JP2010120797A - Glass substrate, flat panel display using the same and producing method of glass substrate - Google Patents

Glass substrate, flat panel display using the same and producing method of glass substrate Download PDF

Info

Publication number
JP2010120797A
JP2010120797A JP2008294535A JP2008294535A JP2010120797A JP 2010120797 A JP2010120797 A JP 2010120797A JP 2008294535 A JP2008294535 A JP 2008294535A JP 2008294535 A JP2008294535 A JP 2008294535A JP 2010120797 A JP2010120797 A JP 2010120797A
Authority
JP
Japan
Prior art keywords
glass substrate
coater
surface plate
upper contour
contour line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008294535A
Other languages
Japanese (ja)
Inventor
Toru Maeda
透 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2008294535A priority Critical patent/JP2010120797A/en
Publication of JP2010120797A publication Critical patent/JP2010120797A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass substrate where the variation of the thickness of a coated film is suppressed to the utmost even when a coating material is coated on a surface by a coater at a state that a rear surface is adsorbed on a surface plate with no space. <P>SOLUTION: In a vertical cross section S being in parallel with one side 1b at all positions along to another side 1a which is one of orthogonal two sides when the glass substrate 1 being used for a flat panel display, having a rectangular shape whose one side has a size of 300 mm or more and having a mean plate thickness of 0.3-4.0 mm is adsorbed on the surface plate 2 with no space, it is constituted so that a relation denoted as ¾D(X)-T(X)¾≤7.5 μm is satisfied when the length of a perpendicular dropped from an upper contour line L1 to the surface plate 2 is exhibited by a function T(X) showing a relation with a position X in a direction along one side 1b and the length of a perpendicular dropped from a virtual straight line L2 connecting both ends A, B of the upper contour line L1 to the surface plate 2 is exhibited by a function D(X) showing a relation with the position X. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、フラットパネルディスプレイ用のガラス基板およびその製造方法に関する。   The present invention relates to a glass substrate for a flat panel display and a manufacturing method thereof.

周知のように、プラズマディスプレイ(PDP)、フィールドエミッションディスプレイ(FED(サーフェイスエミッションディスプレイ(SED)を含む))、液晶ディスプレイ(LCD)、エレクトロルミネッセンスディスプレイ(ELD)等のフラットパネルディスプレイは、表面に微細な電極や隔壁等の素子或いは構造体を形成した2枚のガラス基板を対向させて製作される。   As is well known, flat panel displays such as plasma displays (PDP), field emission displays (including FED (including surface emission display (SED))), liquid crystal displays (LCD), and electroluminescence displays (ELD) are fine on the surface. Two glass substrates on which elements or structures such as transparent electrodes and partition walls are formed are made to face each other.

この種のガラス基板は、オーバーフローダウンドロー法(フュージョン法)やスロットダウンドロー法などのダウンドロー法や、フロート法に代表される公知の方法により溶融ガラスを板引き成形した後、その板引き成形により得られた大型のガラス元板を四辺が所定寸法の矩形になるように切断することで得られる。   This type of glass substrate is formed by drawing a molten glass by a drawing method such as an overflow down-draw method (fusion method) or a slot-down draw method, or a known method typified by a float method, and then drawing the plate. It is obtained by cutting the large glass base plate obtained by the above so that the four sides are rectangular with a predetermined dimension.

そして、この矩形状に切断されたガラス基板の表面には、コーターと称される塗布装置によってフラットパネルディスプレイの種類に応じた塗布材料を塗布することにより所定の塗布膜が形成された後、更にその塗布膜を例えばフォトレジスト法により露光・現像することにより上述の素子や構造体が形成される。   Then, after a predetermined coating film is formed on the surface of the glass substrate cut into a rectangular shape by applying a coating material according to the type of the flat panel display by a coating device called a coater, The above-described elements and structures are formed by exposing and developing the coating film by, for example, a photoresist method.

そのため、コーターによってガラス基板上に形成される塗布膜の厚みが不均一であると、露光を施した場合に露光ムラが生じ、精度よく素子や構造体を形成できなくなり、絶縁不良、発光不良、或いは画質劣化などのフラットパネルディスプレイにとって致命的な欠陥を招くおそれがある。   Therefore, if the thickness of the coating film formed on the glass substrate by the coater is uneven, exposure unevenness occurs when exposure is performed, and it becomes impossible to form elements and structures with high accuracy, insulation failure, light emission failure, Or there is a risk of causing a fatal defect for a flat panel display such as image quality degradation.

このような塗布膜の厚みの不良は、主としてガラス基板の板厚の特性が不適切であることに起因して生じる。その理由は、ガラス基板の板厚の特性が不適切であると、コーターからガラス基板の表面までの距離が部分的に変化し、コーターによって塗布材料を一定厚みでガラス基板に塗布することが困難となるためである。   Such a defect in the thickness of the coating film is mainly caused by the inappropriate thickness characteristics of the glass substrate. The reason is that if the thickness characteristics of the glass substrate are inadequate, the distance from the coater to the surface of the glass substrate will partially change, making it difficult to apply the coating material to the glass substrate with a constant thickness by the coater. It is because it becomes.

そこで、例えば、特許文献1では、このようなガラス基板の板厚の特性に着目して、上述の塗布膜の厚みが不均一になるという上述の問題に対処しようとしている。すなわち、同文献には、短辺寸法が300〜3000mm、長辺寸法が300〜3000mm、且つ、平均板厚が1.5〜3.0mmのガラス基板について、最大板厚と最小板厚との板厚差が20μm以下とすること、及び長さ100mm単位間に亘る板厚測定範囲における前記板厚差を10μm以下とすることなどが開示されている。
特開2004−87382号公報
Therefore, for example, in Patent Document 1, attention is paid to such a characteristic of the thickness of the glass substrate, and the above-described problem that the thickness of the coating film is not uniform is attempted to be addressed. That is, in the same document, the maximum plate thickness and the minimum plate thickness of a glass substrate having a short side dimension of 300 to 3000 mm, a long side dimension of 300 to 3000 mm, and an average plate thickness of 1.5 to 3.0 mm. It is disclosed that the plate thickness difference is 20 μm or less, and that the plate thickness difference in a plate thickness measurement range over a unit of length 100 mm is 10 μm or less.
JP 2004-87382 A

ところで、コーターによってガラス基板の表面に塗布材料を塗布する際、より正確な塗布を実現するために、ガラス基板の裏面を定盤の上に隙間なく吸着保持し、ガラス基板を定盤上に固定する場合がある。この場合、ガラス基板の裏面は定盤に密着しているため、ガラス基板の表面には、ガラス基板の裏面を定盤に吸着する前にガラス基板の裏面に生じていた凹凸の影響が生じる。すなわち、ガラス基板の表面に上方に凸となる凸部があり、同じ位置でガラス基板の裏面にも下方に凸となる凸部がある場合には、ガラス基板の裏面を定盤に吸着すると、ガラス基板の裏面の凸部が上方に押されてガラス基板の表面の凸部がより大きくなる。そのため、ガラス基板を定盤に吸着する前と、吸着した後で、ガラス基板の表面側に現れる凹凸の状態は大きく変化し、しかも、上述した例のように、吸着後のガラス基板の方が、表面に現れる凹凸の振幅も大きくなる傾向にある。したがって、ガラス基板の裏面を定盤の上に隙間なく吸着保持した状態で、ガラス基板の板厚特性を管理する必要が生じる。   By the way, when applying a coating material on the surface of a glass substrate with a coater, in order to realize more accurate application, the back surface of the glass substrate is adsorbed and held on the surface plate without any gap, and the glass substrate is fixed on the surface plate. There is a case. In this case, since the back surface of the glass substrate is in close contact with the surface plate, the surface of the glass substrate is affected by the unevenness generated on the back surface of the glass substrate before the back surface of the glass substrate is adsorbed to the surface plate. That is, when there is a convex portion that protrudes upward on the surface of the glass substrate, and there is a convex portion that protrudes downward also on the back surface of the glass substrate at the same position, when the back surface of the glass substrate is adsorbed to the surface plate, The convex part on the back surface of the glass substrate is pushed upward, and the convex part on the surface of the glass substrate becomes larger. Therefore, before and after adsorbing the glass substrate to the surface plate, and after adsorbing, the state of irregularities appearing on the surface side of the glass substrate changes greatly, and as in the example described above, the glass substrate after adsorption is more The amplitude of the irregularities appearing on the surface also tends to increase. Therefore, it is necessary to manage the thickness characteristics of the glass substrate while the back surface of the glass substrate is adsorbed and held on the surface plate without any gap.

また、コーターによってガラス基板の表面に塗布材料を塗布する場合、塗布膜の厚みを一定にするために、ガラス基板の表面の高さを基準としてコーターの姿勢を調整するのが通例であるので、ガラス基板の板厚特性は、コーターの姿勢を調整することを念頭にして管理する必要がある。   In addition, when applying a coating material on the surface of the glass substrate by a coater, it is customary to adjust the orientation of the coater based on the height of the surface of the glass substrate in order to make the thickness of the coating film constant, It is necessary to manage the thickness characteristics of the glass substrate in consideration of adjusting the posture of the coater.

ガラス基板の製造工程には、複数の塗布工程が含まれる場合があり、この場合にはガラス基板表面の中央部側の領域には、既に前工程で塗布膜やパターンが形成されて、ガラス基板表面の正確な高さを計測できないことがある。したがって、コーターの姿勢は、コーターの移動方向と直交する方向におけるガラス基板の両端部表面の高さを基準として調整することが実用上も好ましい。これは、ガラス基板の両端部であれば、塗布膜等が形成されずに正確な高さの計測が可能であるからである。しかしながら、特許文献1に開示されているガラス基板の板厚特性は、このようなガラス基板の両端部表面の高さを基準としてコーターの姿勢を調整することを前提とした規定ではない。そのため、同文献に開示の板厚特性を満たす場合でも、上記のようにコーターの姿勢を調整したときにガラス基板とコーターとの距離が不均一になり、均一に塗布膜を形成できないという事態が生じ得る。   The manufacturing process of the glass substrate may include a plurality of coating processes. In this case, a coating film or pattern is already formed in the region on the center side of the glass substrate surface in the previous process. It may not be possible to measure the exact height of the surface. Therefore, it is practically preferable to adjust the posture of the coater with reference to the heights of the surfaces of both ends of the glass substrate in the direction orthogonal to the moving direction of the coater. This is because accurate measurement of the height is possible without forming a coating film or the like at both ends of the glass substrate. However, the thickness characteristics of the glass substrate disclosed in Patent Document 1 are not stipulated on the premise that the orientation of the coater is adjusted based on the heights of the surfaces of both ends of the glass substrate. Therefore, even when the thickness characteristics disclosed in the same document are satisfied, the distance between the glass substrate and the coater becomes non-uniform when the posture of the coater is adjusted as described above, and a coating film cannot be formed uniformly. Can occur.

本発明は、上記実情に鑑み、定盤に裏面を隙間なく吸着した状態でコーターによって塗布材料を表面に塗布する場合でも、塗布膜の厚みのバラツキを可及的に抑制し得るガラス基板を提供することを技術的課題とする。   In view of the above circumstances, the present invention provides a glass substrate capable of suppressing variations in the thickness of the coating film as much as possible even when the coating material is applied to the surface by a coater with the back surface adsorbed to the surface plate without any gaps. Doing this is a technical issue.

上記課題を解決するために創案された本発明に係るガラス基板は、フラットパネルディスプレイに用いられ、1辺の寸法が300mm以上の矩形をなし、平均板厚が0.3〜4.0mmのガラス基板であって、裏面を定盤の上に隙間なく吸着した場合に、直交する2辺のいずれか一方の辺に沿うあらゆる位置での他方の辺に平行な縦断面において、その上部輪郭線から前記定盤に下ろした垂線の長さを前記他方の辺に沿う方向での位置Xとの関係で示す関数T(X)で表し、且つ、前記上部輪郭線の両端部を結ぶ仮想直線から前記定盤に下ろした垂線の長さを前記位置Xとの関係で示す関数D(X)で表したときに、|D(X)−T(X)|≦7.5μmなる関係が成立することに特徴づけられる。なお、T(X)、D(X)は、位置Xでの上部輪郭線から定盤に下ろした垂線の長さ、および仮想直線から定盤に下ろした垂線の長さをそれぞれ意味する。また、このように上部輪郭線から定盤に下ろした垂線の長さ、および仮想直線から定盤に下ろした垂線の長さを関数T(X),D(X)で表したのは、他方の辺に沿う方向の位置によってそれぞれの垂線の長さが変化するためである。   The glass substrate according to the present invention, which was created to solve the above-mentioned problems, is used for a flat panel display, has a rectangular shape with a side dimension of 300 mm or more, and an average plate thickness of 0.3 to 4.0 mm. In a longitudinal section parallel to the other side at any position along either one of two orthogonal sides when the back surface is adsorbed onto the surface plate without any gap, from the upper contour line The length of the perpendicular line drawn down on the surface plate is represented by a function T (X) that is expressed in relation to the position X in the direction along the other side, and from the virtual straight line that connects both ends of the upper contour line, When the length of the perpendicular line drawn on the surface plate is expressed by the function D (X) shown in relation to the position X, the relationship | D (X) −T (X) | ≦ 7.5 μm is established. It is characterized by. Note that T (X) and D (X) mean the length of the vertical line dropped from the upper contour line at the position X to the surface plate and the length of the vertical line dropped from the virtual straight line to the surface plate, respectively. In addition, the lengths of the vertical lines dropped from the upper contour line to the surface plate and the vertical lines lowered from the virtual straight line to the surface plate are expressed by functions T (X) and D (X) on the other hand. This is because the length of each perpendicular changes depending on the position in the direction along the side.

このような構成によれば、裏面を定盤の上に隙間なく吸着した状態におけるガラス基板の板厚の特性が、ガラス基板の直交する2辺のいずれか一方の辺に沿うあらゆる位置での他方の辺に平行な縦断面において、その上部輪郭線の両端部を結ぶ仮想直線を基準として規定される。この仮想直線は上部輪郭線の両端部を結んだ直線であるので、仮想直線が水平線に対して傾斜しているか否かに関わらず、仮想直線と平行となるようにコーターの姿勢を調整することはできる。そして、この仮想直線と、ガラス基板の実際の表面状態を表す上部輪郭線の間のズレが極僅かである場合には、上部輪郭線と仮想直線とが略一致し、コーターとガラス基板表面との間の距離をほぼ一定にすることができる。したがって、上部輪郭線と、仮想直線との間の距離を適正に管理することで、コーターにより形成される塗布膜に生じる厚みのバラツキを抑制することができる。そして、このような観点から、本発明者は、鋭意研究を重ねた結果、仮想直線と上部輪郭線との間に、上記の|D(X)−T(X)|≦7.5μmなる関係が成立すれば、コーターにより形成される塗布膜の厚みのバラツキを可及的に抑制できることを見出した。換言すれば、上記数値範囲を満たして始めて塗布膜の厚みのバラツキを可及的に抑制できるのであって、当該数値範囲を逸脱すればそのような作用効果を享受できなくなる。   According to such a configuration, the thickness characteristic of the glass substrate in a state where the back surface is adsorbed onto the surface plate without a gap, the other at any position along one of the two orthogonal sides of the glass substrate. Is defined with reference to a virtual straight line connecting both ends of the upper contour line in a vertical cross section parallel to the side of the line. Since this imaginary straight line is a straight line connecting both ends of the upper contour line, regardless of whether the imaginary straight line is inclined with respect to the horizontal line, the orientation of the coater should be adjusted to be parallel to the virtual straight line. I can. And when the gap between this virtual straight line and the upper contour line representing the actual surface state of the glass substrate is very small, the upper contour line and the virtual straight line substantially coincide, the coater and the glass substrate surface The distance between can be made almost constant. Therefore, by appropriately managing the distance between the upper contour line and the virtual straight line, it is possible to suppress variations in thickness generated in the coating film formed by the coater. From such a viewpoint, as a result of intensive research, the present inventor has a relationship of | D (X) −T (X) | ≦ 7.5 μm between the virtual straight line and the upper contour line. It was found that variation in the thickness of the coating film formed by the coater can be suppressed as much as possible. In other words, it is possible to suppress the variation in the thickness of the coating film as much as possible only after satisfying the above numerical range, and it is not possible to enjoy such operational effects if it deviates from the numerical range.

上記の構成において、溶融ガラスを板引き成形することにより製作されたものであり、その板引き方向が、前記他方の辺と平行となることが好ましい。   Said structure WHEREIN: It is manufactured by carrying out sheet drawing shaping | molding of a molten glass, It is preferable that the sheet drawing direction becomes parallel to said other side.

すなわち、オーバーフローダウンドロー法(フュージョン法)やスロットダウンドロー法などのダウンドロー法や、フロート法などのいずれの製法を採用して溶融ガラスを板引き成形したとしても、製作されたガラス基板の板厚のバラツキは、板引き方向で小さく、板引き方向と直交する方向で大きくなる傾向がある。したがって、当該板引き成形に由来するガラス基板の板厚特性の傾向を利用する観点からも、ガラス基板の板引き方向が他方の辺と平行、すなわち、板引き方向に平行な縦断面において、上記の|D(X)−T(X)|≦7.5μmなる関係を満足するようにすることが好ましい。   In other words, even if the molten glass is drawn using any of the down draw methods such as the overflow down draw method (fusion method) or the slot down draw method, or the float method, the produced glass substrate plate The thickness variation tends to be small in the drawing direction and large in the direction perpendicular to the drawing direction. Therefore, also from the viewpoint of utilizing the tendency of the plate thickness characteristics of the glass substrate derived from the plate drawing, the drawing direction of the glass substrate is parallel to the other side, that is, in the longitudinal section parallel to the drawing direction, It is preferable to satisfy the relationship of | D (X) −T (X) | ≦ 7.5 μm.

以上のガラス基板は、PDP、FED、LCDに用いられることにより、その効果を最大限に発揮できるものであると共に、このガラス基板を用いて、フラットパネルディスプレイを製作すれば、品質の優れたディスプレイを得ることができる。   The above glass substrates can be used for PDPs, FEDs, and LCDs to maximize their effects. If a flat panel display is manufactured using these glass substrates, a display with excellent quality can be obtained. Can be obtained.

また、上記課題を解決するために創案された本発明に係る方法は、フラットパネルディスプレイに用いられ、1辺の寸法が300mm以上の矩形をなし、平均板厚が0.3〜4.0mmのガラス基板を成形する成形工程の後に、前記ガラス基板の裏面を定盤の上に吸着した状態で、塗布材料を塗布するコーターを移動させながら前記ガラス基板の表面に塗布膜を形成する塗布工程を有するガラス基板の製造方法であって、前記成形工程と前記塗布工程との間に、前記成形工程で成形された前記ガラス基板の中から、裏面を前記定盤の上に隙間なく吸着した場合に、直交する2辺のいずれか一方の辺に沿うあらゆる位置での他方の辺に平行な縦断面において、その上部輪郭線から前記定盤に下ろした垂線の長さを前記他方の辺に沿う方向の位置Xとの関係で示す関数T(X)で表し、且つ、前記上部輪郭線の両端部を結ぶ仮想直線から前記定盤に下ろした垂線の長さを前記位置Xとの関係で示す関数D(X)で表したときに、|D(X)−T(X)|≦7.5μmなる関係が成立するガラス基板を選択する選別工程を有し、該選別工程で選択された前記ガラス基板に対してのみ前記塗布工程を実行することに特徴づけられる。   In addition, the method according to the present invention, which was created in order to solve the above problems, is used for a flat panel display, has a rectangular shape with a side dimension of 300 mm or more, and an average plate thickness of 0.3 to 4.0 mm. After the molding process of molding the glass substrate, an application process of forming a coating film on the surface of the glass substrate while moving the coater that applies the coating material while the back surface of the glass substrate is adsorbed on a surface plate A method of manufacturing a glass substrate having a back surface adsorbed on the surface plate without a gap from the glass substrate molded in the molding step between the molding step and the coating step. In a longitudinal section parallel to the other side at any position along one of the two orthogonal sides, the length along the other side is the length of the perpendicular drawn from the upper contour line to the surface plate Position of A function D (X) that is represented by a function T (X) that is expressed in relation to the position and that indicates the length of a perpendicular line drawn from the virtual straight line connecting both ends of the upper contour line to the surface plate in relation to the position X ), A selection step of selecting a glass substrate that satisfies the relationship | D (X) −T (X) | ≦ 7.5 μm, and for the glass substrate selected in the selection step It is characterized in that the coating process is executed only.

このような方法によれば、選択工程で、成形工程で成形されたガラス基板の中から、|D(X)−T(X)|≦7.5μmなる関係が成立するガラス基板が選択される。そして、このように選択されたガラス基板であれば、既に段落0013で述べたように、コーターにより形成される塗布膜の厚みのバラツキを可及的に抑制できる。したがって、当該選択されたガラス基板、すなわち、|D(X)−T(X)|≦7.5μmなる関係が成立するガラス基板に対してのみ塗布工程を実行すれば、塗布膜の厚みに不適正なバラツキが生じるような板厚特性が不良なガラス基板に対して塗布工程を実行しなくて済む。そのため、不良なガラス基板に対して実行する塗布工程に要する経済的・時間的な無駄を確実に低減できる。   According to such a method, in the selection step, a glass substrate that satisfies the relationship | D (X) −T (X) | ≦ 7.5 μm is selected from the glass substrates formed in the forming step. . And if it is a glass substrate selected in this way, as already stated in paragraph 0013, the variation in the thickness of the coating film formed by the coater can be suppressed as much as possible. Therefore, if the coating process is performed only on the selected glass substrate, that is, the glass substrate satisfying the relationship of | D (X) −T (X) | ≦ 7.5 μm, the thickness of the coating film is not satisfied. It is not necessary to perform the coating process on a glass substrate having a poor plate thickness characteristic that causes an appropriate variation. Therefore, it is possible to reliably reduce the economical and time waste required for the coating process performed on a defective glass substrate.

上記の方法において、前記塗布工程で、前記コーターにより前記塗布材料を塗布する際に、前記コーターと前記上部輪郭線の両端部との間の距離が一定となるように前記コーターの姿勢を制御しながら、前記コーターを前記ガラス基板の前記一方の辺に沿う方向に移動させることが好ましい。   In the above method, when the coating material is applied by the coater in the coating step, the posture of the coater is controlled so that the distance between the coater and both ends of the upper contour line is constant. However, it is preferable to move the coater in a direction along the one side of the glass substrate.

このようにすれば、仮想直線は上部輪郭線の両端部を結ぶ直線であるので、コーターと上部輪郭線の両端部との間の距離が一定になるように制御するだけで、コーターを仮想直線と平行にすることができる。したがって、ガラス基板に塗布材料する際のコーターの姿勢を、簡単な制御で適正に保つことが可能となる。   In this way, since the virtual straight line is a straight line connecting the both ends of the upper contour line, the coater can be controlled by simply controlling the distance between the coater and both ends of the upper contour line to be constant. And can be parallel. Therefore, it is possible to keep the coater's posture properly when applying the coating material to the glass substrate with simple control.

以上のように本発明によれば、定盤に裏面を隙間なく吸着した状態でコーターによって塗布材料を表面に塗布する場合でも、塗布膜の厚みのバラツキを可及的に抑制し得るガラス基板を提供することができる。   As described above, according to the present invention, even when the coating material is applied to the surface by the coater with the back surface adsorbed to the surface plate without any gap, the glass substrate capable of suppressing the variation in the thickness of the coating film as much as possible. Can be provided.

以下、本発明に係るガラス基板について説明する。   Hereinafter, the glass substrate according to the present invention will be described.

図1は、本発明の一実施形態に係るフラットパネルディスプレイ用のガラス基板を定盤の上に吸着した状態を模式的に示す斜視図である。このガラス基板1は、1辺が300mm以上の矩形をなし、平均板厚が0.3〜4.0mmとされており、図示しない複数の吸引孔を有する定盤2上に吸着保持されている。この吸着保持されたガラス基板1の裏面は、定盤2に隙間なく密着しており、ガラス基板1の裏面の凹凸は定盤2により矯正された状態となっている。その一方で、ガラス基板1の表面には、裏面側に生じていた凹凸が加算された凹凸が現れている。   FIG. 1 is a perspective view schematically showing a state in which a glass substrate for a flat panel display according to an embodiment of the present invention is adsorbed on a surface plate. The glass substrate 1 has a rectangular shape with a side of 300 mm or more, an average plate thickness of 0.3 to 4.0 mm, and is held by suction on a surface plate 2 having a plurality of suction holes (not shown). . The back surface of the glass substrate 1 held by suction is in close contact with the surface plate 2 without any gap, and the irregularities on the back surface of the glass substrate 1 are corrected by the surface plate 2. On the other hand, on the surface of the glass substrate 1, irregularities obtained by adding the irregularities generated on the back surface side appear.

そして、このように裏面を定盤2に吸着した状態で、本実施形態に係るガラス基板1は、直交する2辺の一方の辺1aに沿うあらゆる位置での他方の辺1bに平行な縦断面Sにおいて次に示すような特徴を有する。すなわち、図2に示すように、当該縦断面Sにおいて、その上部輪郭線L1から定盤2に下ろした垂線の長さを他方の辺1bに沿う方向での位置Xとの関係で示す関数T(X)で表し、且つ、上部輪郭線L1の両端部A,Bを結ぶ仮想直線L2から定盤2に下ろした垂線の長さを位置Xとの関係で示す関数D(X)で表したときに、次の関係式を満たす。
|D(X)−T(X)|≦7.5・・・・・(1)
And in the state which adsorb | sucked the back surface to the surface plate 2 in this way, the glass substrate 1 which concerns on this embodiment is a longitudinal cross section parallel to the other edge | side 1b in every position along one edge | side 1a of two orthogonal sides. S has the following characteristics. That is, as shown in FIG. 2, in the longitudinal section S, a function T indicating the length of the perpendicular line drawn from the upper contour line L1 to the surface plate 2 in relation to the position X in the direction along the other side 1b. (X) and the function D (X) showing the length of the perpendicular line drawn from the virtual straight line L2 connecting the both ends A and B of the upper contour line L1 to the surface plate 2 in relation to the position X. Sometimes the following relational expression is satisfied.
| D (X) -T (X) | ≦ 7.5 (1)

このような構成によれば、裏面を定盤2の上に隙間なく吸着したガラス基板1の板厚の特性が、仮想直線L2を基準として規定される。この仮想直線L2は直線であるので、仮に水平線に対して傾斜している場合でも、当該仮想直線L2と平行になるようにコーター3の姿勢を調整することは容易である。すなわち、この仮想直線L2と、ガラス基板1の実際の表面状態を表す上部輪郭線L1との間のズレが極僅かである場合には両者が略一致し、コーター3とガラス基板1の表面との間の距離をほぼ一定にすることができる。したがって、上部輪郭線L1と、仮想直線L2との間の距離を適正に管理することで、コーター3により形成される塗布膜の厚みにバラツキが生じるという事態を防止することができる。そして、このような観点から、本発明者は、鋭意研究を重ねた結果、一方の辺1aに沿うあらゆる位置での縦断面Sにおいて、仮想直線L2と上部輪郭線L1との間に上記の式(1)に示す関係が成立すれば、コーター3により形成される塗布膜の厚みのバラツキを可及的に抑制できることを見出した。換言すれば、上記数値範囲を満たして始めて塗布膜の厚みのバラツキを可及的に抑制できるのであって、当該数値範囲を逸脱すればそのような作用効果を享受できなくなる。   According to such a configuration, the thickness characteristic of the glass substrate 1 with the back surface adsorbed onto the surface plate 2 without a gap is defined with reference to the virtual straight line L2. Since this virtual straight line L2 is a straight line, even if it is inclined with respect to the horizontal line, it is easy to adjust the orientation of the coater 3 so as to be parallel to the virtual straight line L2. That is, when the deviation between the virtual straight line L2 and the upper contour line L1 representing the actual surface state of the glass substrate 1 is very small, the two substantially coincide with each other, and the surface of the coater 3 and the glass substrate 1 The distance between can be made almost constant. Therefore, by appropriately managing the distance between the upper contour line L1 and the virtual straight line L2, it is possible to prevent a situation in which the thickness of the coating film formed by the coater 3 varies. And from such a viewpoint, as a result of intensive studies, the inventor has obtained the above formula between the virtual straight line L2 and the upper contour line L1 in the longitudinal section S at any position along the one side 1a. It has been found that if the relationship shown in (1) holds, variations in the thickness of the coating film formed by the coater 3 can be suppressed as much as possible. In other words, it is possible to suppress the variation in the thickness of the coating film as much as possible only after satisfying the above numerical range, and it is not possible to enjoy such operational effects if it deviates from the numerical range.

なお、一方の辺1aに沿うあらゆる位置での他方の辺1bに平行な縦断面Sにおいて、上記の式(1)に示す関係が成立する場合を説明したが、当該他方の辺1bは、ガラス基板1の成形時における板引き方向と平行であることが好ましい。これは、オーバーフローダウンドロー法(フュージョン法)やスロットダウンドロー法などのダウンドロー法や、フロート法などのいずれの製法を採用して溶融ガラスを板引き成形したとしても、製作されたガラス基板1の板厚のバラツキは、板引き方向で小さく、板引き方向と直交する方向で大きくなる傾向があるためである。また、勿論、他方の辺1bに沿うあらゆる位置での一方の辺1aに平行な縦断面においても、上記の式(1)に示す関係が成立するようにしてもよい。   In addition, in the longitudinal section S parallel to the other side 1b at any position along the one side 1a, the case where the relationship represented by the above formula (1) is established has been described. It is preferable to be parallel to the drawing direction when the substrate 1 is molded. This is because the glass substrate 1 is manufactured regardless of whether the molten glass is drawn using any of the down draw methods such as the overflow down draw method (fusion method) and the slot down draw method, and the float method. This is because the variation in the plate thickness tends to be small in the plate drawing direction and large in the direction orthogonal to the plate drawing direction. Of course, the relationship represented by the above formula (1) may also be established in a longitudinal section parallel to one side 1a at any position along the other side 1b.

そして、以上のようなガラス基板1は、次のようにして製造される。   And the above glass substrates 1 are manufactured as follows.

まず、1辺の寸法が300mm以上の矩形をなし、平均板厚が0.3〜4.0mmのガラス基板1を成形する成形工程を実行する。その後、コーター3によってガラス基板1に塗布材料を形成する塗布工程の前に、成形工程で成形されたガラス基板1の中から、裏面を定盤2の上に隙間なく吸着した場合に、直交する2辺のいずれか一方の辺1aに沿うあらゆる位置での他方の辺1bに平行な縦断面Sにおいて、上記の式(1)の関係式を満足するガラス基板1を選択する選別工程を行う。そして、この選別工程で選択されたガラス基板1に対してのみ塗布工程を実行する。   First, a forming step is performed in which a glass substrate 1 having a side dimension of 300 mm or more and an average plate thickness of 0.3 to 4.0 mm is formed. Thereafter, when the back surface is adsorbed onto the surface plate 2 without any gap from the glass substrate 1 molded in the molding step before the coating step of forming the coating material on the glass substrate 1 by the coater 3, the orthogonality is obtained. In the longitudinal section S parallel to the other side 1b at any position along either one of the two sides 1a, a selection step is performed for selecting the glass substrate 1 that satisfies the relational expression of the above formula (1). And an application | coating process is performed only with respect to the glass substrate 1 selected by this screening process.

このようにすれば、上記の式(1)に示す関係式を満足するガラス基板1に対してのみと塗布工程が実行されるので、塗布膜の厚みに不適正なバラツキが生じるような板厚特性が不良なガラス基板に対して塗布工程を実行しなくて済む。そのため、不良なガラス基板に対して実行する塗布工程に要する経済的・時間的な無駄を確実に低減できる。   In this way, the coating process is performed only on the glass substrate 1 that satisfies the relational expression shown in the above formula (1), so that the thickness of the coating film causes an inappropriate variation. It is not necessary to perform the coating process on a glass substrate with poor characteristics. Therefore, it is possible to reliably reduce the economical and time waste required for the coating process performed on a defective glass substrate.

さらに、塗布工程では、図2に示すように、コーター3により塗布材料を塗布する際に、コーター3と上部輪郭線L1の両端部A,Bとの間の距離が一定に維持されるように、コーター3の姿勢(傾き)を調整しながら、図1に示すように、コーター3をガラス基板1の一方の辺1aに沿う方向に移動させる。   Further, in the coating process, as shown in FIG. 2, when the coating material is applied by the coater 3, the distance between the coater 3 and both ends A and B of the upper contour line L1 is maintained constant. As shown in FIG. 1, the coater 3 is moved in a direction along one side 1 a of the glass substrate 1 while adjusting the posture (tilt) of the coater 3.

詳述すると、コーター3とガラス基板1の表面との距離を可能な限り一定にするために、ガラス基板1を定盤2に吸着した後に、コーター3の移動方向と直交する方向におけるガラス基板1の両端部(上部輪郭線L1の両端部A,B)の高さを測定し、その計測した両端部の高さに基づいてコーター3の姿勢が調整される。この理由は、ガラス基板1の製造工程に複数の塗布工程が含まれる場合には、ガラス基板1の両端部よりも中央部側には前工程で既に塗布膜やパターンが形成されていることがあり、当該中央部領域においてガラス基板1の正確な高さを計測できなくなるためである。したがって、コーター3の姿勢は、正確な計測ができるガラス基板1の両端部の高さを基準として調整する。   More specifically, in order to make the distance between the coater 3 and the surface of the glass substrate 1 as constant as possible, the glass substrate 1 in a direction orthogonal to the moving direction of the coater 3 after adsorbing the glass substrate 1 to the surface plate 2. The heights of both ends (both ends A and B of the upper contour line L1) are measured, and the posture of the coater 3 is adjusted based on the measured heights of both ends. The reason for this is that when a plurality of coating steps are included in the manufacturing process of the glass substrate 1, a coating film or a pattern is already formed in the previous step on the center side of both ends of the glass substrate 1. This is because the accurate height of the glass substrate 1 cannot be measured in the central region. Therefore, the posture of the coater 3 is adjusted with reference to the heights of both ends of the glass substrate 1 that can be accurately measured.

さらに、このようにコーター3の姿勢を調整すれば、仮想直線L2は上部輪郭線L1の両端部A,Bを結ぶ直線であるので、コーター3と上部輪郭線L1の両端部A,Bとの間の距離が一定になるように制御するだけで、コーター3を仮想直線L2と平行にすることができる。したがって、ガラス基板1に塗布材料する際のコーター3の姿勢を簡単な制御で適正範囲に保つことが可能となる。そして、このようにコーター3の姿勢を調整することを前提としてガラス基板1の表面の凹凸を管理すれば、ガラス基板1に過剰な品位を与える必要がなくなるので、ガラス基板1の製造効率を向上させることもできる。   Further, if the orientation of the coater 3 is adjusted in this way, the virtual straight line L2 is a straight line connecting both end portions A and B of the upper contour line L1, and therefore, the coater 3 and both end portions A and B of the upper contour line L1 are connected. The coater 3 can be made parallel to the virtual straight line L2 only by controlling the distance between them to be constant. Therefore, the posture of the coater 3 when applying the coating material to the glass substrate 1 can be maintained within an appropriate range by simple control. And if the unevenness | corrugation of the surface of the glass substrate 1 is managed on the assumption that the attitude | position of the coater 3 is adjusted in this way, since it becomes unnecessary to give the glass substrate 1 an excessive quality, the manufacturing efficiency of the glass substrate 1 is improved. It can also be made.

なお、塗布工程の後には、ガラス基板1の表面に形成された塗布膜を露光・現像して、ガラス基板1の表面に微細な電極や隔壁等の素子或いは構造体を形成するフォトレジスト工程が行われる。この際、塗布工程で形成された塗布膜の厚みを略一定とされていることから、当該フォトレジスト工程で、塗布膜の膜厚不良が原因となる露光ムラ等の不具合が生じるという事態がなく、精度よく素子又は構造体をガラス基板1の表面に形成することが可能となる。   In addition, after the coating process, there is a photoresist process in which a coating film formed on the surface of the glass substrate 1 is exposed and developed to form elements or structures such as fine electrodes and partition walls on the surface of the glass substrate 1. Done. At this time, since the thickness of the coating film formed in the coating process is made substantially constant, there is no situation in which a defect such as exposure unevenness caused by a defective film thickness of the coating film occurs in the photoresist process. It becomes possible to form the element or the structure on the surface of the glass substrate 1 with high accuracy.

そして、最終的に、このように素子や構造体が形成された2枚のガラス基板1を対向させて組み付けることにより、品質の優れたフラットパネルディスプレイを製作することができる。   Finally, a flat panel display with excellent quality can be manufactured by assembling the two glass substrates 1 on which elements and structures are formed in this manner so as to face each other.

本発明の有用性を実証すべく、対比試験を行った。当該対比試験の条件は次に示す通りである。   In order to demonstrate the usefulness of the present invention, a comparison test was conducted. The conditions for the comparison test are as follows.

まず、実施例1〜9に係るガラス基板1、および比較例1〜3に係るガラス基板1として、フロート法により、短辺寸法が500mm、長辺寸法1000mmであって、平均板厚が1.8mmのPDP用のガラス基板を成形した。そして、それぞれのガラス基板1に対して、裏面を定盤2の上に隙間なく吸着した状態で、長辺1aに沿う方向の10mm間隔毎の位置での短辺1bに平行な縦断面Sにおいて、上部輪郭線L1から定盤2に下ろした垂線の長さを短辺1bに沿う方向での位置Xの関数T(X)として測定するとともに、上部輪郭線L1の両端部A,Bを結ぶ仮想直線L2から定盤2に下ろした垂線の長さを同じく位置Xの関数D(X)として測定した。なお、この実施例では、位置Xは、上部輪郭線L1の端部Aを基準位置として、その端部Aからの水平方向距離で定義され、その値は0mmから上部輪郭線L1の両端部A,Bの水平方向距離X0mm(略500mm)までの数値をとる。また、T(X)の測定に際しては、レーザー板厚測定器を使用し、各位置でのガラス基板1の上部輪郭線L1から定盤2に下ろした垂線の長さを測定した。一方、D(X)は、レーザー板厚測定器で測定した上部輪郭線L1の両端部A,Bでの定盤2に下ろした垂線の長さをそれぞれD1,D2とした場合に、次式で求められる。
D(X)={D1×(X0−X)+D2×X}/X0・・・(2)
First, as a glass substrate 1 according to Examples 1 to 9 and a glass substrate 1 according to Comparative Examples 1 to 3, a short side dimension is 500 mm, a long side dimension is 1000 mm, and an average plate thickness is 1. A glass substrate for 8 mm PDP was molded. And in the longitudinal cross section S parallel to the short side 1b in the position for every 10 mm space | interval of the direction along the long side 1a in the state which adsorb | sucked the back surface on the surface plate 2 without gap with respect to each glass substrate 1. The length of the perpendicular line drawn from the upper contour line L1 to the surface plate 2 is measured as a function T (X) of the position X in the direction along the short side 1b, and both ends A and B of the upper contour line L1 are connected. The length of the perpendicular drawn from the virtual straight line L2 to the surface plate 2 was also measured as a function D (X) of the position X. In this embodiment, the position X is defined by the horizontal distance from the end A with the end A of the upper contour L1 as a reference position, and the value is from 0 mm to both ends A of the upper contour L1. , B is a numerical value up to a horizontal distance X 0 mm (approximately 500 mm). Further, when measuring T (X), a laser plate thickness measuring device was used to measure the length of a perpendicular line dropped from the upper contour line L1 of the glass substrate 1 to the surface plate 2 at each position. On the other hand, when D (X) is D 1 and D 2 respectively, the lengths of the perpendiculars drawn on the surface plate 2 at both ends A and B of the upper contour line L1 measured by the laser plate thickness measuring instrument are as follows: It is calculated by the following formula.
D (X) = {D 1 × (X 0 −X) + D 2 × X} / X 0 (2)

そして、実施例1〜9に係るガラス基板1、および比較例1〜4に係るガラス基板1のそれぞれの表面に、実際にコーター3によって塗布膜を形成し、その形成した塗布膜の膜厚を評価した。その結果を以下の表に示す。なお、表中では、各ガラス基板1の中で、D(X)−T(X)の絶対値が最大となる値を、D(X)−T(X)の値として示している。また、塗布膜の膜厚の評価では、塗布膜の膜厚が、その平均膜厚の±5.0%以内である場合を「○」とし、この範囲を逸脱する場合を「×」とした。このような評価基準としたのは、塗布膜の膜厚が平均膜厚の±5.0%の範囲内になければ、塗布膜の膜厚のバラツキが実用上問題となる程度となって、フォトリソグラフィー法により塗布膜を露光・現像してパータニングする際に露光ムラ等の不具合が生じやすくなるためである。   And on each surface of the glass substrate 1 which concerns on Examples 1-9 and the glass substrate 1 which concerns on Comparative Examples 1-4, a coating film is actually formed with the coater 3, and the film thickness of the formed coating film is set. evaluated. The results are shown in the following table. In the table, the value that maximizes the absolute value of D (X) -T (X) in each glass substrate 1 is shown as the value of D (X) -T (X). Further, in the evaluation of the coating film thickness, the case where the coating film thickness is within ± 5.0% of the average film thickness was evaluated as “◯”, and the case where it deviated from this range was determined as “X”. . The reason for such evaluation criteria is that, if the coating film thickness is not within the range of ± 5.0% of the average film thickness, the variation in the coating film thickness becomes a practical problem. This is because problems such as exposure unevenness are likely to occur when the coating film is exposed and developed by photolithography to perform patterning.

Figure 2010120797
Figure 2010120797

上記の結果によれば、|D(X)−T(X)|の値が7.5μmを超える比較例1〜3に係るガラス基板1では、塗布膜厚が評価基準を満たさないという結果となった。これに対し、|D(X)−T(X)|の値が7.5μm以下となる実施例1〜9に係るガラス基板1では、塗布膜厚が評価基準を満たす良好な結果を得た。このことからも、ガラス基板1において、|D(X)−T(X)|の値が7.5μm以下であれば、ガラス基板1の裏面を定盤2に隙間なく吸着した状態で、ガラス基板1の表面側にコーター3によって塗布材料を塗布する場合でも、塗布膜の厚みのバラツキを可及的に抑制し得ることが認識できる。   According to the above results, in the glass substrates 1 according to Comparative Examples 1 to 3 in which the value of | D (X) −T (X) | exceeds 7.5 μm, the coating film thickness does not satisfy the evaluation criteria. became. On the other hand, in the glass substrate 1 which concerns on Examples 1-9 whose value of | D (X) -T (X) | is 7.5 micrometers or less, the favorable result with which a coating film thickness satisfy | fills evaluation criteria was obtained. . Also from this, in the glass substrate 1, if the value of | D (X) −T (X) | is 7.5 μm or less, the glass substrate 1 is in a state where the back surface of the glass substrate 1 is adsorbed to the surface plate 2 without a gap. Even when the coating material is applied to the surface side of the substrate 1 by the coater 3, it can be recognized that the variation in the thickness of the coating film can be suppressed as much as possible.

本発明の一実施形態に係るフラットパネルディスレプレイ用のガラス基板を定盤の上に吸着した状態を模式的に示す斜視図である。It is a perspective view which shows typically the state which adsorb | sucked the glass substrate for flat panel displays which concerns on one Embodiment of this invention on a surface plate. 図1に示すガラス基板の一方の辺に沿う任意の位置での他方の辺に平行な縦断面である。It is a longitudinal cross section parallel to the other side in the arbitrary positions along one side of the glass substrate shown in FIG.

符号の説明Explanation of symbols

1 ガラス基板
2 定盤
3 コーター
L1 上部輪郭線
L2 仮想直線
1 Glass substrate 2 Surface plate 3 Coater L1 Upper outline L2 Virtual straight line

Claims (6)

フラットパネルディスプレイに用いられ、1辺の寸法が300mm以上の矩形をなし、平均板厚が0.3〜4.0mmのガラス基板であって、
裏面を定盤の上に隙間なく吸着した場合に、直交する2辺のいずれか一方の辺に沿うあらゆる位置での他方の辺に平行な縦断面において、その上部輪郭線から前記定盤に下ろした垂線の長さを前記他方の辺に沿う方向での位置Xとの関係で示す関数T(X)で表し、且つ、前記上部輪郭線の両端部を結ぶ仮想直線から前記定盤に下ろした垂線の長さを前記位置Xとの関係で示す関数D(X)で表したときに、|D(X)−T(X)|≦7.5μmなる関係が成立することを特徴とするガラス基板。
It is used for a flat panel display, is a glass substrate having a side dimension of 300 mm or more and an average thickness of 0.3 to 4.0 mm,
When the back surface is adsorbed onto the surface plate without any gap, it is lowered from the upper contour line to the surface plate in the longitudinal section parallel to the other side at any position along one of the two orthogonal sides. The length of the vertical line is expressed by a function T (X) indicated by the relationship with the position X in the direction along the other side, and is lowered from the virtual straight line connecting both ends of the upper contour line to the surface plate. When the length of the perpendicular is expressed by a function D (X) expressed in relation to the position X, a relationship of | D (X) −T (X) | ≦ 7.5 μm is established. substrate.
溶融ガラスを板引き成形することにより製作されたものであり、その板引き方向が、前記他方の辺と平行となる請求項1に記載のガラス基板。   The glass substrate according to claim 1, wherein the glass substrate is produced by subjecting molten glass to sheet drawing, and the sheet drawing direction is parallel to the other side. プラズマディスプレイ、フィールドエミッションディスプレイ、又は液晶ディスプレイに用いられることを特徴とする請求項1又は2に記載のガラス基板。   The glass substrate according to claim 1, wherein the glass substrate is used for a plasma display, a field emission display, or a liquid crystal display. 請求項1〜3のいずれか1項に記載のガラス基板を用いて製作したことを特徴とするフラットパネルディスプレイ。   A flat panel display manufactured using the glass substrate according to claim 1. フラットパネルディスプレイに用いられ、1辺の寸法が300mm以上の矩形をなし、平均板厚が0.3〜4.0mmのガラス基板を成形する成形工程の後に、前記ガラス基板の裏面を定盤の上に吸着した状態で、塗布材料を塗布するコーターを移動させながら前記ガラス基板の表面に塗布膜を形成する塗布工程を有するガラス基板の製造方法であって、
前記成形工程と前記塗布工程との間に、前記成形工程で成形された前記ガラス基板の中から、裏面を前記定盤の上に隙間なく吸着した場合に、直交する2辺のいずれか一方の辺に沿うあらゆる位置での他方の辺に平行な縦断面において、その上部輪郭線から前記定盤に下ろした垂線の長さを前記他方の辺に沿う方向の位置Xとの関係で示す関数T(X)で表し、且つ、前記上部輪郭線の両端部を結ぶ仮想直線から前記定盤に下ろした垂線の長さを前記位置Xとの関係で示す関数D(X)で表したときに、|D(X)−T(X)|≦7.5μmなる関係が成立するガラス基板を選択する選別工程を有し、該選別工程で選択された前記ガラス基板に対してのみ前記塗布工程を実行することを特徴とするガラス基板の製造方法。
A flat panel display is used to form a glass substrate having a side dimension of 300 mm or more and an average plate thickness of 0.3 to 4.0 mm. A method of manufacturing a glass substrate having a coating step of forming a coating film on the surface of the glass substrate while moving a coater for coating a coating material while adsorbed on the coating material,
When the back surface is adsorbed onto the surface plate without a gap from the glass substrate molded in the molding step between the molding step and the coating step, either one of the two orthogonal sides In a vertical section parallel to the other side at any position along the side, a function T indicating the length of a perpendicular line drawn from the upper contour line to the surface plate in relation to the position X in the direction along the other side. (X), and when the length of a perpendicular drawn from the virtual straight line connecting both ends of the upper contour line to the surface plate is represented by a function D (X) in relation to the position X, | D (X) −T (X) | ≦ 7.5 μm including a sorting step for selecting a glass substrate, and performing the coating step only on the glass substrate selected in the sorting step A method for producing a glass substrate, comprising:
前記塗布工程で、前記コーターにより前記塗布材料を塗布する際に、前記コーターと前記上部輪郭線の両端部との間の距離が一定となるように前記コーターの姿勢を調整しながら、前記コーターを前記ガラス基板の前記一方の辺に沿う方向に移動させる請求項5に記載のガラス基板の製造方法。   In the application step, when the coating material is applied by the coater, the coater is adjusted while adjusting the posture of the coater so that the distance between the coater and both ends of the upper contour line is constant. The method for manufacturing a glass substrate according to claim 5, wherein the glass substrate is moved in a direction along the one side of the glass substrate.
JP2008294535A 2008-11-18 2008-11-18 Glass substrate, flat panel display using the same and producing method of glass substrate Pending JP2010120797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008294535A JP2010120797A (en) 2008-11-18 2008-11-18 Glass substrate, flat panel display using the same and producing method of glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008294535A JP2010120797A (en) 2008-11-18 2008-11-18 Glass substrate, flat panel display using the same and producing method of glass substrate

Publications (1)

Publication Number Publication Date
JP2010120797A true JP2010120797A (en) 2010-06-03

Family

ID=42322473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008294535A Pending JP2010120797A (en) 2008-11-18 2008-11-18 Glass substrate, flat panel display using the same and producing method of glass substrate

Country Status (1)

Country Link
JP (1) JP2010120797A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130417A (en) * 2011-12-20 2013-07-04 Nippon Electric Glass Co Ltd Warpage measuring method for glass pane and manufacturing method of glass pane
CN114349361A (en) * 2021-12-16 2022-04-15 凯盛信息显示材料(洛阳)有限公司 Film coating clamp for film coating of ultrathin glass
WO2022222934A1 (en) * 2021-04-20 2022-10-27 梅卡曼德(北京)机器人科技有限公司 Glass adhesive coating method, glass adhesive coating apparatus, electronic device, and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002072922A (en) * 2000-06-13 2002-03-12 Asahi Glass Co Ltd Glass substrate for display and method of selecting the same
JP2004087382A (en) * 2002-08-28 2004-03-18 Nippon Sheet Glass Co Ltd Glass substrate for display
JP2006124275A (en) * 2004-10-29 2006-05-18 Schott Ag Float glass working method for producing thin flat glass, and thin flat glass substrate manufactured by the working method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002072922A (en) * 2000-06-13 2002-03-12 Asahi Glass Co Ltd Glass substrate for display and method of selecting the same
JP2004087382A (en) * 2002-08-28 2004-03-18 Nippon Sheet Glass Co Ltd Glass substrate for display
JP2006124275A (en) * 2004-10-29 2006-05-18 Schott Ag Float glass working method for producing thin flat glass, and thin flat glass substrate manufactured by the working method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013130417A (en) * 2011-12-20 2013-07-04 Nippon Electric Glass Co Ltd Warpage measuring method for glass pane and manufacturing method of glass pane
WO2022222934A1 (en) * 2021-04-20 2022-10-27 梅卡曼德(北京)机器人科技有限公司 Glass adhesive coating method, glass adhesive coating apparatus, electronic device, and storage medium
CN114349361A (en) * 2021-12-16 2022-04-15 凯盛信息显示材料(洛阳)有限公司 Film coating clamp for film coating of ultrathin glass

Similar Documents

Publication Publication Date Title
JP7288427B2 (en) Tiled display and manufacturing method thereof
KR100971753B1 (en) Mask assembly for thin film vapor deposition of flat panel display
US7987812B2 (en) Mask frame assembly
KR100903624B1 (en) Mask assembly for thin film vapor deposition of flat panel display
JP2004069414A (en) Method for measuring gap between mask and substrate of plasma display panel
CN104838037A (en) Metal plate, metal plate production method, and method for producing vapor deposition mask using metal plate
US6940577B2 (en) Integrated spacer technology for LCOS light modulators
CN103840091B (en) The method of unit mask, mask assembly and manufacture organic light emitting diode display
CN108983475B (en) Liquid crystal display and substrate structure thereof
TW586149B (en) Graytone mask producing method
WO2020019679A1 (en) Array substrate and preparation method therefor, and display panel
JP4930336B2 (en) Warpage inspection method and manufacturing method of glass substrate
JP2010120797A (en) Glass substrate, flat panel display using the same and producing method of glass substrate
JP4169719B2 (en) Method for manufacturing substrate with resist film
TWI313672B (en)
CN102811958A (en) Thin glass sheet manufacturing device and method
CN105785711A (en) Mask plate light cover, manufacturing method thereof and manufacturing method of mask plate
JP5623001B2 (en) Glass substrate
JP2008209582A (en) Color filter with ps and liquid crystal display panel using the color filter with ps
TW201242777A (en) Pattern roll, method for pattern forming and printing apparatus comprising the same
JP2012137758A (en) Glass substrate
KR102187587B1 (en) Reference plate for controling the optical axis of up-look review camera with z-axis stage in the tension mask assembly
US9785015B1 (en) Display apparatus, and method of forming post spacer in display apparatus
JP4974363B2 (en) Mask blank manufacturing method and photomask manufacturing method
JP6659422B2 (en) Coating device, mask blank manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110607

A977 Report on retrieval

Effective date: 20120426

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A521 Written amendment

Effective date: 20120629

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20130301

Free format text: JAPANESE INTERMEDIATE CODE: A02