦度に関する。   The present invention relates to a glass substrate used for a flat display panel, and in particular, the longitudinal dimension is 300 mm or more and the lateral dimension is 300 mm or more, and the average value of the plate thickness is in the range of 0.3 to 4.0 mm. It relates to the thickness characteristics or surface flatness of the glass substrate inside.

周知のように、プラズマディスプレイパネル{PDP}、フィールドエミッションディスプレイパネル{FED[サーフェイスエミッションディスプレイ(SED)を含む:以下同様]}、更には、液晶ディスプレイ{LCD}やエレクトロルミネッセンスディスプレイ{ELD}等のフラットディスプレイパネルは、表面に微細な電極や隔壁等の素子或いは構造体を形成した二枚のガラス基板を対向させて製作される。   As is well known, a plasma display panel {PDP}, a field emission display panel {FED [including surface emission display (SED): the same applies hereinafter]}, a liquid crystal display {LCD}, an electroluminescence display {ELD}, etc. A flat display panel is manufactured by facing two glass substrates on the surface of which elements or structures such as fine electrodes and partition walls are formed.

この種のガラス基板は、フロート法、フュージョン法(オーバーフローダウンドロー法)、またはスロットダウンドロー法に代表される公知の方法により成形された大型の元ガラス基板を、四辺が所定寸法の矩形をなすように切断して得られる。これらの成形方法のうち、例えばフロート法は、大型のガラス基板を安定して低廉に量産できるという利点を有していることから、PDP用やLCD用等のガラス基板の製造方法として多用されるに至っている。   This type of glass substrate is a large original glass substrate formed by a known method typified by a float method, a fusion method (overflow down draw method), or a slot down draw method, and has a rectangular shape with four sides. It is obtained by cutting as follows. Among these forming methods, for example, the float method has an advantage that a large-sized glass substrate can be stably mass-produced at a low cost, and thus is frequently used as a method for producing a glass substrate for PDP or LCD. Has reached.

このフロート法は、具体的には、溶融炉で溶融された溶融ガラスを、溶融錫が貯留されたフロートバスに供給し、その溶融ガラスをフロートバスの溶融錫上に浮かせて自然に広がらせると共に、フロートバスの直下流側に配設されたレヤー(搬送路)に引き出すことにより、帯状のガラスリボンを経て大型の元ガラス基板が得られるように構成したものである。   Specifically, this float method supplies molten glass melted in a melting furnace to a float bath in which molten tin is stored, floats the molten glass on the molten tin in the float bath, and naturally spreads the molten glass. The large original glass substrate is obtained through a belt-like glass ribbon by being drawn out to a layer (conveying path) arranged on the downstream side of the float bath.

そして、このような大型の元ガラス基板の四辺を切断して得られた上述のフラットディスプレイパネル用のガラス基板に対しては、その表面に各種の膜を均一に塗布した後に、フォトプロセスの手法を用いて露光・現像することにより、素子や構造体を当該ガラス基板上に形成していくのが通例とされている。したがって、この種のガラス基板における素子等の形成面である表面には、高度な平坦度が要求され、その要求を満たすためには、当該ガラス基板の板厚の特性が重要な要因となる。   And, for the glass substrate for the flat display panel obtained by cutting four sides of such a large original glass substrate, various films are uniformly applied to the surface, and then a photo process method It is customary to form an element or a structure on the glass substrate by exposing and developing using the above. Therefore, a high flatness is required for the surface on which elements and the like are formed in this type of glass substrate, and the characteristic of the thickness of the glass substrate is an important factor in order to satisfy the requirement.

このようなフラットディスプレイパネル用のガラス基板の板厚特性に着目したものとして、特許文献1によれば、短辺寸法が300〜3000mmであって長辺寸法が300〜3000mmであり且つ平均板厚が1.5〜3.0mmのガラス基板について、最大板厚と最小板厚との板厚差を20μm以下とすること、及び長さ100mm単位間に亘る板厚測定範囲における最大板厚と最小板厚との板厚差を10μm以下(更には5μm以下)とすることが開示されている。   According to Patent Document 1, the short side dimension is 300 to 3000 mm, the long side dimension is 300 to 3000 mm, and the average plate thickness is based on the thickness characteristics of the glass substrate for such a flat display panel. For a glass substrate having a thickness of 1.5 to 3.0 mm, the difference between the maximum thickness and the minimum thickness is set to 20 μm or less, and the maximum thickness and the minimum in the thickness measurement range over a length of 100 mm. It is disclosed that the difference in plate thickness from the plate thickness is 10 μm or less (further 5 μm or less).

特開2004−87382号公報JP 2004-87382 A

ところで、上記例示の特許文献1に開示されたガラス基板は、同文献の段落[0024]及び図1に記載されているように、レーザー式厚み計で一辺に沿う方向の全幅に亘って走査することで、ガラス基板の全幅や100mm単位間における最大及び最小の板厚差を求めるものである。すなわち、同文献に開示のガラス基板は、単一の方向性を持つ断面においてのみ板厚の最大及び最小の板厚差を求めるものであり、しかもその板厚測定範囲の最小単位は100mmとされている。   By the way, as described in paragraph [0024] and FIG. 1 of the above document, the glass substrate disclosed in the above-mentioned Patent Document 1 scans over the entire width in the direction along one side with a laser thickness gauge. Thus, the maximum and minimum plate thickness differences between the entire width of the glass substrate and 100 mm units are obtained. That is, the glass substrate disclosed in the same document obtains the maximum and minimum difference in plate thickness only in a cross section having a single directionality, and the minimum unit of the plate thickness measurement range is 100 mm. ing.

このように、単一の方向性を持つ断面のみで板厚差を求める手法では、ガラス基板の面内における二次元(X座標とこれに直交するY座標との双方)での板厚差を把握することができず、例えば面内の任意の点からX方向における板厚差は判明するものの、Y方向における板厚差は判明しなくなる等の事態を招く。そのため、面内の任意の点を基準としてX方向の測定単位での板厚差の最大値が許容範囲内にあるために良質部であると判断されても、Y方向の測定単位での板厚差が許容範囲を逸脱していたならば、その良質部であるとの判断は誤ったものとなる。なお、仮に二つの方向性を持つ断面により板厚差を求めるようにしたとしても、別々の断面でそれぞれ個別に板厚差を求めていたのでは、任意の点を基準としてその周囲との間での板厚差の最大値を把握することはできず、そのため局部的に生じている本来の不当な板厚変化を認識することはできない。しかも、同公報に開示のように、板厚測定範囲の最小単位が100mmであれば、その最小単位が大き過ぎることにより局部的に生じている不当な板厚変化を緻密に認識することができず、またそのような不当な板厚変化が存在している箇所を見落とすことも生じ得る。   In this way, in the method of obtaining the plate thickness difference only with a cross section having a single directionality, the plate thickness difference in two dimensions (both the X coordinate and the Y coordinate orthogonal to this) in the plane of the glass substrate is calculated. For example, the plate thickness difference in the X direction can be determined from an arbitrary point in the plane, but the plate thickness difference in the Y direction cannot be determined. Therefore, even if it is determined that the plate is a good part because the maximum value of the plate thickness difference in the measurement unit in the X direction is within the allowable range with respect to an arbitrary point in the plane, the plate in the measurement unit in the Y direction. If the thickness difference deviates from the permissible range, the judgment that it is a good quality part is wrong. Note that even if the thickness difference is obtained by a cross section having two directions, if the thickness difference is individually obtained by a separate cross section, the difference between the surroundings based on an arbitrary point It is impossible to grasp the maximum value of the plate thickness difference at this point, and therefore it is not possible to recognize the original unjustified plate thickness change occurring locally. In addition, as disclosed in the same publication, if the minimum unit of the thickness measurement range is 100 mm, an undue change in thickness that is locally caused by the minimum unit being too large can be accurately recognized. In addition, it is possible to overlook a place where such an inappropriate thickness change exists.

以上のように、ガラス基板の面内における任意の点を基準としてその周囲に対する板厚差を正確に把握できなければ、上述の素子や構造体をガラス基板上に形成するためのフォトプロセスにおける露光等を的確に行うことが困難となる。すなわち、このフォトプロセスで露光・現像する場合には、形成する素子等が微細であるために焦点深度の浅い露光を必要とする露光機を使用せねばならならないとの要請が多々有る。特に、そのような場合に、上述のように一つの方向性を持つ断面での板厚差の計測、並びに板厚測定範囲の最小単位を100mmとする板厚差の計測を行っただけでは、ガラス基板の表面に対する露光機の焦点距離の適正化つまり露光ズレ抑止の観点から、そのガラス基板の表面の平坦度がそれに見合うに十分な高度性を有することが困難或いは不可能となる。   As described above, if the plate thickness difference with respect to the surroundings can not be accurately grasped based on an arbitrary point in the plane of the glass substrate, exposure in the photo process for forming the above-described elements and structures on the glass substrate It is difficult to accurately perform the above. That is, in the case of exposure / development by this photo process, there are many requests that an exposure machine that requires exposure with a shallow depth of focus must be used because the elements to be formed are fine. In particular, in such a case, simply by measuring the plate thickness difference at the cross section having one direction as described above, and by measuring the plate thickness difference with the minimum unit of the plate thickness measurement range being 100 mm, From the standpoint of optimizing the focal length of the exposure device with respect to the surface of the glass substrate, that is, suppressing exposure deviation, it is difficult or impossible for the flatness of the surface of the glass substrate to have a high degree of precision to meet it.

本発明は、上記事情に鑑み、ガラス基板の任意の点から板厚差を計測する方向性を的確なものとし、且つ板厚測定範囲の最小単位の適正化をも図ることにより、従来は困難或いは不可能とされていた用途に対しても、十分に対処可能な平坦度を有するガラス基板を提供することを技術的課題とする。   In view of the above circumstances, the present invention is difficult in the past by making the directionality for measuring the thickness difference from an arbitrary point of the glass substrate and by optimizing the minimum unit of the thickness measurement range. Alternatively, it is a technical problem to provide a glass substrate having flatness that can be sufficiently dealt with even for applications that have been impossible.

上記技術的課題を解決するために創案された本発明は、縦方向寸法が300mm以上であり且つ横方向寸法が300mm以上であって、その板厚の平均値が0.3〜4.0mmの範囲内にあるフロート法により製造されたガラス基板において、面内におけるあらゆる位置を基準点として、直交する二辺にそれぞれ沿う方向をX方向およびY方向とした場合に、前記基準点からX方向の両側にそれぞれ20mm離れたA点およびB点と、前記基準点からY方向の両側にそれぞれ20mm離れたC点およびD点と、前記基準点からX方向の両側にそれぞれ20mm離れ且つ前記基準点からY方向の両側にそれぞれ20mm離れたE点、F点、G点およびH点との計八点のそれぞれの板厚と、前記基準点の板厚との差の絶対値が、3μm以下であって、その表面に膜が形成され且つフォトプロセスにより露光・現像されて素子または構造体が形成されるものであることに特徴づけられる。上記のガラス基板としては、PDP、FED、LCD、またはELD等のフラットディスプレイパネル用のガラス基板を挙げることができる。なお、上記の「あらゆる」を、以下においては、「任意の」という。 The present invention, which was created to solve the above technical problems, has a longitudinal dimension of 300 mm or more and a transverse dimension of 300 mm or more, and an average value of the plate thickness is 0.3 to 4.0 mm. In the glass substrate manufactured by the float method in the range, when any position in the plane is a reference point and the directions along two orthogonal sides are the X direction and the Y direction, A point and B point 20 mm apart on both sides, C point and D point 20 mm apart on both sides in the Y direction from the reference point, and 20 mm respectively on both sides in the X direction from the reference point and from the reference point The absolute value of the difference between the total thickness of E point, F point, G point and H point, 20 mm apart on both sides in the Y direction, and the thickness of the reference point was 3 μm or less. Characterized in that the exposed and developed by film is formed on the surface and photo-processes are those elements or structure is formed. Examples of the glass substrate include glass substrates for flat display panels such as PDP, FED, LCD, or ELD. In the following, “everything” is referred to as “arbitrary”.

このような構成によれば、ガラス基板における面内の任意の位置を基準点として、その周囲の45°間隔おきの八方向における単位長さ離隔したそれぞれの点の板厚と、基準点の板厚との差の絶対値が、3μm以下に設定されているので、一方向においてのみ板厚差を求めていた場合と比較して、ガラス基板の局部に不当な板厚変化が存在しているか否かが、見落とされることなく確実に検出されていることになる。しかも、基準点からその周囲の八点までの離隔長さは、A点、B点、C点およびD点については、20mmであり、E点、F点、G点およびH点については、√2×20mmであって、何れも適切に短くされているので、ガラス基板に局部的に生じ得る不当な板厚変化が緻密に検出されていることになる。換言すれば、ガラス基板の全域における板厚差の検出が、20×20mm(20mm角)を一要素として四つの要素からなるエリア毎になされていることになる。以上のように、任意の基準点から等角度で周囲八方向に妥当な短距離を隔ててなる八点に対する板厚差(絶対値)が3μm以下とされているので、ガラス基板の面が高度な平坦度を有することになり、従来は困難或いは不可能とされていた例えば後述する当該ガラス基板の面に対するフォトプロセスにおける露光ズレの抑止対策用途に代表されるように、多種の用途に対応することが可能となる。すなわち、上記の八点に対する板厚差(絶対値)が3μmを超えると、ガラス基板に不当な板厚変化が生じている部分が存在することになり、当該ガラス基板の表面に膜形成や素子形成処理等を施す際に支障を来たすなどして、当該ガラス基板の用途が限定されることになるが、3μm以下であれば、そのような不具合が回避され得ることになる。   According to such a configuration, the thickness of each point separated by a unit length in eight directions at intervals of 45 ° around the arbitrary position in the plane of the glass substrate, and the plate of the reference point Since the absolute value of the difference from the thickness is set to 3 μm or less, is there an undue thickness change in the local area of the glass substrate compared to the case where the thickness difference is obtained only in one direction? No is reliably detected without being overlooked. Moreover, the separation length from the reference point to the eight surrounding points is 20 mm for the points A, B, C, and D, and for the points E, F, G, and H, √ Since both are 2 × 20 mm and are appropriately shortened, an undue thickness change that can locally occur on the glass substrate is precisely detected. In other words, the detection of the plate thickness difference in the entire area of the glass substrate is performed for each area composed of four elements with 20 × 20 mm (20 mm square) as one element. As described above, since the plate thickness difference (absolute value) with respect to eight points that are equiangularly spaced from an arbitrary reference point and separated by a reasonable short distance in the eight surrounding directions is 3 μm or less, the surface of the glass substrate is highly advanced. For example, it is difficult or impossible in the past, and it can be used for various purposes as represented by, for example, a countermeasure for suppressing exposure deviation in the photo process for the surface of the glass substrate described later. It becomes possible. That is, when the difference in thickness (absolute value) with respect to the above eight points exceeds 3 μm, there is a portion where an inappropriate thickness change occurs in the glass substrate. The use of the glass substrate is limited by causing trouble when performing the forming process or the like, but if it is 3 μm or less, such a problem can be avoided.

この場合、前記ガラス基板における板厚の平均値は1.3〜4.0mmの範囲内であってもよい。   In this case, the average value of the plate thickness in the glass substrate may be in the range of 1.3 to 4.0 mm.

このようにすれば、LCDを除く上記例示したフラットディスプレイパネル用のガラス基板について、上述の事項と同様の作用効果を的確に得ることができる。   If it does in this way, the effect similar to the above-mentioned matter can be obtained precisely about the glass substrate for flat display panels illustrated above except LCD.

本発明では、既述のように、前記計八点のそれぞれの板厚と、前記基準点の板厚との差の絶対値が、3μm以下である当該ガラス基板は、その表面に膜が形成され且つフォトプロセスにより露光・現像されて素子または構造体が形成されるものである In the present invention, as described above, the glass substrate in which the absolute value of the difference between the thickness of each of the total eight points and the thickness of the reference point is 3 μm or less has a film formed on the surface thereof. is it and what exposure by a photo process developed by element or structure is formed.

このようにすれば、ガラス基板の面内における任意の位置を基準点としてその周囲の八方向に対する板厚差(絶対値)が3μm以下とされているので、素子や構造体をガラス基板上に形成するためのフォトプロセスにおける露光等を的確に行うことが可能となる。すなわち、このフォトプロセスで露光・現像する場合には、形成する素子等が微細であることに起因して、焦点深度の浅い露光を必要とする露光機の使用を余儀なくされる場合がある。特に、そのような場合に、任意の基準点から八つの方向性を有する板厚差の計測、並びに板厚測定範囲の最小単位を20mm(または√2×20mm)とする板厚差の計測を行っており、その計測結果が3μm以下とされているので、ガラス基板の表面に対する露光機の焦点距離の適正化つまり露光ズレ抑止に着目すれば、そのガラス基板の表面の平坦度がそれに見合うに十分な高度性を有することになる。   In this way, since the plate thickness difference (absolute value) with respect to the eight directions around the arbitrary position in the plane of the glass substrate is 3 μm or less, the element or the structure is placed on the glass substrate. It is possible to accurately perform exposure in the photo process for forming. That is, in the case of exposure / development by this photo process, an exposure machine that requires exposure with a shallow depth of focus may be inevitably used because of the fine elements to be formed. In particular, in such a case, measurement of a plate thickness difference having eight directions from any reference point, and measurement of a plate thickness difference in which the minimum unit of the plate thickness measurement range is 20 mm (or √2 × 20 mm). Since the measurement result is 3 μm or less, the flatness of the surface of the glass substrate is commensurate with the optimization of the focal length of the exposure device with respect to the surface of the glass substrate, that is, the suppression of exposure deviation. It will have sufficient altitude.

以上の構成を備えたガラス基板は、既述のように、フロート法により製造されるAs described above , the glass substrate having the above configuration is manufactured by the float process.

このフロート法によれば、溶融ガラスをフロートバスの溶融錫上に浮かせることにより、溶融ガラスが自然に広がって安定した厚みのガラスリボンが得られるという利点を本来的に有しているため、上述の如く板厚特性が良好なガラス基板を得る上で極めて有利となる。   According to this float method, since the molten glass floats on the molten tin of the float bath, the molten glass naturally naturally has an advantage that a glass ribbon having a stable thickness can be obtained. Thus, it is extremely advantageous to obtain a glass substrate having a good plate thickness characteristic.

また、以上の構成を備えたガラス基板は、プラズマディスプレイまたはフィールドエミッションディスプレイもしくは液晶ディスプレイに用いられることにより、その効果を最大限に発揮できると共に、このガラス基板を用いて、フラットディスプレイパネルを製作すれば、品質の優れたパネルを得ることができる。   In addition, the glass substrate having the above configuration can be used for a plasma display, a field emission display, or a liquid crystal display to maximize its effects, and a flat display panel can be manufactured using this glass substrate. If so, a panel with excellent quality can be obtained.

以上のように本発明によれば、ガラス基板の板厚特性として、その面内における任意の基準点から等角度で周囲八方向に短い距離を隔てた各点に対する板厚差(絶対値)が3μm以下とされているので、ガラス基板の面が高度な平坦度を有することになり、従来は困難或いは不可能とされていた当該ガラス基板の面に対するフォトプロセスでの露光ズレの抑止対策に代表されるように、多種の用途に対応することが可能となる。   As described above, according to the present invention, as the plate thickness characteristic of the glass substrate, there is a plate thickness difference (absolute value) with respect to each point separated by a short distance in the surrounding eight directions at an equal angle from an arbitrary reference point in the plane. Since it is 3 μm or less, the surface of the glass substrate has a high degree of flatness, which is representative of measures to prevent exposure deviation in the photo process on the surface of the glass substrate, which has been difficult or impossible in the past. As described above, it is possible to cope with various applications.

以下、本発明の実施形態に係るガラス基板を図面を参照しつつ説明する。なお、当該ガラス基板は、PDP、FED、LCD、或いはELDに使用されるものである。   Hereinafter, a glass substrate according to an embodiment of the present invention will be described with reference to the drawings. The glass substrate is used for PDP, FED, LCD, or ELD.

図1に示すように、本発明の実施形態に係るガラス基板1は、フロート法により製造されたものであって、縦方向寸法aが300mm以上(具体的には、400mm)であり且つ横方向寸法bが300mm以上(具体的には、500mm)であって、その板厚の平均値が0.3〜4.0mm(好ましくは1.3〜4.0mm)の範囲内にある。 As shown in FIG. 1, a glass substrate 1 according to an embodiment of the present invention is manufactured by a float process, and has a longitudinal dimension a of 300 mm or more (specifically, 400 mm) and a lateral direction. The dimension b is 300 mm or more (specifically, 500 mm), and the average value of the plate thickness is in the range of 0.3 to 4.0 mm (preferably 1.3 to 4.0 mm).

このガラス基板1の特徴は、面内における任意の位置を基準点Oとして、直交する二つの辺2、3にそれぞれ沿う方向をX方向およびY方向とした場合に、基準点OからX方向の両側にそれぞれ20mm離れたA点およびB点と、基準点OからY方向の両側にそれぞれ20mm離れたC点およびD点と、基準点OからX方向の両側にそれぞれ20mm離れ且つ基準点OからY方向の両側にそれぞれ20mm離れたE点、F点、G点およびH点との計八点のそれぞれの板厚と、基準点Oの板厚との差の絶対値が、3μm以下とされているところにある。   The feature of the glass substrate 1 is that an arbitrary position in the plane is a reference point O and the directions along the two orthogonal sides 2 and 3 are the X direction and the Y direction, respectively. A point and B point 20 mm apart on both sides, C point and D point 20 mm apart on both sides in the Y direction from the reference point O, and 20 mm respectively on both sides in the X direction from the reference point O and from the reference point O The absolute value of the difference between the thickness of each of the eight points, E point, F point, G point, and H point, which are 20 mm apart on both sides in the Y direction, and the reference point O is 3 μm or less. There is.

詳述すると、上記の基準点Oの板厚とA点の板厚との差、基準点Oの板厚とB点の板厚との差、基準点Oの板厚とC点の板厚との差、基準点Oの板厚とD点の板厚との差、基準点Oの板厚とD点の板厚との差、基準点Oの板厚とE点の板厚との差、基準点Oの板厚とF点の板厚との差、基準点Oの板厚とG点の板厚との差、基準点Oの板厚とH点の板厚との差、すなわちこれら八つの差の絶対値が、全て3μm以下とされている。   Specifically, the difference between the thickness of the reference point O and the thickness of the A point, the difference between the thickness of the reference point O and the thickness of the B point, the thickness of the reference point O and the thickness of the C point. The difference between the thickness of the reference point O and the thickness of the D point, the difference between the thickness of the reference point O and the thickness of the D point, the thickness of the reference point O and the thickness of the E point The difference between the thickness of the reference point O and the thickness of the F point, the difference between the thickness of the reference point O and the thickness of the G point, the difference between the thickness of the reference point O and the thickness of the H point, That is, the absolute values of these eight differences are all 3 μm or less.

また、上記の基準点Oから、A点、B点、C点、D点までの離隔長さは、全て20mmとされると共に、基準点Oから、E点、F点、G点、H点までの離隔長さは、全て√2×20mmとされている。更に、基準点Oを中心として、上記の八つの点は、45°の等角度で配設されている。   The distances from the reference point O to the points A, B, C, and D are all 20 mm, and from the reference point O, points E, F, G, and H. The separation lengths up to are all √2 × 20 mm. Further, the eight points above the reference point O are arranged at an equal angle of 45 °.

したがって、このガラス基板1における20×20mm(20mm角)を一要素として、四つの要素からなる一群の集合部分が、一の板厚良質エリアとされている。そして、基準点Oを、ガラス基板1の如何なる位置に設定しても、この基準点OとA点〜H点とは、上記の関係を満たしている。   Therefore, 20 × 20 mm (20 mm square) in this glass substrate 1 is taken as one element, and a group of four parts consisting of four elements is regarded as one plate thickness high quality area. And even if the reference point O is set at any position on the glass substrate 1, the reference point O and the points A to H satisfy the above relationship.

また、このガラス基板1の表面は、膜が形成され且つフォトプロセスにより露光・現像されて素子または構造体が形成される面である。そして、このガラス基板1の表面は、形成する素子等が微細で焦点深度の浅い露光が必要とされるような場合であっても、露光ズレ等の生じない平坦な面とされている。   The surface of the glass substrate 1 is a surface on which a film is formed and exposed or developed by a photo process to form an element or a structure. The surface of the glass substrate 1 is a flat surface that does not cause exposure misalignment even when the element to be formed is fine and exposure with a shallow depth of focus is required.

このような板厚特性を備えたガラス基板1によれば、面内の任意の位置を基準点Oとして、その周囲の45°間隔おきの八方向における単位長さ離隔したそれぞれの点の板厚と、基準点Oの板厚との差の絶対値が、3μm以下とされているので、ガラス基板1の局部に不当な板厚変化が存在していないことが、板厚差計測の方向性の多数化によって、見落とされることなく確実に検査されていることになる。しかも、基準点Oからその周囲の八点までの離隔長さは、A点、B点、C点およびD点については、20mmであり、E点、F点、G点およびH点については、√2×20mmであって、何れも適切に短くされているので、ガラス基板1に局部的に生じ得る不当な板厚変化が緻密に検査されていることになる。したがって、ガラス基板1の表面は、高度な平坦度を有することになり、このガラス基板1の表面に対するフォトプロセスにおける露光ズレの発生等が抑止される。   According to the glass substrate 1 having such a plate thickness characteristic, the plate thickness of each point separated by a unit length in eight directions at intervals of 45 ° around the arbitrary position in the plane as a reference point O. Since the absolute value of the difference between the thickness of the reference point O and the thickness of the reference point O is 3 μm or less, there is no undue change in thickness in the local area of the glass substrate 1. The increase in the number of inspections ensures that the inspection is performed without being overlooked. Moreover, the separation length from the reference point O to the eight surrounding points is 20 mm for the points A, B, C and D, and for the points E, F, G and H, Since √2 × 20 mm, both of which are appropriately shortened, an undue thickness change that may occur locally on the glass substrate 1 is closely inspected. Therefore, the surface of the glass substrate 1 has a high degree of flatness, and the occurrence of an exposure shift in the photo process with respect to the surface of the glass substrate 1 is suppressed.

本発明の実施例1〜5として、縦方向寸法が400mmであり且つ横方向寸法が500mmであって板厚(板厚の平均値)が1.8mmのPDP用のガラス基板を、フロート法を用いて製作した。なお、ガラス材質は、日本電気硝子株式会社製のPP−8Cである。これら実施例1〜5に係るガラス基板のフロート法による成形に際しては、{第1に、フロートバス内におけるガラス流れ方向の温度分布、第2に、フロートバス内におけるガラス流れ方向と直交する方向の温度分布、第3に、フロートバス内に流入する溶融ガラス生地の温度、第4に、フロートバスの直下流側のレヤー(搬送路)における幅方向の温度分布、第5に、上記レヤーの搬送ロールの真円度、第6に、上記レヤーの搬送ロールの回転速度ムラ}の六つの成形条件について、本発明者等が、各条件を個別に調整するのみならず、各条件を相互の関連性を考慮して緻密に調整した。そして、これにより得られた実施例1〜5に係るガラス基板について、既に図1に基づいて説明した基準点Oの板厚と、A点〜H点の板厚との差を、20mm角を一要素として四つの要素からなるエリア毎に、各ガラス基板の全域に亘って超音波方式の板厚測定機により測定し、その最大値の絶対値を、下記の表1に示した。また、比較例1、2として、上記の六つの成形条件を従来通りのまま(各条件を相互の関連性を考慮して緻密に調整しないまま)で上記と同様の縦横寸法及び板厚のガラス基板を製造し、上記と同様の方法で各ガラス基板について得られた最大値の絶対値を、下記の表1に示した。   As Examples 1 to 5 of the present invention, a glass substrate for a PDP having a vertical dimension of 400 mm and a horizontal dimension of 500 mm and a plate thickness (average thickness) of 1.8 mm is obtained by a float method. Made using. The glass material is PP-8C manufactured by Nippon Electric Glass Co., Ltd. In forming these glass substrates according to Examples 1 to 5 by the float method, {firstly, the temperature distribution in the glass flow direction in the float bath, and secondly, in the direction orthogonal to the glass flow direction in the float bath. Temperature distribution, third, temperature of the molten glass dough flowing into the float bath, fourth, temperature distribution in the width direction in the layer (conveying path) immediately downstream of the float bath, fifth, transport of the layer Regarding the six forming conditions of the roundness of the roll and, sixthly, the rotational speed unevenness of the layered transport roll, the present inventors not only individually adjust the conditions but also relate the conditions to each other. In consideration of the characteristics, it was adjusted precisely. And about the glass substrate which concerns on Examples 1-5 obtained by this, the difference of the plate | board thickness of the reference | standard point O already demonstrated based on FIG. 1 and the plate | board thickness of A point-H point is 20 mm square. For each area composed of four elements as one element, measurement was made with an ultrasonic thickness measuring machine over the entire area of each glass substrate, and the absolute value of the maximum value is shown in Table 1 below. Further, as Comparative Examples 1 and 2, the above-mentioned six molding conditions remain the same as before (each condition is not precisely adjusted in consideration of the reciprocal relationship), and the glass has the same vertical and horizontal dimensions and thickness as above. The absolute value of the maximum value obtained for each glass substrate in the same manner as described above is shown in Table 1 below.

更に、図2(a)は、実施例1について、20mm角を一単位としてガラス基板の全域に亘る板厚の変化を模式的に表わした概略斜視図であり、図2(b)は、同じく実施例1について、20mm角を一単位としてガラス基板の全域に亘る板厚の差の変化を模式的に表わした概略斜視図である。また、図3(a)は、比較例1について、20mm角を一単位としてガラス基板の全域に亘る板厚の変化を模式的に表わした概略斜視図であり、図3(b)は、同じく比較例1について、20mm角を一単位としてガラス基板の全域に亘る板厚の差の変化を模式的に表わした概略斜視図である。   Further, FIG. 2A is a schematic perspective view schematically showing a change in the plate thickness over the entire area of the glass substrate with the 20 mm square as one unit in Example 1, and FIG. FIG. 4 is a schematic perspective view schematically showing a change in a difference in plate thickness over the entire area of a glass substrate, with a 20 mm square as a unit in Example 1. FIG. 3A is a schematic perspective view schematically showing a change in the thickness of the glass substrate over the entire area of the glass substrate with the 20 mm square as a unit in Comparative Example 1, and FIG. It is a schematic perspective view which represented typically the change of the difference of the plate | board thickness over the whole region of a glass substrate by making 20mm square into 1 unit about the comparative example 1. FIG.

以上の測定に加えて、実施例1〜5及び比較例1、2に係るガラス基板を、露光機の定盤に吸着保持させた状態で、図1に示す基準点Oと、A点〜H点との高低差を、20mm角を一要素として四つの要素からなるエリア毎に、各ガラス基板の全域に亘って触針式の表面粗さ測定機により測定し、その最大値の絶対値を、下記の表1に示した。このような測定を行ったのは、下記の理由による。すなわち、ガラス基板の素子形成面の平坦度は、フォトプロセスにおける露光の際に、ガラス基板が露光機の定盤上にほぼ理想吸着しているとみなされ、ガラス基板の反りの要因を除去することができるため、実質的に、ガラス基板の板厚の差(偏肉)で決まることになる。したがって、既述の露光機の焦点深度からくる要求に対しては、部分的なエリアに限定して求められた偏肉が小さいガラス基板である必要性が生じる。   In addition to the above measurements, the glass substrates according to Examples 1 to 5 and Comparative Examples 1 and 2 are sucked and held on the surface plate of the exposure machine, and the reference point O and the points A to H shown in FIG. The height difference from the point is measured by a stylus type surface roughness measuring device over the entire area of each glass substrate for each area consisting of four elements with a 20 mm square as one element, and the absolute value of the maximum value is calculated. The results are shown in Table 1 below. Such a measurement was performed for the following reason. That is, the flatness of the element formation surface of the glass substrate is considered that the glass substrate is almost ideally adsorbed on the surface plate of the exposure machine during the exposure in the photo process, and the cause of the warp of the glass substrate is removed. Therefore, it is substantially determined by the difference in thickness (uneven thickness) of the glass substrate. Therefore, it is necessary to use a glass substrate with a small deviation in thickness obtained by limiting to a partial area in response to the request from the depth of focus of the exposure apparatus described above.

Figure 0005623001
Figure 0005623001

上記の表1(図2(a)、(b)をも参照)によれば、実施例1〜5の何れについても、20mm角を一要素として四つの要素からなるエリアの板厚差(部分偏肉)が、ガラス基板の全域において3.0μm以下であって良好なものと判定することができ、且つ露光機の定盤で吸着したガラス基板の平坦度を示す高低差の最大値も3.0μm以下であり、焦点深度の浅い露光機であっても露光ズレが生じないことを確認した。   According to Table 1 above (see also FIGS. 2 (a) and 2 (b)), any of Examples 1 to 5 has a plate thickness difference (part) of four elements with 20 mm square as one element. The unevenness) is 3.0 μm or less over the entire area of the glass substrate and can be determined to be good, and the maximum difference in height indicating the flatness of the glass substrate adsorbed by the surface plate of the exposure machine is 3 It was confirmed that no exposure deviation occurred even with an exposure apparatus having a depth of focus of 0.0 μm or less and a shallow focal depth.

一方、上記の表1(図3(a)、(b)をも参照)によれば、比較例1、2は何れも、ガラス基板の部分偏肉が3μm超(更には4μm以上)であって不適切なものと判定することができ、且つ露光機の定盤で吸着したガラス基板の平坦度を示す高低差の最大値も4.5μm以上であり、焦点深度の浅い露光機を使用した場合に露光ズレの発生確率が高くなることを確認した。   On the other hand, according to Table 1 above (see also FIGS. 3A and 3B), in Comparative Examples 1 and 2, the partial thickness deviation of the glass substrate was more than 3 μm (more than 4 μm). The maximum height difference indicating the flatness of the glass substrate adsorbed by the surface plate of the exposure machine is 4.5 μm or more, and an exposure machine with a shallow depth of focus was used. In this case, it was confirmed that the probability of occurrence of exposure deviation increases.

本発明の実施形態に係るガラス基板の板厚測定エリアを示す要部概略平面図である。It is a principal part schematic plan view which shows the plate | board thickness measurement area of the glass substrate which concerns on embodiment of this invention. 図2(a)は、本発明の実施例1に係るガラス基板について、20mm角を一単位としてガラス基板の全域に亘る板厚の変化を模式的に表わした概略斜視図、図2(b)は、同じく実施例1に係るガラス基板について、20mm角を一単位としてガラス基板の全域に亘る板厚の差の変化を模式的に表わした概略斜視図である。FIG. 2A is a schematic perspective view schematically showing a change in the thickness of the glass substrate according to the first embodiment of the present invention over the entire area of the glass substrate with a 20 mm square as a unit, and FIG. These are the schematic perspective views which represented typically the change of the difference of the plate | board thickness over the whole region of a glass substrate about 20 mm square as a unit about the glass substrate which concerns on Example 1 similarly. 図3(a)は、比較例1に係るガラス基板について、20mm角を一単位としてガラス基板の全域に亘る板厚の変化を模式的に表わした概略斜視図、図3(b)は、同じく比較例1に係るガラス基板について、20mm角を一単位としてガラス基板の全域に亘る板厚の差の変化を模式的に表わした概略斜視図である。FIG. 3A is a schematic perspective view schematically showing a change in thickness of the glass substrate according to Comparative Example 1 over the entire area of the glass substrate with a 20 mm square as a unit, and FIG. About the glass substrate which concerns on the comparative example 1, it is a schematic perspective view which represented typically the change of the difference of the plate | board thickness over the whole region of a glass substrate by making 20mm square into 1 unit.

符号の説明Explanation of symbols

1 ガラス基板
2 辺
3 辺
A 板厚差の測定点
B 板厚差の測定点
C 板厚差の測定点
D 板厚差の測定点
E 板厚差の測定点
F 板厚差の測定点
G 板厚差の測定点
H 板厚差の測定点
O 基準点
a 縦方向寸法
b 横方向寸法
1 Glass substrate 2 Side 3 Side A Plate thickness difference measurement point B Plate thickness difference measurement point C Plate thickness difference measurement point D Plate thickness difference measurement point E Plate thickness difference measurement point F Plate thickness difference measurement point G Thickness difference measuring point H Thickness difference measuring point O Reference point a Longitudinal dimension b Lateral dimension

Claims (1)

縦方向寸法が300mm以上であり且つ横方向寸法が300mm以上であって、その板厚の平均値が0.3〜4.0mmの範囲内にあるフロート法により製造されたガラス基板において、
面内におけるあらゆる位置を基準点として、直交する二辺にそれぞれ沿う方向をX方向およびY方向とした場合に、前記基準点からX方向の両側にそれぞれ20mm離れたA点およびB点と、前記基準点からY方向の両側にそれぞれ20mm離れたC点およびD点と、前記基準点からX方向の両側にそれぞれ20mm離れ且つ前記基準点からY方向の両側にそれぞれ20mm離れたE点、F点、G点およびH点との計八点のそれぞれの板厚と、前記基準点の板厚との差の絶対値が、3μm以下であって、
その表面に膜が形成され且つフォトプロセスにより露光・現像されて素子または構造体が形成されるものであることを特徴とするガラス基板。
In the glass substrate manufactured by the float method in which the vertical dimension is 300 mm or more and the horizontal dimension is 300 mm or more, and the average value of the plate thickness is in the range of 0.3 to 4.0 mm,
When any position in the plane is a reference point, and the directions along two orthogonal sides are the X direction and the Y direction, respectively, the points A and B that are 20 mm away from the reference point on both sides in the X direction, Points C and D that are 20 mm apart on both sides in the Y direction from the reference point; points E and F that are 20 mm apart on both sides in the X direction from the reference point and 20 mm apart on both sides in the Y direction from the reference point , The absolute value of the difference between the total thickness of each of the eight points of G point and H point and the thickness of the reference point is 3 μm or less,
A glass substrate, wherein a film is formed on the surface and an element or a structure is formed by exposure and development by a photo process.
JP2007332599A 2007-12-25 2007-12-25 Glass substrate Expired - Fee Related JP5623001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007332599A JP5623001B2 (en) 2007-12-25 2007-12-25 Glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007332599A JP5623001B2 (en) 2007-12-25 2007-12-25 Glass substrate

Publications (2)

Publication Number Publication Date
JP2009155136A JP2009155136A (en) 2009-07-16
JP5623001B2 true JP5623001B2 (en) 2014-11-12

Family

ID=40959550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007332599A Expired - Fee Related JP5623001B2 (en) 2007-12-25 2007-12-25 Glass substrate

Country Status (1)

Country Link
JP (1) JP5623001B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011052485A1 (en) * 2009-10-26 2013-03-21 旭硝子株式会社 Glass substrate for display and manufacturing method thereof
CN109387967A (en) 2017-08-10 2019-02-26 Agc株式会社 TFT glass substrate
JP7070197B2 (en) * 2017-08-10 2022-05-18 Agc株式会社 Glass substrate for TFT
JP2022082021A (en) * 2020-11-20 2022-06-01 日本電気硝子株式会社 Glass substrate for display

Also Published As

Publication number Publication date
JP2009155136A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
CN109778114B (en) Metal plate for manufacturing vapor deposition mask, method for manufacturing metal plate, vapor deposition mask, and method for manufacturing vapor deposition mask
KR100971753B1 (en) Mask assembly for thin film vapor deposition of flat panel display
JP5382259B1 (en) Metal plate, method for producing metal plate, and method for producing vapor deposition mask using metal plate
JP2018506497A (en) Glass substrate and display device having the same
JP5623001B2 (en) Glass substrate
KR20230061572A (en) Metal sheet, method for manufacturing metal sheet, and method for manufacturing vapor deposition mask using metal sheet
US10591760B2 (en) Alignment detection method and display device
CN111712471B (en) Glass substrate set and method for manufacturing same
TWI602763B (en) Transfer apparatus of a glass substrate, and the manufacturing method of a glass substrate
JP5686139B2 (en) Manufacturing method of glass substrate for liquid crystal display panel
JP2009117301A (en) Glass substrate and method of inspecting warpage in glass substrate
JPWO2018105489A1 (en) Quality inspection method for glass strip and glass roll
KR20160102422A (en) Shape measuring device, shape measuring method, and glass plate manufacturing method
WO2011118333A1 (en) Thin glass sheet manufacturing device and method
JP2013130417A (en) Warpage measuring method for glass pane and manufacturing method of glass pane
TW201910277A (en) Glass substrate for TFT providing a glass substrate having a large glass sheet and a small thickness tolerance, and making it easier to adjust a focal point in an exposure process in a production line
TWI535533B (en) Method of measuring flatness of chamfering table
JP2012137758A (en) Glass substrate
KR102638488B1 (en) Glass for display
JP2010120797A (en) Glass substrate, flat panel display using the same and producing method of glass substrate
JP2009126725A (en) Manufacturing method and heat drawing apparatus for glass member
CN111587390A (en) Method for obtaining conditions for properly cutting polarizing plate
JP3633879B2 (en) Sheet glass sorting system
WO2022107547A1 (en) Glass substrate for display
US10882775B2 (en) Glass substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130827

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130903

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140924

R150 Certificate of patent or registration of utility model

Ref document number: 5623001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees