JP5620289B2 - Test surface shape measuring method, test surface shape measuring apparatus, and test surface shape measuring program - Google Patents

Test surface shape measuring method, test surface shape measuring apparatus, and test surface shape measuring program Download PDF

Info

Publication number
JP5620289B2
JP5620289B2 JP2011011432A JP2011011432A JP5620289B2 JP 5620289 B2 JP5620289 B2 JP 5620289B2 JP 2011011432 A JP2011011432 A JP 2011011432A JP 2011011432 A JP2011011432 A JP 2011011432A JP 5620289 B2 JP5620289 B2 JP 5620289B2
Authority
JP
Japan
Prior art keywords
wavefront
illumination light
normal
distribution
side normal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011011432A
Other languages
Japanese (ja)
Other versions
JP2012154650A (en
Inventor
重充 古閑
重充 古閑
達雄 稲畑
達雄 稲畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Motor Wheel Co Ltd
Original Assignee
Central Motor Wheel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Motor Wheel Co Ltd filed Critical Central Motor Wheel Co Ltd
Priority to JP2011011432A priority Critical patent/JP5620289B2/en
Publication of JP2012154650A publication Critical patent/JP2012154650A/en
Application granted granted Critical
Publication of JP5620289B2 publication Critical patent/JP5620289B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Description

本発明は、干渉計の撮像素子から出力される被検面のシェア像を利用して被検面の実面形状のデータを得る被検面形状測定方法および被検面形状測定装置と被検面形状測定プログラムに関する。   The present invention relates to a test surface shape measuring method, a test surface shape measuring apparatus, and a test surface that obtain data of the actual surface shape of a test surface using a share image of the test surface output from an image sensor of an interferometer. The present invention relates to a surface shape measurement program.

被検面の状況を観察するために利用される干渉計としては、例えば、特許文献1に開示されるように、参照レンズの参照面から発生した波面と被検面から発生した波面とを直接的に干渉させて干渉縞を検出するものと、特許文献2に開示されるように、基準レンズを使用せず、横ずらしをした光線を被検面に照射して其の反射光を合成することでシェア像を検出するものとが知られている。   As an interferometer used for observing the condition of the test surface, for example, as disclosed in Patent Document 1, a wavefront generated from the reference surface of the reference lens and a wavefront generated from the test surface are directly used. And detecting the interference fringes by the interference and, as disclosed in Patent Document 2, irradiate the test surface with the laterally shifted light without using the reference lens, and synthesize the reflected light. Thus, it is known that a shared image is detected.

特許文献1に開示されるような構成を適用した場合、被検面が球面であれば単純な球面形状の参照レンズを利用して被検面の形状誤差を直接的に波面収差分布から得ることができるが、被検面が非球面となった場合には参照球面の部分的な計測やデータの合成等が必要であり、干渉像の検出後、膨大な画像の合成処理が必要となるため、処理速度等の面で実用上の問題があった。
無論、このような構成であっても、参照面として精度良く製造した物理的な非球面や其れに相当する波面を生成するモジュールで参照非球面を作れば参照球面の部分的な計測やデータの合成等の処理は省略されるが、被検対象物毎に異なる物理的な参照非球面の製造が必要となり、多くの費用と準備期間が掛かるという欠点があり実用的ではない。
また、どのような手段を講じたとしても、干渉像の形成に必要とされる2つの検査光の光路が離間しているために振動や空気のゆらぎ等の測定環境の影響を受けやすい特性は解消され得ず、測定室等の環境整備に多くの設備投資が必要となる不都合が残る。
When the configuration disclosed in Patent Document 1 is applied, if the test surface is a spherical surface, the shape error of the test surface can be obtained directly from the wavefront aberration distribution using a simple spherical reference lens. However, if the surface to be tested is aspheric, partial measurement of the reference sphere and data synthesis are required, and enormous image synthesis processing is required after detecting the interference image. There were practical problems in terms of processing speed and the like.
Of course, even with such a configuration, if the reference aspheric surface is created with a module that generates a physical aspheric surface with high precision as the reference surface and the corresponding wavefront, partial measurement and data of the reference sphere However, this method is not practical because it requires manufacturing of a different physical reference aspheric surface for each object to be examined, which requires a lot of cost and preparation time.
Whatever measures are taken, the two inspection light paths required for forming the interference image are separated from each other, so the characteristics that are easily affected by the measurement environment such as vibration and air fluctuation are Inconveniences that cannot be resolved and require a large amount of capital investment for environmental improvement of the measurement room and the like remain.

一方、特許文献2に開示されるような構成を適用した場合にあっては、検出したシェア像に基いてフリンジスキャニング処理やフェイズアンラッピング処理を行って波面収差分布を得て、この波面収差分布から被検面の状況を推定するのが一般的である。
しかし、このようにして得られた波面収差分布は参照面から発生する波面と被検面からの波面とを直接的に比較した結果ではないので、絶対的な被検面の形状を特定すること、つまり、被検面の実面形状を直接的に把握することが困難であるという不都合がある。
On the other hand, when the configuration disclosed in Patent Document 2 is applied, a wavefront aberration distribution is obtained by performing a fringe scanning process or a phase unwrapping process based on the detected shear image, and this wavefront aberration distribution is obtained. In general, the condition of the surface to be inspected is estimated from the above.
However, the wavefront aberration distribution obtained in this way is not the result of a direct comparison between the wavefront generated from the reference surface and the wavefront from the test surface, so the absolute shape of the test surface must be specified. That is, there is an inconvenience that it is difficult to directly grasp the actual surface shape of the test surface.

特願2007−557049号Japanese Patent Application No. 2007-557049 特願2006−503124号Japanese Patent Application No. 2006-503124

そこで、本発明の目的は、干渉計の撮像素子から出力される被検面のシェア像を利用し、被検面の形状に関わりなく其の実面形状を直接的に把握することのできる被検面形状測定方法および被検面形状測定装置と被検面形状測定プログラムを提供することにある。   Therefore, an object of the present invention is to use a shared image of the test surface output from the image sensor of the interferometer, and to detect the actual surface shape directly regardless of the shape of the test surface. The object is to provide a surface shape measuring method, a surface shape measuring apparatus, and a surface shape measuring program.

本発明の被検面形状測定方法は、干渉計の撮像素子から出力される被検面のシェア像を利用して被検面の実面形状を直接的に把握するための被検面形状測定方法であり、前記目的を達成するため、
干渉計の撮像素子から出力される被検面のシェア像の画像データをコンピュータで処理して得られる波面収差分布のデータで表される波面収差分布を算出するための参照球面を論理空間内に仮想し、
前記参照球面と前記波面収差分布のデータに基いて前記参照球面を基準とする波面分布面のデータを生成した後、
前記波面分布面のデータで表される波面分布面を区画して得た各微小セル毎に当該微小セルの中心を通る法線を求めて各微小セル毎の反射光を表す波面分布面側法線とすると共に、測定時に、光源から発せられた後、光学系により、1点に収束する光路を辿る様に構成されかつ同心円状の波面分布を持った照明光波面を区画して得た各微小セル毎に当該微小セルの中心を通る法線を求めて各微小セル毎の照明光波面側法線とし、
前記波面分布面側法線の各々が、前記干渉計による測定時に1点に収束する光路を辿って被検面に入射した入射光の何れかの反射光の光路と一致することに基いて、前記波面分布面のデータで表される波面分布面の各微小セル毎に、当該被検面で反射され当該微小セルに至る反射光を表す波面分布面側法線と此れに対応する入射光の光路を表す照明光波面側法線を特定し、
前記波面分布面の各微小セル毎に、対応する波面分布面側法線と照明光波面側法線との交点位置を求めて被検面の実面形状のデータとすることを特徴とした構成を有する。
The test surface shape measurement method of the present invention is a test surface shape measurement for directly grasping the actual surface shape of a test surface using a share image of the test surface output from the image sensor of the interferometer. In order to achieve the object,
A reference spherical surface for calculating the wavefront aberration distribution represented by the wavefront aberration distribution data obtained by processing the image data of the share image of the test surface output from the image sensor of the interferometer in the logical space. Virtual,
After generating wavefront distribution surface data based on the reference spherical surface based on the reference spherical surface and the wavefront aberration distribution data,
A wavefront distribution side method that represents the reflected light of each minute cell by obtaining a normal passing through the center of each minute cell obtained by dividing the wavefront distribution surface represented by the data of the wavefront distribution surface. Each line obtained by dividing an illumination light wavefront having a concentric circular wavefront distribution that is configured to follow an optical path converged to one point by an optical system after being emitted from a light source during measurement For each micro cell, the normal passing through the center of the micro cell is obtained and set as the illumination light wavefront side normal for each micro cell,
Based on the fact that each of the wavefront distribution surface side normals follows the optical path of any reflected light of the incident light incident on the test surface following the optical path that converges to one point when measured by the interferometer, For each minute cell of the wavefront distribution surface represented by the data of the wavefront distribution surface, the wavefront distribution surface side normal representing the reflected light that is reflected by the test surface and reaches the minute cell, and the incident light corresponding thereto Identify the illumination wavefront normal that represents the optical path of
For each minute cell of the wavefront distribution surface, the intersection position between the corresponding wavefront distribution surface side normal and the illumination light wavefront normal is obtained and used as actual surface shape data of the surface to be measured. Have

まず、干渉計の撮像素子から出力される被検面のシェア像の画像データをコンピュータで処理して得られる波面収差分布のデータで表される波面収差分布を算出するための参照球面を論理空間内に仮想し、この参照球面と波面収差分布のデータに基いて参照球面を基準とする波面分布面のデータを生成する。
被検面が完全な球面であれば、干渉計による測定に際して1点に収束(結像)する光路、つまり、照明光光学系から射出して、被検面に入射した入射光は、この照明光と同じ中心すなわち照明光の収束位置を中心とする球面からなる被検面で反射されて反射光となり、必ず入射時と同じ光路を辿って元来た方向に戻るが、被検面が完全な球面でない場合、例えば、本来は球面であるべき被検面の形状が加工の異常や損傷あるいは経年変化等によって球面でなくなった場合、または、元々の被検面の設計形状が非球面であって其の形状が適切に再現されている場合にあっては、被検面に入射した入射光は、被検面で反射されて反射光となった後、入射時とは異なる光路を辿って照明光光学系に戻ることになる。
何れの場合においても、これらの反射光は、最終的に干渉計の撮像素子によって被検面のシェア像を形成する画像の要素として検出されることになるが、既に述べた通り、被検面が完全な球面である場合には反射光の光路と入射光の光路とが完全に一致するにも関わらず、被検面が完全な球面でない場合には反射光の光路は入射光の光路とは全く一致しない。つまり、被検面が完全な球面でない場合に干渉計の撮像素子によって検出された反射光は、この反射光の光路とは一致しない別の入射光を反射して生成されたものであることを意味する。
要するに、従来の干渉計および干渉計に接続された処理装置は、撮像素子によって検出された反射光の光路が入射光の光路と一致したものであるのか、あるいは、反射光の光路とは一致しない別の入射光を反射して生成されたものであるのかを峻別せず、撮像素子によって検出された反射光の光路が入射光の光路と一致したものであることを前提として波面収差分布を最終結果として出力する構成であるため、被検面の実面形状を直接的に把握することができないのである。
そこで、本発明では、干渉計の撮像素子によって検出された反射光が完全な球面によって反射されたものであっても、あるいは、非球面によって反射されたものであっても、少なくとも、この反射光の生成原因となる入射光は、干渉計による測定に際して1点に収束する光路、つまり、仮想された照明光波面上の何れかの法線を辿って被検面に入射した入射光の1つであることに違いはないといった事実に基き、この反射光に対応する入射光の光路を突き止めることにより、これら2つの光路の交点位置を求めて被検面の実面形状のデータとすることを基本的な作用原理として利用する。
より具体的には、波面分布面のデータで表される波面分布面を区画して得た各微小セル毎に当該微小セルの中心を通る法線を求めて各微小セル毎の波面分布面側法線とすると共に、照明光波面を区画して得た各微小セル毎に当該微小セルの中心を通る法線を求めて各微小セル毎の照明光波面側法線とする。このうち、照明光波面側法線は、仮想された照明光波面上の何れかの法線を辿って被検面に入射した入射光の光路に相当し、また、波面分布面には被検面で反射された反射光が必ず直交して入射することから、波面分布面を区画して得た各微小セルの波面分布面側法線は、被検面で反射された反射光の光路に相当したものとなる。
従って、波面分布面側法線の各々が、干渉計による測定時に1点に収束する光路を辿って被検面に入射した照明光の何れかの反射光の光路と一致することを利用し、波面分布面のデータで表される波面分布面の各微小セル毎に、当該微小セルの波面分布面側法線と此れに対応する入射光の光路を特定し、波面分布面の各微小セル毎に、対応する波面分布面側法線と照明光波面側法線との交点位置を求めれば、被検面の実面形状のデータを得ることができる。
First, the reference spherical surface for calculating the wavefront aberration distribution represented by the wavefront aberration distribution data obtained by processing the image data of the share image of the test surface output from the image sensor of the interferometer with a computer is represented in a logical space. The data of the wavefront distribution surface based on the reference spherical surface is generated based on the data of the reference spherical surface and the wavefront aberration distribution.
If the test surface is a perfect spherical surface, the optical path that converges (images) at one point during the measurement by the interferometer, that is, the incident light that is emitted from the illumination light optical system and enters the test surface is the illumination light. Reflected by the test surface consisting of a sphere centered at the same center as the light, that is, the convergence position of the illumination light, becomes reflected light, and always returns to the original direction by following the same optical path as when incident, but the test surface is completely If it is not a spherical surface, for example, the shape of the test surface that should be a spherical surface is no longer a spherical surface due to abnormalities in processing, damage, or aging, or the design shape of the original test surface is aspheric. If the shape is properly reproduced, the incident light incident on the test surface is reflected by the test surface to become reflected light, and then follows an optical path different from the incident time. Return to the illumination light optical system.
In either case, these reflected lights are finally detected as image elements that form a shared image of the test surface by the image sensor of the interferometer. Is completely spherical, the optical path of the reflected light and the optical path of the incident light are completely coincident. However, if the test surface is not a perfect spherical surface, the optical path of the reflected light is the optical path of the incident light. Does not match at all. That is, the reflected light detected by the image sensor of the interferometer when the test surface is not a perfect spherical surface is generated by reflecting another incident light that does not match the optical path of the reflected light. means.
In short, in the conventional interferometer and the processing device connected to the interferometer, the optical path of the reflected light detected by the image sensor is the same as the optical path of the incident light, or does not match the optical path of the reflected light. The wavefront aberration distribution is finalized on the assumption that the optical path of the reflected light detected by the image sensor matches the optical path of the incident light without distinguishing whether the light is generated by reflecting another incident light. Since it is the structure which outputs as a result, the actual surface shape of a to-be-tested surface cannot be grasped | ascertained directly.
Therefore, in the present invention, even if the reflected light detected by the image sensor of the interferometer is reflected by a perfect spherical surface or reflected by an aspherical surface, at least the reflected light is reflected. The incident light that is the cause of the generation of light is one of the incident light that has entered the test surface following one of the normal paths on the imaginary illumination light wavefront, that is, the optical path that converges to one point when measured by the interferometer. On the basis of the fact that there is no difference, the optical path of the incident light corresponding to this reflected light is determined, and the intersection position of these two optical paths is obtained to obtain the actual surface shape data of the test surface. Use as a basic principle of action.
More specifically, for each micro cell obtained by dividing the wave front distribution surface represented by the data of the wave front distribution surface, a normal passing through the center of the micro cell is obtained, and the wave front distribution side of each micro cell is obtained. In addition to the normal line, a normal line passing through the center of the minute cell is obtained for each minute cell obtained by dividing the illumination light wavefront, and is defined as the illumination light wavefront side normal line for each minute cell. Among these, the illumination light wavefront side normal line corresponds to the optical path of incident light incident on the test surface by following any normal line on the virtual illumination light wavefront, and the wavefront distribution surface has a test signal. Since the reflected light reflected from the surface is always incident at right angles, the wavefront distribution surface normal of each microcell obtained by dividing the wavefront distribution surface is in the optical path of the reflected light reflected from the test surface. It will be equivalent.
Therefore, utilizing that each of the normals on the wavefront distribution surface side coincides with the optical path of any reflected light of the illumination light incident on the test surface, following the optical path that converges to one point at the time of measurement by the interferometer, For each microcell on the wavefront distribution plane represented by the data on the wavefront distribution plane, specify the wavefront distribution plane normal to the microcell and the optical path of incident light corresponding to this normal cell, and each microcell on the wavefront distribution plane If the intersection position between the corresponding wavefront distribution surface side normal and the illumination light wavefront normal is obtained for each time, data of the actual surface shape of the test surface can be obtained.

より具体的には、例えば、被検面が凸面である場合において被検面が完全な球面となる場合には照明光波面から前記1点に収束する入射光の収束位置に至る距離から被検面の近軸曲率半径を減じた距離が照明光波面から被検面に至る距離と一致し、被検面が凹面である場合において被検面が完全な球面となる場合には照明光波面から前記1点に収束する入射光の収束位置に至る距離に被検面の近軸曲率半径を加算した距離が照明光波面から被検面に至る距離と一致するという原則に従って、波面分布面側法線と交差する照明光波面側法線および当該照明光波面側法線と当該波面分布面側法線との交点を全て求め、被検面が凸面である場合においては、波面分布面と交点との間の波面分布面側法線の長さと照明光波面と交点との間の照明光波面側法線の長さの和すなわち入射光と反射光の光路長の和が、前記1点に収束する照明光(入射光)の収束位置と前記照明光波面との間の離間距離に、一点に収束する照明光の収束位置と波面分布面の算出に用いた参照球面までの距離を加算し、この値から被検面の設計上の近軸曲率半径の2倍の値を減算した距離に最も近似する照明光波面側法線を求める一方、被検面が凹面である場合においては、波面分布面と交点との間の波面分布面側法線の長さと照明光波面と交点との間の照明光波面側法線の長さの和すなわち入射光と反射光の光路長の和が、前記1点に収束する照明光(入射光)の収束位置と前記照明光波面との間の離間距離に、1点に収束する照明光の収束位置から波面分布面の算出に用いた参照球面までの距離を加算し、この値に被検面の設計上の近軸曲率半径の2倍の値を加算した距離に最も近似する照明光波面側法線を求めることで、この照明光波面側法線と対応する波面分布面側法線を特定することができる。   More specifically, for example, when the test surface is a convex surface and the test surface is a perfect spherical surface, the test is performed from the distance from the illumination light wavefront to the convergence position of the incident light that converges to the one point. If the distance obtained by subtracting the paraxial radius of curvature of the surface is the same as the distance from the illumination light wavefront to the test surface, and the test surface is a concave surface, and the test surface is a perfect sphere, In accordance with the principle that the distance obtained by adding the paraxial radius of curvature of the test surface to the distance to the convergence position of the incident light that converges at the one point coincides with the distance from the illumination light wavefront to the test surface, the wavefront distribution plane side method The illumination light wavefront normal intersecting the line and the intersections of the illumination light wavefront normal and the wavefront distribution surface normal are all obtained, and when the test surface is a convex surface, the wavefront distribution surface and the intersection The wavefront distribution side normal length between and the illumination light wavefront between the illumination light wavefront and the intersection The sum of the normal lengths, that is, the sum of the optical path lengths of the incident light and the reflected light is a single point at the separation distance between the convergence position of the illumination light (incident light) that converges to the one point and the illumination light wavefront. Add the convergence position of the convergent illumination light and the distance to the reference spherical surface used to calculate the wavefront distribution surface, and subtract the value twice the paraxial radius of curvature of the test surface design from this value. While approximating the illuminating light wavefront normal to be approximated, if the test surface is a concave surface, the length of the wavefront distribution side normal between the wavefront distribution plane and the intersection and the illuminating light wavefront and the intersection The distance between the convergence position of the illumination light (incident light) where the sum of the lengths of the illumination light wavefront side normals, that is, the sum of the optical path lengths of the incident light and the reflected light converges at the one point, and the illumination light wavefront Is added to the distance from the convergence position of the illumination light that converges to one point to the reference sphere used to calculate the wavefront distribution surface. By calculating the illumination light wavefront side normal closest to the distance obtained by adding twice the design paraxial radius of curvature of the test surface, the wavefront distribution surface side method corresponding to this illumination light wavefront normal is obtained. Lines can be identified.

また、均一な媒質中に置かれた任意の面での反射時において、その面上に存在し、かつその光線が反射する1点の接平面を考えた時、その点からその接平面に垂直に立てた法線に対して、光の入射角と反射角が等しいという原則(スネルの法則)に従って、波面分布面側法線と交差する照明光波面側法線を全て求め、波面分布面側法線と各照明光波面側法線とが交わる位置において想定される被検面の法線と当該波面分布面側法線とが成す角と被検面の法線と前記求められた照明光波面側法線とが成す角の差が最小となる照明光波面側法線を求め、この照明光波面側法線を当該波面分布面側法線に対応する照明光波面側法線として特定してもよい。   Also, when reflecting on an arbitrary surface placed in a uniform medium, when considering a tangent plane that exists on that surface and reflects the light beam, it is perpendicular to the tangent plane from that point. In accordance with the principle that the incident angle and the reflection angle of light are equal to the normal set in (Snell's law), all wavefront surface normals that intersect the wavefront surface side are obtained, and the wavefront surface side The angle formed by the normal of the test surface assumed at the position where the normal and each illumination light wavefront normal intersect, the normal of the wavefront distribution surface, the normal of the test surface, and the obtained illumination light wave The illumination light wavefront side normal that minimizes the difference in angle between the surface side normal and the illumination light wavefront side normal is identified as the illumination light wavefront side normal corresponding to the wavefront distribution surface side normal. May be.

あるいは、光が被検面の法線に対して対称的に入射反射するという原則に従って、波面分布面側法線と交差する照明光波面側法線を全て求め、波面分布面側法線と各照明光波面側法線とが交わる位置において想定される被検面の法線と、当該波面分布面側法線と、前記求められた照明光波面側法線とが同一平面上に位置する照明光波面側法線を求め、この照明光波面側法線を当該波面分布面側法線に対応する照明光波面側法線として特定してもよい。   Alternatively, according to the principle that light is incident and reflected symmetrically with respect to the normal of the test surface, all the illumination light wavefront normals intersecting the wavefront distribution surface normal are obtained, and the wavefront distribution surface normal and each Illumination in which the normal of the test surface assumed at the position where the illumination light wavefront side normal intersects, the wavefront distribution surface side normal, and the obtained illumination light wavefront normal are on the same plane The light wave front normal may be obtained, and the illumination light wave front normal may be specified as the illumination light wave front normal corresponding to the wave distribution surface normal.

また、特に、非球面レンズ等を被検面とすることを前提とした場合にあっては、波面分布面側法線と各照明光波面側法線とが交わる位置に想定する被検面として、前記1点に収束する入射光の収束位置を中心として有する球の表面を利用することが妥当である。   In particular, when it is assumed that an aspheric lens or the like is used as the test surface, the test surface is assumed to be a position where the wavefront distribution surface side normal and each illumination light wavefront normal intersect. It is reasonable to use the surface of a sphere centered on the convergence position of incident light that converges at the one point.

本発明の被検面形状測定装置は、前記と同様の目的を達成するため、
干渉計の撮像素子から出力される被検面のシェア像の画像データを処理して得られる波面収差分布のデータで表される波面収差分布を算出するための参照球面を論理空間内に仮想する参照球面生成手段と、
前記参照球面生成手段によって仮想された前記参照球面と前記波面収差分布のデータに基いて前記参照球面を基準とする波面分布面のデータを生成する波面分布面データ生成手段と、
演算用のデータを一時記憶するための記憶手段と、
前記波面分布面データ生成手段によって生成された波面分布面のデータで表される波面分布面を区画して得た各微小セル毎に当該微小セルの中心を通る法線を求めて各微小セル毎の反射光を表す波面分布面側法線として前記記憶手段に記憶させると共に、前記、照明光波面を区画して得た各微小セル毎に当該微小セルの中心を通る法線を求めて各微小セル毎の照明光波面側法線として前記記憶手段に記憶させる法線データ抽出手段と、前記記憶手段に記憶された波面分布面側法線の各々が、前記干渉計による測定時に1点に収束する光路を辿って被検面に入射した入射光の何れかの反射光の光路と一致することに基いて、前記波面分布面のデータで表される波面分布面の各微小セルに対応して前記記憶手段に記憶された反射光を表す波面分布面側法線と此れに対応する入射光の光路を表す照明光波面側法線を特定する照明光光路特定手段と、
前記波面分布面の各微小セル毎に、前記照明光光路特定手段によって対応関係を特定された波面分布面側法線と照明光波面側法線との交点位置を求めて被検面の実面形状のデータとする実面形状データ生成手段とを備えたことを特徴とする構成を有する。
The test surface shape measuring apparatus of the present invention achieves the same object as described above,
A reference spherical surface for calculating the wavefront aberration distribution represented by the wavefront aberration distribution data obtained by processing the image data of the shear image of the test surface output from the image sensor of the interferometer is hypothesized in the logical space. A reference spherical surface generating means;
Wavefront distribution surface data generation means for generating data of a wavefront distribution surface based on the reference spherical surface based on the reference spherical surface and the data of the wavefront aberration distribution virtualized by the reference spherical surface generation means;
Storage means for temporarily storing calculation data;
For each minute cell, a normal passing through the center of the minute cell is obtained for each minute cell obtained by partitioning the wavefront distribution surface represented by the wavefront distribution surface data generated by the wavefront distribution surface data generating means. Is stored in the storage means as a wavefront distribution plane-side normal representing the reflected light, and a normal passing through the center of the microcell is obtained for each microcell obtained by dividing the illumination light wavefront. The normal data extraction means to be stored in the storage means as the illumination light wavefront normal for each cell, and each of the wavefront distribution plane normals stored in the storage means converges to one point when measured by the interferometer Corresponding to each microcell of the wavefront distribution surface represented by the data of the wavefront distribution surface, based on the fact that it matches the optical path of any reflected light of the incident light incident on the test surface following the optical path Wavefront distribution representing reflected light stored in the storage means An illumination light path specifying means for specifying the illumination optical wavefront side normal line representing the optical path of the incident light corresponding to the Re side normal to 此,
For each microcell on the wavefront distribution surface, the actual surface of the surface to be measured is obtained by calculating the intersection position of the wavefront distribution surface side normal and the illumination light wavefront side normal whose correspondence is specified by the illumination light optical path specifying means It has a configuration characterized by comprising actual surface shape data generating means for making shape data.

この被検面形状測定装置の作用原理については既に述べた通りである。   The principle of operation of this test surface shape measuring apparatus is as already described.

また、本発明の被検面形状測定プログラムは、干渉計の撮像素子から出力される被検面のシェア像の画像データを処理するコンピュータを制御するための被検面形状測定プログラムであり、前記と同様の目的を達成するため、
コンピュータを、
干渉計の撮像素子から出力される被検面のシェア像の画像データを処理して得た波面収差分布のデータで表される波面収差分布を算出するための参照球面を論理空間内に仮想する参照球面生成手段、
前記参照球面生成手段によって仮想された前記参照球面と前記波面収差分布のデータに基いて前記参照球面を基準とする波面分布面のデータを生成する波面分布面データ生成手段、
前記波面分布面データ生成手段によって生成された波面分布面のデータで表される波面分布面を区画して得た各微小セル毎に当該微小セルの中心を通る法線を求めて各微小セル毎の反射光を表す波面分布面側法線として前記コンピュータの記憶装置に記憶させると共に、照明光波面を区画して得た各微小セル毎に当該微小セルの中心を通る法線を求めて各微小セル毎の照明光波面側法線として前記コンピュータの記憶装置に記憶させる法線データ抽出手段、
前記コンピュータの記憶装置に記憶された波面分布面側法線の各々が、前記干渉計による測定時に1点に収束する光路を辿って被検面に入射した入射光の何れかの反射光の光路と一致することに基いて、前記波面分布面のデータで表される波面分布面の各微小セルに対応して前記前記コンピュータの記憶装置に記憶された反射光を表す波面分布面側法線と此れに対応する入射光の光路を表す照明光波面側法線を特定する照明光光路特定手段、および、
前記波面分布面の各微小セル毎に、前記照明光光路特定手段によって対応関係を特定された波面分布面側法線と照明光波面側法線との交点位置を求めて被検面の実面形状のデータとする実面形状データ生成手段として機能させることを特徴とした構成を有する。
The test surface shape measurement program of the present invention is a test surface shape measurement program for controlling a computer that processes image data of a share image of a test surface output from an image sensor of an interferometer, To achieve the same purpose as
Computer
A reference spherical surface for calculating the wavefront aberration distribution represented by the wavefront aberration distribution data obtained by processing the image data of the shear image of the test surface output from the image sensor of the interferometer is hypothesized in the logical space. Reference spherical surface generation means,
Wavefront distribution surface data generation means for generating data of a wavefront distribution surface based on the reference spherical surface based on the reference spherical surface and the wavefront aberration distribution data hypothesized by the reference spherical surface generation means;
For each minute cell, a normal passing through the center of the minute cell is obtained for each minute cell obtained by partitioning the wavefront distribution surface represented by the wavefront distribution surface data generated by the wavefront distribution surface data generating means. Is stored in the storage device of the computer as a wavefront distribution plane side normal representing the reflected light of the light source, and a normal passing through the center of the microcell is obtained for each microcell obtained by dividing the illumination light wavefront. Normal data extraction means for storing in the storage device of the computer as the illumination light wavefront normal for each cell;
Each of the wavefront distribution plane normals stored in the storage device of the computer follows an optical path that converges to one point when measured by the interferometer, and is an optical path of any reflected light incident on the test surface. The wavefront distribution surface side normal representing the reflected light stored in the storage device of the computer corresponding to each minute cell of the wavefront distribution surface represented by the data of the wavefront distribution surface Illumination light optical path specifying means for specifying an illumination light wavefront side normal representing the optical path of incident light corresponding thereto, and
For each microcell on the wavefront distribution surface, the actual surface of the surface to be measured is obtained by calculating the intersection position of the wavefront distribution surface side normal and the illumination light wavefront side normal whose correspondence is specified by the illumination light optical path specifying means It has a configuration characterized by functioning as actual surface shape data generating means for shape data.

この被検面形状測定プログラムをインストールしたコンピュータの作用原理については既に述べた通りである。   The principle of operation of the computer in which the test surface shape measurement program is installed is as described above.

本発明の被検面形状測定方法および被検面形状測定装置と被検面形状測定プログラムは、被検面からの反射光に対応する入射光の光路を突き止め、これら2つの光路の交点位置を求めて被検面の実面形状のデータとするようにしているので、干渉計の撮像素子によって検出された反射光の光路が入射光の光路と一致する場合であっても、また、入射光の光路が反射光の光路とは一致しない場合つまり本来は球面であるべき被検面の形状が加工の異常や損傷あるいは経年変化等によって球面でなくなった場合や、元々の被検面の設計形状が非球面であった場合であっても、被検面の実面形状を直接的に把握することができる。   The test surface shape measuring method, the test surface shape measuring apparatus, and the test surface shape measuring program according to the present invention determine the optical path of incident light corresponding to the reflected light from the test surface, and determine the intersection position of these two optical paths. Since the actual surface shape data of the surface to be measured is obtained, even if the optical path of the reflected light detected by the image sensor of the interferometer matches the optical path of the incident light, the incident light If the optical path of the test surface does not match the optical path of the reflected light, that is, if the shape of the test surface that should be a spherical surface is no longer spherical due to abnormalities in processing, damage, or secular change, or the design shape of the original test surface Even if is an aspherical surface, the actual surface shape of the test surface can be directly grasped.

従って、被検面が完全な球面でない場合、例えば、本来は球面であるべき被検面の形状が加工の異常や損傷あるいは経年変化等によって球面でなくなった場合、または、元々の被検面の設計形状が非球面であるような場合にあっても、参照面として機能する格別な非球面や其れに相当する波面を生成するモジュールを要することなく被検面の実面形状を容易に測定することができる。   Accordingly, when the test surface is not a perfect spherical surface, for example, when the shape of the test surface that should be a spherical surface is no longer spherical due to processing abnormality, damage, secular change, or the like, or the original test surface Even when the design shape is an aspherical surface, the actual surface shape of the test surface can be easily measured without requiring a special aspherical surface functioning as a reference surface or a module that generates the corresponding wavefront. can do.

本発明に関わる一実施形態の被検面形状測定装置の構成について簡略化して示した機能ブロック図である。It is the functional block diagram which simplified and showed the structure of the to-be-tested surface shape measuring apparatus of one Embodiment in connection with this invention. 同実施形態で採用した干渉計の光学系について示した構成図である。It is the block diagram shown about the optical system of the interferometer employ | adopted in the embodiment. 同実施形態の被検面形状測定装置のハードウェア構成について簡略化して示したブロック図である。It is the block diagram which simplified and showed the hardware constitutions of the to-be-tested surface shape measuring apparatus of the embodiment. 同実施形態の被検面形状測定装置のCPUによって実行される被検面形状測定プログラムの概略について示したフローチャートである。It is the flowchart shown about the outline of the test surface shape measurement program run by CPU of the test surface shape measuring apparatus of the embodiment. 被検面形状測定プログラムの概略について示したフローチャートの続きである。It is a continuation of the flowchart shown about the outline of the test surface shape measurement program. 被検面形状測定プログラムの概略について示したフローチャートの続きである。It is a continuation of the flowchart shown about the outline of the test surface shape measurement program. 被検面形状測定プログラムの概略について示したフローチャートの続きである。It is a continuation of the flowchart shown about the outline of the test surface shape measurement program. 被検面形状測定プログラムの概略について示したフローチャートの続きである。It is a continuation of the flowchart shown about the outline of the test surface shape measurement program. 被検面形状測定プログラムの概略について示したフローチャートの続きである。It is a continuation of the flowchart shown about the outline of the test surface shape measurement program. 被検面形状測定プログラムの概略について示したフローチャートの続きである。It is a continuation of the flowchart shown about the outline of the test surface shape measurement program. 被検面形状測定プログラムの概略について示したフローチャートの続きである。It is a continuation of the flowchart shown about the outline of the test surface shape measurement program. 被検面形状測定プログラムの概略について示したフローチャートの続きである。It is a continuation of the flowchart shown about the outline of the test surface shape measurement program. 照明光波面側法線と波面分布面側法線を記憶する記憶手段のデータテーブルの構成例を示した概念図である。It is the conceptual diagram which showed the structural example of the data table of the memory | storage means which memorize | stores an illumination light wave front side normal and a wave front distribution surface side normal. 被検体の被検面に照射されて反射する第一,第二の検査光の幾つかの光路について例示した概念図である。It is the conceptual diagram illustrated about several optical paths of the 1st, 2nd test | inspection light irradiated and reflected on the to-be-tested surface of a subject. 照明光の波面と波面分布面との対応関係の一例を示した概念図である。It is the conceptual diagram which showed an example of the correspondence of the wave front of illumination light, and a wave front distribution surface.

次に、本発明を実施するための形態について一例を挙げ、図面を参照して具体的に説明する。   Next, an example is given about the form for implementing this invention, and it demonstrates concretely with reference to drawings.

図1は本発明に関わる一実施形態の被検面形状測定装置の構成について簡略化して示した機能ブロック図、図2は此の実施形態で採用した干渉計の光学系ついて示した構成図、図3は被検面形状測定装置のハードウェア構成について簡略化して示したブロック図である。   FIG. 1 is a simplified functional block diagram showing a configuration of a test surface shape measuring apparatus according to an embodiment of the present invention, and FIG. 2 is a configuration diagram showing an optical system of an interferometer employed in this embodiment. FIG. 3 is a simplified block diagram showing the hardware configuration of the surface shape measuring apparatus.

まず、図2を参照して一種のシェアリング干渉計として機能する干渉計1の構成について簡単に説明する。   First, the configuration of the interferometer 1 that functions as a kind of sharing interferometer will be briefly described with reference to FIG.

干渉計1の主要部は、He-Ne レーザ等で構成されるレーザ光源2と直線偏光用の偏光子として機能する偏光板3およびビームエキスパンダ4と集光レンズ5、ならびに、ビームスプリッタ6と複屈折光学素子7、および、コリメータレンズ8と対物レンズ8’、非球面レンズ等の被検体13をセットするための支持具9、および、直線偏光用の検光子として機能する偏光板10と結像レンズ11、および、受光面として機能するCCD等の撮像素子12によって構成される。   The main part of the interferometer 1 includes a laser light source 2 composed of a He-Ne laser or the like, a polarizing plate 3 functioning as a polarizer for linearly polarized light, a beam expander 4, a condensing lens 5, and a beam splitter 6. The birefringent optical element 7 is connected to a collimator lens 8 and an objective lens 8 ′, a support 9 for setting an object 13 such as an aspherical lens, and a polarizing plate 10 functioning as an analyzer for linearly polarized light. An image lens 11 and an imaging element 12 such as a CCD functioning as a light receiving surface are included.

このうち、レーザ光源2,偏光板3,ビームエキスパンダ4,集光レンズ5,ビームスプリッタ6,複屈折光学素子7,コリメータレンズ8,対物レンズ8’,支持具9は此の順で単一の光軸L1上に備えられ、また、他の偏光板10,結像レンズ11,撮像素子12は、光路L1から側方に光路分割されるかたちでビームスプリッタ6の側方に配備されている。   Among these, the laser light source 2, the polarizing plate 3, the beam expander 4, the condensing lens 5, the beam splitter 6, the birefringent optical element 7, the collimator lens 8, the objective lens 8 ′, and the support 9 are single in this order. The other polarizing plate 10, the imaging lens 11, and the image pickup device 12 are provided on the side of the beam splitter 6 in such a manner that the optical path is divided from the optical path L1 to the side. .

偏光板3は図2の紙面に垂直な方向の格子を備えたもので、レーザ光源2から出射された光を図2の紙面と垂直な方向の振動のみを有する偏光に直線偏光させる。   The polarizing plate 3 includes a grating in a direction perpendicular to the paper surface of FIG. 2, and linearly polarizes light emitted from the laser light source 2 into polarized light having only vibration in a direction perpendicular to the paper surface of FIG.

複屈折光学素子7はウォーラストンプリズムあるいはノマルスキープリズム等で構成される。この複屈折光学素子7は、レーザ光源2から出て偏光板3で直線偏光され更にビームエキスパンダ4で拡径されて集光レンズ5およびビームスプリッタ6を透過した光S0を、光軸L1を含み図2の紙面に垂直な面、すなわち、偏光板3による直線偏光の偏光面に対して交差する向きに出射角度が微小に異なる2つの光束S1,S2に分割する向きに配置されている。2つの光束S1,S2の内の一方が常光線で他方が異常光線である。   The birefringent optical element 7 includes a Wollaston prism or a Nomarski prism. The birefringent optical element 7 emits light S0 that has been emitted from the laser light source 2 and linearly polarized by the polarizing plate 3 and further expanded in diameter by the beam expander 4 and transmitted through the condenser lens 5 and the beam splitter 6, and the optical axis L1. In addition, they are arranged in a direction that divides into two light beams S1 and S2 whose emission angles are slightly different from each other in a direction perpendicular to the plane of the drawing of FIG. One of the two light beams S1 and S2 is an ordinary ray and the other is an extraordinary ray.

コリメータレンズ8、及び対物レンズ8’は、複屈折光学素子7から僅かに出射角度を違えて出射された光束S1,S2を相互に平行な光束とした上で、これらの光束S1,S2を第一,第二の検査光として非球面レンズ等の被検体13の被検面13aを照射するためのものである。   The collimator lens 8 and the objective lens 8 ′ convert the light beams S1 and S2 emitted from the birefringent optical element 7 with slightly different emission angles into parallel light beams, and then convert these light beams S1 and S2 into the first light beams. This is for irradiating the test surface 13a of the subject 13 such as an aspherical lens as the first and second inspection light.

複屈折光学素子7には、複屈折光学素子7の姿勢を保持した状態で該複屈折素子7を光軸L1に沿って移動および位置決め固定するための調整具14が設けられている。   The birefringent optical element 7 is provided with an adjuster 14 for moving and positioning and fixing the birefringent element 7 along the optical axis L1 while maintaining the posture of the birefringent optical element 7.

被検体13をセットするための支持具9は、光軸L1に沿った直線移動と、光軸L1と直交する2軸の各軸方向の直線移動、および、光軸L1と直交する2軸の各軸の周りでの揺動動作を許容された支持具である。つまり、支持具9は、直線運動に関する自由度3と回転運動に関する自由度2を備えた5軸型の支持具であり、適切な操作によって非球面レンズ等の被検体13の中心軸を確実に光軸L1に合致させられるようになっている。   The support 9 for setting the subject 13 includes a linear movement along the optical axis L1, a linear movement in each axial direction of two axes orthogonal to the optical axis L1, and a two-axis orthogonal to the optical axis L1. The support is allowed to swing around each axis. That is, the support 9 is a 5-axis support having 3 degrees of freedom regarding linear motion and 2 degrees of freedom regarding rotational motion, and the center axis of the subject 13 such as an aspheric lens can be reliably secured by an appropriate operation. The optical axis L1 can be matched.

調整具14および支持具9の構造に関しては、光学機器におけるテレスコピック機構やチルト/シフト機構等として公知であり、調整具14には、フリンジスキャニング処理に必要とされるπ/2の送りに必要とされる精度を備えた送り機構が設けられている。   The structures of the adjustment tool 14 and the support tool 9 are known as a telescopic mechanism, a tilt / shift mechanism, and the like in an optical device. The adjustment tool 14 is necessary for feeding π / 2 required for the fringe scanning process. A feeding mechanism having a high accuracy is provided.

偏光板10は回転操作可能とされ、直線偏光に用いられる格子の配列方向を必要に応じて調整できるようになっている。   The polarizing plate 10 can be rotated, and the arrangement direction of the grating used for linearly polarized light can be adjusted as necessary.

以上の構成において、レーザ光源2から出射されたレーザビームは、まず、偏光板3により図2の紙面と垂直な方向に直線偏光されてビームエキスパンダ4で拡径され、集光レンズ5およびビームスプリッタ6を透過して、複屈折光学素子7に照射される。   In the above configuration, the laser beam emitted from the laser light source 2 is first linearly polarized by the polarizing plate 3 in the direction perpendicular to the plane of FIG. 2 and expanded in diameter by the beam expander 4. The birefringent optical element 7 is irradiated through the splitter 6.

複屈折光学素子7に照射された光S0は、複屈折光学素子7を透過する過程で、偏光板3による直線偏光の偏光面に対して交差する向き、つまり、光軸L1を含み図2の紙面に垂直な面に対して交差する向きに出射角度が微小に異なる2つの光束S1,S2に分割され、更に、コリメータレンズ8、対物レンズ8’を透過する過程で相互に平行な光束とされて、支持具9にセットされた非球面レンズ等の被検体13の被検面13aに第一,第二の検査光として垂直に照射される。   The light S0 irradiated to the birefringent optical element 7 includes a direction crossing the polarization plane of linearly polarized light by the polarizing plate 3 in the process of passing through the birefringent optical element 7, that is, including the optical axis L1 in FIG. The light beams are divided into two light beams S1 and S2 having slightly different emission angles in a direction intersecting with a plane perpendicular to the paper surface, and are further converted into parallel light beams in the process of passing through the collimator lens 8 and the objective lens 8 ′. Thus, the test surface 13a of the subject 13 such as an aspheric lens set on the support 9 is irradiated perpendicularly as the first and second inspection lights.

被検面13aに垂直に照射された第一,第二の検査光(光束S1,S2)は被検体13の被検面13aで反射され、照射時の経路に沿って逆行する向きで対物レンズ8’とコリメータレンズ8と複屈折光学素子7を透過することで再び重ね合わせられ、ビームスプリッタ6によって光軸L1の側方に反射され、光軸L1から側方に光路分割された位置に配備された偏光板10を透過して直線偏光された後、結像レンズ11を経て撮像素子12上に投影されて干渉縞を形成する。
但し、被検面13aが完全な球面でない場合にあっては、被検面13aに入射した入射光は被検面13aで反射されて入射時とは異なる光路を辿って反射し、対物レンズ8’,コリメータレンズ8,複屈折光学素子7,ビームスプリッタ6,偏光板10,結像レンズ11を経て撮像素子12上に投影されることになる。
The first and second inspection lights (light fluxes S1 and S2) irradiated perpendicularly to the test surface 13a are reflected by the test surface 13a of the test subject 13, and the objective lens is oriented in a reverse direction along the path at the time of irradiation. 8 ', the collimator lens 8 and the birefringent optical element 7 are transmitted again to be overlapped, reflected to the side of the optical axis L1 by the beam splitter 6, and disposed at a position where the optical path is split from the optical axis L1 to the side. After passing through the polarizing plate 10 and linearly polarized, it is projected onto the image sensor 12 through the imaging lens 11 to form interference fringes.
However, when the test surface 13a is not a perfect spherical surface, the incident light incident on the test surface 13a is reflected by the test surface 13a and reflected along an optical path different from that at the time of incidence, so that the objective lens 8 ', The light is projected onto the image sensor 12 through the collimator lens 8, the birefringent optical element 7, the beam splitter 6, the polarizing plate 10, and the imaging lens 11.

図14は被検体13の被検面13aに照射されて反射する第一,第二の検査光の幾つかの光路について例示した概念図である。l’〜l’は図2に示される対物レンズ8’から射出された第一,第二の検査光の光路の例であり、図14に示される通り、被検体13の被検面13aに対して垂直に、言い換えれば、被検体13の球心Oを1点として収束するようにして入射する。ここで、被検面13aが完全な球面であれば、例えば、入射光l’の反射光は入射時と全く同じ光路を辿ってk’のように球の接平面31の法線m’1に沿って垂直に反射するが、被検面13aが完全な球面でない場合には、入射光l’の反射光の光路は例えばk”のようになり、入射時の光路l’とは異なったものとなる。これは、被検面13aが非球面であるために入射光l’の反射位置における接平面32自体に傾きが生じているからであり、球でない部分の接平面32の法線m”を基準として見れば、当然、入射反射の関係から、入射光l’と接平面32の法線m”が成す角と反射光k”と接平面32の法線m”が成す角とは等しい値となり、また、光が被検面13aの法線m”に対して対称的に入反射することからも、入射光l’の光路と法線m”と反射光k”の光路とが同一平面上にあることは明らかである。 FIG. 14 is a conceptual diagram illustrating several optical paths of the first and second inspection lights that are irradiated and reflected on the test surface 13a of the subject 13. FIG. l ′ 1 to l ′ 5 are examples of the optical paths of the first and second inspection lights emitted from the objective lens 8 ′ shown in FIG. 2, and as shown in FIG. It enters perpendicularly to 13a, in other words, converges with the sphere center O of the subject 13 as one point. Here, if the full spherical test surface 13a, for example, normal m tangent plane 31 of the sphere as the incident light l '1 is the reflected light follow exactly the same optical path as the incoming k' 1 If the test surface 13a is not a perfect spherical surface, the optical path of the reflected light of the incident light l' 1 is, for example, k " 1 and the optical path l 'upon incidence is reflected. This is different from 1. This is because the tangent plane 32 itself at the reflection position of the incident light l ′ 1 is inclined because the surface 13a to be measured is an aspherical surface. If the normal line m ″ 1 of the tangential plane 32 is taken as a reference, naturally, the angle formed by the incident light l ′ 1 and the normal line m ″ 1 of the tangential plane 32 and the reflected light k ″ 1 and the tangential plane are determined from the relation of incident reflection. 32 normal m for "becomes equal to the angle 1 is formed, also light normal m of the test surface 13a" or be symmetrically incident reflective to 1 Also, it is clear that "the first reflective light k" optical path and the normal m of the incident light l '1 and the optical path of 1 are coplanar.

なお、撮像素子12上に投影される干渉縞の位相を調整する場合には、調整具14を操作して複屈折光学素子7の配備位置を光軸L1の垂直方向に沿って移動させる。   In addition, when adjusting the phase of the interference fringe projected on the image pick-up element 12, the adjustment tool 14 is operated and the deployment position of the birefringent optical element 7 is moved along the perpendicular direction of the optical axis L1.

干渉縞の中心が撮像素子12の中心からずれている場合には、非球面レンズ等の被検体13の中心軸が光軸L1と一致していないことを意味するので、支持具9を操作して被検体13の位置および姿勢を調整することで被検体13の中心軸を光軸L1に一致させる。   When the center of the interference fringe is deviated from the center of the image sensor 12, it means that the center axis of the subject 13 such as an aspherical lens does not coincide with the optical axis L1, and thus the support 9 is operated. By adjusting the position and posture of the subject 13, the central axis of the subject 13 is made to coincide with the optical axis L1.

また、干渉縞が確認されない場合には、第一,第二の検査光が被検体13の被検面13aに対して垂直に照射されていないことを意味するので、支持具9を操作して被検体13と対物レンズ8’との離間距離を調整し、第一,第二の検査光が被検面13aに対して垂直に照射されるようにする。干渉縞の明度は偏光板10を回転させることで調整できる。   Further, when no interference fringes are confirmed, it means that the first and second inspection lights are not irradiated perpendicularly to the test surface 13a of the subject 13, so that the support 9 is operated. The distance between the subject 13 and the objective lens 8 ′ is adjusted so that the first and second inspection lights are irradiated perpendicularly to the test surface 13a. The brightness of the interference fringes can be adjusted by rotating the polarizing plate 10.

図2に示される通り、レーザ光源2から出て偏光板3,ビームエキスパンダ4,集光レンズ5,ビームスプリッタ6を透過した光S0は複屈折光学素子7によって微小に出射角度の異なる2つの光束S1,S2に分割され、これらの光がコリメータレンズ8で相互に平行とされて、対物レンズ8’で被検体13の被検面13aに第一,第二の検査光として照射され、その反射光が対物レンズ8’,コリメータレンズ8,複屈折光学素子7,ビームスプリッタ6,偏光板10,結像レンズ11を経て撮像素子12に投影されるので、第一の検査光と其の反射光および第二の検査光と其の反射光の別に関わりなく、これらの光束が通る光学系は完全に同一のものとなり、理論上の測定精度や外乱に対する耐性は、従来型のフィゾー干渉計と比較して高い。   As shown in FIG. 2, the light S <b> 0 emitted from the laser light source 2 and transmitted through the polarizing plate 3, the beam expander 4, the condenser lens 5, and the beam splitter 6 is divided into two light beams having slightly different emission angles by the birefringent optical element 7. The light beams are split into light beams S1 and S2, and these lights are made parallel to each other by the collimator lens 8, and irradiated to the test surface 13a of the subject 13 by the objective lens 8 ′ as the first and second test lights. Since the reflected light is projected onto the image sensor 12 through the objective lens 8 ', the collimator lens 8, the birefringent optical element 7, the beam splitter 6, the polarizing plate 10, and the imaging lens 11, the first inspection light and its reflection Regardless of whether the light, the second inspection light, or its reflected light, the optical system through which these light beams pass is completely the same, and the theoretical measurement accuracy and resistance to disturbance are the same as those of conventional Fizeau interferometers. Compare High.

また、第一の検査光と其の反射光および第二の検査光と其の反射光の別に関わりなく、これらの光束が通る光学系が完全に同一であるから、仮に、振動その他の外乱が作用した場合であっても、其の外乱が第一,第二の検査光と其の反射光の光路に対して同等に作用することになり、特に、振動に対する耐性に優れ、干渉縞の生成や維持を容易に行なうことができる。   In addition, regardless of whether the first inspection light and its reflected light or the second inspection light and its reflected light, the optical system through which these light beams pass is completely the same. Even if it acts, the disturbance will act equally on the optical path of the first and second inspection light and the reflected light, and in particular, it has excellent resistance to vibration and generates interference fringes. And can be maintained easily.

しかも、第一,第二の検査光が共に被検体13の被検面13aによって反射されているので、振動等による光学部品間の微小な位置ずれは必ずしも重大な問題とはならず、この振動に抗して干渉縞を維持することが可能である。   In addition, since both the first and second inspection lights are reflected by the test surface 13a of the subject 13, a minute positional shift between the optical components due to vibration or the like is not necessarily a serious problem. It is possible to maintain interference fringes against this.

結果として、干渉計1の設置に必要とされる防振対策の簡略化が可能であり、また、原器となる基準レンズを必要としないことから、非球面レンズ等を初めとする複雑な形状の被検体の被検面を測定する干渉計を低コストにて導入することが可能となる。   As a result, it is possible to simplify the anti-vibration measures required for the installation of the interferometer 1, and it is not necessary to use a reference lens as a base, so that a complicated shape such as an aspheric lens is used. It is possible to introduce an interferometer that measures the test surface of the subject at low cost.

光軸L1上に設置された偏光板3に代えてレーザ光源2からの光を受ける側のビームスプリッタ6の面(図2におけるビームスプリッタ6の左端面)に各種のコーティング技術を用いて偏光子を形成し、光軸L1から側方に光路分割された位置に配備された偏光板10の代わりに、撮像素子12と対向するビームスプリッタ6の面(図2におけるビームスプリッタ6の上端面)に各種のコーティング技術を用いて検光子を形成するようにしてもよい。これにより、干渉計1の更なるコンパクト化が可能となる。   Polarizers using various coating techniques on the surface of the beam splitter 6 on the side receiving the light from the laser light source 2 (the left end surface of the beam splitter 6 in FIG. 2) instead of the polarizing plate 3 installed on the optical axis L1. Is formed on the surface of the beam splitter 6 facing the image sensor 12 (the upper end surface of the beam splitter 6 in FIG. 2) instead of the polarizing plate 10 disposed at the position where the optical path is divided from the optical axis L1 to the side. The analyzer may be formed using various coating techniques. Thereby, the interferometer 1 can be further downsized.

レーザ光源2,偏光板3,ビームエキスパンダ4,集光レンズ5,ビームスプリッタ6,複屈折光学素子7,コリメータレンズ8,対物レンズ8’,支持具9は、単一の光軸L1上に配置する必要があるが、光軸L1それ自体が単一の直線に沿っている必要はない。   The laser light source 2, the polarizing plate 3, the beam expander 4, the condensing lens 5, the beam splitter 6, the birefringent optical element 7, the collimator lens 8, the objective lens 8 ′, and the support 9 are on a single optical axis L1. Although it is necessary to arrange, the optical axis L1 itself does not need to be along a single straight line.

例えば、干渉計1の全長を短縮する必要があるような状況下では、ビームエキスパンダ4と集光レンズ5の間、および、複屈折光学素子7とコリメータレンズ8との間に、相対的に90°の角度を成す反射鏡を各1枚ずつ設置することで、全体としての光軸L1を略U字型に屈折させて装置全長の短縮が可能である。   For example, in a situation where the total length of the interferometer 1 needs to be shortened, the relative distance between the beam expander 4 and the condenser lens 5 and between the birefringent optical element 7 and the collimator lens 8 is relatively large. By installing one reflection mirror each having an angle of 90 °, the entire optical axis L1 can be refracted into a substantially U shape, and the overall length of the apparatus can be shortened.

この実施形態の被検面形状測定装置16の主要部は、図1に示されるように、干渉計1の撮像素子12から出力される被検面のシェア像の画像データを処理して得られる波面収差分布のデータで表される波面収差分布と、波面分布を算出するための参照球面を論理空間内に仮想する参照球面生成手段aと、参照球面生成手段aによって仮想された参照球面と波面収差分布のデータに基いて参照球面を基準とする波面分布面のデータを生成する波面分布面データ生成手段bと、演算用のデータを一時記憶するための記憶手段dと、波面分布面データ生成手段bによって生成された波面分布面のデータで表される波面分布面を区画して得た各微小セル毎に当該微小セルの中心を通る法線を求めて各微小セル毎の反射光を表す波面分布面側法線として記憶手段dに記憶させると共に、照明光波面を区画して得た各微小セル毎に当該微小セルの中心を通る法線を求めて各微小セル毎の照明光波面側法線として記憶手段dに記憶させる法線データ抽出手段cと、波面分布面には被検面13aで反射された反射光が必ず直交して入射すること、つまり、記憶手段dに記憶された波面分布面側法線の各々が、干渉計1による測定時に1点に収束する光路を辿って被検面13aに入射した入射光の何れかの反射光の光路と一致することに基いて、波面分布面のデータで表される波面分布面の各微小セルに対応して記憶手段dに記憶された反射光を表す波面分布面側法線と此れに対応する入射光の光路を表す照明光波面側法線を特定する照明光光路特定手段eと、波面分布面の各微小セル毎に、照明光光路特定手段eによって対応関係を特定された波面分布面側法線と照明光波面側法線との交点位置を求めて被検面13aの実面形状のデータとする実面形状データ生成手段fによって構成される。   As shown in FIG. 1, the main part of the test surface shape measurement apparatus 16 of this embodiment is obtained by processing image data of a share image of the test surface output from the image sensor 12 of the interferometer 1. The wavefront aberration distribution represented by the wavefront aberration distribution data, the reference spherical surface generation means a for virtualizing the reference spherical surface for calculating the wavefront distribution in the logical space, the reference spherical surface and the wavefront virtualized by the reference spherical surface generation means a Wavefront distribution surface data generating means b for generating wavefront distribution surface data based on the reference spherical surface based on the aberration distribution data, storage means d for temporarily storing calculation data, and wavefront distribution surface data generation A normal passing through the center of the micro cell is obtained for each micro cell obtained by dividing the wave front distribution surface represented by the data of the wave front distribution surface generated by the means b, and the reflected light for each micro cell is represented. Wavefront distribution side normal For each micro cell obtained by partitioning the illumination light wavefront, the normal passing through the center of the micro cell is obtained and stored in the memory d as the illumination light wave front side normal for each micro cell. The normal data extracting means c to be stored and the reflected light reflected by the test surface 13a are always incident on the wavefront distribution surface at right angles, that is, the wavefront distribution surface side normal stored in the storage means d. Based on the fact that each follows the optical path converged to one point during measurement by the interferometer 1 and coincides with the optical path of any reflected light incident on the test surface 13a, it is represented by data on the wavefront distribution plane. The wavefront distribution plane normal representing the reflected light stored in the storage means d corresponding to each small cell of the wavefront distribution plane to be generated and the illumination light wavefront normal representing the optical path of the incident light corresponding thereto are specified. Illumination light optical path specifying means e and illumination light for each micro cell on the wavefront distribution plane Actual surface shape data generating means f that obtains the position of the intersection of the wavefront distribution plane side normal and the illumination light wavefront normal whose correspondence has been specified by the path specifying means e and makes the actual surface shape data of the test surface 13a. Consists of.

照明光光路特定手段eは、記憶手段dに記憶された波面分布面側法線と交差する照明光波面側法線および当該波面分布面側法線と当該照明光波面側法線との交点を全て求め、波面分布面と交点との間の当該波面分布面側法線の長さと照明光波面と交点との間の照明光波面側法線の長さの和が、前記1点に収束する照明光(入射光)の収束位置と前記照明光波面との間の離間距離に、1点に収束する照明光の収束位置から波面分布面の算出に用いた参照球面までの距離を加算し、この値から被検面13aの設計上の近軸曲率半径の2倍の値を減算した距離に最も近似する照明光波面側法線を求め、この照明光波面側法線を当該波面分布面側法線に対応する照明光波面側法線として特定する光路長条件対応法線特定機能と、記憶手段dに記憶された波面分布面側法線と交差する照明光波面側法線を全て求め、当該波面分布面側法線と各照明光波面側法線とが交わる位置において想定される被検面13aの法線と当該波面分布面側法線とが成す角と被検面13aの法線と求められた照明光波面側法線とが成す角の差が最小となる照明光波面側法線を求め、この照明光波面側法線を当該波面分布面側法線に対応する照明光波面側法線として特定する入射反射角条件対応法線特定機能と、記憶手段dに記憶された波面分布面側法線と交差する照明光波面側法線を全て求め、当該波面分布面側法線と各照明光波面側法線とが交わる位置において想定される被検面13aの法線と、当該波面分布面側法線と、求められた照明光波面側法線とが同一平面上に位置する照明光波面側法線を求め、この照明光波面側法線を当該波面分布面側法線に対応する照明光波面側法線として特定する同一平面条件対応法線特定機能を備える。   The illumination light optical path specifying means e intersects the wavefront distribution surface side normal line stored in the storage means d and the intersection of the wavefront distribution surface side normal line and the illumination light wavefront side normal line. All are obtained, and the sum of the length of the wavefront distribution plane side normal between the wavefront distribution plane and the intersection and the length of the illumination light wavefront normal between the illumination light wavefront and the intersection converges to the one point. Add the distance from the convergence position of the illumination light that converges to one point to the reference spherical surface used to calculate the wavefront distribution surface to the separation distance between the convergence position of the illumination light (incident light) and the illumination light wavefront, The illumination light wavefront side normal that approximates the distance obtained by subtracting a value twice the design paraxial radius of curvature of the test surface 13a from this value is obtained, and this illumination light wavefront side normal is calculated on the wavefront distribution surface side. An optical path length condition corresponding normal specifying function that specifies the illumination light wavefront side normal corresponding to the normal, and stored in the storage means d All the illumination light wavefront normals intersecting with the wavefront distribution plane side normal are obtained, and the normal of the test surface 13a assumed at the position where the wavefront distribution plane normal and each illumination light wavefront normal intersect An illumination light wavefront normal that minimizes the difference between the angle formed by the wavefront distribution plane side normal and the normal of the test surface 13a and the calculated illumination light wavefront normal is obtained. An incident reflection angle condition corresponding normal specifying function for specifying an optical wavefront normal as an illumination light wavefront normal corresponding to the wavefront distribution plane normal, and a wavefront distribution plane normal stored in the storage means d; All intersecting illumination light wavefront side normals are obtained, and the normal of the test surface 13a assumed at the position where the wavefront distribution surface side normal intersects with each illumination light wavefront side normal, and the wavefront distribution surface side method. The illumination light wavefront side normal line is obtained by locating the illumination light wavefront side normal line and the obtained illumination light wavefront side normal line. Comprising a coplanar condition corresponding normal specific function of specifying the optical wavefront side normal as illumination light wave surface normal corresponding to normal the wavefront distribution side.

この実施形態の被検面形状測定装置16はワークステーションやパーソナルコンピュータ等の一般的なコンピュータによって構成されるもので、図3に示されるように、演算処理用のCPU17と、CPU17の駆動制御に必要とされる基本的な制御プログラムを格納したROM18(またはハードディスクドライブ21)、および、各種のパラメータ等を記憶するための不揮発性メモリ19と、演算データの一時記憶等に利用されるRAM20、ならびに、大容量記憶装置として機能するハードディスクドライブ21等を備え、CPU17の入出力回路22には、マン・マシン・インターフェイスとして機能するキーボード24およびマウス25とモニタ23等が接続されている。   The test surface shape measuring device 16 of this embodiment is constituted by a general computer such as a workstation or a personal computer. As shown in FIG. 3, the CPU 17 for arithmetic processing and the drive control of the CPU 17 are used. ROM 18 (or hard disk drive 21) storing basic control programs required, nonvolatile memory 19 for storing various parameters, RAM 20 used for temporary storage of operation data, and the like, and A hard disk drive 21 or the like that functions as a large-capacity storage device is provided, and a keyboard 24 and a mouse 25 that function as a man-machine interface and a monitor 23 are connected to the input / output circuit 22 of the CPU 17.

図2に示される干渉計1のレーザ光源2は、被検面形状測定装置16側の入出力インターフェイス26とレーザ駆動回路27を介してCPU17によってオン/オフ制御され、また、干渉計1の支持具9に設けられた送り機構15も、入出力インターフェイス26とドライバ28を介してCPU17によって駆動制御されるようになっている。なお、キーボード24からの手動操作でパルス発生器29を作動させてドライバ28にパルス信号を入力することにより送り機構15を駆動して調整具14に微小送りを掛けることも可能である。   The laser light source 2 of the interferometer 1 shown in FIG. 2 is on / off controlled by the CPU 17 via the input / output interface 26 and the laser drive circuit 27 on the surface shape measuring apparatus 16 side, and supports the interferometer 1. The feed mechanism 15 provided in the tool 9 is also driven and controlled by the CPU 17 via the input / output interface 26 and the driver 28. It is also possible to activate the pulse generator 29 by manual operation from the keyboard 24 and input a pulse signal to the driver 28 to drive the feed mechanism 15 and apply a fine feed to the adjustment tool 14.

干渉計1に設けられたCCD等の撮像素子12によって撮像された干渉縞の画像は、CCD制御回路30と入出力インターフェイス26を介してCPU17に読み込まれる。   An interference fringe image picked up by the image pickup device 12 such as a CCD provided in the interferometer 1 is read into the CPU 17 via the CCD control circuit 30 and the input / output interface 26.

被検面形状測定装置16のCPU17は、図1の機能ブロック図に示される参照球面生成手段a,波面分布面データ生成手段b,法線データ抽出手段c,照明光光路特定手段eおよび実面形状データ生成手段fとして機能するもので、CPU17を参照球面生成手段a,波面分布面データ生成手段b,法線データ抽出手段c,照明光光路特定手段eおよび実面形状データ生成手段fとして機能させるためのプログラム、および、CPU17を照明光光路特定手段eにおける光路長条件対応法線特定機能実現手段,入射反射角条件対応法線特定機能実現手段および同一平面条件対応法線特定機能実現手段として機能させるためのプログラムからなる被検面形状測定プログラムが、予めハードディスクドライブ21にインストールされている。   The CPU 17 of the test surface shape measuring apparatus 16 includes a reference spherical surface generation means a, a wavefront distribution surface data generation means b, a normal data extraction means c, an illumination light path specifying means e and an actual surface shown in the functional block diagram of FIG. It functions as shape data generation means f, and the CPU 17 functions as reference spherical surface generation means a, wavefront distribution surface data generation means b, normal data extraction means c, illumination light path specifying means e, and actual surface shape data generation means f. And the CPU 17 as the optical path length condition corresponding normal specifying function realizing means, the incident reflection angle condition corresponding normal specifying function realizing means, and the same plane condition corresponding normal specifying function realizing means in the illumination light optical path specifying means e. A test surface shape measurement program including a program for functioning is installed in the hard disk drive 21 in advance.

また、RAM20は図1の機能ブロック図に示される記憶手段dに相当するもので、CPU17が入出力インターフェイス26およびCCD制御回路30を介して撮像素子12から読み取った干渉縞の画像を一時記憶するためのフレームメモリとしての機能や中間データの一時記憶の機能の他、参照球面生成手段aが仮想した参照球面や波面分布面データ生成手段bが生成した波面分布面のデータ、および、法線データ抽出手段cが求めた波面分布面側法線や照明光波面側法線に関連したデータを記憶する機能を有する。   The RAM 20 corresponds to the storage means d shown in the functional block diagram of FIG. 1, and temporarily stores the interference fringe image read from the image sensor 12 by the CPU 17 via the input / output interface 26 and the CCD control circuit 30. In addition to the function as a frame memory and the function of temporarily storing intermediate data, the reference spherical surface generated by the reference spherical surface generation means a, the wavefront distribution surface data generated by the wavefront distribution surface data generation means b, and normal data It has a function of storing data related to the wavefront distribution plane side normal and the illumination light wavefront normal obtained by the extraction means c.

図4〜図12はコンピュータからなる被検面形状測定装置16のCPU17によって実行される被検面形状測定プログラムの概略について示したフローチャートである。   4 to 12 are flowcharts showing an outline of a test surface shape measuring program executed by the CPU 17 of the test surface shape measuring device 16 comprising a computer.

この段階では既に被検体13が支持具9に適切にセットされてレーザ光源2の作動が開始されているものとし、図4〜図12を参照して本実施形態の被検面形状測定方法および被検面形状測定装置16における参照球面生成手段a,波面分布面データ生成手段b,法線データ抽出手段c,記憶手段d,照明光光路特定手段e,実面形状データ生成手段fの全体的な処理動作と被検面形状測定プログラムについて具体的に説明する。   At this stage, it is assumed that the subject 13 has already been appropriately set on the support 9 and that the operation of the laser light source 2 has been started. The entire reference spherical surface generation means a, wavefront distribution surface data generation means b, normal data extraction means c, storage means d, illumination light path specifying means e, and actual surface shape data generation means f in the test surface shape measuring apparatus 16. A specific processing operation and a test surface shape measurement program will be specifically described.

測定処理を開始したCPU17は、まず、撮像素子12からの画像の取り込み回数を計数する指標iの値を一旦0に初期化した後(ステップa1)、該指標iの値を1インクリメントして(ステップa2)、その現在値がフリンジスキャニングの必要回数たとえば4回に達しているか否かを判定する(ステップa3)。   The CPU 17 that has started the measurement process first initializes the value of the index i for counting the number of times the image is captured from the image sensor 12 to 0 (step a1), and then increments the value of the index i by 1 ( Step a2), it is determined whether or not the current value has reached the necessary number of fringe scanning, for example, four (step a3).

指標iの現在値がフリンジスキャニングの必要回数である4回に達していなければ、CPU17は、撮像素子12からシェア画像のデータを取り込んでRAM20の記憶領域の一部を利用して構成されたフレームメモリiに記憶してから撮像素子12をリフレッシュし(ステップa4)、入出力インターフェイス26およびドライバ28を介して送り機構15を駆動し、調整具14および調整具14に取り付けられた複屈折光学素子7に、レーザ光の波長の位相でπ/2に相当する量の送りを掛ける(ステップa5)。   If the current value of the index i has not reached four, which is the required number of fringe scanning, the CPU 17 captures the shared image data from the image sensor 12 and uses a part of the storage area of the RAM 20 to construct a frame. The image pickup device 12 is refreshed after being stored in the memory i (step a4), the feed mechanism 15 is driven via the input / output interface 26 and the driver 28, and the adjustment tool 14 and the birefringent optical element attached to the adjustment tool 14 are used. 7 is multiplied by an amount corresponding to π / 2 in the phase of the wavelength of the laser beam (step a5).

そして、CPU17は前記と同様にしてステップa2〜a5の処理を繰り返し実行し、フレームメモリ1〜フレームメモリ4の各々に0,π/2,π,3π/2の位相のシェア画像を取り込み、ステップa3の判定結果が偽となって必要数のシェア画像4枚の取り込みが確認された時点で、これらの画像に基いて従来と同様にしてフェイズアンラッピングによる位相接続の処理を実行して波面収差分布の数値データを得て(ステップa6)、その内容をRAM20に一時記憶する(ステップa7)。   Then, the CPU 17 repeatedly executes the processing of steps a2 to a5 in the same manner as described above, fetches share images having phases of 0, π / 2, π, and 3π / 2 into each of the frame memories 1 to 4, and step When the determination result of a3 is false and the capture of the required number of four share images is confirmed, phase connection processing by phase unwrapping is executed based on these images in the same manner as in the past, and wavefront aberration is performed. Numerical data of distribution is obtained (step a6), and the contents are temporarily stored in the RAM 20 (step a7).

次いで、参照球面生成手段aとして機能するCPU17が、波面収差分布のデータで表される波面収差分布の算出に必要とされる参照球面Bを論理空間となるRAM20内に仮想する。この参照球面Bは被検体13の球心Oと同じ球心を有する球面であればどのようなものであっても構わないが、ここでは一例として、干渉計1の照明光学系の光軸上の射出瞳位置に頂点を置いた参照球面Bを利用している。被検体13および参照球面Bの球心Oと照明光学系の射出瞳面の位置は干渉計1の機械座標系上で固定的な位置を占めるので、参照球面Bを仮想するための格別の演算処理といったものは特に必要なく、参照球面Bを現す方程式をハードディスクドライブ21からRAM20に読み込めばこと足りる。そして、波面分布面データ生成手段bとして機能するCPU17が、ステップa7の処理でRAM20に一時記憶した波面収差分布の数値データと参照球面Bの方程式とに基いて、参照球面Bを基準とした波面分布面Wを表すデータを生成する(以上、ステップa8)。   Next, the CPU 17 functioning as the reference spherical surface generation means a virtualizes the reference spherical surface B required for calculating the wavefront aberration distribution represented by the wavefront aberration distribution data in the RAM 20 serving as a logical space. The reference spherical surface B may be any spherical surface as long as it has the same spherical center as the spherical center O of the subject 13, but here, as an example, on the optical axis of the illumination optical system of the interferometer 1 A reference spherical surface B having a vertex at the exit pupil position is used. Since the positions of the subject 13 and the spherical center O of the reference spherical surface B and the exit pupil plane of the illumination optical system occupy fixed positions on the machine coordinate system of the interferometer 1, special calculations for virtualizing the reference spherical surface B are performed. There is no particular need for processing, and it is sufficient to read the equation representing the reference spherical surface B from the hard disk drive 21 into the RAM 20. Then, the CPU 17 functioning as the wavefront distribution surface data generating means b uses the reference spherical surface B as a reference based on the numerical data of the wavefront aberration distribution temporarily stored in the RAM 20 and the equation of the reference spherical surface B in step a7. Data representing the distribution plane W is generated (step a8).

参照球面Bと波面分布面Wとの対応関係の一例を図15の概念図に示す。参照球面Bは既に述べた通り被検体13の球心Oと同じ球心を有して、この球心Oと干渉計1の照明光学系の射出瞳位置を結んだ長さを曲率半径に持つ仮想された球面であり、また、波面分布面Wは、RAM20に一時記憶した波面収差分布の数値データを参照球面Bと比較し算出して得たデータである。波面収差分布の数値データはステップa6の位相接続の処理によって得られた単純な偏差データの集合体であり、この偏差データの各々を参照球面Bに比較し算出して各データの偏差を参照球面Bの法線方向に反映させることで波面分布面Wを表すデータが得られる。
より具体的には、波面収差分布の各数値データを(y,z),球心Oを中心とする参照球面Bの半径をR1,使用するレーザ光源2の波長をλ1,参照球面が存在する媒質の屈折率をn1,波面収差をwとした場合、球心Oから波面分布面W上の(y,z)の対応位置までの距離R2はR2=n1×w×λ1+R1となり、波面分布面W上の(y,z)の対応位置と球心Oを結ぶ線分が光軸L1(図14参照)と成す角θがθ=cos−1〔(y)・(y/R2)〕となることから、波面分布面W上のzの対応位置zはz=R2・sin(θ)となる。
An example of the correspondence between the reference spherical surface B and the wavefront distribution surface W is shown in the conceptual diagram of FIG. The reference spherical surface B has the same spherical center as the spherical center O of the subject 13 as described above, and the curvature radius has a length connecting the spherical center O and the exit pupil position of the illumination optical system of the interferometer 1. The wavefront distribution surface W is a virtual spherical surface, and is obtained by comparing the numerical data of the wavefront aberration distribution temporarily stored in the RAM 20 with the reference spherical surface B. The numerical data of the wavefront aberration distribution is a collection of simple deviation data obtained by the phase connection process in step a6. Each deviation data is calculated by comparing each deviation data with the reference spherical surface B, and the deviation of each data is calculated as the reference spherical surface. By reflecting in the normal direction of B, data representing the wavefront distribution plane W is obtained.
More specifically, each numerical data of the wavefront aberration distribution is (y i , z i ), the radius of the reference spherical surface B centered on the spherical center O is R1, the wavelength of the laser light source 2 to be used is λ1, and the reference spherical surface is When the refractive index of the existing medium is n1 and the wavefront aberration is w, the distance R2 from the spherical center O to the corresponding position of (y i , z i ) on the wavefront distribution plane W is R2 = n1 × w × λ1 + R1. , The angle θ formed by the line segment connecting the corresponding position of (y i , z i ) on the wavefront distribution plane W and the sphere center O with the optical axis L1 (see FIG. 14) is θ = cos −1 [(y i ) · (Y i / R2)], the corresponding position z of z i on the wavefront distribution plane W is z = R2 · sin (θ).

次いで、CPU17は、波面分布面データ生成手段bによって生成されたデータで表される波面分布面Wを予め設定されたセル分割条件C1つまりセルの分割数の設定値に従ってC1個の区画に分割し、各微小セルを現すセルデータW〜WC1を生成してRAM20に記憶させる(ステップa9)。また、これと同様に、照明光波面Eを予め設定されたセル分割条件C2つまりセルの分割数の設定値に従ってC2個の区画に分割し、各微小セルを現すセルデータE〜EC2を生成してRAM20に記憶させる(ステップa10)。 Next, the CPU 17 divides the wavefront distribution plane W represented by the data generated by the wavefront distribution plane data generation means b into C1 sections according to a preset cell division condition C1, that is, a set value of the cell division number. Then, cell data W 1 to W C1 representing each minute cell are generated and stored in the RAM 20 (step a9). Similarly, the illumination light wavefront E is divided into C2 sections according to a preset cell division condition C2, that is, a set value of the number of cell divisions, and cell data E 1 to E C2 representing each minute cell are divided. It is generated and stored in the RAM 20 (step a10).

次いで、CPU17は、被検面13aの実面形状を表すデータの総数を計数するカウンタQの値と波面分布面Wを構成する各微小セルのデータW〜WC1を順に選択するための指標iの値を共に0に初期化した後(ステップa11,ステップa12)、指標iの値を1インクリメントし(ステップa13)、その現在値が波面分布面Wを構成する微小セルの総数C1に達しているか否かを判定する(ステップa14)。 Next, the CPU 17 is an index for sequentially selecting the value of the counter Q that counts the total number of data representing the actual surface shape of the test surface 13a and the data W 1 to W C1 of each minute cell constituting the wavefront distribution surface W. After both i values are initialized to 0 (step a11, step a12), the value of the index i is incremented by 1 (step a13), and the current value reaches the total number C1 of the minute cells constituting the wavefront distribution plane W. It is determined whether or not (step a14).

指標iの値が微小セルの総数C1に達していなければ、法線データ抽出手段cとして機能するCPU17が、指標iの現在値に基いてRAM20から波面分布面Wを構成する1つの微小セルのデータWを読み込み(ステップa15)、この微小セルWの中心Aの座標と中心Aを通る法線kつまり微小セルWに対応した波面分布面側法線kの方程式を求めて、記憶手段dとして機能するRAM20に記憶させる(ステップa16)。 If the value of the index i has not reached the total number C1 of the microcells, the CPU 17 functioning as the normal data extraction means c selects one microcell constituting the wavefront distribution plane W from the RAM 20 based on the current value of the index i. read data W i (step a15), the equation of the normal k i clogging microcells W i wavefront distribution surface normals k i corresponding to the passing through the coordinates and the center a i of the center a i of the micro cell W i It is obtained and stored in the RAM 20 functioning as the storage means d (step a16).

図15に示されるように、被検面13aで反射された反射光は必ず波面分布面Wに直交して入射することから、この波面分布面側法線kは、被検面13aで反射されて波面分布面Wを構成する1つの微小セルWに入射した反射光の光路に相当するものであるということができる。 As shown in FIG. 15, since the reflected light reflected by the test surface 13a is always incident orthogonally to the wavefront distribution surface W, this wavefront distribution surface side normal line k i is reflected by the test surface 13a. It has been can be said to be equivalent to the optical path of the reflected light incident on one micro cell W i which constitutes the wavefront distribution plane W.

次いで、CPU17は、この段階で評価対象として選択されている波面分布面側法線kと交差する照明光波面側法線の総個数を計数するカウンタnの値と照明光波面Eを構成する各微小セルのデータE〜EC2を順に選択するための指標jの値を共に0に初期化した後(ステップa17,ステップa18)、指標jの値を1インクリメントし(ステップa19)、その現在値が照明光波面Eを構成する微小セルの総数C2に達しているか否かを判定する(ステップa20)。 Next, the CPU 17 configures the illumination light wavefront E and the value of the counter n that counts the total number of illumination light wavefront normals that intersect the wavefront distribution plane normal k i selected as the evaluation target at this stage. After initializing both the values of the index j for sequentially selecting the data E 1 to E C2 of each microcell to 0 (step a17, step a18), the value of the index j is incremented by 1 (step a19), It is determined whether or not the current value has reached the total number C2 of minute cells constituting the illumination light wavefront E (step a20).

指標jの値が微小セルの総数C2に達していなければ、法線データ抽出手段cとして機能するCPU17は、指標jの現在値に基いてRAM20から照明光波面Eを構成する1つの微小セルのデータEを読み込み(ステップa21)、この微小セルEの中心Dの座標と中心Dを通る法線lつまり微小セルのデータEに対応した照明光波面側法線lの方程式を求める(ステップa22)。
ここでは、一例として、波面分布面Wの場合と同様の手続によって照明光波面Eを分割して入射光の光路を表す照明光波面側法線l〜lC2を立てるための微小セルE〜EC2を仮想し、その中心D〜DC2に照明光波面側法線l〜lC2を立てるようにしているが、照明光波面側法線l〜lC2を立てるために必ずしも照明光波面Eを分割する必要はなく、例えば、照明光波面E上の点D〜DC2を予めユーザが指定した任意の微小な刻み間隔で選択し、球心Oと点D〜DC2の各関係から照明光波面側法線l〜lC2を求めるようにしてもよい。この場合、選択された照明光波面E上の点D〜DC2それ自体が微小セルE〜EC2の中心を意味するので、照明光波面Eを分割する処理や微小セルE〜EC2の中心を計算するステップa10の処理は不要である。
或いは、球心Oを通る直線l〜lC2を予めユーザが指定した任意の微小な刻み角度で選択し、直線l〜lC2の各々を照明光波面側法線l〜lC2とし、照明光波面側法線l〜lC2と照明光波面Eとの交点を前述のD〜DC2としても同じことである。
If the value of the index j does not reach the total number C2 of the micro cells, the CPU 17 functioning as the normal data extraction means c determines the one micro cell constituting the illumination light wavefront E from the RAM 20 based on the current value of the index j. The data E j is read (step a21), and the coordinates of the center D j of the minute cell E j and the normal l j passing through the center D j , that is, the illumination light wavefront side normal l j corresponding to the minute cell data E j An equation is obtained (step a22).
Here, as an example, the minute cell E 1 for setting the illumination light wavefront side normals l 1 to l C2 representing the optical path of the incident light by dividing the illumination light wavefront E by the same procedure as in the case of the wavefront distribution plane W. virtually a to E C2, but so as to make a lighting optical wavefront side normal l 1 to l C2 at its center D 1 to D C2, always to make a lighting optical wavefront side normal l 1 to l C2 it is not necessary to divide the illumination optical wavefront E, for example, selected in an arbitrary small increments intervals previously user-specified points D 1 to D C2 on the illumination optical wavefront E, the spherical center O and the point D 1 to D The illumination light wavefront side normals l 1 to l C2 may be obtained from the relations of C2 . In this case, since the points D 1 to D C2 on the selected illumination light wavefront E mean the centers of the minute cells E 1 to E C2 , processing for dividing the illumination light wavefront E and the minute cells E 1 to E The process of step a10 for calculating the center of C2 is unnecessary.
Alternatively, the straight lines l 1 to l C2 passing through the spherical center O are selected at an arbitrary minute step angle designated in advance by the user, and each of the straight lines l 1 to l C2 is set as the illumination light wavefront side normal line l 1 to l C2. The same applies to the intersections of the illumination light wavefront normals l 1 to l C2 and the illumination light wavefront E as D 1 to D C2 described above.

次いで、法線データ抽出手段cおよび実面形状データ生成手段fの一部として機能するCPU17は、ステップa16の処理で求められた波面分布面側法線kすなわち現時点で評価対象として選択されている波面分布面側法線kと照明光波面側法線lが交わるか否かを判定し(ステップa23)、両者が交わる場合に限ってカウンタnの値を1インクリメントし(ステップa24)、記憶手段dとして機能するRAM20内に構築されたデータテーブルgの第nアドレスに、照明光波面側法線lの方程式を方程式lとして記憶させ、また、波面分布面側法線kと照明光波面側法線lの交点の座標を交点Pとして記憶させ、更に、この微小セルEの中心Dの座標を中心Dとして記憶させる(ステップa25)。図13にデータテーブルgの論理構成の一例を示す。
なお、ステップa23の判定結果が偽となった場合、つまり、現時点で評価対象として選択されている波面分布面側法線kと照明光波面側法線lとが交わらないことが明らかとなった場合には、ステップa24〜ステップa25の処理は非実行とされ、カウンタnの値は其のままの状態に保持され、データテーブルgには何も書き込まれない。
Next, the CPU 17 functioning as a part of the normal line data extraction unit c and the actual surface shape data generation unit f is selected as the wavefront distribution plane side normal line k i obtained in the process of step a16, that is, the evaluation target at the present time. It is determined whether or not the wavefront distribution plane side normal line k i and the illumination light wavefront side normal line l j intersect (step a23), and the value of the counter n is incremented by 1 only when both intersect (step a24). , the n-th address of the data table g built into the RAM20 which functions as a memory unit d, stores the equations of the illumination optical wavefront side normal l j as equation l n, also wavefront distribution surface normals k i And the coordinates of the intersection of the illumination light wavefront side normal line l j are stored as the intersection point P n , and the coordinates of the center D j of the minute cell E j are stored as the center D n (step a25). FIG. 13 shows an example of the logical configuration of the data table g.
In addition, when the determination result of step a23 is false, that is, it is clear that the wavefront distribution plane side normal line k i currently selected as the evaluation target and the illumination light wavefront side normal line l i do not intersect. If it does, the processing from step a24 to step a25 is not executed, the value of the counter n is held as it is, and nothing is written in the data table g.

そして、CPU17は、指標jの値を改めて1インクリメントし(ステップa19)、その現在値が照明光波面Eを構成する微小セルの総数C2に達しているか否かを判定し(ステップa20)、達していなければ、前記と同様にしてステップa21〜ステップa25の処理とステップa19〜ステップa20の処理を繰り返し実行する。   Then, the CPU 17 again increments the value of the index j by 1 (step a19), determines whether or not the current value has reached the total number C2 of minute cells constituting the illumination light wavefront E (step a20). If not, the process from step a21 to step a25 and the process from step a19 to step a20 are repeated as described above.

従って、指標jの値が照明光波面Eを構成する微小セルの総数C2に達してステップa20の判定結果が偽となった時点では、照明光波面Eを構成する微小セルのデータE〜EC2の各々に対応した照明光波面側法線l〜lC2のうちステップa16の処理で求められた波面分布面側法線kつまり現時点で評価対象として選択されている波面分布面側法線kと交差する全ての照明光波面側法線が抽出され、各照明光波面側法線の方程式および此れに関連する交点と中心の座標がデータテーブルgに全て記憶されることになる(図13参照)。 Therefore, at the time when the decision result in the step a20 reached the total number of micro cell C2 to the value of the index j constitutes an illumination optical wavefront E is false, the data E 1 to E of minute cells constituting the illumination optical wavefront E C2 each wavefront distribution surface method, which is selected as the evaluation target wavefront distribution surface normals k i clogging moment obtained by the processing in step a16 of the illumination optical wavefront side normal l 1 to l C2 corresponding to All the illumination light wavefront normals intersecting the line k i are extracted, and the equations of the illumination light wavefront normals and the coordinates of the intersection and the center associated therewith are all stored in the data table g. (See FIG. 13).

そして、データテーブルgに記憶されるデータセットの個数はカウンタnの最終値に反映される。   The number of data sets stored in the data table g is reflected in the final value of the counter n.

一例として、波面分布面Wを構成する1つの微小セルWを例にとり、その中心Aを通る波面分布面側法線kと此の波面分布面側法線kに交差する照明光波面側法線の幾つかの例について図15に示す。
既に述べた通り、波面分布面側法線kは波面分布面Wを構成する1つの微小セルWに入射した被検面13aからの反射光の光路に相当するものであり、照明光波面側法線l〜lの各々は、照明光波面E上の何れかの法線を辿って被検面13aに入射した入射光の光路に相当するものである。図15に示される例では、照明光波面側法線l〜lのうち照明光波面側法線l〜lが此の時点で評価対象とされている波面分布面側法線kと交差するが、照明光波面側法線l〜lは波面分布面側法線kとは交差しないので、これらの照明光波面側法線l〜lうちデータテーブルgに記憶されるのは照明光波面側法線l〜lの方程式および此れに関連する交点と中心の座標のみで、照明光波面側法線l〜lに関連するデータは全て無視されることになる。この場合、カウンタnの最終値は7となる。
また、被検面13aで反射された反射光は必ず波面分布面Wに直交して入射することとなるから、波面分布面側法線kが被検面13aで反射されて微小セルWに入射した反射光の光路と同等あることは自明である。
干渉計1の撮像素子12によって検出されたシェアリング像を作る反射光が完全な球面によって反射されたものであっても、あるいは、非球面によって反射されたものであっても、少なくとも、この反射光の生成原因となる入射光は、干渉計1による測定に際して1点に収束する光路、つまり、照明光波面Eの何れかの法線を辿って被検面13aに入射した入射光の1つであることには疑いの余地はなく、図15に示される照明光波面側法線l〜lのうち被検面13aで反射されて波面分布面側法線kと同等の光路を有する反射光を形成する可能性があるのは、反射光に相当する波面分布面側法線kと交差する入射光、つまり、照明光波面側法線l〜lに相当する入射光のみということになる。従って、これを一般化すれば、全ての照明光波面側法線l〜lC2のうちステップa25で抽出された照明光波面側法線、つまり、データテーブルgに記憶された照明光波面側法線l〜lのみが、波面分布面側法線kと同等の光路を有する反射光を形成する可能性のある入射光を表す方程式の候補となる。
As an example, illumination light waves intersecting one microcell W i which constitutes the wavefront distribution plane W as an example, in its center A wavefront distribution side through the i normal k i and此wavefront distribution surface normals k i Some examples of surface side normals are shown in FIG.
As already mentioned, the wavefront distribution surface normals k i is equivalent to the optical path of the reflected light from the test surface 13a that is incident on one micro cell W i which constitutes the wavefront distribution plane W, illumination wavefront Each of the side normal lines l 1 to l 9 corresponds to an optical path of incident light that has entered one of the test surfaces 13 a following a normal line on the illumination light wavefront E. In the example shown in FIG. 15, the wavefront distribution surface normals k illumination wavefront side normal l 1 to l 7 are evaluated at the time of此of the illumination optical wavefront side normal l 1 to l 9 Although it intersects with i , the illumination light wavefront side normals l 8 to l 9 do not intersect with the wavefront distribution surface side normal line k i , so these illumination light wavefront side normals l 1 to l 9 are included in the data table g. Only the equations of the illumination light wavefront normals l 1 to l 7 and the coordinates of the intersection and the center related thereto are stored, and all the data related to the illumination light wave front normals l 8 to l 9 are ignored. Will be. In this case, the final value of the counter n is 7.
Further, since the reflected light reflected by the test surface 13a is always incident perpendicular to the wavefront distribution surface W, the wavefront distribution surface side normal line k i is reflected by the test surface 13a and the minute cell W i. Obviously, it is equivalent to the optical path of the reflected light incident on.
Even if the reflected light that forms the sharing image detected by the imaging device 12 of the interferometer 1 is reflected by a perfect spherical surface or reflected by an aspherical surface, at least this reflection Incident light that is the cause of light generation is one of incident light that has entered one of the optical paths that converge at one point upon measurement by the interferometer 1, that is, one of the normal lines of the illumination light wavefront E and that has entered the surface 13a to be measured. no room for doubt that is, the optical path equivalent to the wavefront distribution surface normals k i is reflected by the test surface 13a of the illumination optical wavefront side normal l 1 to l 9 shown in FIG. 15 There is a possibility of forming reflected light having incident light that intersects with the wavefront distribution plane normal line k i corresponding to the reflected light, that is, incident light corresponding to the illumination light wavefront normal lines l 1 to l 7. It will be only. Therefore, if this is generalized, the illumination light wavefront normals extracted in step a25 out of all the illumination light wavefront normals l 1 to l C2 , that is, the illumination light wavefront side stored in the data table g Only the normals l 1 to l n are candidates for equations representing incident light that may form reflected light having an optical path equivalent to the wavefront distribution plane normal line k i .

次いで、照明光光路特定手段eとして機能するCPU17は、データテーブルgに記憶された照明光波面側法線つまり反射光に対応する入射光の光路を表す照明光波面側法線を特定する際に乖離度の判定に用いる最小エラー値記憶レジスタDmin.に設定可能最大値を初期値として設定し(ステップa26)、この段階で評価対象として選択されている波面分布面側法線kと交差した照明光波面側法線の各々に関連したデータをデータテーブルgから順に読み出すための指標jの値を0に初期化した後(ステップa27)、指標jの値を1インクリメントし(ステップa28)、該指標jの値がデータテーブルgに記憶されたデータセットの総数nに達しているか否かを判定する(ステップa29)。 Next, the CPU 17 functioning as the illumination light optical path specifying unit e specifies the illumination light wavefront side normal representing the illumination light wavefront side normal stored in the data table g, that is, the optical path of the incident light corresponding to the reflected light. Minimum error value storage register D min. Used for determination of divergence degree . Configurable maximum value set as an initial value (Step a26), the data associated with each of the illumination optical wavefront side normal line crosses the wavefront distribution surface normals k i being selected as the evaluation target at this stage After the value of the index j for sequentially reading from the data table g is initialized to 0 (step a27), the value of the index j is incremented by 1 (step a28), and the value of the index j is stored in the data table g. It is determined whether or not the total number n of data sets has been reached (step a29).

そして、指標jの現在値がデータテーブルgに記憶されたデータセットの総数nに達していなければ、照明光光路特定手段eとして機能するCPU17は、指標jの現在値に基いてデータテーブルgから1セットのデータ、つまり、現段階で評価対象として選択されている波面分布面側法線kに交差する1つの照明光波面側法線の方程式lと、この照明光波面側法線lと波面分布面側法線kとの交点Pと、この照明光波面側法線lに対応する照明光波面Eの微小セルの中心Dとを読み出し(ステップa30)、更に、図15に示されるように、被検体13の球心Oを中心として照明光波面側法線lと波面分布面側法線kとの交点Pを通る球Rを想定して球R上の位置Pにおける法線の方程式mを求めた後(ステップa31)、照明光光路特定手段eを起動して、ステップa30の処理で読み出したデータセットに対応する照明光波面側法線が現段階で評価対象として選択されている波面分布面側法線kと対を成すものとして適当であるか否かを判定するための処理を開始する。 If the current value of the index j does not reach the total number n of data sets stored in the data table g, the CPU 17 functioning as the illumination light path identifying unit e determines from the data table g based on the current value of the index j. One set of data, that is, an equation l j of one illumination light wavefront normal intersecting with the wavefront distribution surface normal k i selected for evaluation at this stage, and this illumination light wavefront normal l The intersection P j between j and the wavefront distribution plane side normal line k i and the center D j of the minute cell of the illumination light wavefront E corresponding to the illumination light wavefront side normal line l j are read (step a30), As shown in FIG. 15, a sphere R is assumed assuming a sphere R passing through an intersection P j between the illumination light wavefront side normal line l j and the wavefront distribution plane side normal line k i with the sphere center O of the subject 13 as the center. After obtaining the normal equation m j at the upper position P j (step A) The illuminating light path identifying means e is activated, and the illuminating light wavefront normal corresponding to the data set read out in step a30 is selected as the evaluation target at this stage. A process for determining whether or not it is appropriate to pair with k i is started.

既に述べた通り、この実施形態の照明光光路特定手段eには、現段階で評価対象として選択されている波面分布面側法線kと対を成す照明光波面側法線を特定するための機能として、光路長条件対応法線特定機能,入射反射角条件対応法線特定機能,同一平面条件対応法線特定機能といった3つの機能があり、ユーザからの要望に応じたフラグの切り替え処理等により、何れかの機能を選択して波面分布面側法線kと対を成す照明光波面側法線を特定することかできるようになっている。 As already described, the illumination light path identifying means e of this embodiment is for identifying the illumination light wavefront normal that is paired with the wavefront distribution plane normal k i selected as the evaluation target at this stage. There are three functions such as an optical path length condition corresponding normal specifying function, an incident reflection angle condition corresponding normal specifying function, and a coplanar condition corresponding normal specifying function, and a flag switching process according to a request from the user, etc. Thus, any function can be selected to specify the illumination light wavefront side normal paired with the wavefront distribution surface side normal line k i .

ここで、光路長条件対応法線特定機能が選択されていた場合、つまり、ステップa32の判定結果が真となった場合には、照明光光路特定手段eとして機能するCPU17はSUB(A)の処理に移行し、まず、現段階で評価対象として選択されている波面分布面側法線kに対応する波面分布面Wの微小セルWの中心としてステップa16の処理でRAM20に記憶された中心Aの値と、ステップa30の処理で読み出された照明光波面側法線lと波面分布面側法線kとの交点Pの値とに基いて、中心Aと交点Pとの間の離間距離AP、つまり、波面分布面Wから波面分布面側法線kと照明光波面側法線lとの交点Pに至る波面分布面側法線kの長さAPを求め(図15参照)、この値をレジスタAPに一時記憶する。
また、これと同様に、ステップa30の処理で読み出された照明光波面側法線lに対応する照明光波面Eの微小セルの中心Dの値と、ステップa30の処理で読み出された照明光波面側法線lと波面分布面側法線kとの交点Pの値とに基いて、中心Dと交点Pとの間の離間距離BP、要するに、照明光波面Eから波面分布面側法線kと照明光波面側法線lとの交点Pに至る照明光波面側法線lの長さBPを求め(図15参照)、この値をレジスタBPに一時記憶する(ステップb1)。
Here, when the optical path length condition corresponding normal function is selected, that is, when the determination result in step a32 is true, the CPU 17 functioning as the illumination light optical path specifying means e is in SUB (A). shifts to the process, first, stored in the RAM20 in the processing of step a16 as the center of the micro cell W i of the wavefront distribution plane W which corresponds to the wavefront distribution surface normals k i being selected as the evaluation target at this stage Based on the value of the center A i and the value of the intersection P j of the illumination light wavefront side normal line l j and the wavefront distribution plane side normal line k i read out in the process of step a30, the intersection point with the center A i distance AP between the P j, i.e., the wavefront distribution plane W from wavefront distribution surface normals k i leading to the intersection P j of the wavefront distribution surface normals k i the illumination optical wavefront side normal line l j The length AP is obtained (see FIG. 15), and this value is temporarily stored in the register AP. To 憶.
Similarly, the value of the center D j of the minute cell of the illumination light wavefront E corresponding to the illumination light wavefront side normal l j read out in the process of step a30 and the read out in the process of step a30. Based on the value of the intersection P j between the illumination light wavefront normal line l j and the wavefront distribution surface side normal line k i , the separation distance BP between the center D j and the intersection point P j , in short, the illumination light wavefront seek length BP of the illumination optical wavefront side normal line l j, from E the intersection P j of the wavefront distribution surface normals k i the illumination optical wavefront side normal line l j (see FIG. 15), this value register Temporarily store in BP (step b1).

次いで、照明光光路特定手段eとして機能するCPU17は、球心Oを1点として収束する照明光の収束位置Oと照明光波面Eとの間の離間距離に、1点に収束する照明光の収束位置Oから波面分布面の算出に用いた既知である参照球面までの距離を加算し、この値から既知である被検面13aの設計上の近軸曲率半径rの2倍の値を減算した距離の値V(以下、等光路長条件という)から、離間距離APと離間距離BPの加算値を減算することによりVとAP+BPとの間の偏差S=|V−(AP+BP)|を求め(ステップb2)、偏差Sと最小エラー値記憶レジスタDmin.の現在値との大小関係を比較する(ステップb3)。
但し、近軸曲率半径rの値を減じるのは被検面13aが凸面の場合であり、被検面13aが凹面の場合は近軸曲率半径rを球心Oを1点として収束する照明光の収束位置と照明光波面Eとの間の離間距離に加算することになる。
Next, the CPU 17 functioning as the illumination light optical path specifying means e sets the illumination light that converges to one point at the separation distance between the illumination light wavefront E and the convergence position O of the illumination light that converges with the ball center O as one point. The distance from the convergence position O to the known reference spherical surface used for calculating the wavefront distribution surface is added, and a value twice the design paraxial radius of curvature r of the known test surface 13a is subtracted from this value. The difference S = | V− (AP + BP) | between V and AP + BP is obtained by subtracting the added value of the separation distance AP and the separation distance BP from the measured distance value V (hereinafter referred to as an equal optical path length condition). (Step b2), deviation S and minimum error value storage register D min. Are compared with the current value (step b3).
However, the value of the paraxial curvature radius r is reduced when the test surface 13a is a convex surface. When the test surface 13a is a concave surface, the paraxial curvature radius r converges with the sphere O as one point. Is added to the separation distance between the convergence position and the illumination light wavefront E.

ここで、ステップb3の判定結果が偽となった場合、つまり、これ以前に求められてきた全ての偏差の値よりも此の度の処理で求められた偏差Sの値の方が小さいと判定された場合には、照明光光路特定手段eとして機能するCPU17は、取り敢えず、今回のステップa30の処理で読み出された照明光波面側法線lに対応する入射光が現段階で評価対象として選択されている波面分布面側法線kに対応する反射光と対を成すものとなる可能性が最も高いと見做し、この照明光波面側法線lと波面分布面側法線kとの交点Pを、波面分布面Wの微小セルWに対応した被検面13a上の実面形状の位置を表すデータの1候補としてデータ候補記憶レジスタRに一時記憶すると共に(ステップb4)、最小エラー値記憶レジスタDmin.の値を偏差Sの現在値つまり現時点で最小となっている偏差の値Sに置き換える(ステップb5)。 Here, when the determination result of step b3 is false, that is, it is determined that the value of the deviation S obtained by this processing is smaller than the values of all deviations obtained previously. when the CPU 17 that functions as an illumination light path specifying means e is the time being, selecting the incident light corresponding to the illumination optical wavefront side normal line l j read in the process of this step a30 is as the evaluation target at this stage regarded as most likely to be the ones that constitute the reflecting light and the pair corresponding to the wavefront distribution surface normals k i being, the illumination optical wavefront side normal l j and wave distribution surface normals k the intersection point P j with i, as well as temporarily stored in the data candidate storage register R as 1 candidate data representing the position of the real surface shape on the test surface 13a corresponding to the micro-cell W i of the wavefront distribution plane W (step b4), minimum error value storage register min. Is replaced with the current value of the deviation S, that is, the deviation value S which is the smallest at the present time (step b5).

次いで、照明光光路特定手段eとして機能するCPU17は、この段階で評価対象として選択されている波面分布面側法線kと交差した照明光波面側法線の各々に関連したデータをデータテーブルgから順に読み出すための指標jの値を改めて1インクリメントし(ステップa28)、該指標jの値がデータテーブルgに記憶されたデータセットの総数nに達しているか否かを判定する(ステップa29)。 Next, the CPU 17 functioning as the illumination light optical path specifying means e stores data related to each of the illumination light wavefront side normals intersecting with the wavefront distribution surface side normal k i selected as an evaluation target at this stage. The value of the index j for sequentially reading from g is incremented by 1 again (step a28), and it is determined whether or not the value of the index j has reached the total number n of data sets stored in the data table g (step a29). ).

指標jの現在値がデータセットの総数nに達していなければ、照明光光路特定手段eとして機能するCPU17は、指標jの現在値に基いて前記と同様にしてステップa30〜ステップa32およびSUB(A)の処理を繰り返し実行する。   If the current value of the index j has not reached the total number n of data sets, the CPU 17 functioning as the illumination light path specifying means e performs steps a30 to a32 and SUB ( The process of A) is repeatedly executed.

このようにして、指標jの値が順次インクリメントされ、その都度、指標jの値に対応した照明光波面側法線lに関連したデータセットがデータテーブルgから次々と読み出されてステップa29〜ステップa32およびSUB(A)の処理の対象とされる。 In this manner, the value of the index j is sequentially incremented, and each time a data set related to the illumination light wavefront side normal l j corresponding to the value of the index j is read from the data table g one after another, and step a29. -It is set as the object of processing of step a32 and SUB (A).

従って、最終的にステップa29の判定結果が偽となった時点で、此れらの照明光波面側法線l〜lのうち偏差Sの値が最小となる照明光波面側法線、要するに、現段階で評価対象として選択されている波面分布面側法線kの表す反射光に対応した入射光の光路を表す照明光波面側法線として適切であると考えられる照明光波面側法線が一義的に特定され、この照明光波面側法線と波面分布面側法線kとの交点Pの値が実面形状データ生成手段fの一部として機能するCPU17によってデータ候補記憶レジスタRに保持されることとなる。 Accordingly, when the determination result of the final step a29 becomes false, the illumination optical wavefront side normal value of the deviation S of the illumination optical wavefront side normal l 1 to l n of此these is minimized, In short, the illumination light wavefront side considered to be appropriate as the illumination light wavefront side normal representing the optical path of the incident light corresponding to the reflected light represented by the wavefront distribution plane normal normal k i selected as the evaluation target at this stage A normal line is uniquely specified, and the value of the intersection P j between the illumination light wavefront side normal line and the wavefront distribution plane side normal line k i is a data candidate by the CPU 17 functioning as a part of the actual surface shape data generation means f. It is held in the storage register R.

次いで、実面形状データ生成手段fの一部として機能するCPU17は、現段階で評価対象として選択されている波面分布面側法線kが表す反射光に対応した照明光の光路を表す照明光波面側法線として特定された照明光波面側法線に対応して求められた偏差Sの値、つまり、最小エラー値記憶レジスタDmin.の最終値が許容値εの範囲内にあるか否かを判定する(ステップa34)。 Next, the CPU 17 functioning as a part of the actual surface shape data generating unit f represents an illumination path that represents the optical path of the illumination light corresponding to the reflected light represented by the wavefront distribution plane side normal line k i selected as the evaluation target at this stage. The value of the deviation S obtained in correspondence with the illumination light wavefront normal specified as the light wavefront normal, that is, the minimum error value storage register D min. It is determined whether or not the final value is within the allowable value ε (step a34).

ここで、最小エラー値記憶レジスタDmin.の最終値が許容値εの範囲内にあれば、実面形状データ生成手段fの一部として機能するCPU17は、このDmin.の値を偏差Sとして備えた照明光波面側法線が、現段階で評価対象として選択されている波面分布面側法線kの表す反射光に対応した入射光の光路を示す照明光波面側法線として適切なものであると見做して、被検面13aの実面形状を表すデータの総数を計数するカウンタQの値を1インクリメントし(ステップa35)、カウンタQの現在値に対応する実面形状データ記憶レジスタR(Q)にデータ候補記憶レジスタRの値を其のまま記憶させる(ステップa36)。
また、最小エラー値記憶レジスタDmin.の最終値が許容値εの範囲を超えている場合には、実面形状データ生成手段fの一部として機能するCPU17は、このDmin.の値を偏差Sとして備えた照明光波面側法線は、現段階で評価対象として選択されている波面分布面側法線kの表す反射光に対応した照明光の光路を表す照明光波面側法線としては不適切なものであると見做してステップa35〜ステップa36の処理を非実行とする。従って、この場合、カウンタQの値は更新されず、データ候補記憶レジスタRの値も形状データ記憶レジスタには転送されない。
Here, the minimum error value storage register D min. CPU 17 functioning as a part of the actual surface shape data generating means f, if the final value is within the allowable value ε, the D min. The illumination light wavefront normal having the value of S as the deviation S indicates the light path of the incident light corresponding to the reflected light represented by the wavefront distribution surface normal k i selected as the evaluation target at the present stage Assuming that the side normal is appropriate, the value of the counter Q for counting the total number of data representing the actual surface shape of the surface 13a to be measured is incremented by 1 (step a35), and the current value of the counter Q is set. The value of the data candidate storage register R is stored as it is in the corresponding actual surface shape data storage register R (Q) (step a36).
Further, the minimum error value storage register D min. CPU 17 functioning as a part of the actual surface shape data generation means f, if the final value of the value exceeds the range of the allowable value ε, the D min. The illumination light wavefront normal having the value of S as the deviation S is the illumination light wavefront representing the optical path of the illumination light corresponding to the reflected light represented by the wavefront distribution surface normal k i selected as the evaluation target at this stage The processing of step a35 to step a36 is not executed assuming that the side normal is inappropriate. Therefore, in this case, the value of the counter Q is not updated, and the value of the data candidate storage register R is not transferred to the shape data storage register.

つまり、ステップa28〜ステップa32およびSUB(A)によって形成されるループ処理とステップa34〜ステップa36の処理によって得られるのは、波面分布面W(W)と交点Pとの間の波面分布面側法線kの長さAPと照明光波面E(E)と交点Pとの間の照明光波面側法線lの長さBPの和であるAP+BPの値が、1点に収束する照明光(入射光)の収束位置である球心Oと照明光波面Eとの間の離間距離に、1点に収束する照明光の収束位置Oから波面分布面の算出に用いた既知である参照球面までの距離を加算し、この値から既知である被検面13aの設計上の近軸曲率半径rの2倍の値を減算した値Vに最も近似するようになる照明光波面側法線lと、この照明光波面側法線lと波面分布面側法線kとの交点P(R(Q))の値である。 That is, the loop process and is of the obtained by the process of step a34~ step a36, the wavefront distribution between the wavefront distribution plane W (W i) the intersection P j formed by step a28~ Step a32 and SUB (A) the value of AP + BP is the sum of the length BP of the illumination optical wavefront side normal l j between side normals k i of length AP and the illumination optical wavefront E and (E j) and the intersection point P j is one point Is used to calculate the wavefront distribution plane from the convergence position O of the illumination light that converges to one point at the separation distance between the spherical center O and the illumination light wavefront E that is the convergence position of the illumination light (incident light) that converges to Add the distance to the known reference sphere, and illuminate the light wave that most closely approximates this value by subtracting a value twice the design paraxial radius of curvature r of the known surface 13a. Surface-side normal l j , this illumination light wave-side normal l j and wave-front distribution surface-side normal This is the value of the intersection P j (R (Q)) with k i .

この実施形態では、被検面13aの実面形状と設計上の被検面13aの形状が完全に一致した際にS=|V−(AP+BP)|=0となることから、偏差Sの値が最小となる照明光波面側法線lを、その段階で評価対象として選択されている波面分布面側法線kが表す反射光に対応した入射光の光路を表す照明光波面側法線として最も適切なものとして判断するようにしている。 In this embodiment, since S = | V− (AP + BP) | = 0 when the actual surface shape of the test surface 13a completely matches the design of the test surface 13a, the value of the deviation S an illumination optical wavefront side normal l j but having the minimum illumination wavefront side method representing the optical path of the incident light corresponding to the reflected light representing the wavefront distribution surface normals k i being selected as the evaluation target at that stage Judgment is made as the most appropriate line.

次いで、CPU17は、波面分布面Wを構成する各微小セルのデータW〜WC1を順に選択するための指標iの値を改めて1インクリメントし(ステップa13)、その現在値が波面分布面Wを構成する微小セルの総数C1に達しているか否かを判定し(ステップa14)、達していなければ、指標iの現在値に基いてRAM20から波面分布面Wを構成する1つの微小セルのデータWを新たに読み込み(ステップa15)、前記と同様にして、ステップa16〜ステップa27の処理と、ステップa28〜ステップa32およびSUB(A)によって形成されるループ処理と、ステップa34〜ステップa36の処理を繰り返し実行する。 Next, the CPU 17 again increments the value of the index i for sequentially selecting the data W 1 to W C1 of each microcell constituting the wavefront distribution plane W by 1 (step a13), and the current value is the wavefront distribution plane W. Is determined (step a14), and if not, the data of one minute cell constituting the wavefront distribution plane W from the RAM 20 is determined based on the current value of the index i. W i newly reads (step a15), in the same manner as described above, the processing of step a16~ step a27, the loop formed by steps a28~ step a32 and SUB (a), the step a34~ step a36 Repeat the process.

従って、最終的にステップa14の判定結果が偽となった時点で、例えば、波面分布面Wを構成する各微小セルW〜WC1に対応する波面分布面側法線k〜kC1の全てについて、各波面分布面側法線k〜kC1の各々と対を成す照明光波面側法線l〜lC1が特定され、波面分布面側法線k〜kC1と照明光波面側法線l〜lC1との交点P〜PC1が求められ、交点P〜PC1の位置データが形状データ記憶レジスタR(1)〜R(C1)に格納されることになる。 Accordingly, the determination result of the final step a14 is they become false, for example, the wavefront distribution surface normal to k 1 to k C1 corresponding to each micro cell W 1 to W-C1 constituting the wavefront distribution plane W for all, the illumination optical wavefront side normal l 1 to l C1 forming each pair of the wavefront distribution surface normal to k 1 to k C1 is identified, the illumination light wave wavefront distribution surface normal to k 1 to k C1 intersection P 1 to P C1 of the side normal l 1 to l C1 is determined and that the position data of the intersection point P 1 to P C1 is stored in the shape data storage register R (1) ~R (C1) Become.

次いで、CPU17は、形状データ記憶レジスタR(1)〜R(C1)に格納された位置データR(1)〜R(C1)を公知のZernikeフィッティングや最少二乗近似法などを利用して最適化して補間し、これらの位置データR(1)〜R(C1)によって表される被検体13の実面形状の画像を例えばモニタ23等に出力して表示し(ステップa37)、更に、必要に応じて被検体13の設計データをハードディスクドライブ21等から読み出し、位置データR(1)〜R(C1)によって表される被検体13の実面形状と設計上の形状とを比較して両者間の偏差(加工誤差等)を被検体13の実面形状の要所要所に対応させてモニタ23に数値表示するなどの処理を行なう(ステップa38)。   Next, the CPU 17 optimizes the position data R (1) to R (C1) stored in the shape data storage registers R (1) to R (C1) using a known Zernike fitting or a least square approximation method. The image of the actual surface shape of the subject 13 represented by these position data R (1) to R (C1) is output and displayed on, for example, the monitor 23 or the like (step a37), and further necessary. Accordingly, the design data of the subject 13 is read from the hard disk drive 21 or the like, and the actual surface shape of the subject 13 represented by the position data R (1) to R (C1) is compared with the design shape, and the two are compared. The deviation (processing error, etc.) is displayed numerically on the monitor 23 in correspondence with the required location of the actual surface shape of the subject 13 (step a38).

そして、CPU17は、キーボード24やマウス25を利用してユーザがリトライ要求を入力しているか否かを判定し(ステップa39)、リトライ要求があれば、このリトライ要求に応じてセル分割条件C1,C2の変更処理や照明光波面側法線を特定するための機能の切り替えに要するフラグの設定変更処理など実行した後(ステップa40)、改めてステップa9の処理に復帰して、再設定されたセル分割条件や再選択された照明光波面側法線の特定機能等に従って、前記と同等の処理操作を繰り返し実行する。   Then, the CPU 17 determines whether or not the user has input a retry request using the keyboard 24 and the mouse 25 (step a39). If there is a retry request, the cell division condition C1, C1 is determined according to the retry request. After executing the change process of C2 and the flag setting change process required for switching the function for specifying the illumination light wave front side normal (step a40), the process returns to the process of step a9 again to reset the cell. Processing operations equivalent to those described above are repeatedly executed according to the division condition, the function of specifying the reselected illumination light wave front normal, and the like.

次に、入射反射角条件対応法線特定機能が選択されていた場合の処理、つまり、ステップa32の判定結果が偽かつステップa33の判定結果が真となった場合の処理について説明する。   Next, processing when the incident reflection angle condition corresponding normal normal function is selected, that is, processing when the determination result of step a32 is false and the determination result of step a33 is true will be described.

この場合、照明光光路特定手段eとして機能するCPU17はSUB(B)の処理に移行し、まず、現段階で評価対象として選択されている波面分布面側法線kつまりステップa16の処理でRAM20に記憶された波面分布面側法線kと被検体13の球心Oを中心として照明光波面側法線lと波面分布面側法線kとの交点Pを通る球Rを想定して球R上の位置Pにおいて求めた法線mとが成す角θ1を求め(ステップc1/図15参照)、更に、ステップa30の処理で読み出された照明光波面側法線lと法線mとが成す角θ2を求めてから(ステップc2/図15参照)、両者間の角度の偏差S=|θ1−θ2|を求め(ステップc3)、偏差Sと最小エラー値記憶レジスタDmin.の現在値との大小関係を比較する(ステップc4)。 In this case, the CPU 17 functioning as the illumination light optical path specifying means e shifts to the processing of SUB (B). First, in the processing of the wavefront distribution plane side normal line k i selected as the evaluation target at the present stage, that is, the processing of step a16. A sphere R passing through an intersection P j between the wavefront distribution plane side normal line k i and the illumination light wavefront side normal line l j centered on the spherical center O of the subject 13 and the wavefront distribution plane side normal line k i stored in the RAM 20. , The angle θ1 formed by the normal m j obtained at the position P j on the sphere R is obtained (see step c1 / see FIG. 15), and the illumination light wavefront side method read out in the process of step a30 is obtained. After obtaining the angle θ2 formed by the line l j and the normal m j (see step c2 / FIG. 15), the angle deviation S = | θ1-θ2 | between them is obtained (step c3), and the deviation S and the minimum Error value storage register D min. Are compared with the current value (step c4).

ここで、ステップc4の判定結果が偽となった場合、つまり、これ以前に求められてきた全ての偏差の値よりも此の度の処理で求められた偏差Sの値の方が小さいと判定された場合には、照明光光路特定手段eとして機能するCPU17は、取り敢えず、今回のステップa30の処理で読み出された照明光波面側法線lに対応する入射光が現段階で評価対象として選択されている波面分布面側法線kに対応する反射光と対を成すものとなる可能性が最も高いと見做し、この照明光波面側法線lと波面分布面側法線kとの交点Pを、波面分布面Wの微小セルWに対応した被検面13a上の実面形状の位置を表すデータの1候補としてデータ候補記憶レジスタRに一時記憶すると共に(ステップc5)、最小エラー値記憶レジスタDmin.の値を偏差Sの現在値つまり現時点で最小となっている偏差の値Sに置き換える(ステップc6)。 Here, when the determination result of step c4 is false, that is, it is determined that the value of the deviation S obtained by this processing is smaller than the values of all deviations obtained previously. when the CPU 17 that functions as an illumination light path specifying means e is the time being, selecting the incident light corresponding to the illumination optical wavefront side normal line l j read in the process of this step a30 is as the evaluation target at this stage regarded as most likely to be the ones that constitute the reflecting light and the pair corresponding to the wavefront distribution surface normals k i being, the illumination optical wavefront side normal l j and wave distribution surface normals k the intersection point P j with i, as well as temporarily stored in the data candidate storage register R as 1 candidate data representing the position of the real surface shape on the test surface 13a corresponding to the micro-cell W i of the wavefront distribution plane W (step c5), minimum error value storage register min. Is replaced with the current value of the deviation S, that is, the deviation value S that is the smallest at the present time (step c6).

これ以降の処理に関しては、前述の光路長条件対応法線特定機能が選択されていた場合の処理と同様であり、最終的にステップa29の判定結果が偽となった時点で、照明光波面側法線l〜lのうち偏差Sの値が最小となる照明光波面側法線、要するに、現段階で評価対象として選択されている波面分布面側法線kの表す反射光に対応した照明光(入射光)の光路を表す照明光波面側法線として適切であると考えられる照明光波面側法線が一義的に特定され、この照明光波面側法線と波面分布面側法線kとの交点Pの値が実面形状データ生成手段fの一部として機能するCPU17によってデータ候補記憶レジスタRに保持されることとなる。 The subsequent processing is the same as the processing in the case where the optical path length condition corresponding normal specifying function is selected, and when the determination result in step a29 is finally false, the illumination light wavefront side Corresponds to the reflected light represented by the wavefront surface normal k i selected as the evaluation target at the present stage, which is the illumination light wavefront normal with the smallest deviation S among the normals l 1 to l n The illumination light wavefront side normal that is considered appropriate as the illumination light wavefront side normal representing the optical path of the illumination light (incident light) is uniquely identified. The value of the intersection point P j with the line k i is held in the data candidate storage register R by the CPU 17 functioning as a part of the actual surface shape data generation means f.

この実施形態では、光の入射角と反射角が等しいという原則に従って、S=|θ1−θ2|の値が最小となる照明光波面側法線lつまりθ1の値とθ2の値が最も近似するようになる照明光波面側法線lを、その段階で評価対象として選択されている波面分布面側法線kが表す反射光に対応した入射光の光路を表す照明光波面側法線として最も適切なものとして判断するようにしている。 In this embodiment, according to the principle that the incident angle and the reflection angle of light are equal, the illumination light wavefront side normal l j that minimizes the value of S = | θ1−θ2 |, that is, the value of θ1 and the value of θ2 are the most approximate. The illumination light wavefront side normal line l j representing the optical path of the incident light corresponding to the reflected light represented by the wavefront distribution plane side normal line k i selected as the evaluation target at that stage Judgment is made as the most appropriate line.

また、照明光波面側法線lと波面分布面側法線kとの交点Pにおける被検面13aの実面形状として球心Oを中心として照明光波面側法線lと波面分布面側法線kとの交点Pを通る球Rを想定し、この球R上の接平面が入射光を反射しているものと想定するのは、被検体13となるものとしては球面レンズあるいは非球面レンズといったものが一般的であり、被検面13aの表面に不連続的な傾きの変化が生じないことを前提しているからである。 The illumination optical wavefront side normal line l j wavefront around the spherical center O as the actual surface shape of the surface 13a at the intersection P j of the illumination optical wavefront side normal l j and wave distribution surface normals k i Assuming that the subject 13 is the sphere R passing through the intersection P j with the distribution plane side normal line k i and assuming that the tangent plane on the sphere R reflects incident light. This is because a spherical lens or an aspheric lens is generally used, and it is assumed that a discontinuous change in inclination does not occur on the surface of the test surface 13a.

次に、同一平面条件対応法線特定機能が選択されていた場合の処理、つまり、ステップa32およびステップa33の判定結果が共に偽となった場合の処理について説明する。   Next, processing when the same plane condition corresponding normal specifying function is selected, that is, processing when both the determination results of step a32 and step a33 are false will be described.

この場合、照明光光路特定手段eとして機能するCPU17はSUB(C)の処理に移行し、まず、現段階で評価対象として選択されている波面分布面側法線kつまりステップa16の処理でRAM20に記憶された波面分布面側法線kの方向ベクトルと被検体13の球心Oを中心として照明光波面側法線lと波面分布面側法線kとの交点Pを通る球Rを想定して球R上の位置Pにおいて求めた法線mの方向ベクトルとの外積Vを求め(ステップd1)、更に、ステップa30の処理で読み出された照明光波面側法線lの方向ベクトルと外積Vの内積Vを求めてから(ステップd2)、内積Vと最小エラー値記憶レジスタDmin.の現在値との大小関係を比較する(ステップd3)。 In this case, the CPU 17 functioning as the illumination light optical path specifying means e shifts to the processing of SUB (C), and first, in the processing of the wavefront distribution plane side normal line k i selected as the evaluation target at the present stage, that is, the processing of step a16. The intersection P j between the direction vector of the wavefront distribution plane side normal line k i stored in the RAM 20 and the illumination light wavefront side normal line l j and the wavefront distribution plane side normal line k i with the sphere center O of the subject 13 as the center. assuming sphere R obtains an outer product V 1 of the the direction vector of the normal line m j obtained at the position P j on the sphere R through (step d1), further, the illumination optical wavefront read in step a30 After obtaining the inner product V 2 of the direction vector of the side normal l j and the outer product V 1 (step d2), the inner product V 2 and the minimum error value storage register D min. Are compared with the current value (step d3).

ここで、ステップd3の判定結果が偽となった場合、つまり、これ以前に求められてきた全ての内積の値よりも此の度の処理で求められた内積Vの値の方が小さいと判定された場合には、照明光光路特定手段eとして機能するCPU17は、取り敢えず、今回のステップa30の処理で読み出された照明光波面側法線lに対応する入射光が現段階で評価対象として選択されている波面分布面側法線kに対応する反射光と対を成すものとなる可能性が最も高いと見做し、この照明光波面側法線lと波面分布面側法線kとの交点Pを、波面分布面Wの微小セルWに対応した被検面13a上の実面形状の位置を表すデータの1候補としてデータ候補記憶レジスタRに一時記憶すると共に(ステップd4)、最小エラー値記憶レジスタDmin.の値を内積Vの現在値つまり現時点で最小となっている内積Vの値に置き換える(ステップd5)。 Here, if the determination result in step d3 is false, that is, it is determined that this smaller value of the inner product V 2 obtained by previously sought than the value of all the inner product has the Konotabi process In this case, the CPU 17 functioning as the illumination light optical path specifying means e is not allowed to evaluate the incident light corresponding to the illumination light wavefront side normal l j read out in the current step a30 as an evaluation target at this stage. It was regarded as most likely to be the ones that constitute the reflected light and the pair corresponding to the wavefront distribution surface normals k i being selected, the illumination light wave surface normals l j and wave distribution surface normal The intersection P j with k i is temporarily stored in the data candidate storage register R as one candidate of data representing the position of the actual surface shape on the surface 13a corresponding to the minute cell W i of the wavefront distribution plane W ( Step d4), minimum error value storage register D min. Replacing the value of the value of the inner product V 2 which is the minimum current value, i.e. the moment of the inner product V 2 (step d5).

これ以降の処理に関しては、前述の光路長条件対応法線特定機能が選択されていた場合の処理や入射反射角条件対応法線特定機能が選択されていた場合の処理と同様であり、最終的にステップa29の判定結果が偽となった時点で、照明光波面側法線l〜lのうち内積Vの値が最小となる照明光波面側法線、要するに、現段階で評価対象として選択されている波面分布面側法線kの表す反射光に対応した入射光の光路を表す照明光波面側法線として適切であると考えられる照明光波面側法線が一義的に特定され、この照明光波面側法線と波面分布面側法線kとの交点Pの値が実面形状データ生成手段fの一部として機能するCPU17によってデータ候補記憶レジスタRに保持されることとなる。 The subsequent processing is the same as the processing in the case where the optical path length condition corresponding normal specifying function is selected and the processing in the case where the incident reflection angle condition corresponding normal specifying function is selected. to when the determination result in step a29 becomes false, the illumination optical wavefront side normal value of the inner product V 2 is the minimum of the illumination optical wavefront side normal l 1 to l n, in short, be evaluated at this stage The illumination light wavefront normal that is considered appropriate as the illumination light wavefront normal representing the optical path of the incident light corresponding to the reflected light represented by the wavefront distribution surface normal k i selected as The value of the intersection point P j between the illumination light wavefront normal and the wavefront distribution plane normal k i is held in the data candidate storage register R by the CPU 17 functioning as a part of the actual surface shape data generation means f. It will be.

この実施形態では、光が被検面13aの法線mに対して対称的に入射反射するという原則に従って、内積Vの値が最小となる照明光波面側法線lつまり被検面13aの法線mと照明光波面側法線lと波面分布面側法線kとが同一平面状にあることを条件として、その段階で評価対象として選択されている波面分布面側法線kが表す反射光に対応した入射光の光路を表す照明光波面側法線として最も適切な照明光波面側法線lを特定するようにしている。 In this embodiment, according to the principle that light is incident and reflected symmetrically with respect to the normal line m j of the test surface 13a, the illumination light wave front side normal line l j that minimizes the value of the inner product V 2 , that is, the test surface. on condition that 13a and the normal line m j and the illumination optical wavefront side normal l j and wave distribution surface normal to k i of are in the same plane, the wavefront distribution surface that is selected as the evaluation target at that stage The most appropriate illumination light wavefront side normal l j is specified as the illumination light wavefront side normal representing the optical path of the incident light corresponding to the reflected light represented by the normal k i .

既に述べた通り、照明光波面側法線lと波面分布面側法線kとの交点Pにおける被検面13aの実面形状として球心Oを中心として照明光波面側法線lと波面分布面側法線kとの交点Pを通る球Rを想定し、この球R上の接平面が入射光を反射しているものと想定するのは、被検体13となるものとしては球面レンズあるいは非球面レンズといったものが一般的であり、被検面13aの表面に不連続的な傾きの変化が生じないことを前提しているからである。 As already mentioned, the illumination optical wavefront side normal l around the spherical center O as the actual surface shape of the surface 13a at the intersection P j of the illumination optical wavefront side normal l j and wave distribution surface normals k i It is the subject 13 that assumes a sphere R passing through the intersection P j between j and the wavefront distribution plane side normal line k i and that the tangent plane on the sphere R reflects incident light. This is because a spherical lens or an aspherical lens is generally used, and it is assumed that a discontinuous change in inclination does not occur on the surface of the test surface 13a.

以上に述べた通り、この実施形態の被検面形状測定方法,被検面形状測定装置,被検面形状測定プログラムにあっては、波面分布面Wを区画して得た各微小セルW〜WC1毎の波面分布面側法線k〜kC1の各々が、干渉計1による測定時に被検体13の球心Oとなる1点に収束する光路を辿って被検面13aに入射した入射光の何れかの反射光の光路と一致することに基いて、波面分布面Wの微小セルW〜WC1における波面分布面側法線k〜kC1すなわち被検面13aからの反射光に相当する波面分布面側法線k〜kC1毎に、これに対応する照明光波面側法線l〜lC1つまり入射光の光路を突き止め、これら2つの光路すなわち波面分布面側法線k〜kC1と照明光波面側法線l〜lC1の交点位置R(1)〜R(C1)を求めて被検面13aの実面形状のデータとするようにしているので、干渉計1の撮像素子12によって検出された反射光の光路が入射光の光路と一致する場合(被検面13aが球面の場合)であっても、また、入射光の光路が反射光の光路とは一致しない場合(被検面13aが非球面の場合)であっても、被検体13の被検面13aの実面形状を直接的に把握して画像による表示もしくは数値データによる表示で的確に示すことができる。 As described above, in the test surface shape measuring method, the test surface shape measuring device, and the test surface shape measuring program of this embodiment, each microcell W 1 obtained by partitioning the wavefront distribution surface W. each of the wavefront distribution surface normal to k 1 to k C1 of ~W each C1 is incident, the test surface 13a follows the optical path that converges to a point to be a spherical center O of the object 13 at the time of measurement by the interferometer 1 based on that it matches the optical path of one of the reflected light of the incident light, from the wavefront distribution surface normal to k 1 to k C1 that test surface 13a in a micro cell W 1 to W-C1 wavefront distribution plane W For each of the wavefront distribution plane normals k 1 to k C1 corresponding to the reflected light, the corresponding illumination light wavefront normals l 1 to l C1, that is, the optical path of the incident light, are determined, and these two optical paths, that is, the wavefront distribution planes intersection R of the side normal to k 1 to k C1 and the illumination optical wavefront side normal l 1 to l C1 Since (1) to R (C1) are obtained and used as actual surface shape data of the test surface 13a, the optical path of the reflected light detected by the image sensor 12 of the interferometer 1 is the optical path of the incident light. Even when they match (when the test surface 13a is a spherical surface) or when the optical path of the incident light does not match the optical path of the reflected light (when the test surface 13a is an aspherical surface), It is possible to directly grasp the actual surface shape of the test surface 13a of the subject 13 and accurately display it by display using an image or numerical data.

従って、被検面13aが完全な球面でない場合、例えば、本来は球面であるべき被検面13aの形状が加工の異常や損傷あるいは経年変化等によって球面でなくなった場合、または、元々の被検面13aの設計形状が非球面であるような場合にあっても、参照面として機能する物理的な非球面や其れに相当する波面を生成するモジュールを要することなく被検面13aの実面形状を容易かつ廉価に測定することができ、また、被検面13aの部分的な計測やデータの合成等も不要なことから演算に必要とされる所要時間も短縮され、非接触式の測定であるから高価な被検レンズ損傷させるといった心配もなく、製造現場において高価な被検レンズの全数検査を実施することも可能となる。   Therefore, when the test surface 13a is not a perfect spherical surface, for example, when the shape of the test surface 13a that should be a spherical surface is no longer a spherical surface due to processing abnormality, damage, or secular change, or the original test surface Even when the design shape of the surface 13a is an aspherical surface, the actual surface of the test surface 13a is not required without a physical aspherical surface functioning as a reference surface and a module for generating a wavefront corresponding thereto. The shape can be measured easily and inexpensively, and since the partial measurement of the test surface 13a and the synthesis of data are not required, the time required for the calculation is shortened and non-contact measurement is performed. Therefore, it is possible to inspect all expensive test lenses at the manufacturing site without worrying about damaging the expensive test lenses.

以上に述べた実施形態では、照明光光路特定手段eが、光路長条件対応法線特定機能と入射反射角条件対応法線特定機能と同一平面条件対応法線特定機能のうちから何れか1つの機能をユーザからの要望に応じて選択し、選択した1つの機能のみに基いて波面分布面Wの各微小セルWに対応する反射光を表す波面分布面側法線kと此れに対応する入射光の光路を表す照明光波面側法線lを特定するようにした例について述べたが、光路長条件対応法線特定機能,入反射角条件対応法線特定機能,同一平面条件対応法線特定機能を2つ以上組み合わせて、或いは、全ての機能を併用して、波面分布面側法線kと此れに対応する入射光の光路を表す照明光波面側法線lを特定するようにしてもよい。 In the embodiment described above, the illumination light optical path specifying means e is one of the optical path length condition corresponding normal specifying function, the incident reflection angle condition corresponding normal specifying function, and the same plane condition corresponding normal specifying function. selected according function to requests from the user, the Re此wavefront distribution surface normals k i representing the reflected light corresponding to each micro cell W i of the wavefront distribution plane W based only on one of the function selected Although the example of specifying the illumination light wavefront side normal l representing the corresponding optical path of incident light has been described, the normal specifying function corresponding to the optical path length condition, the normal specifying function corresponding to the incident / reflecting angle condition, the same plane condition compatible normal specific function of a combination of two or more, or a combination of all functions, an illumination optical wavefront side normal line l which represents the optical path of the incident light corresponding to the Re此wavefront distribution surface normals k i particular You may make it do.

また、以上に述べた実施形態では、シェアリング干渉計に対して被検面形状測定方法,被検面形状測定装置,被検面形状測定プログラムを適用する場合について例示したが、本発明の被検面形状測定方法,被検面形状測定装置,被検面形状測定プログラムの用途は、特にシェアリング干渉計に限定されるものではなく、物理的な参照球面の有無に関わらず、3次元的に波面収差分布を測定する機能を有する干渉計でさえあれば、被検面の形状を特定し、かつ、被検面と設計値の乖離量となる誤差等を計測することが可能である。   In the embodiment described above, the case where the test surface shape measuring method, the test surface shape measuring device, and the test surface shape measuring program are applied to the sharing interferometer has been exemplified. The use of the surface shape measuring method, the surface shape measuring apparatus, and the surface shape measuring program is not particularly limited to the sharing interferometer, and is three-dimensional regardless of the presence or absence of a physical reference spherical surface. As long as the interferometer has a function of measuring the wavefront aberration distribution, it is possible to specify the shape of the test surface and measure an error or the like that is the amount of deviation between the test surface and the design value.

1 干渉計
2 レーザ光源
3 偏光板
4 ビームエキスパンダ
5 集光レンズ
6 ビームスプリッタ
7 複屈折光学素子
8 コリメータレンズ
8’ 対物レンズ
9 支持具
10 偏光板
11 結像レンズ
12 撮像素子
13 被検体
13a 被検面
14 調整具
15 送り機構
16 被検面形状測定装置
17 CPU(参照球面生成手段,波面分布面データ生成手段,法線データ抽出手段,照明光光路特定手段,実面形状データ生成手段)
18 ROM
19 不揮発性メモリ
20 RAM(記憶手段)
21 ハードディスクドライブ
22 入出力回路
23 モニタ
24 キーボード
25 マウス
26 入出力インターフェイス
27 レーザ駆動回路
28 ドライバ
29 パルス発生器
30 CCD制御回路
31,32 接平面
a 参照球面生成手段
b 波面分布面データ生成手段
c 法線データ抽出手段
d 記憶手段
e 照明光光路特定手段
f 実面形状データ生成手段
g データテーブル
B 参照球面
W 波面分布面
E 照明光の波面
DESCRIPTION OF SYMBOLS 1 Interferometer 2 Laser light source 3 Polarizing plate 4 Beam expander 5 Condensing lens 6 Beam splitter 7 Birefringent optical element 8 Collimator lens 8 'Objective lens 9 Support tool 10 Polarizing plate 11 Imaging lens 12 Imaging element 13 Subject 13a Subject Surface inspection 14 Adjustment tool 15 Feed mechanism 16 Surface shape measuring device 17 CPU (reference spherical surface generation means, wavefront distribution surface data generation means, normal data extraction means, illumination light path specifying means, actual surface shape data generation means)
18 ROM
19 Nonvolatile memory 20 RAM (storage means)
21 hard disk drive 22 input / output circuit 23 monitor 24 keyboard 25 mouse 26 input / output interface 27 laser drive circuit 28 driver 29 pulse generator 30 CCD control circuit 31, 32 tangent plane a reference spherical surface generation means b wavefront distribution plane data generation means c method Line data extraction means d Storage means e Illumination light path specifying means f Actual surface shape data generation means g Data table B Reference spherical surface W Wavefront distribution surface E Wavefront of illumination light

Claims (15)

干渉計の撮像素子から出力される被検面のシェア像の画像データをコンピュータで処理して得られる波面収差分布のデータで表される波面収差分布を算出するための参照球面を論理空間内に仮想し、
前記参照球面と前記波面収差分布のデータに基いて前記参照球面を基準とする波面分布面のデータを生成した後、
前記波面分布面のデータで表される波面分布面を区画して得た各微小セル毎に当該微小セルの中心を通る法線を求めて各微小セル毎の反射光を表す波面分布面側法線とすると共に、照明光波面を区画して得た各微小セル毎に当該微小セルの中心を通る法線を求めて各微小セル毎の照明光波面側法線とし、
前記波面分布面側法線の各々が、前記干渉計による測定時に1点に収束する光路を辿って被検面に入射した照明光(入射光)の何れかの反射光の光路と一致することに基いて、前記波面分布面のデータで表される波面分布面の各微小セル毎に、当該微小セルの反射光を表す波面分布面側法線と此れに対応する入射光の光路を表す照明光波面側法線を特定し、前記波面分布面の各微小セル毎に、対応する波面分布面側法線と照明光波面側法線との交点位置を求めて被検面の実面形状のデータとすることを特徴とした被検面形状測定方法。
A reference spherical surface for calculating the wavefront aberration distribution represented by the wavefront aberration distribution data obtained by processing the image data of the share image of the test surface output from the image sensor of the interferometer in the logical space. Virtual,
After generating wavefront distribution surface data based on the reference spherical surface based on the reference spherical surface and the wavefront aberration distribution data,
A wavefront distribution side method that represents the reflected light of each minute cell by obtaining a normal passing through the center of each minute cell obtained by dividing the wavefront distribution surface represented by the data of the wavefront distribution surface. And a normal passing through the center of the micro cell for each micro cell obtained by dividing the illumination light wave front, and the illumination light wave front side normal for each micro cell,
Each of the wavefront distribution plane side normals follows the optical path of any reflected light of the illumination light (incident light) incident on the surface to be detected, following the optical path that converges to one point when measured by the interferometer. For each minute cell of the wavefront distribution surface represented by the wavefront distribution surface data, the wavefront distribution surface side normal representing the reflected light of the minute cell and the optical path of incident light corresponding thereto are represented. The illumination light wavefront normal is specified, and for each minute cell of the wavefront distribution surface, the intersection point between the corresponding wavefront distribution surface normal and the illumination light wavefront normal is obtained, and the actual shape of the test surface A method for measuring the shape of a surface to be measured, characterized in that
前記波面分布面の各微小セル毎に当該微小セルの反射光を表す波面分布面側法線と此れに対応する照明光(入射光)の光路を表す照明光波面側法線を特定するに際し、
当該波面分布面側法線と交差する照明光波面側法線および当該照明光波面側法線と当該波面分布面側法線との交点を全て求め、
前記被検面が凸面である場合には、前記波面分布面と前記交点との間の当該波面分布面側法線の長さと前記照明光波面と前記交点との間の照明光波面側法線の長さの和が、前記1点に収束する照明光(入射光)の収束位置と照明光波面との間の離間距離に、前記1点に収束する照明光(入射光)の収束位置から前記波面分布面の算出に用いた参照球面までの距離を加算し、この値から被検面の設計上の近軸曲率半径の2倍の値を減算した距離に最も近似する照明光波面側法線を求める一方、
前記被検面が凹面である場合には、前記波面分布面と前記交点との間の当該波面分布面側法線の長さと前記照明光波面と前記交点との間の照明光波面側法線の長さの和が、前記1点に収束する照明光(入射光)の収束位置と照明光波面との間の離間距離に、前記1点に収束する照明光(入射光)の収束位置から前記波面分布面の算出に用いた参照球面までの距離を加算し、この値に被検面の設計上の近軸曲率半径の2倍の値を加算した距離に最も近似する照明光波面側法線を求め、
前記求められた照明光波面側法線を当該波面分布面側法線に対応する照明光波面側法線として特定することを特徴とした請求項1記載の被検面形状測定方法。
When specifying the wavefront distribution surface normal representing the reflected light of the microcell and the illumination light wavefront normal representing the corresponding optical path of the illumination light (incident light) for each microcell on the wavefront distribution surface. ,
Find all the intersections of the illumination light wavefront side normal intersecting with the wavefront distribution plane side normal and the illumination light wavefront side normal and the wavefront distribution plane side normal,
When the test surface is a convex surface, the length of the wavefront distribution surface side normal between the wavefront distribution surface and the intersection and the illumination light wavefront side normal between the illumination light wavefront and the intersection Is the distance between the convergence position of the illumination light (incident light) that converges to the one point and the illumination light wavefront from the convergence position of the illumination light (incident light) that converges to the one point. The method of illuminating light wavefront that most closely approximates the distance obtained by adding the distance to the reference spherical surface used for calculation of the wavefront distribution surface and subtracting a value twice the paraxial radius of curvature of the test surface design from this value While seeking a line
When the test surface is a concave surface, the length of the wavefront distribution surface side normal between the wavefront distribution surface and the intersection and the illumination light wavefront side normal between the illumination light wavefront and the intersection Is the distance between the convergence position of the illumination light (incident light) that converges to the one point and the illumination light wavefront from the convergence position of the illumination light (incident light) that converges to the one point. The method of illuminating light wavefront that most closely approximates the distance obtained by adding the distance to the reference spherical surface used for calculation of the wavefront distribution surface and adding this value to a value twice the paraxial radius of curvature of the test surface design Seeking a line,
The test surface shape measuring method according to claim 1, wherein the obtained illumination light wavefront side normal is specified as an illumination light wavefront normal corresponding to the wavefront distribution surface side normal.
前記波面分布面の各微小セル毎に当該微小セルの反射光を表す波面分布面側法線と此れに対応する入射光の光路を表す照明光波面側法線を特定するに際し、
当該波面分布面側法線と交差する照明光波面側法線を全て求め、当該波面分布面側法線と各照明光波面側法線とが交わる位置において想定される被検面の法線と当該波面分布面側法線とが成す角と前記被検面の法線と前記求められた照明光波面側法線とが成す角の差が最小となる照明光波面側法線を求め、この照明光波面側法線を当該波面分布面側法線に対応する照明光波面側法線として特定することを特徴とした請求項1記載の被検面形状測定方法。
When specifying the wavefront distribution surface side normal representing the reflected light of the microcell and the illumination light wavefront normal representing the optical path of the incident light corresponding thereto for each microcell of the wavefront distribution surface,
All the illumination light wavefront normals intersecting the wavefront distribution surface side normal are obtained, and the normal of the test surface assumed at the position where the wavefront distribution surface normal and each illumination light wavefront normal intersect An illumination light wavefront side normal that minimizes a difference between an angle formed by the wavefront distribution surface side normal, the normal of the test surface, and the calculated illumination light wavefront side normal, The test surface shape measuring method according to claim 1, wherein the illumination light wavefront side normal is specified as the illumination light wavefront side normal corresponding to the wavefront distribution surface side normal.
前記波面分布面の各微小セル毎に当該微小セルの反射光を表す波面分布面側法線と此れに対応する入射光の光路を表す照明光波面側法線を特定するに際し、
当該波面分布面側法線と交差する照明光波面側法線を全て求め、当該波面分布面側法線と各照明光波面側法線とが交わる位置において想定される被検面の法線と、当該波面分布面側法線と、前記求められた照明光波面側法線とが同一平面上に位置する照明光波面側法線を求め、この照明光波面側法線を当該波面分布面側法線に対応する照明光波面側法線として特定することを特徴とした請求項1記載の被検面形状測定方法。
When specifying the wavefront distribution surface side normal representing the reflected light of the microcell and the illumination light wavefront normal representing the optical path of the incident light corresponding thereto for each microcell of the wavefront distribution surface,
All the illumination light wavefront normals intersecting the wavefront distribution surface side normal are obtained, and the normal of the test surface assumed at the position where the wavefront distribution surface normal and each illumination light wavefront normal intersect The wavefront distribution surface side normal and the obtained illumination light wavefront side normal are obtained on the same plane, and the illumination light wavefront side normal is obtained on the wavefront distribution surface side. The test surface shape measuring method according to claim 1, wherein the test surface shape is specified as the illumination light wavefront side normal corresponding to the normal.
前記波面分布面側法線と各照明光波面側法線とが交わる位置において想定される被検面として、前記1点に収束する入射光の収束位置を中心として有する球の表面を利用することを特徴とした請求項3または請求項4記載の被検面形状測定方法。   A surface of a sphere having a convergence position of incident light converged on the one point as a center is used as a test surface assumed at a position where the wavefront distribution plane side normal and each illumination light wavefront normal intersect. The method for measuring a shape of a test surface according to claim 3 or 4, wherein: 干渉計の撮像素子から出力される被検面のシェア像の画像データを処理して得られる波面収差分布のデータで表される波面収差分布を算出するための参照球面を論理空間内に仮想する参照球面生成手段と、
前記参照球面生成手段によって仮想された前記参照球面と前記波面収差分布のデータに基いて前記参照球面を基準とする波面分布面のデータを生成する波面分布面データ生成手段と、
演算用のデータを一時記憶するための記憶手段と、
前記波面分布面データ生成手段によって生成された波面分布面のデータで表される波面分布面を区画して得た各微小セル毎に当該微小セルの中心を通る法線を求めて各微小セル毎の反射光を表す波面分布面側法線として前記記憶手段に記憶させると共に、照明光波面を区画して得た各微小セル毎に当該微小セルの中心を通る法線を求めて各微小セル毎の照明光波面側法線として前記記憶手段に記憶させる法線データ抽出手段と、
前記記憶手段に記憶された波面分布面側法線の各々が、前記干渉計による測定時に1点に収束する光路を辿って被検面に入射した照明光(入射光)の何れかの反射光の光路と一致することに基いて、前記波面分布面のデータで表される波面分布面の各微小セルに対応して前記記憶手段に記憶された反射光を表す波面分布面側法線と此れに対応する入射光の光路を表す照明光波面側法線を特定する照明光光路特定手段と、
前記波面分布面の各微小セル毎に、前記照明光光路特定手段によって対応関係を特定された波面分布面側法線と照明光波面側法線との交点位置を求めて被検面の実面形状のデータとする実面形状データ生成手段とを備えたことを特徴とする被検面形状測定装置。
A reference spherical surface for calculating the wavefront aberration distribution represented by the wavefront aberration distribution data obtained by processing the image data of the shear image of the test surface output from the image sensor of the interferometer is hypothesized in the logical space. A reference spherical surface generating means;
Wavefront distribution surface data generation means for generating data of a wavefront distribution surface based on the reference spherical surface based on the reference spherical surface and the data of the wavefront aberration distribution virtualized by the reference spherical surface generation means;
Storage means for temporarily storing calculation data;
For each minute cell, a normal passing through the center of the minute cell is obtained for each minute cell obtained by partitioning the wavefront distribution surface represented by the wavefront distribution surface data generated by the wavefront distribution surface data generating means. Is stored in the storage means as a wavefront distribution plane-side normal representing the reflected light, and a normal passing through the center of the microcell is obtained for each microcell obtained by dividing the illumination light wavefront. Normal data extraction means to be stored in the storage means as the illumination light wavefront side normal of
Each reflected light of the illumination light (incident light) incident on the surface to be examined following the optical path where each wavefront distribution plane normal stored in the storage means converges to one point at the time of measurement by the interferometer The wavefront distribution surface side normal representing the reflected light stored in the storage means corresponding to each minute cell of the wavefront distribution surface represented by the data of the wavefront distribution surface and Illumination light path identifying means for identifying the illumination light wavefront side normal representing the optical path of incident light corresponding to this,
For each microcell on the wavefront distribution surface, the actual surface of the surface to be measured is obtained by calculating the intersection position of the wavefront distribution surface side normal and the illumination light wavefront side normal whose correspondence is specified by the illumination light optical path specifying means A test surface shape measuring apparatus comprising actual surface shape data generating means for generating shape data.
前記被検面が凸面である場合には、前記波面分布面と前記交点との間の当該波面分布面側法線の長さと前記照明光波面と前記交点との間の照明光波面側法線の長さの和が、前記1点に収束する照明光(入射光)の収束位置と照明光波面との間の離間距離に、前記1点に収束する照明光(入射光)の収束位置から前記波面分布面の算出に用いた参照球面までの距離を加算し、この値から被検面の設計上の近軸曲率半径の2倍の値を減算した距離に最も近似する照明光波面側法線を求める一方、
前記被検面が凹面である場合には、前記波面分布面と前記交点との間の当該波面分布面側法線の長さと前記照明光波面と前記交点との間の照明光波面側法線の長さの和が、前記1点に収束する照明光(入射光)の収束位置と照明光波面との間の離間距離に、前記1点に収束する照明光(入射光)の収束位置から前記波面分布面の算出に用いた参照球面までの距離を加算し、この値に被検面の設計上の近軸曲率半径の2倍の値を加算した距離に最も近似する照明光波面側法線を求め、前記求められた照明光波面側法線を当該波面分布面側法線に対応する照明光波面側法線として特定するように構成されていることを特徴とした請求項6記載の被検面形状測定装置。
When the test surface is a convex surface, the length of the wavefront distribution surface side normal between the wavefront distribution surface and the intersection and the illumination light wavefront side normal between the illumination light wavefront and the intersection Is the distance between the convergence position of the illumination light (incident light) that converges to the one point and the illumination light wavefront from the convergence position of the illumination light (incident light) that converges to the one point. The method of illuminating light wavefront that most closely approximates the distance obtained by adding the distance to the reference spherical surface used for calculation of the wavefront distribution surface and subtracting a value twice the paraxial radius of curvature of the test surface design from this value While seeking a line
When the test surface is a concave surface, the length of the wavefront distribution surface side normal between the wavefront distribution surface and the intersection and the illumination light wavefront side normal between the illumination light wavefront and the intersection Is the distance between the convergence position of the illumination light (incident light) that converges to the one point and the illumination light wavefront from the convergence position of the illumination light (incident light) that converges to the one point. The method of illuminating light wavefront that most closely approximates the distance obtained by adding the distance to the reference spherical surface used for calculation of the wavefront distribution surface and adding this value to a value twice the paraxial radius of curvature of the test surface design A line is obtained, and the obtained illumination light wavefront side normal is specified as an illumination light wavefront side normal corresponding to the wavefront distribution surface side normal. Test surface shape measuring device.
前記照明光光路特定手段が、前記記憶手段に記憶された波面分布面側法線と交差する照明光波面側法線を全て求め、当該波面分布面側法線と各照明光波面側法線とが交わる位置において想定される被検面の法線と当該波面分布面側法線とが成す角と前記被検面の法線と前記求められた照明光波面側法線とが成す角の差が最小となる照明光波面側法線を求め、この照明光波面側法線を当該波面分布面側法線に対応する照明光波面側法線として特定するように構成されていることを特徴とした請求項6記載の被検面形状測定装置。   The illumination light path identifying means obtains all illumination light wavefront normals intersecting with the wavefront distribution plane normal stored in the storage means, and the wavefront distribution plane normal and each illumination light wavefront normal The difference between the angle formed by the normal of the test surface assumed at the position where the crossing and the wavefront distribution surface side normal and the angle formed by the normal of the test surface and the obtained illumination light wavefront normal Is characterized in that the illumination light wavefront side normal is minimized, and the illumination light wavefront normal is specified as the illumination light wavefront normal corresponding to the wavefront distribution surface normal. The test surface shape measuring apparatus according to claim 6. 前記照明光光路特定手段が、前記記憶手段に記憶された波面分布面側法線と交差する照明光波面側法線を全て求め、当該波面分布面側法線と各照明光波面側法線とが交わる位置において想定される被検面の法線と、当該波面分布面側法線と、前記求められた照明光波面側法線とが同一平面上に位置する照明光波面側法線を求め、この照明光波面側法線を当該波面分布面側法線に対応する照明光波面側法線として特定するように構成されていることを特徴とした請求項6記載の被検面形状測定装置。   The illumination light path identifying means obtains all illumination light wavefront normals intersecting with the wavefront distribution plane normal stored in the storage means, and the wavefront distribution plane normal and each illumination light wavefront normal The illumination light wavefront side normal line in which the normal of the test surface assumed at the position where the crossing points, the wavefront distribution plane side normal line, and the obtained illumination light wavefront side normal line are located on the same plane is obtained. 7. The test surface shape measuring apparatus according to claim 6, wherein the illumination light wavefront side normal is specified as an illumination light wavefront side normal corresponding to the wavefront distribution surface side normal. . 前記照明光光路特定手段が、前記波面分布面側法線と各照明光波面側法線とが交わる位置において想定される被検面として、前記1点に収束する入射光の収束位置を中心として有する球の表面を想定することを特徴とした請求項8または請求項9記載の被検面形状測定装置。   The illumination light optical path specifying means has a convergence position of incident light that converges to the one point as a test surface assumed at a position where the wavefront distribution surface side normal and each illumination light wavefront normal intersect. The test surface shape measuring apparatus according to claim 8 or 9, wherein a surface of a sphere is assumed. 干渉計の撮像素子から出力される被検面のシェア像の画像データを処理するコンピュータを制御するための被検面形状測定プログラムであって、
前記コンピュータを、
干渉計の撮像素子から出力される被検面のシェア像の画像データを処理して得た波面収差分布のデータで表される波面収差分布を算出するための参照球面を論理空間内に仮想する参照球面生成手段、
前記参照球面生成手段によって仮想された前記参照球面と前記波面収差分布のデータに基いて前記参照球面を基準とする波面分布面のデータを生成する波面分布面データ生成手段、
前記波面分布面データ生成手段によって生成された波面分布面のデータで表される波面分布面を区画して得た各微小セル毎に当該微小セルの中心を通る法線を求めて各微小セル毎の反射光を表す波面分布面側法線として前記コンピュータの記憶装置に記憶させると共に、照明光波面を区画して得た各微小セル毎に当該微小セルの中心を通る法線を求めて各微小セル毎の照明光波面側法線として前記コンピュータの記憶装置に記憶させる法線データ抽出手段、
前記前記コンピュータの記憶装置に記憶された波面分布面側法線の各々が、前記干渉計による測定時に1点に収束する光路を辿って被検面に入射した入射光の何れかの反射光の光路と一致することに基いて、前記波面分布面のデータで表される波面分布面の各微小セルに対応して前記前記コンピュータの記憶装置に記憶された反射光を表す波面分布面側法線と此れに対応する入射光の光路を表す照明光波面側法線を特定する照明光光路特定手段、および、
前記波面分布面の各微小セル毎に、前記照明光光路特定手段によって対応関係を特定された波面分布面側法線と照明光波面側法線との交点位置を求めて被検面の実面形状のデータとする実面形状データ生成手段として機能させることを特徴とした被検面形状測定プログラム。
A test surface shape measurement program for controlling a computer that processes image data of a share image of a test surface output from an image sensor of an interferometer,
The computer,
A reference spherical surface for calculating the wavefront aberration distribution represented by the wavefront aberration distribution data obtained by processing the image data of the shear image of the test surface output from the image sensor of the interferometer is hypothesized in the logical space. Reference spherical surface generation means,
Wavefront distribution surface data generation means for generating data of a wavefront distribution surface based on the reference spherical surface based on the reference spherical surface and the wavefront aberration distribution data hypothesized by the reference spherical surface generation means;
For each minute cell, a normal passing through the center of the minute cell is obtained for each minute cell obtained by partitioning the wavefront distribution surface represented by the wavefront distribution surface data generated by the wavefront distribution surface data generating means. Is stored in the storage device of the computer as a wavefront distribution plane side normal representing the reflected light of the light source, and a normal passing through the center of the microcell is obtained for each microcell obtained by dividing the illumination light wavefront. Normal data extraction means for storing in the storage device of the computer as the illumination light wavefront normal for each cell;
Each of the wavefront distribution plane side normals stored in the storage device of the computer follows an optical path that converges to one point at the time of measurement by the interferometer, and reflects any of the reflected light incident on the test surface. The wavefront distribution plane normal representing the reflected light stored in the storage device of the computer corresponding to each minute cell of the wavefront distribution plane represented by the data of the wavefront distribution plane based on matching with the optical path And illumination light optical path specifying means for specifying the illumination light wavefront side normal representing the optical path of incident light corresponding thereto, and
For each microcell on the wavefront distribution surface, the actual surface of the surface to be measured is obtained by calculating the intersection position of the wavefront distribution surface side normal and the illumination light wavefront side normal whose correspondence is specified by the illumination light optical path specifying means A test surface shape measurement program that functions as actual surface shape data generation means for shape data.
前記被検面が凸面である場合には、前記波面分布面と前記交点との間の当該波面分布面側法線の長さと前記照明光波面と前記交点との間の照明光波面側法線の長さの和が、前記1点に収束する照明光(入射光)の収束位置と照明光波面との間の離間距離に、前記1点に収束する照明光(入射光)の収束位置から前記波面分布面の算出に用いた参照球面までの距離を加算し、この値から被検面の設計上の近軸曲率半径の2倍の値を減算した距離に最も近似する照明光波面側法線を求める一方、
前記被検面が凹面である場合には、前記波面分布面と前記交点との間の当該波面分布面側法線の長さと前記照明光波面と前記交点との間の照明光波面側法線の長さの和が、前記1点に収束する照明光(入射光)の収束位置と照明光波面との間の離間距離に、前記1点に収束する照明光(入射光)の収束位置から前記波面分布面の算出に用いた参照球面までの距離を加算し、この値に被検面の設計上の近軸曲率半径の2倍の値を加算した距離に最も近似する照明光波面側法線を求め、前記求められた照明光波面側法線を当該波面分布面側法線に対応する照明光波面側法線として特定するように構成されていることを特徴とした請求項11記載の被検面形状測定プログラム。
When the test surface is a convex surface, the length of the wavefront distribution surface side normal between the wavefront distribution surface and the intersection and the illumination light wavefront side normal between the illumination light wavefront and the intersection Is the distance between the convergence position of the illumination light (incident light) that converges to the one point and the illumination light wavefront from the convergence position of the illumination light (incident light) that converges to the one point. The method of illuminating light wavefront that most closely approximates the distance obtained by adding the distance to the reference spherical surface used for calculation of the wavefront distribution surface and subtracting a value twice the paraxial radius of curvature of the test surface design from this value While seeking a line
When the test surface is a concave surface, the length of the wavefront distribution surface side normal between the wavefront distribution surface and the intersection and the illumination light wavefront side normal between the illumination light wavefront and the intersection Is the distance between the convergence position of the illumination light (incident light) that converges to the one point and the illumination light wavefront from the convergence position of the illumination light (incident light) that converges to the one point. The method of illuminating light wavefront that most closely approximates the distance obtained by adding the distance to the reference spherical surface used for calculation of the wavefront distribution surface and adding this value to a value twice the paraxial radius of curvature of the test surface design 12. The apparatus according to claim 11, wherein a line is obtained, and the obtained illumination light wavefront side normal is specified as an illumination light wavefront side normal corresponding to the wavefront distribution surface side normal. Test surface shape measurement program.
前記照明光光路特定手段が、前記コンピュータの記憶装置に記憶された波面分布面側法線と交差する照明光波面側法線を全て求め、当該波面分布面側法線と各照明光波面側法線とが交わる位置において想定される被検面の法線と当該波面分布面側法線とが成す角と前記被検面の法線と前記求められた照明光波面側法線とが成す角の差が最小となる照明光波面側法線を求め、この照明光波面側法線を当該波面分布面側法線に対応する照明光波面側法線として特定するように構成されていることを特徴とした請求項11記載の被検面形状測定プログラム。   The illumination light optical path specifying means obtains all illumination light wavefront normals intersecting with the wavefront distribution plane normal stored in the storage device of the computer, and the wavefront distribution plane normal and each illumination light wavefront method The angle formed by the normal of the test surface assumed at the position where the line intersects and the wavefront distribution surface side normal, and the angle formed by the normal of the test surface and the obtained illumination light wavefront normal The illumination light wavefront side normal line that minimizes the difference between the illumination light wavefront side normal line and the illumination light wavefront side normal line is specified as the illumination light wavefront side normal line corresponding to the wavefront distribution plane side normal line. 12. The test surface shape measurement program according to claim 11, wherein the test surface shape measurement program is a test program. 前記照明光光路特定手段が、前記コンピュータの記憶装置に記憶された波面分布面側法線と交差する照明光波面側法線を全て求め、当該波面分布面側法線と各照明光波面側法線とが交わる位置において想定される被検面の法線と、当該波面分布面側法線と、前記求められた照明光波面側法線とが同一平面上に位置する照明光波面側法線を求め、この照明光波面側法線を当該波面分布面側法線に対応する照明光波面側法線として特定するように構成されていることを特徴とした請求項11記載の被検面形状測定プログラム。   The illumination light optical path specifying means obtains all illumination light wavefront normals intersecting with the wavefront distribution plane normal stored in the storage device of the computer, and the wavefront distribution plane normal and each illumination light wavefront method The normal surface of the test surface assumed at the position where the line intersects, the wavefront distribution surface side normal line, and the illumination light wavefront side normal line obtained on the same plane. The test surface shape according to claim 11, wherein the illumination light wavefront side normal is specified as an illumination light wavefront side normal corresponding to the wavefront distribution surface side normal. Measurement program. 前記照明光光路特定手段が、前記波面分布面側法線と各照明光波面側法線とが交わる位置において想定される被検面として、前記1点に収束する入射光の収束位置を中心として有する球の表面を想定することを特徴とした請求項13または請求項14記載の被検面形状測定プログラム。   The illumination light optical path specifying means has a convergence position of incident light that converges to the one point as a test surface assumed at a position where the wavefront distribution surface side normal and each illumination light wavefront normal intersect. The test surface shape measuring program according to claim 13 or 14, wherein a surface of a sphere is assumed.
JP2011011432A 2011-01-21 2011-01-21 Test surface shape measuring method, test surface shape measuring apparatus, and test surface shape measuring program Expired - Fee Related JP5620289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011011432A JP5620289B2 (en) 2011-01-21 2011-01-21 Test surface shape measuring method, test surface shape measuring apparatus, and test surface shape measuring program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011011432A JP5620289B2 (en) 2011-01-21 2011-01-21 Test surface shape measuring method, test surface shape measuring apparatus, and test surface shape measuring program

Publications (2)

Publication Number Publication Date
JP2012154650A JP2012154650A (en) 2012-08-16
JP5620289B2 true JP5620289B2 (en) 2014-11-05

Family

ID=46836543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011011432A Expired - Fee Related JP5620289B2 (en) 2011-01-21 2011-01-21 Test surface shape measuring method, test surface shape measuring apparatus, and test surface shape measuring program

Country Status (1)

Country Link
JP (1) JP5620289B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11248955B2 (en) * 2018-08-10 2022-02-15 Industrial Cooperation Foundation Chonbuk National University Polarization measurement with interference patterns of high spatial carrier frequency

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01291105A (en) * 1988-05-18 1989-11-22 Ricoh Co Ltd Measurement preparing method for surface shape measuring method
JP2831428B2 (en) * 1990-03-20 1998-12-02 オリンパス光学工業株式会社 Aspherical shape measuring machine
US7218403B2 (en) * 2002-06-26 2007-05-15 Zygo Corporation Scanning interferometer for aspheric surfaces and wavefronts
WO2004068088A2 (en) * 2003-01-27 2004-08-12 Oraxion Optical characterization of surfaces and plates
WO2004068066A2 (en) * 2003-01-28 2004-08-12 Oraxion Full-filled optical measurements of surface properties of panels, substrates and wafers
JP5351976B2 (en) * 2008-12-09 2013-11-27 ザイゴ コーポレーション Double grating lateral shearing wavefront sensor

Also Published As

Publication number Publication date
JP2012154650A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
JP4302512B2 (en) Interferometric scanning for aspheric surfaces and wavefronts
CN101865670B (en) Plane surface shape measurement method of optical fiber point-diffraction phase-shifting interferometer
US4758089A (en) Holographic interferometer
JP5925972B2 (en) Integrated wavefront sensor and profilometer
US9068904B2 (en) System and method for non-contact metrology of surfaces
JP2010122206A (en) Optical wave interference measuring apparatus
CN102305596A (en) Rotation error control device and method in spherical surface shape interference detection
TWI717604B (en) Optical base station
CN103123251B (en) Differential confocal internal focusing method lens axis and method for measuring thickness
TW201344148A (en) Dual angles of incidence and azimuth angles optical metrology
US4281926A (en) Method and means for analyzing sphero-cylindrical optical systems
JP2007170888A (en) Optical element testing device
JPH1151624A (en) Surface shape measuring instrument
JP5620289B2 (en) Test surface shape measuring method, test surface shape measuring apparatus, and test surface shape measuring program
CN103941415B (en) The method of debuging fast of reflective concentric optical system
US11774236B2 (en) Alignment of a measurement optical system and a sample under test
CN110044415A (en) Misplace differential confocal interference element Multi-parameter Measurement Method and device
CN101975562A (en) Method for measuring surface flatness of light wave array surface or optical reflective surface
JP2011242544A (en) Reflection deflector, relative tilt measuring device, and aspherical surface lens measuring device
JP4768904B2 (en) Method for measuring physical quantity of optical element or optical system
US20220011091A1 (en) Computational shear by phase stepped speckle holography
JP2002116010A (en) Three-dimensional shape measuring method and device
CN201974286U (en) 30 DEG optical splitter checking device for checking lens face shape deflection
JP2001174217A (en) Alignment method for optical inspection equipment and mechanism for the same
JP2014202589A (en) Surface interval measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140918

R150 Certificate of patent or registration of utility model

Ref document number: 5620289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees