JP5621021B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP5621021B2
JP5621021B2 JP2013156916A JP2013156916A JP5621021B2 JP 5621021 B2 JP5621021 B2 JP 5621021B2 JP 2013156916 A JP2013156916 A JP 2013156916A JP 2013156916 A JP2013156916 A JP 2013156916A JP 5621021 B2 JP5621021 B2 JP 5621021B2
Authority
JP
Japan
Prior art keywords
electrode
protrusion
solder
semiconductor device
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013156916A
Other languages
Japanese (ja)
Other versions
JP2013219402A (en
Inventor
直実 舛田
直実 舛田
星野 雅孝
雅孝 星野
良太 福山
良太 福山
Original Assignee
スパンションエルエルシー
スパンション エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スパンションエルエルシー, スパンション エルエルシー filed Critical スパンションエルエルシー
Priority to JP2013156916A priority Critical patent/JP5621021B2/en
Publication of JP2013219402A publication Critical patent/JP2013219402A/en
Application granted granted Critical
Publication of JP5621021B2 publication Critical patent/JP5621021B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Description

本発明は半導体装置及びその製造方法に関し、特にフリップチップボンディング(以下FCB)の実装技術を用いた半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device using a flip chip bonding (hereinafter referred to as FCB) mounting technique and a manufacturing method thereof.

近年、情報化社会の進展に伴い、半導体装置には小型化・高機能化が求められている。これらを実現する方法の一つとして、FCBの実装技術がある。   In recent years, with the progress of the information society, semiconductor devices are required to be downsized and highly functional. One of the methods for realizing these is FCB mounting technology.

FCBは、半導体チップなど実装部(以下例として第1半導体チップ)の電極上に、接合端子(以下例として半田バンプ)を形成し、基板または別の半導体チップなどの被実装部(以下例として第2半導体チップ)に半田バンプ面を下にして実装する技術である。加熱により溶融した半田バンプが基板上の電極表面を覆い、電極を構成する金属と半田とで合金層が形成されることで、第1半導体チップ上の電極と第2半導体チップ上の電極とが接合される。   The FCB has a bonding terminal (hereinafter, solder bump) formed on an electrode of a mounting portion such as a semiconductor chip (hereinafter referred to as a first semiconductor chip), and is mounted on a substrate or another semiconductor chip (hereinafter, as an example). In this technique, the solder bump surface is mounted on the second semiconductor chip. Solder bumps melted by heating cover the electrode surface on the substrate, and an alloy layer is formed by the metal constituting the electrode and the solder, so that the electrode on the first semiconductor chip and the electrode on the second semiconductor chip are Be joined.

接合を得るには、電極を構成する金属と半田バンプとの間に良好な濡れ性が確保されていることが必要となる。そのための手段としてフラックスを用いる方法が採用されてきた。これは、第1半導体チップの電極と第2半導体チップの電極を熱圧着により半田バンプで仮接合した後、フラックスを用いて半田バンプの酸化膜を除去し、電極を構成する金属との濡れ性を生じさせ、半田バンプで本接合する方法である。   In order to obtain bonding, it is necessary to ensure good wettability between the metal constituting the electrode and the solder bump. For this purpose, a method using a flux has been adopted. This is because the electrodes of the first semiconductor chip and the electrodes of the second semiconductor chip are temporarily bonded with solder bumps by thermocompression bonding, and then the oxide film of the solder bumps is removed using a flux, and the wettability with the metal constituting the electrodes. This is a method in which the main bonding is performed with solder bumps.

また、フラックスを用いない方法として、特許文献1にはNガスとHガスとの混合ガスを還元ガスとして使用し、電極表面と半田バンプ表面との酸化膜を除去する方法が開示されている。 Further, as a method not using a flux, Patent Document 1 discloses a method in which a mixed gas of N 2 gas and H 2 gas is used as a reducing gas, and an oxide film between the electrode surface and the solder bump surface is removed. Yes.

特開平6−268028号公報JP-A-6-268028

フラックスを用いる方法においては、フラックスの残渣が残った場合、残渣中の活性成分が、電極を構成する金属と半田との合金層の腐食を引き起こし、電極間の接合部の強度を低下させる原因となり得ることが課題となっていた。また、フラックスの洗浄に用いる洗浄液の処理が課題とされていた。   In the method using flux, when a residue of flux remains, the active component in the residue causes corrosion of the alloy layer of the metal and solder constituting the electrode, and causes the strength of the joint between the electrodes to decrease. Obtaining was an issue. Moreover, the process of the washing | cleaning liquid used for the washing | cleaning of a flux was made into the subject.

還元ガスを用いる方法においては、仮接合する際に加熱して、半田融点以上まで温度を上昇させる。半田バンプが半田融点付近で高温保持されると、半田バンプの酸化が促進され、電極を構成する金属と半田との間の濡れ性が悪くなる。このことは、電極間の接合部の強度を低下させる原因となり得る。また、仮接合する工程での加熱時間、及び還元反応に要する時間が比較的長いため、コスト増の要因となっていた。   In the method using a reducing gas, heating is performed at the time of temporary bonding, and the temperature is raised to the solder melting point or higher. When the solder bump is held at a high temperature near the solder melting point, the oxidation of the solder bump is promoted, and the wettability between the metal constituting the electrode and the solder is deteriorated. This can be a cause of reducing the strength of the joint between the electrodes. In addition, the heating time in the temporary bonding step and the time required for the reduction reaction are relatively long, which has been a factor in increasing costs.

そこで本発明は、電極間において強度の高い接合が可能で、かつ低コスト化が可能な半導体装置及びその製造方法を提供することを目的とする。   In view of the above, an object of the present invention is to provide a semiconductor device capable of bonding with high strength between electrodes and capable of reducing the cost, and a manufacturing method thereof.

本発明は、実装部と、前記実装部に設けられた第1電極と、前記実装部が実装される被実装部と、前記被実装部に設けられた、突起を有する第2電極と、前記第1電極と前記第2電極を接合し、前記突起の側面の少なくとも一部を覆う、半田を含む接合端子とを具備し、前記実装部と前記被実装部との少なくとも一方は半導体チップを含むことを特徴とする半導体装置である。本発明によれば、電極間において強度の高い接合が可能で、かつ低コスト化が可能な半導体装置を得ることができる。   The present invention includes a mounting portion, a first electrode provided on the mounting portion, a mounted portion on which the mounting portion is mounted, a second electrode having a protrusion provided on the mounted portion, A bonding terminal including solder that joins the first electrode and the second electrode and covers at least a part of a side surface of the protrusion; and at least one of the mounting portion and the mounted portion includes a semiconductor chip This is a semiconductor device. According to the present invention, it is possible to obtain a semiconductor device capable of bonding with high strength between electrodes and reducing the cost.

上記構成において、前記接合端子は、半田からなる構成とすることができる。   The said structure WHEREIN: The said junction terminal can be set as the structure which consists of solder.

上記構成において、前記接合端子は、金属ポストと、前記金属ポストの前記第2電極と対向している面に設けられた半田層からなる構成とすることができる。   The said structure WHEREIN: The said junction terminal can be set as the structure which consists of a solder layer provided in the surface facing the said 2nd electrode of the metal post and the said metal post.

上記構成において、前記被実装部は、前記突起内の下部に前記第2電極の表面より熱伝導率の低い材料層を有する構成とすることができる。この構成によれば、突起の先端部から熱が逃げにくくなるため、仮接合の工程での加熱時間の短縮でき、半田の酸化膜の成長を抑制することができる。このため、強度の高い接合部が得られる。また、加工時間の短縮も可能となる。   In the above configuration, the mounted portion may have a material layer having a lower thermal conductivity than the surface of the second electrode at a lower portion in the protrusion. According to this configuration, it is difficult for heat to escape from the tip of the protrusion, so that the heating time in the temporary bonding step can be shortened, and the growth of the solder oxide film can be suppressed. For this reason, a joint part with high strength is obtained. In addition, the processing time can be shortened.

本発明は、前記実装部に設けられた前記第1電極を、前記被実装部に設けられた前記突起を有する前記第2電極に、前記突起の先端部と、前記第1電極に設けられた前記接合端子と、を接触させることにより仮接合する工程と、前記第1電極と、前記第2電極と、前記接合端子に含まれている前記半田と、を還元ガス中に暴露する工程と、前記第1電極を前記第2電極に、前記突起の側面の少なくとも一部を前記接合端子に含まれる前記半田で覆うことにより本接合する工程とを含み、前記実装部と前記被実装部との少なくとも一方は半導体チップを含むことを特徴とする半導体装置の製造方法である。本発明によれば、電極間において強度の高い接合が可能で、かつ低コスト化が可能な半導体装置を得ることができる。   In the present invention, the first electrode provided in the mounting portion is provided in the second electrode having the protrusion provided in the mounted portion, the tip end portion of the protrusion, and the first electrode. A step of temporarily joining the contact terminals by contacting, a step of exposing the first electrode, the second electrode, and the solder contained in the joint terminals in a reducing gas; The first electrode is connected to the second electrode, and at least a part of the side surface of the protrusion is covered with the solder included in the bonding terminal, and the step of performing the main bonding includes: At least one of the semiconductor devices includes a semiconductor chip. According to the present invention, it is possible to obtain a semiconductor device capable of bonding with high strength between electrodes and reducing the cost.

上記構成において、前記仮接合する工程は、前記第2電極の側面と、前記半田の前記突起の先端部との接触面以外の表面と、が露出するように仮接合する工程を含む構成とすることができる。この構成によれば、還元反応が効率的かつ安定的に進むため、強度の高い接合が可能で、低コスト化も可能となる。   In the above configuration, the step of temporarily bonding includes a step of temporarily bonding so that a side surface of the second electrode and a surface other than a contact surface with the tip of the protrusion of the solder are exposed. be able to. According to this configuration, since the reduction reaction proceeds efficiently and stably, high-strength bonding is possible, and the cost can be reduced.

上記構成において、前記仮接合する工程は、前記突起の先端部の温度が前記半田の融点以上になり、かつ前記第2電極の前記突起の先端部を除いた部分の温度が前記半田の融点未満になるように加熱する工程を含む構成とすることができる。この構成によれば、突起の先端部でのみ、電極を構成する金属と半田との合金層が形成される。   In the above configuration, in the temporary bonding step, the temperature of the tip of the protrusion is equal to or higher than the melting point of the solder, and the temperature of the portion of the second electrode excluding the tip of the protrusion is lower than the melting point of the solder. It can be set as the structure including the process heated so that it may become. According to this structure, the alloy layer of the metal and the solder constituting the electrode is formed only at the tip of the protrusion.

上記構成において、前記仮接合する工程は、前記実装部と前記被実装部との少なくとも一方に超音波振動を加え、前記金属ポストの表面と前記突起の先端部とを擦り合わせる工程を含む構成とすることができる。この構成によれば、前記突起先端の酸化膜が除去され、半田との濡れ性が確保される。このため、突起の先端部でのみ、電極を構成する金属と半田との合金層が形成される。   In the above configuration, the step of temporarily joining includes a step of applying ultrasonic vibration to at least one of the mounting portion and the mounted portion, and rubbing the surface of the metal post and the tip portion of the protrusion. can do. According to this configuration, the oxide film at the tip of the protrusion is removed, and the wettability with the solder is ensured. For this reason, the alloy layer of the metal and solder which comprise an electrode is formed only in the front-end | tip part of protrusion.

上記構成において、前記仮接合する工程は、前記突起の側面と、前記半田の前記金属ポストとの接触面以外及び前記半田の前記突起の先端部との接触面以外の表面と、を露出させる工程を含む構成とすることができる。この構成によれば、還元反応が効率的かつ安定的に進む。このため、強度の高い接合部が得られる。また、加工時間の短縮も可能となる。   In the above-described configuration, the step of temporarily joining includes a step of exposing a side surface of the protrusion and a surface other than the contact surface of the solder with the metal post and a contact surface of the solder with the tip of the protrusion. It can be set as the structure containing. According to this configuration, the reduction reaction proceeds efficiently and stably. For this reason, a joint part with high strength is obtained. In addition, the processing time can be shortened.

上記構成において、前記本接合する工程は、前記実装部と前記被実装部との少なくとも一方を、正対しないように仮接合された前記第1電極と前記第2電極とが正対する方向に移動させる工程を含む構成とすることができる。この構成により、半田内部の巻き込みボイドが抑制できる。このため、電極間の機械的接合の強度を高くすることができる。   In the above configuration, the main joining step moves in a direction in which the first electrode and the second electrode that are temporarily joined so as not to face each other at least one of the mounting portion and the mounted portion face each other. It can be set as the structure including the process to make. With this configuration, entrainment voids inside the solder can be suppressed. For this reason, the intensity | strength of the mechanical joining between electrodes can be made high.

本発明によれば、被実装部の電極に突起が設けられているため、仮接合時の加熱時間を短縮し、接合端子の酸化膜の成長を抑制することができる。また、実装部と被実装部の間の距離が広い状態で還元ガスを流入させるため、還元反応が安定的かつ効率的に進む。結果として、接合部の強度向上、並びに低コスト化が可能となる。   According to the present invention, since the protrusions are provided on the electrodes of the mounted portion, the heating time at the time of temporary bonding can be shortened and the growth of the oxide film of the bonding terminal can be suppressed. In addition, since the reducing gas is allowed to flow in a state where the distance between the mounting portion and the mounted portion is wide, the reduction reaction proceeds stably and efficiently. As a result, the strength of the joint can be improved and the cost can be reduced.

図1(a)は実施例1に係る半導体装置100の上面図であり、図1(b)はA−A1間の断面図である。FIG. 1A is a top view of the semiconductor device 100 according to the first embodiment, and FIG. 1B is a cross-sectional view taken along line A-A1. 図2(a)は実施例1に係る第1半導体チップ10の下面図であり、図2(b)はB−B1間の断面図である。FIG. 2A is a bottom view of the first semiconductor chip 10 according to the first embodiment, and FIG. 2B is a cross-sectional view taken along the line B-B1. 図3(a)は実施例1に係る第2半導体チップ20の上面図であり、図3(b)はC−C1間の断面図である。FIG. 3A is a top view of the second semiconductor chip 20 according to the first embodiment, and FIG. 3B is a cross-sectional view taken along C-C1. 図4(a)から図4(c)は実施例1に係る半導体装置100の製造工程を示す断面図である。FIG. 4A to FIG. 4C are cross-sectional views illustrating manufacturing steps of the semiconductor device 100 according to the first embodiment. 図5(a)は実施例2に係る第2半導体チップ20の上面図であり、図5(b)はD−D1間の断面図である。FIG. 5A is a top view of the second semiconductor chip 20 according to the second embodiment, and FIG. 5B is a cross-sectional view taken along the line D-D1. 図6(a)から図6(c)は実施例2に係る半導体装置の製造工程を示す断面図である。FIG. 6A to FIG. 6C are cross-sectional views illustrating the manufacturing steps of the semiconductor device according to the second embodiment. 図7(a)は実施例3に係る第1半導体チップ10の下面図であり、図7(b)はE−E1間の断面図である。FIG. 7A is a bottom view of the first semiconductor chip 10 according to the third embodiment, and FIG. 7B is a cross-sectional view taken along line E-E1. 図8(a)から図8(d)は実施例3に係る半導体装置の製造工程を示す断面図である。FIG. 8A to FIG. 8D are cross-sectional views illustrating the manufacturing steps of the semiconductor device according to the third embodiment.

以下、図面を用い本発明に関する実施例について説明する。   Embodiments relating to the present invention will be described below with reference to the drawings.

実施例1は、実装部と被実装部には、共に例えばシリコンからなる半導体チップ、接合端子には半田バンプを用いた例である。   In the first embodiment, a semiconductor chip made of, for example, silicon is used for both the mounting portion and the mounted portion, and solder bumps are used for the junction terminals.

図1(a)及び図1(b)を参照に、実施例1に係る半導体装置100を説明する。図1(a)は半導体装置100の上面図、(b)はA−A1に沿った断面図である。なお、図1(a)においては、第1半導体チップ10を透視して第1電極12を図示している。第1半導体チップ10の下面は、例えば厚さ5μmのポリイミドからなる絶縁層16で覆われている。絶縁層16に設けられた、例えば幅40μmの開口部には、Cu等の金属からなる第1電極12が形成されている。第2半導体チップ20の上面は、例えば厚さ5μmのポリイミドからなる絶縁層26で覆われている。絶縁層26に設けられた例えば幅40μmの開口部には、Cu等の金属からなる第2電極22が形成されている。第2電極22の中央部には例えば幅10μmの突起24が設けられており、突起24内下部には第2電極22を形成する金属より熱伝導率が低い材料層26aが設置されている。製造工程簡略化の観点から、絶縁層26と材料層26aとは同じ工程で形成することが好ましい。つまり、絶縁層26と材料層26aとは同じ材料であることが好ましい。第1電極12と第2電極22とは、半田バンプ14により接合されている。また、第1電極12及び第2電極22の形状に指定はないが、半田バンプ14は溶融した際に表面張力によって球状になるため、上面図から見た平面形状は円形とすることが好ましい。   A semiconductor device 100 according to the first embodiment will be described with reference to FIGS. FIG. 1A is a top view of the semiconductor device 100, and FIG. 1B is a cross-sectional view taken along A-A1. In FIG. 1A, the first electrode 12 is shown through the first semiconductor chip 10. The lower surface of the first semiconductor chip 10 is covered with an insulating layer 16 made of polyimide having a thickness of 5 μm, for example. For example, a first electrode 12 made of a metal such as Cu is formed in an opening having a width of, for example, 40 μm provided in the insulating layer 16. The upper surface of the second semiconductor chip 20 is covered with an insulating layer 26 made of polyimide having a thickness of 5 μm, for example. A second electrode 22 made of a metal such as Cu is formed in an opening having a width of, for example, 40 μm provided in the insulating layer 26. A projection 24 having a width of 10 μm, for example, is provided at the center of the second electrode 22, and a material layer 26 a having a lower thermal conductivity than the metal forming the second electrode 22 is provided in the lower portion of the projection 24. From the viewpoint of simplifying the manufacturing process, the insulating layer 26 and the material layer 26a are preferably formed in the same process. That is, the insulating layer 26 and the material layer 26a are preferably made of the same material. The first electrode 12 and the second electrode 22 are joined by a solder bump 14. Although the shape of the first electrode 12 and the second electrode 22 is not specified, the solder bump 14 becomes spherical due to surface tension when melted, and therefore the planar shape seen from the top view is preferably circular.

図2(a)から図4(c)を用い、半導体装置100の製造方法について説明する。   A method for manufacturing the semiconductor device 100 will be described with reference to FIGS.

図2(a)は第1半導体チップ10の下面図、図2(b)はB−B1に沿った断面図である。図2(b)に示すように、第1電極12の下部に半田バンプ14が設けられている。図3(a)は第2半導体チップ20の上面図、図3(b)はC−C1に沿った断面図である。図3(b)に示すように、第2電極22には半田バンプは設けられていない。図4(a)から図4(c)を参照に、第1半導体チップ10を第2半導体チップ20にFCBを用いて実装する方法について説明する。   2A is a bottom view of the first semiconductor chip 10, and FIG. 2B is a cross-sectional view taken along B-B1. As shown in FIG. 2B, solder bumps 14 are provided below the first electrode 12. FIG. 3A is a top view of the second semiconductor chip 20, and FIG. 3B is a cross-sectional view taken along C-C1. As shown in FIG. 3B, the second electrode 22 is not provided with solder bumps. A method of mounting the first semiconductor chip 10 on the second semiconductor chip 20 using FCB will be described with reference to FIGS.

図4(a)から図4(b)を参照に、第1電極12と第2電極22とを、半田バンプ14を介して仮接合する工程を説明する。図4(a)に示すように、第1半導体チップ10はフリップチップボンダーのツール18に吸着されており、第2半導体チップ22はフリップチップボンダーのステージ28上に固定されている。また、ツール18はヒーターを内蔵している。第1電極12と第2電極22とが正対するように位置合わせを行い、第1半導体チップ10を矢印110の方向に移動させる。図4(b)に示すように、半田バンプ14と、第2電極22に設けられた突起24の先端部とを接触させ、第1半導体チップ10上部のツール18内のヒーターで加熱する。ツール18から発生した熱は、半田バンプ14を通して突起24へと伝わる。このとき、突起24内の下部に熱伝導率の低い材料層26aが設けられているため、突起24の先端部から第2電極22の他の部分へは熱が伝わりにくくなる。結果的に、突起24の先端部を選択的に半田融点以上の温度とすることができる。半田バンプ14と突起24の先端部とで、第2電極22を構成する金属と半田との合金層が形成され、第1電極12と第2電極22とが仮接合される。仮接合された状態で、第1電極12と第2電極22との接合状態の電気的なチェック、及び第1半導体チップ10の電気的な動作チェックを行い、不良品ならば第1半導体チップ10を交換し、良品ならば次の工程に進む。   A process of temporarily joining the first electrode 12 and the second electrode 22 through the solder bumps 14 will be described with reference to FIGS. As shown in FIG. 4A, the first semiconductor chip 10 is attracted to the flip chip bonder tool 18 and the second semiconductor chip 22 is fixed on the stage 28 of the flip chip bonder. The tool 18 has a built-in heater. Positioning is performed so that the first electrode 12 and the second electrode 22 face each other, and the first semiconductor chip 10 is moved in the direction of the arrow 110. As shown in FIG. 4B, the solder bump 14 and the tip of the protrusion 24 provided on the second electrode 22 are brought into contact with each other and heated by a heater in the tool 18 on the first semiconductor chip 10. Heat generated from the tool 18 is transmitted to the protrusions 24 through the solder bumps 14. At this time, since the material layer 26 a having a low thermal conductivity is provided in the lower portion of the protrusion 24, it is difficult for heat to be transmitted from the tip portion of the protrusion 24 to the other portion of the second electrode 22. As a result, the tip portion of the protrusion 24 can be selectively set to a temperature equal to or higher than the solder melting point. The solder bump 14 and the tip of the protrusion 24 form an alloy layer of a metal and solder constituting the second electrode 22, and the first electrode 12 and the second electrode 22 are temporarily joined. In the temporarily joined state, an electrical check of the joined state between the first electrode 12 and the second electrode 22 and an electrical operation check of the first semiconductor chip 10 are performed. If it is non-defective, proceed to the next step.

仮接合の後、例えばNガスとHガスとの混合ガスや蟻酸等の還元ガスを第1半導体チップ10と第2半導体チップ20の間に流入させ、還元反応を引き起こすことで半田バンプ14表面の酸化膜を除去する。 After the temporary bonding, for example, a mixed gas of N 2 gas and H 2 gas or a reducing gas such as formic acid is caused to flow between the first semiconductor chip 10 and the second semiconductor chip 20 to cause a reduction reaction, thereby causing the solder bumps 14. The oxide film on the surface is removed.

図4(b)から図4(c)を参照に、第1電極12と第2電極22とを、本接合する工程を説明する。還元反応の後、第1半導体チップ10を矢印110の方向へ移動させる。半田バンプ14表面の酸化膜が除去されているため、第2電極22との間に濡れ性が得られ、半田バンプ14は突起24の先端部から突起24の側面、第2電極22の底面へと濡れ広がる。第2電極22を構成する金属と半田とで合金層が形成され、第1電極12と第2電極22とが本接合される。このとき、半田バンプ14が突起24の側面の一部を覆えば接合は成るが、接合強度の観点からは、突起24の側面全体を覆うことが好ましい。より高い接合強度を得るには、半田バンプ14が第2電極22の全面を覆うことが好ましい。   With reference to FIG. 4B to FIG. 4C, the step of main joining the first electrode 12 and the second electrode 22 will be described. After the reduction reaction, the first semiconductor chip 10 is moved in the direction of the arrow 110. Since the oxide film on the surface of the solder bump 14 is removed, wettability is obtained between the solder bump 14 and the second electrode 22, and the solder bump 14 extends from the tip of the protrusion 24 to the side surface of the protrusion 24 and to the bottom surface of the second electrode 22. And spread wet. An alloy layer is formed of the metal constituting the second electrode 22 and solder, and the first electrode 12 and the second electrode 22 are finally joined. At this time, if the solder bump 14 covers a part of the side surface of the protrusion 24, the bonding is achieved, but it is preferable to cover the entire side surface of the protrusion 24 from the viewpoint of bonding strength. In order to obtain higher bonding strength, it is preferable that the solder bump 14 covers the entire surface of the second electrode 22.

実施例1によれば、突起24内の下部には熱伝導率の低い材料層26aが設けられているため、半田バンプ14から伝わる熱は突起24の先端部から第2半導体チップ20に伝道しにくい。また、突起24の幅は10μmと、第2電極22全体の幅である40μmに対して狭い。そのため、仮接合時の加熱時間の短縮が可能になり、半田バンプ14の酸化膜の成長を抑制できる。これにより、第2電極22を構成する金属と半田との濡れ性が得られるため、第1電極12と第2電極22との接合部の強度が高くなる。   According to the first embodiment, since the material layer 26 a having a low thermal conductivity is provided in the lower portion of the protrusion 24, the heat transmitted from the solder bump 14 is transmitted from the tip of the protrusion 24 to the second semiconductor chip 20. Hateful. Further, the width of the protrusion 24 is 10 μm, which is narrower than 40 μm, which is the width of the entire second electrode 22. Therefore, the heating time at the time of temporary bonding can be shortened, and the growth of the oxide film on the solder bump 14 can be suppressed. Thereby, since the wettability between the metal constituting the second electrode 22 and the solder is obtained, the strength of the joint portion between the first electrode 12 and the second electrode 22 is increased.

図4(b)に示すように、仮接合された状態においては、第1半導体チップ10と第2半導体チップ20との距離は40μmと、電極に突起24を設けない場合よりも大きくなる。また、半田バンプ14と第2電極22の露出面積が広い。そのため、還元ガスが半田バンプ14表面及び第2電極22表面へと十分に行き渡り、還元反応が安定的かつ効率的になる。このため、還元反応に要する時間が短くなり、また第1電極12と第2電極22との接合部の強度が高くなる。   As shown in FIG. 4B, in the temporarily bonded state, the distance between the first semiconductor chip 10 and the second semiconductor chip 20 is 40 μm, which is larger than when the protrusions 24 are not provided on the electrodes. Further, the exposed area of the solder bump 14 and the second electrode 22 is large. Therefore, the reducing gas is sufficiently distributed to the surface of the solder bump 14 and the surface of the second electrode 22, and the reduction reaction is stable and efficient. For this reason, the time required for the reduction reaction is shortened, and the strength of the joint between the first electrode 12 and the second electrode 22 is increased.

実施例1によれば、上記のように、仮接合する工程での加熱時間、及び還元反応に要する時間が短くなる。そのため、FCB実装に要する時間を、例えば電極に突起がない場合の1/10に短縮することができる。それに伴い半導体装置(パッケージ)一個当たりのフリップチップボンダー占有時間を短縮できるため、半導体装置の製造コストを1/10に抑えることができる。   According to Example 1, as described above, the heating time in the temporary bonding step and the time required for the reduction reaction are shortened. Therefore, the time required for FCB mounting can be shortened to 1/10, for example, when there is no protrusion on the electrode. Accordingly, the time required to occupy the flip chip bonder per semiconductor device (package) can be shortened, so that the manufacturing cost of the semiconductor device can be reduced to 1/10.

また、仮接合された状態においては、突起24の先端部が半田バンプ14と接触しているのみなので、不良品発生時に第1半導体チップ10の取り外しを容易に行うことができる。   In the temporarily bonded state, only the tip of the protrusion 24 is in contact with the solder bump 14, so that the first semiconductor chip 10 can be easily removed when a defective product occurs.

図4(c)に示すように、本接合の工程では、半田バンプ14と第2電極22との間に濡れ性が得られているため、半田バンプ14は表面張力によって第2電極22の表面を伝わりながら広がる。このとき半田バンプ14が、突起24の先端部から第2電極22の外側へと空気を押し出すため、半田バンプ14内部の巻き込みボイドを抑制できる。これにより、第1電極12と第2電極22との接合面積を広くせしめ、機械的接合の強度を高くすることができる。   As shown in FIG. 4C, in the main bonding process, wettability is obtained between the solder bump 14 and the second electrode 22, and therefore, the solder bump 14 has a surface tension on the surface of the second electrode 22 due to surface tension. Spread while passing on. At this time, the solder bump 14 pushes air from the tip of the protrusion 24 to the outside of the second electrode 22, so that the entanglement void inside the solder bump 14 can be suppressed. Thereby, the joining area of the 1st electrode 12 and the 2nd electrode 22 can be enlarged, and the intensity | strength of mechanical joining can be made high.

実施例2は、突起が第2電極の端部に設けられている例である。図5(a)から図6(c)を用いて実施例2に関する半導体装置の製造方法について説明する。なお、第1半導体チップ10は実施例1と同じであるため、説明を省略する。   Example 2 is an example in which the protrusion is provided at the end of the second electrode. A method for manufacturing a semiconductor device according to the second embodiment will be described with reference to FIGS. Since the first semiconductor chip 10 is the same as that of the first embodiment, the description thereof is omitted.

図5(a)は実施例2に係る第2半導体チップ20の上面図であり、図5(b)は図5(a)のD−D1線に沿った断面図である。突起34は絶縁層26上の第2電極32が露出している開口部33に隣接した部分の上面に設けられている。絶縁層26は、第2電極を構成する金属よりも熱伝導率が低い材料、例えばポリイミドである。また、図5(a)に示すように、第2半導体チップ20に設けられた一個以上の第2電極32それぞれにおいて、開口部33と突起34との相対的位置関係は全て同じである。   FIG. 5A is a top view of the second semiconductor chip 20 according to the second embodiment, and FIG. 5B is a cross-sectional view taken along the line D-D1 in FIG. The protrusion 34 is provided on the upper surface of the portion adjacent to the opening 33 where the second electrode 32 is exposed on the insulating layer 26. The insulating layer 26 is a material having a lower thermal conductivity than that of the metal constituting the second electrode, for example, polyimide. Further, as shown in FIG. 5A, in each of the one or more second electrodes 32 provided on the second semiconductor chip 20, the relative positional relationship between the opening 33 and the protrusion 34 is the same.

図6(a)から図6(c)を参照に、第1半導体チップ10を第2半導体チップ20にFCBを用いて実装する方法を説明する。   A method of mounting the first semiconductor chip 10 on the second semiconductor chip 20 using FCB will be described with reference to FIGS. 6A to 6C.

図6(a)から図6(b)を参照に、第1電極12と第2電極32とを半田バンプ14を介して仮接合を行う方法を説明する。図6(a)に示すように、半田バンプ14と突起34が正対するように位置合わせを行い、第1半導体チップ10を矢印110の方向に移動させる。図6(b)に示すように、半田バンプ14と第2電極32に設けられた突起34の先端部とを接触させ、第1半導体チップ10の上部に設けられたツール18内のヒーターで加熱する。ツール18から発生した熱は、半田バンプ14を通して突起34へと伝わる。このとき、突起34の下部の絶縁層26は熱伝導率が低いため、突起34の先端部から第2電極32の他の部分へ熱伝道しにくい。結果的に、突起34の先端部を選択的に半田融点以上の温度とすることができる。半田バンプ14と突起34の先端部で、第2電極32を構成する金属と半田との合金層が形成され、第1電極12と第2電極32とが仮接合される。仮接合された状態で、第1電極12と第2電極32との接合状態の電気的なチェック、及び第1半導体チップ10の電気的な動作チェックを行い、不良品ならば第1半導体チップ10を交換し、良品ならば次の工程に進む。   A method of temporarily joining the first electrode 12 and the second electrode 32 via the solder bumps 14 will be described with reference to FIGS. As shown in FIG. 6A, alignment is performed so that the solder bumps 14 and the protrusions 34 face each other, and the first semiconductor chip 10 is moved in the direction of the arrow 110. As shown in FIG. 6B, the solder bump 14 and the tip of the projection 34 provided on the second electrode 32 are brought into contact with each other and heated by a heater in the tool 18 provided on the upper portion of the first semiconductor chip 10. To do. Heat generated from the tool 18 is transmitted to the protrusion 34 through the solder bump 14. At this time, since the insulating layer 26 under the protrusion 34 has low thermal conductivity, it is difficult for heat transfer from the tip of the protrusion 34 to the other part of the second electrode 32. As a result, the tip of the protrusion 34 can be selectively set to a temperature equal to or higher than the solder melting point. An alloy layer of metal and solder constituting the second electrode 32 is formed at the tip of the solder bump 14 and the protrusion 34, and the first electrode 12 and the second electrode 32 are temporarily joined. In the temporarily joined state, an electrical check of the joined state between the first electrode 12 and the second electrode 32 and an electrical operation check of the first semiconductor chip 10 are performed. If it is non-defective, proceed to the next step.

仮接合の後、還元ガスを第1半導体チップ10と第2半導体チップ20の間に流入させ、還元反応を引き起こすことで半田バンプ14表面の酸化膜を除去する。   After the temporary bonding, a reducing gas is caused to flow between the first semiconductor chip 10 and the second semiconductor chip 20 to cause a reduction reaction, thereby removing the oxide film on the surface of the solder bump 14.

図6(b)から図6(c)を参照に、第1電極12と第2電極32とを本接合する方法を説明する。還元反応の後、第1半導体チップ10を図6(b)の矢印120の方向へと移動させ、第1電極12と第2電極32とを正対させる。半田バンプ14表面の酸化膜が除去されているので、第2電極32との間に濡れ性が得られる。そのため、図6(c)に示すように、半田バンプ14は突起34の先端部から、突起34の側面、さらに第2電極32の底面へと濡れ広がる。第2電極32を構成する金属と半田とで合金層が形成され、第1電極12と第2電極32とが本接合される。このとき、半田バンプ14が突起34の側面の一部を覆えば接合は成るが、接合強度の観点から、突起34の開口部33側の側面全体を覆うことが好ましい。より高い接合強度を得るには、半田バンプ14が第2電極32の表面全体を覆うことが好ましい。   With reference to FIG. 6B to FIG. 6C, a method of main joining the first electrode 12 and the second electrode 32 will be described. After the reduction reaction, the first semiconductor chip 10 is moved in the direction of the arrow 120 in FIG. 6B so that the first electrode 12 and the second electrode 32 face each other. Since the oxide film on the surface of the solder bump 14 is removed, wettability with the second electrode 32 is obtained. Therefore, as shown in FIG. 6C, the solder bump 14 spreads wet from the tip of the protrusion 34 to the side surface of the protrusion 34 and further to the bottom surface of the second electrode 32. An alloy layer is formed of the metal constituting the second electrode 32 and the solder, and the first electrode 12 and the second electrode 32 are finally joined. At this time, bonding is achieved if the solder bump 14 covers a part of the side surface of the protrusion 34, but it is preferable to cover the entire side surface of the protrusion 34 on the opening 33 side from the viewpoint of bonding strength. In order to obtain higher bonding strength, it is preferable that the solder bump 14 covers the entire surface of the second electrode 32.

実施例2によれば、本接合の工程で半田バンプ14と第2電極34との間に濡れ性が得られているため、半田バンプ14は表面張力により第2電極32の表面を伝わりながら広がる。このとき半田バンプ14が、第2電極32の一方の端から他方の端へと空気を押し出す。そのため、実施例1よりも半田バンプ14内部の巻き込みボイドを抑制する効果が大きくなり、機械的接合の強度をより高くすることができる。   According to the second embodiment, wettability is obtained between the solder bump 14 and the second electrode 34 in the main bonding process, and therefore the solder bump 14 spreads while being transmitted along the surface of the second electrode 32 due to surface tension. . At this time, the solder bump 14 pushes air from one end of the second electrode 32 to the other end. Therefore, the effect of suppressing the voids inside the solder bumps 14 is greater than that of the first embodiment, and the strength of mechanical bonding can be further increased.

実施例2では、本接合の工程において、第1半導体チップ10を移動させて第1電極12と第2電極32を正対させる例を示したが、第2半導体チップ20を移動させてもよい。   In the second embodiment, in the main bonding process, the first semiconductor chip 10 is moved and the first electrode 12 and the second electrode 32 are opposed to each other. However, the second semiconductor chip 20 may be moved. .

実施例3は、接合端子がCu等の金属で構成された金属ポストと、金属ポストの第2電極と対抗する面にメッキされた半田層と、により構成されている例である。図7(a)から図8(d)を用いて、実施例3に係る半導体装置の製造方法を説明する。なお、第2半導体チップ20は実施例1と同じであるため、説明を省略する。   Example 3 is an example in which the joining terminal is configured by a metal post made of a metal such as Cu and a solder layer plated on a surface facing the second electrode of the metal post. A method for manufacturing the semiconductor device according to the third embodiment will be described with reference to FIGS. Note that the second semiconductor chip 20 is the same as that of the first embodiment, and thus the description thereof is omitted.

図7(a)は、第1半導体チップ10の下面図であり、図7(b)は図7(a)のE−E1線に沿った断面図である。第1電極12の下部に金属ポスト42が設けられ、金属ポスト42の下面は半田層44で覆われている。   FIG. 7A is a bottom view of the first semiconductor chip 10, and FIG. 7B is a cross-sectional view taken along the line E-E1 of FIG. A metal post 42 is provided below the first electrode 12, and the lower surface of the metal post 42 is covered with a solder layer 44.

図8(a)から図8(d)を参照に、第1半導体チップ10を第2半導体チップ20にFCBを用いて実装する方法を説明する。   A method for mounting the first semiconductor chip 10 on the second semiconductor chip 20 using FCB will be described with reference to FIGS.

図8(a)から図8(c)を参照に、第1電極12と第2電極22とを、金属ポスト42及び半田層44を介して仮接合を行う。図8(a)に示すように、第1電極12と第2電極22とが正対するように位置合わせを行い、第1半導体チップ10を矢印110の方向に移動させる。図8(b)に示すように、半田44の表面と第2電極22に設けられた突起24の先端部とを接触させ、第1半導体チップ10の上部に配置されたツール18内のヒーターで加熱する。ツール18から発生した熱は半田層44を通して突起24へと伝わる。それと同時に、第1半導体チップ10に矢印130の方向の超音波振動を加え、金属ポスト42と突起24の先端部を擦り合わせる。これにより、突起24の先端部の酸化膜が除去される。   With reference to FIG. 8A to FIG. 8C, the first electrode 12 and the second electrode 22 are temporarily joined through the metal post 42 and the solder layer 44. As shown in FIG. 8A, alignment is performed so that the first electrode 12 and the second electrode 22 face each other, and the first semiconductor chip 10 is moved in the direction of the arrow 110. As shown in FIG. 8B, the surface of the solder 44 and the tip of the protrusion 24 provided on the second electrode 22 are brought into contact with each other, and a heater in the tool 18 disposed on the first semiconductor chip 10 is used. Heat. Heat generated from the tool 18 is transferred to the protrusion 24 through the solder layer 44. At the same time, ultrasonic vibration in the direction of arrow 130 is applied to the first semiconductor chip 10 to rub the metal post 42 and the tip of the protrusion 24. As a result, the oxide film at the tip of the protrusion 24 is removed.

図8(c)に示すように、超音波振動を停止させる。第1半導体チップ10を矢印140の方向へと持ち上げ、半田層44と突起24の先端部が接触した位置になるまで、第1半導体チップ10と第2半導体チップ20とを引き離す。突起24の先端部は酸化膜が除去され、表面の金属と半田層44との濡れ性が確保されているため、突起24の先端部には半田層44が濡れ広がる。このため、突起24の先端部において、第2電極22を構成する金属と半田との合金層が形成される。一方、第2電極22の他の部分は酸化膜が除去されていないため、表面の金属と半田層44との濡れ性が得られない。このため、第2電極22を構成する金属と半田との合金層は形成されない。結果的に、突起24の先端部においてのみ第2電極22を構成する金属と半田との合金層が形成され、第1電極12と第2電極22とが仮接合される。仮接合された状態で、第1電極12と第2電極22との接合状態の電気的なチェック、及び第1半導体チップ10の電気的な動作チェックを行い、不良品ならば第1半導体チップ10を交換し、良品ならば次の工程に進む。   As shown in FIG. 8C, the ultrasonic vibration is stopped. The first semiconductor chip 10 is lifted in the direction of the arrow 140, and the first semiconductor chip 10 and the second semiconductor chip 20 are separated until the solder layer 44 and the tip of the protrusion 24 come into contact with each other. Since the oxide film is removed from the tip portion of the protrusion 24 and the wettability between the metal on the surface and the solder layer 44 is ensured, the solder layer 44 spreads wet on the tip portion of the protrusion 24. For this reason, an alloy layer of metal and solder constituting the second electrode 22 is formed at the tip of the protrusion 24. On the other hand, since the oxide film is not removed in the other part of the second electrode 22, the wettability between the metal on the surface and the solder layer 44 cannot be obtained. For this reason, the alloy layer of the metal and solder which comprise the 2nd electrode 22 is not formed. As a result, an alloy layer of metal and solder constituting the second electrode 22 is formed only at the tip of the protrusion 24, and the first electrode 12 and the second electrode 22 are temporarily joined. In the temporarily joined state, an electrical check of the joined state between the first electrode 12 and the second electrode 22 and an electrical operation check of the first semiconductor chip 10 are performed. If it is non-defective, proceed to the next step.

仮接合の後、還元ガスを第1半導体チップ10と第2半導体チップ20の間に流入させ、還元反応を引き起こすことで第2電極22表面及び半田層44表面の酸化膜を除去する。   After the temporary bonding, a reducing gas is caused to flow between the first semiconductor chip 10 and the second semiconductor chip 20 to cause a reduction reaction, thereby removing the oxide film on the surface of the second electrode 22 and the surface of the solder layer 44.

図8(d)を参照に、第1電極12と第2電極22とを本接合する工程を説明する。第1半導体チップ10を矢印110の方向へ移動させる。第2電極22表面及び半田層44表面の酸化膜が除去されているので、濡れ性が得られる。そのため、半田層44は突起24の先端部から突起24の側面、さらに第2電極22の底面へと濡れ広がる。第2電極22を構成する金属と半田とで合金層が形成され、第1電極12と第2電極22とが本接合される。このとき、半田層44は突起24の側面の一部を覆えば接合は成るが、接合強度の観点から、突起24の側面全体を覆うことが好ましい。より高い接合強度を得るには、半田層44が第2電極22の表面全体を覆うことが好ましい。   With reference to FIG. 8 (d), the step of main joining the first electrode 12 and the second electrode 22 will be described. The first semiconductor chip 10 is moved in the direction of arrow 110. Since the oxide film on the surface of the second electrode 22 and the surface of the solder layer 44 is removed, wettability is obtained. Therefore, the solder layer 44 spreads wet from the tip of the protrusion 24 to the side surface of the protrusion 24 and further to the bottom surface of the second electrode 22. An alloy layer is formed of the metal constituting the second electrode 22 and solder, and the first electrode 12 and the second electrode 22 are finally joined. At this time, the solder layer 44 can be bonded if it covers a part of the side surface of the protrusion 24, but it is preferable to cover the entire side surface of the protrusion 24 from the viewpoint of bonding strength. In order to obtain higher bonding strength, it is preferable that the solder layer 44 covers the entire surface of the second electrode 22.

実施例3によれば、図8(b)に示すように、突起24の先端部と金属ポスト42とを擦り合わせることで、酸化膜を除去できる。突起24は第2電極22全体よりも小さいので、第2電極22全体を擦り合わせるよりも、酸化膜の除去を効率的に行うことができ、加工時間を短縮できる。   According to the third embodiment, as shown in FIG. 8B, the oxide film can be removed by rubbing the tip of the protrusion 24 and the metal post 42. Since the protrusion 24 is smaller than the entire second electrode 22, the oxide film can be removed more efficiently than when the entire second electrode 22 is rubbed together, and the processing time can be shortened.

また、接合端子が金属ポスト42と、その下面にメッキされた半田層44とで構成されているため、実施例1及び実施例2のように接合端子が半田バンプのみで構成されている場合よりも、半田の量を少なくすることができる。   Further, since the joining terminal is constituted by the metal post 42 and the solder layer 44 plated on the lower surface thereof, the joining terminal is constituted only by the solder bump as in the first and second embodiments. However, the amount of solder can be reduced.

実施例3では、突起24内下部に材料層26aが設けられているとしたが、材料層26aはなくてもよい。また、第1半導体チップ10の上部から加熱する例を示したが、第2半導体チップ20の下部から加熱してもよい。   In the third embodiment, the material layer 26a is provided in the lower part of the protrusion 24. However, the material layer 26a may not be provided. Moreover, although the example heated from the upper part of the 1st semiconductor chip 10 was shown, you may heat from the lower part of the 2nd semiconductor chip 20. FIG.

実施例3では、第1半導体チップ10に超音波振動を加える例を示したが、第2半導体チップ20に加えてもよいし、第1半導体チップ10と第2半導体チップ20の両方に加えてもよい。   In the third embodiment, an example in which ultrasonic vibration is applied to the first semiconductor chip 10 has been shown. However, the ultrasonic vibration may be added to the second semiconductor chip 20 or to both the first semiconductor chip 10 and the second semiconductor chip 20. Also good.

実施例1から実施例3では、実装部と被実装部が共に半導体チップである例を示したが、半導体チップの代わりに、半導体チップを搭載した配線基板等の絶縁性基板でもよい。また、いずれか一方が半導体チップを搭載していない基板であってもよい。すなわち、実装部と被実装部との少なくとも一方が半導体チップを含んでいればよい。   In the first to third embodiments, an example in which both the mounting portion and the mounted portion are semiconductor chips has been described, but an insulating substrate such as a wiring substrate on which a semiconductor chip is mounted may be used instead of the semiconductor chip. Further, either one of the substrates may not be mounted with a semiconductor chip. That is, it is only necessary that at least one of the mounting portion and the mounted portion includes a semiconductor chip.

10 第1半導体チップ
12 第1電極
14 半田バンプ
16 絶縁層
18 ツール
20 第2半導体チップ
22 第2電極
24 突起
26 絶縁層
26a 材料層
28 ステージ
34 突起
42 金属ポスト
44 半田層
100 半導体装置
DESCRIPTION OF SYMBOLS 10 1st semiconductor chip 12 1st electrode 14 Solder bump 16 Insulating layer 18 Tool 20 2nd semiconductor chip 22 2nd electrode 24 Protrusion 26 Insulating layer 26a Material layer 28 Stage 34 Protrusion 42 Metal post 44 Solder layer 100 Semiconductor device

Claims (9)

実装部と、
前記実装部に設けられた第1電極と、
前記実装部が実装される被実装部と、
前記被実装部に設けられた突起を有する電極であって、前記突起内に形成された材料層の下面が、当該突起における前記被実装部の上面に接する面と同一面である、第2電極と、
前記第1電極と前記第2電極を接合し、前記突起の側面の少なくとも一部を覆う半田を含む接合端子とを具備し、
前記実装部と前記被実装部との少なくとも一方は半導体チップを含み、前記被実装部は、前記突起内の下部に前記第2電極の表面より熱伝導率の低い材料層を有するものであって、
前記突起の先端部でのみ、前記第2電極を構成する金属と前記半田との合金層が形成されていることを特徴とする半導体装置。
An implementation section;
A first electrode provided in the mounting portion;
A mounted part on which the mounting part is mounted;
An electrode having a protrusion provided on the mounted portion, wherein a lower surface of a material layer formed in the protrusion is the same surface as a surface in contact with the upper surface of the mounted portion in the protrusion . When,
Joining the first electrode and the second electrode, and comprising a joining terminal including solder covering at least a part of a side surface of the protrusion,
At least one of the mounting part and the mounted part includes a semiconductor chip, and the mounted part has a material layer having a lower thermal conductivity than the surface of the second electrode in the lower part of the protrusion. ,
A semiconductor device, wherein an alloy layer of a metal constituting the second electrode and the solder is formed only at a tip portion of the protrusion.
前記接合端子は、半田からなることを特徴とする請求項1記載の半導体装置。   The semiconductor device according to claim 1, wherein the joining terminal is made of solder. 前記接合端子は、金属ポストと、前記金属ポストの前記第2電極と対向している面に設けられた半田層とにより構成されていることを特徴とする請求項1記載の半導体装置。   2. The semiconductor device according to claim 1, wherein the joining terminal includes a metal post and a solder layer provided on a surface of the metal post facing the second electrode. 半導体装置の製造方法であって、
前記半導体装置は、
実装部と、
前記実装部に設けられた第1電極と、
前記実装部が実装される被実装部と、
前記被実装部に設けられた突起を有する電極であって、前記突起内に形成された材料層の下面が、当該突起における前記被実装部の上面に接する面と同一面である、第2電極と、
前記第1電極と前記第2電極を接合し、前記突起の側面の少なくとも一部を覆う半田を含む接合端子と、
を具備し、
前記実装部と前記被実装部との少なくとも一方は半導体チップを含み、前記接合端子は半田からなり、前記被実装部は、前記突起内の下部に前記第2電極の表面より熱伝導率の低い材料層を有するものであって、
当該製造方法は、
前記実装部に設けられた前記第1電極を、前記被実装部に設けられた前記突起を有する前記第2電極に、前記突起の先端部と、前記第1電極に設けられた前記接合端子と、を接触させることにより仮接合する工程と、
前記第1電極と、前記第2電極と、前記接合端子に含まれている前記半田と、を還元ガス中に暴露する工程と、
前記第1電極を前記第2電極に、前記突起の側面の少なくとも一部を前記接合端子に含まれる前記半田で覆うことにより本接合する工程とを含み、
前記実装部と前記被実装部との少なくとも一方は半導体チップを含み、
前記仮接合する工程は、前記突起の先端部の温度が前記半田の融点以上になり、かつ前記第2電極の前記突起の先端部を除いた部分の温度が前記半田の融点未満になるように加熱する工程を含むことを特徴とする半導体装置の製造方法。
A method for manufacturing a semiconductor device, comprising:
The semiconductor device includes:
An implementation section;
A first electrode provided in the mounting portion;
A mounted part on which the mounting part is mounted;
An electrode having a protrusion provided on the mounted portion, wherein a lower surface of a material layer formed in the protrusion is the same surface as a surface in contact with the upper surface of the mounted portion in the protrusion . When,
A bonding terminal including solder for bonding the first electrode and the second electrode and covering at least a part of a side surface of the protrusion;
Comprising
At least one of the mounting portion and the mounting portion includes a semiconductor chip, the joining terminal is made of solder, and the mounting portion has a lower thermal conductivity than the surface of the second electrode in the lower portion of the protrusion. Having a material layer,
The manufacturing method is
The first electrode provided in the mounting portion, the second electrode having the protrusion provided in the mounted portion, the tip portion of the protrusion, and the joining terminal provided in the first electrode , And temporarily bonding by contacting,
Exposing the first electrode, the second electrode, and the solder contained in the junction terminal in a reducing gas;
A step of performing main bonding by covering the first electrode with the second electrode and covering at least a part of a side surface of the protrusion with the solder included in the bonding terminal,
At least one of the mounting part and the mounted part includes a semiconductor chip,
The temporary bonding step is performed so that the temperature of the tip of the protrusion is equal to or higher than the melting point of the solder, and the temperature of the portion of the second electrode excluding the tip of the protrusion is lower than the melting point of the solder. The manufacturing method of the semiconductor device characterized by including the process of heating.
前記仮接合する工程は、前記第2電極の側面と、前記半田の前記突起の先端部との接触面以外の表面と、が露出するように仮接合する工程であることを特徴とする、請求項記載の半導体装置の製造方法。 The step of temporarily bonding is a step of temporarily bonding so that a side surface of the second electrode and a surface other than a contact surface of the tip of the protrusion of the solder are exposed. Item 5. A method for manufacturing a semiconductor device according to Item 4 . 前記仮接合する工程は、前記突起の先端部の温度が前記半田の融点以上になり、かつ前記第2電極の前記突起の先端部を除いた部分の温度が前記半田の融点未満になるように加熱する工程を含むことを特徴とする請求項4又は5記載の半導体装置の製造方法。 The temporary bonding step is performed so that the temperature of the tip of the protrusion is equal to or higher than the melting point of the solder, and the temperature of the portion of the second electrode excluding the tip of the protrusion is lower than the melting point of the solder. 6. The method of manufacturing a semiconductor device according to claim 4 , further comprising a heating step. 前記仮接合する工程は、前記実装部と前記被実装部との少なくとも一方に超音波振動を加え、前記接合端子に含まれる金属ポストの表面と前記突起の先端部とを擦り合わせる工程を含むことを特徴とする請求項4又は5記載の半導体装置の製造方法。 The temporary bonding step includes a step of applying ultrasonic vibration to at least one of the mounting portion and the mounted portion and rubbing the surface of the metal post included in the bonding terminal and the tip of the protrusion. 6. A method of manufacturing a semiconductor device according to claim 4 , wherein 前記仮接合する工程は、前記突起の側面と、前記半田の前記金属ポストとの接触面以外及び前記半田の前記突起の先端部との接触面以外の表面と、を露出させる工程を含むことを特徴とする請求項記載の半導体装置の製造方法。 The step of temporarily joining includes a step of exposing a side surface of the protrusion and a surface other than a contact surface of the solder with the metal post and a contact surface of the solder with the tip of the protrusion. 8. The method of manufacturing a semiconductor device according to claim 7 , wherein 前記本接合する工程は、前記実装部と前記被実装部との少なくとも一方を、正対しないように仮接合された前記第1電極と前記第2電極とが正対する方向に移動させる工程を含むことを特徴とする請求項4から8いずれか一項記載の半導体装置の製造方法。 The main joining step includes a step of moving at least one of the mounting portion and the mounted portion in a direction in which the first electrode and the second electrode temporarily joined so as not to face each other. 9. A method of manufacturing a semiconductor device according to claim 4 , wherein the method is a semiconductor device manufacturing method.
JP2013156916A 2013-07-29 2013-07-29 Semiconductor device and manufacturing method thereof Active JP5621021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013156916A JP5621021B2 (en) 2013-07-29 2013-07-29 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013156916A JP5621021B2 (en) 2013-07-29 2013-07-29 Semiconductor device and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007273655A Division JP2009105119A (en) 2007-10-22 2007-10-22 Semiconductor device and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2013219402A JP2013219402A (en) 2013-10-24
JP5621021B2 true JP5621021B2 (en) 2014-11-05

Family

ID=49591091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013156916A Active JP5621021B2 (en) 2013-07-29 2013-07-29 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5621021B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05218136A (en) * 1992-02-03 1993-08-27 Nec Corp Bonding method for flip chip
JP2881088B2 (en) * 1993-03-16 1999-04-12 富士通株式会社 Method for manufacturing semiconductor device
JP3269399B2 (en) * 1996-09-18 2002-03-25 松下電器産業株式会社 Mounting method of work with bump
JPH10270498A (en) * 1997-03-27 1998-10-09 Toshiba Corp Manufacture of electronic device
JP2002093842A (en) * 2000-09-12 2002-03-29 Hitachi Ltd Semiconductor device and method of manufacturing the same
JP2004200247A (en) * 2002-12-16 2004-07-15 Seiko Epson Corp Terminal, forming method therefor, semiconductor chip, semiconductor mounting substrate, electronic device and electronic apparatus
JP2006041559A (en) * 2005-10-17 2006-02-09 Seiko Epson Corp Semiconductor apparatus and electronic device

Also Published As

Publication number Publication date
JP2013219402A (en) 2013-10-24

Similar Documents

Publication Publication Date Title
JP2009105119A (en) Semiconductor device and its manufacturing method
US8237273B2 (en) Metal post chip connecting device and method free to use soldering material
JP5375708B2 (en) Manufacturing method of semiconductor device
JP5645592B2 (en) Manufacturing method of semiconductor device
TW201241943A (en) Microelectronic flip chip packages with solder wetting pads and associated methods of manufacturing
JP2008091888A (en) System and method of fusible i/o interconnection for flip-chip packaging, which use stud bumps attached to substrate
JP2010034527A (en) Mounting structure and mounting method
JP6854810B2 (en) Semiconductor device
TW201411793A (en) Semiconductor device and method for manufacturing same
JP2010118522A (en) Semiconductor device and method for manufacturing the semiconductor device
JP5579148B2 (en) Power semiconductor device
JP5621021B2 (en) Semiconductor device and manufacturing method thereof
JP2018037520A (en) Semiconductor device, electronic device, method for manufacturing semiconductor device, and method for manufacturing electronic device
TWI394247B (en) Metal post chip connecting device and method free to use soldering material
JP2010040884A (en) Semiconductor device and method of bonding semiconductor chip
JP4385878B2 (en) Implementation method
JP2008192833A (en) Manufacturing method of semiconductor device
JP4159556B2 (en) Manufacturing method of semiconductor device and adhesive
JP4952527B2 (en) Semiconductor device manufacturing method and semiconductor device
JP2012028437A (en) Semiconductor device and manufacturing method thereof
JP2005101165A (en) Flip chip mounting structure, substrate for mounting the same, and method of manufacturing the same
TW201546915A (en) Integrated circuit packaging system with no-reflow connection and method of manufacture thereof
JP2006253360A (en) Semiconductor device and manufacturing method thereof
JP2006324577A (en) Semiconductor device and manufacturing method thereof
JP2009099647A (en) Semiconductor mounting method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130820

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140812

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140911

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140919

R150 Certificate of patent or registration of utility model

Ref document number: 5621021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250