JP5613907B2 - Method for producing active element-containing copper alloy wire - Google Patents

Method for producing active element-containing copper alloy wire Download PDF

Info

Publication number
JP5613907B2
JP5613907B2 JP2011551866A JP2011551866A JP5613907B2 JP 5613907 B2 JP5613907 B2 JP 5613907B2 JP 2011551866 A JP2011551866 A JP 2011551866A JP 2011551866 A JP2011551866 A JP 2011551866A JP 5613907 B2 JP5613907 B2 JP 5613907B2
Authority
JP
Japan
Prior art keywords
mold
casting
molten copper
furnace
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011551866A
Other languages
Japanese (ja)
Other versions
JPWO2011093310A1 (en
Inventor
正登 小出
正登 小出
和之 大楽
和之 大楽
賢一 高木
賢一 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2011551866A priority Critical patent/JP5613907B2/en
Publication of JPWO2011093310A1 publication Critical patent/JPWO2011093310A1/en
Application granted granted Critical
Publication of JP5613907B2 publication Critical patent/JP5613907B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/004Copper alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/041Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/055Cooling the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/103Distributing the molten metal, e.g. using runners, floats, distributors
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)

Description

本発明は、Cr,Zr,Si等を含有する銅合金からなり、電車用トロリー線等に使用される高強度の銅合金線材の製造方法に関する。
本願は、2010年1月26日に、日本に出願された特願2010−14397号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for producing a high-strength copper alloy wire made of a copper alloy containing Cr, Zr, Si and the like and used for a trolley wire for trains.
This application claims priority on January 26, 2010 based on Japanese Patent Application No. 2010-14397 for which it applied to Japan, and uses the content for it here.

従来、電車用トロリー線等の素材として、純銅やSn含有銅合金等の銅線材が広く使用されている。これらの銅線材は、例えば特許文献1及び特許文献2に示された連続鋳造機を用いて製造されている。特許文献1及び特許文献2に示された連続鋳造機は、鋳造炉に鋳型が直接接続されており、鋳型内で凝固して得られた鋳塊を、水平方向、鉛直方向上方又は鉛直方向下方に向けて引き出すようになっている。
このような連続鋳造機では、比較的小径の鋳塊を連続的に製出できるため、線材を製出することに特に適している。
Conventionally, copper wires such as pure copper and Sn-containing copper alloys have been widely used as materials for train trolley wires and the like. These copper wires are manufactured using, for example, a continuous casting machine shown in Patent Document 1 and Patent Document 2. In the continuous casting machine shown in Patent Document 1 and Patent Document 2, a mold is directly connected to a casting furnace, and an ingot obtained by solidification in the mold is horizontally, vertically upward or vertically downward. It is designed to be pulled out toward.
Such a continuous casting machine is particularly suitable for producing a wire since an ingot having a relatively small diameter can be produced continuously.

近年、新幹線等の高速鉄道用のトロリー線として、従来よりも強度が高く、かつ、電気伝導性が良好な銅合金からなる線材が求められている。
ここで、強度が高く、かつ電気伝導性が良好な銅合金として、例えばCr,Zr,Si等を含有する銅合金が挙げられる。これらの元素を含む銅合金では、適切な熱処理を行うことによって、銅の母相中に析出物粒子が分散され、強度の向上と電気伝導性の確保を図ることができる。
In recent years, as a trolley wire for high-speed railways such as a Shinkansen, a wire made of a copper alloy having higher strength and better electrical conductivity than before has been demanded.
Here, as a copper alloy having high strength and good electrical conductivity, for example, a copper alloy containing Cr, Zr, Si or the like can be cited. In a copper alloy containing these elements, by performing an appropriate heat treatment, the precipitate particles are dispersed in the copper matrix phase, thereby improving the strength and ensuring electrical conductivity.

このようなCr,Zr,Si等を含有する銅合金の線材は、従来、ケークやビレットと呼ばれる断面積の大きな鋳塊を製出し、この鋳塊を熱間加工、冷間加工することによって製造されていた。
しかしながら、断面積の大きな鋳塊を製出し、次いで熱間加工や冷間加工を行って線材を製出する場合、得られる線材の長さが、鋳塊のサイズによって制限されるため、長尺の線材を得ることができなかった。また、生産効率が悪いといった問題があった。
Such copper alloy wires containing Cr, Zr, Si, etc. are conventionally manufactured by producing an ingot having a large cross-sectional area called a cake or billet and hot working or cold working the ingot. It had been.
However, when producing an ingot with a large cross-sectional area and then producing a wire by hot working or cold working, the length of the obtained wire is limited by the size of the ingot. The wire rod could not be obtained. There was also a problem that production efficiency was poor.

そこで、特許文献3には、Cr,Zr等を含有する銅合金の線材を、水平方向、鉛直方向上方または鉛直方向下方に引き出して、小径の線材を連続的に製出する技術思想が開示されている。すなわち、Cr,Zr等を含有する銅合金の線材を特許文献1,2に示すような連続鋳造機で鋳造することが提案されている。
また、特許文献4には、Cr,Zrを含有する銅合金の線材を、加熱鋳型を用いた横型連続鋳造機によって製出する技術が開示されている。
Therefore, Patent Document 3 discloses a technical idea of continuously producing a small-diameter wire by drawing a copper alloy wire containing Cr, Zr, etc. in the horizontal direction, the vertical direction upward or the vertical direction downward. ing. That is, it has been proposed to cast a copper alloy wire containing Cr, Zr or the like with a continuous casting machine as shown in Patent Documents 1 and 2.
Patent Document 4 discloses a technique for producing a copper alloy wire containing Cr and Zr by a horizontal continuous casting machine using a heating mold.

しかしながら、特許文献1及び特許文献2に示す連続鋳造機においては、通常、鋳型が固体潤滑性に優れた黒鉛(グラファイト)からなり、このグラファイトからなる鋳型が鋳造炉内の溶湯に直接接触するようになっている。
ここで、Cr,Zr,Si等の元素は、黒鉛との反応性が高い活性元素である。このため、鋳型と溶銅中のCr,Zr,Si等の元素(活性元素)とが反応して炭化物が生成し、鋳造された鋳塊と鋳型とが固着したり、鋳型が早期に損耗したりして、鋳造を長時間安定して行うことができなかった。
However, in the continuous casting machines shown in Patent Document 1 and Patent Document 2, the mold is usually made of graphite having excellent solid lubricity, and the mold made of graphite is in direct contact with the molten metal in the casting furnace. It has become.
Here, elements such as Cr, Zr, and Si are active elements having high reactivity with graphite. For this reason, the mold reacts with elements (active elements) such as Cr, Zr and Si in the molten copper to generate carbides, and the cast ingot and the mold adhere to each other, or the mold is quickly worn out. As a result, casting could not be performed stably for a long time.

また、特許文献1,2に記載された横型連続鋳造機では、略水平方向に鋳塊を引き出すことから、鋳型内での凝固時に重力の影響を受けることになる。また、凝固収縮によって鋳型と鋳塊との間にエアーギャップと呼ばれる隙間が生じるが、横型連続鋳造機では、鋳塊の上方側と下方側とでエアーギャップ量が異なることになる。このため、鋳塊の上方側と下方側とで冷却速度が異なることになり、Cr,Zr,Si等を含有する銅合金からなる鋳塊の品質が安定しないおそれがあった。また、前述のように、鋳塊と鋳型との固着や鋳型の早期損耗が発生することから、鋳塊の表面品質が劣化したり、鋳型の引き出しが困難となったりして、鋳造を安定して行うことができなかった。   Moreover, in the horizontal type continuous casting machine described in Patent Documents 1 and 2, the ingot is drawn out in a substantially horizontal direction, so that it is affected by gravity during solidification in the mold. In addition, a gap called an air gap is generated between the mold and the ingot due to solidification shrinkage, but in the horizontal continuous casting machine, the air gap amount is different between the upper side and the lower side of the ingot. For this reason, the cooling rate is different between the upper side and the lower side of the ingot, and there is a concern that the quality of the ingot made of a copper alloy containing Cr, Zr, Si or the like may not be stable. In addition, as mentioned above, the ingot and the mold are fixed and the mold is prematurely worn, which may deteriorate the surface quality of the ingot and make it difficult to pull out the mold, thereby stabilizing the casting. Could not be done.

特許文献3においては、Cr,Zr等を含有する銅合金の線材を、水平方向、鉛直方向上方または鉛直方向下方に引き出して、小径の線材を連続的に製出する思想が開示されている。しかしながら、上記したように、従来の連続鋳造方法では、Cr,Zr,Si等を含有する銅合金の線材を連続的に製出することはできなかった。   Patent Document 3 discloses the idea of continuously producing small-diameter wire rods by drawing a copper alloy wire rod containing Cr, Zr, etc. in the horizontal direction, the vertical direction upward or the vertical direction downward. However, as described above, the conventional continuous casting method cannot continuously produce a copper alloy wire containing Cr, Zr, Si, or the like.

また、特許文献4には、加熱鋳型を用いることによって、黒鉛とCr、Zr等の活性元素との反応を抑制し、横型連続鋳造機によってCr,Zr等を含有する銅合金の線材を連続的に製出することが開示されている。しかし、黒鉛鋳型自体が高温の溶銅と接触することから、酸化損耗が激しくなる。また、加熱鋳型を使用する場合、鋳塊の引き出し速度を増加させることが困難であるため、生産効率を向上できないといった問題があった。さらに、この特許文献4では、略水平方向に鋳塊を引き出すことから、やはり、重力の影響を受けることになり、品質が安定しないといった問題があった。   Further, in Patent Document 4, the reaction between graphite and an active element such as Cr or Zr is suppressed by using a heating mold, and a copper alloy wire containing Cr, Zr or the like is continuously produced by a horizontal continuous casting machine. Is disclosed. However, since the graphite mold itself comes into contact with the high-temperature molten copper, oxidation wear becomes severe. In addition, when a heating mold is used, there is a problem that it is difficult to increase the drawing speed of the ingot, so that the production efficiency cannot be improved. Furthermore, in this patent document 4, since the ingot was pulled out in a substantially horizontal direction, it was still affected by gravity, and there was a problem that the quality was not stable.

特開平06−226406号公報Japanese Patent Laid-Open No. 06-226406 特開昭61−209757号公報JP-A 61-209757 特開2006−138015号公報JP 2006-138015 A 特公平08−000956号公報Japanese Patent Publication No. 08-000956

本発明は、前述した事情に鑑みてなされたものであって、Cr,Zr,Si等の活性金属を含有する銅合金からなる銅合金線材を、効率良く、かつ安定して製出することが可能な活性元素含有銅合金線材の製造方法の提供を目的とする。   This invention is made | formed in view of the situation mentioned above, Comprising: The copper alloy wire which consists of copper alloys containing active metals, such as Cr, Zr, Si, can produce efficiently and stably. It aims at providing the manufacturing method of a possible active element containing copper alloy wire.

このような課題を解決して、前記目的を達成するために、本発明の一態様は、以下の要件を有する。
本発明の一態様に係る活性元素含有銅合金線材の製造方法は、銅原料を溶解して溶銅を生成する溶銅生成工程と、前記溶銅中にCr,Zr,Siのいずれか1種または2種以上の活性元素を添加する活性元素添加工程と、前記溶銅を鋳造炉内に保持する保持工程と、前記鋳造炉に接続された鋳型によって鋳塊を連続的に製出する鋳造工程とを有し、前記鋳型は、黒鉛スリーブを具備し、前記鋳造炉内に貯留されている前記溶銅の水頭圧が前記鋳型内に作用するように、前記鋳造炉の鉛直方向下方側に断熱部材を介して接続されており、前記鋳造工程では、前記鋳型内に向けて圧力を作用させて前記鋳型内に前記溶銅を供給し、前記鋳型において前記溶銅を冷却・凝固させる。
前記活性元素含有銅合金線材は、活性元素を含む銅合金からなる。
本発明の一態様に係る活性元素含有銅合金線材の製造方法では、前記鋳型の温度が450℃以下に保持されてもよい。
前記断熱部材部分の前記溶銅の温度が、前記溶銅の融点よりも高くなるように設定されてもよい。
前記鋳造工程において、前記鋳型の上端からの鋳造炉内溶銅の水頭が100mm以上とされてもよい。
前記鋳型の水平方向の断面積Scと、前記鋳造炉の水平方向の断面積Sfとの断面積比Sf/Scが5以上であってもよい。
前記鋳造炉の前段には、連続溶解炉と保持炉が設けられており、前記溶銅生成工程で生成された前記溶銅が連続的に前記鋳造炉内に供給されてもよい。
In order to solve such a problem and achieve the above object, one embodiment of the present invention has the following requirements.
The manufacturing method of the active element containing copper alloy wire which concerns on 1 aspect of this invention melt | dissolves a copper raw material, produces | generates molten copper , and any one of Cr, Zr, Si in the said molten copper Or the active element addition process which adds 2 or more types of active elements, the holding process which hold | maintains the said molten copper in a casting furnace, and the casting process which produces an ingot continuously by the casting_mold | template connected to the said casting furnace And the mold includes a graphite sleeve, and heat insulation is performed on the lower side in the vertical direction of the casting furnace so that the hydraulic head pressure of the molten copper stored in the casting furnace acts on the mold. In the casting process, pressure is applied toward the mold to supply the molten copper into the mold, and the molten copper is cooled and solidified in the mold.
The active element-containing copper alloy wire is made of a copper alloy containing an active element.
In the method for producing an active element-containing copper alloy wire according to one aspect of the present invention, the temperature of the mold may be maintained at 450 ° C. or lower.
The temperature of the molten copper in the heat insulating member portion may be set to be higher than the melting point of the molten copper.
In the casting step, a molten steel head in the casting furnace from the upper end of the mold may be 100 mm or more.
The cross-sectional area ratio Sf / Sc between the horizontal cross-sectional area Sc of the mold and the horizontal cross-sectional area Sf of the casting furnace may be 5 or more.
A continuous melting furnace and a holding furnace may be provided in the preceding stage of the casting furnace, and the molten copper generated in the molten copper generation step may be continuously supplied into the casting furnace.

本発明の一態様に係る活性元素含有銅合金線材の製造方法においては、鋳型と鋳造炉との間に断熱部材が配設されているので、鋳型が鋳造炉内部の溶銅と同等の温度にまで加熱されることが防止される。このため、鋳型とCr,Zr,Si等の活性元素との反応を抑制できる。また、鋳型の温度を低く抑えても、鋳造炉内の鋳型近傍の溶銅の温度が高く維持されることになり、鋳造を安定して行うことができる。   In the method for producing an active element-containing copper alloy wire according to one aspect of the present invention, since the heat insulating member is disposed between the mold and the casting furnace, the mold has a temperature equivalent to the molten copper inside the casting furnace. It is prevented from being heated up to. For this reason, reaction with an active element, such as a casting_mold | template and Cr, Zr, Si, can be suppressed. Even if the temperature of the mold is kept low, the temperature of the molten copper in the vicinity of the mold in the casting furnace is maintained high, and casting can be performed stably.

さらに、鋳造工程では、鋳型内に向けて圧力を作用させて鋳型内に溶銅を供給し、鋳型において溶銅を冷却・凝固させている。このため、前述のように、鋳造炉と鋳型との間に断熱部材を介在させても、鋳造炉から鋳型へと溶銅を確実に供給でき、安定して鋳造を行うことができる。また、鋳型が鋳造炉の鉛直方向下方側に配設されているので、鋳造炉内に保持された溶銅の水頭圧を利用して、確実に、鋳型内に圧力を作用させることができる。   Further, in the casting process, the molten copper is supplied into the mold by applying pressure toward the mold, and the molten copper is cooled and solidified in the mold. For this reason, as described above, even if a heat insulating member is interposed between the casting furnace and the mold, molten copper can be reliably supplied from the casting furnace to the mold, and stable casting can be performed. In addition, since the mold is disposed on the lower side in the vertical direction of the casting furnace, the pressure can be reliably applied to the mold using the water head pressure of the molten copper held in the casting furnace.

ここで、鋳型の温度、すなわち、鋳型のうち最も高い温度となる部位の温度は450℃以下に保持されていることが好ましい。
この場合、鋳型を冷却して、鋳型の最も高い温度となる部位の温度を450℃以下に保持することにより、鋳型の早期損耗を抑制できるとともに、Cr,Zr,Si等の活性元素との反応を抑制できる。特に、鋳型の一部が黒鉛からなる場合には、鋳型の酸化損耗を確実に抑制できる。また、断熱部材を介して鋳型と鋳造炉が接続されているため、鋳型を450℃以下に保持しても、鋳造炉内の溶銅の温度低下を防止でき、鋳造を安定して行うことが可能となる。
Here, it is preferable that the temperature of the mold, that is, the temperature of the highest part of the mold is maintained at 450 ° C. or lower.
In this case, by cooling the mold and maintaining the temperature of the highest part of the mold at 450 ° C. or less, early wear of the mold can be suppressed and reaction with active elements such as Cr, Zr, Si, etc. Can be suppressed. In particular, when a part of the mold is made of graphite, the oxidative wear of the mold can be reliably suppressed. In addition, since the mold and the casting furnace are connected via a heat insulating member, even if the mold is held at 450 ° C. or lower, the temperature drop of the molten copper in the casting furnace can be prevented, and casting can be performed stably. It becomes possible.

前記断熱部材部分の前記溶銅の温度が、前記溶銅の融点よりも高くなるように設定されていることが好ましい。
この場合、断熱部材部分における溶銅の流動性が保持され、鋳造炉内の溶銅の水頭圧によって溶銅を鋳型内に確実に供給できる。また、断熱部材を介して鋳型と鋳造炉が接続されているため、断熱部材内を通過している溶銅の温度を溶銅の融点よりも高くなるように設定しても、鋳型が高温に曝されることがない。このため、鋳型の早期損耗や活性元素との反応を抑制できる。
It is preferable that the temperature of the molten copper in the heat insulating member is set to be higher than the melting point of the molten copper.
In this case, the fluidity of the molten copper in the heat insulating member is maintained, and the molten copper can be reliably supplied into the mold by the water head pressure of the molten copper in the casting furnace. In addition, since the mold and the casting furnace are connected via the heat insulating member, even if the temperature of the molten copper passing through the heat insulating member is set to be higher than the melting point of the molten copper, the mold is kept at a high temperature. There is no exposure. For this reason, the early wear of a casting_mold | template and reaction with an active element can be suppressed.

前記鋳造工程において、前記鋳型の上端からの鋳造炉内溶銅の水頭が100mm以上とされていることが好ましい。
この場合、鋳型内に向けて溶銅を確実に供給でき、鋳造を安定して行うことができる。また、ミクロ空孔の発生を抑制でき、高品質な鋳塊を製出できる。
In the casting step, it is preferable that the molten copper in the casting furnace from the upper end of the mold has a head of 100 mm or more.
In this case, molten copper can be reliably supplied into the mold, and casting can be performed stably. Moreover, generation | occurrence | production of a micro void | hole can be suppressed and a high quality ingot can be produced.

鋳型の水平方向の断面積Scと、鋳造炉の水平方向の断面積Sfとの断面積比Sf/Scが5以上であることが好ましい。
この場合、鋳型から鋳塊を引き出した際の鋳造炉内の溶銅の湯面の変動を小さく抑えることができる。従って、溶銅の水頭圧が安定し、高品質な鋳塊を製出できる。
The cross-sectional area ratio Sf / Sc between the horizontal cross-sectional area Sc of the mold and the horizontal cross-sectional area Sf of the casting furnace is preferably 5 or more.
In this case, the fluctuation of the molten metal surface in the casting furnace when the ingot is pulled out from the mold can be suppressed to a small level. Accordingly, the water head pressure of the molten copper is stabilized, and a high-quality ingot can be produced.

鋳造炉の前段には、連続溶解炉と保持炉とが設けられ、溶銅生成工程で生成された溶銅が連続的に鋳造炉内に供給されることが好ましい。
この場合、溶銅が鋳造炉内に連続的に供給されるため、長尺の鋳塊を製出できる。また、線材の素材となる鋳塊を効率良く製造できる。
It is preferable that a continuous melting furnace and a holding furnace are provided in the front stage of the casting furnace, and the molten copper produced in the molten copper production process is continuously supplied into the casting furnace.
In this case, since the molten copper is continuously supplied into the casting furnace, a long ingot can be produced. Moreover, the ingot used as the raw material of a wire can be manufactured efficiently.

本発明の一態様によれば、Cr,Zr,Si等の活性金属を含有する銅合金からなる銅合金線材を、効率良く、かつ安定して製出できる。   According to one aspect of the present invention, a copper alloy wire made of a copper alloy containing an active metal such as Cr, Zr, or Si can be produced efficiently and stably.

本発明の一態様に係る活性元素含有銅合金線材の製造方法の実施形態にて用いられる連続鋳造装置の一例の概略説明図である。It is a schematic explanatory drawing of an example of the continuous casting apparatus used in embodiment of the manufacturing method of the active element containing copper alloy wire which concerns on 1 aspect of this invention. 図1に示す連続鋳造装置に備えられた鋳造炉の説明図である。It is explanatory drawing of the casting furnace with which the continuous casting apparatus shown in FIG. 1 was equipped. 鋳造炉と鋳型との接続部分の拡大説明図である。It is expansion explanatory drawing of the connection part of a casting furnace and a casting_mold | template. 本発明の一態様に係る活性元素含有銅合金線材の製造方法の実施形態のフロー図である。It is a flowchart of embodiment of the manufacturing method of the active element containing copper alloy wire which concerns on 1 aspect of this invention. 本発明の一態様に係る活性元素含有銅合金線材の製造方法の実施形態にて用いられる連続鋳造装置の他の一例を示す図である。It is a figure which shows another example of the continuous casting apparatus used in embodiment of the manufacturing method of the active element containing copper alloy wire which concerns on 1 aspect of this invention.

以下に、本発明の一態様に係る活性元素含有銅合金線材の製造方法の実施形態について、添付した図を参照して説明する。
本実施形態の製造方法において製造される活性元素含有銅合金線材は、後述する黒鉛スリーブ31を構成するグラファイト(黒鉛)との反応性が高い活性元素であるCr,Zr,Si等を含む。なお、グラファイト(黒鉛)との反応性が高い元素とは、炭化物標準生成自由エネルギーが低く、元素単体よりも炭化物を生成した方が安定な元素のことである。
Hereinafter, an embodiment of a method for producing an active element-containing copper alloy wire according to an aspect of the present invention will be described with reference to the accompanying drawings.
The active element-containing copper alloy wire manufactured in the manufacturing method of this embodiment includes Cr, Zr, Si, and the like, which are active elements having high reactivity with graphite (graphite) constituting the graphite sleeve 31 described later. In addition, an element with high reactivity with graphite (graphite) is an element that has a lower free energy of standard carbide generation and is more stable when generating carbide than a single element.

本実施形態では、活性元素含有銅合金線材は、Cr:0.25質量%以上0.45質量%以下、Zr:0.05質量%以上0.15質量%以下、Si:0.01質量%以上0.05質量%以下を含有し、残部としてCuと不可避不純物を含むCu−Cr−Zr−Si合金からなる。
また、活性元素含有銅合金線材の線径(直径)は、10mm以上40mm以下であり、本実施形態では30mmである。
In this embodiment, the active element-containing copper alloy wire is Cr: 0.25 mass% to 0.45 mass%, Zr: 0.05 mass% to 0.15 mass%, Si: 0.01 mass% It is made of a Cu—Cr—Zr—Si alloy containing 0.05% by mass or less and containing Cu and inevitable impurities as the balance.
Moreover, the wire diameter (diameter) of an active element containing copper alloy wire is 10 mm or more and 40 mm or less, and is 30 mm in this embodiment.

次に、本実施形態の活性元素含有銅合金線材の製造方法にて用いられる連続鋳造装置について説明する。図1は、活性元素含有銅合金線材の素材となる鋳塊Wを製出する連続鋳造装置10を示している。
この連続鋳造装置10は、溶解炉11と、保持炉13と、移送樋15と、鋳造炉20と、鋳型30と、製出された鋳塊Wを引き出すピンチロール17を具備する。
Next, the continuous casting apparatus used with the manufacturing method of the active element containing copper alloy wire of this embodiment is demonstrated. FIG. 1 shows a continuous casting apparatus 10 that produces an ingot W that is a material of an active element-containing copper alloy wire.
The continuous casting apparatus 10 includes a melting furnace 11, a holding furnace 13, a transfer rod 15, a casting furnace 20, a mold 30, and a pinch roll 17 that draws the produced ingot W.

溶解炉11は、銅原料を加熱溶解して溶銅を製出する炉であり、銅原料が投入される原料投入口11Aと、製出した溶銅を排出する溶銅排出口11Bとを備えている。
また、この溶解炉11の後段側に保持炉13が配設されており、溶解炉11と保持炉13とは連結樋12によって接続されている。
The melting furnace 11 is a furnace that heats and melts a copper raw material to produce molten copper, and includes a raw material inlet 11A through which the copper raw material is introduced and a molten copper outlet 11B through which the produced molten copper is discharged. ing.
In addition, a holding furnace 13 is disposed on the rear side of the melting furnace 11, and the melting furnace 11 and the holding furnace 13 are connected by a connecting rod 12.

保持炉13は、溶解炉11から供給された溶銅を一時的に保持して保温する炉である。この保持炉13には、Cr,Zr,Si等の活性元素を添加する添加手段(添加装置)(図示なし)が設けられている。また、この保持炉13内は、活性元素の酸化を防止するために、不活性ガス雰囲気とされている。   The holding furnace 13 is a furnace that temporarily holds the molten copper supplied from the melting furnace 11 to keep it warm. The holding furnace 13 is provided with an adding means (adding device) (not shown) for adding an active element such as Cr, Zr, or Si. Further, the inside of the holding furnace 13 is an inert gas atmosphere in order to prevent oxidation of the active element.

移送樋15は、Cr,Zr,Si等の活性元素が添加されて成分調整された溶銅を、後段の鋳造炉20へと移送するものである。本実施形態では、移送樋15の内部が不活性雰囲気とされている。   The transfer rod 15 is for transferring the molten copper, which is prepared by adding an active element such as Cr, Zr, or Si, to the casting furnace 20 at the subsequent stage. In the present embodiment, the inside of the transfer rod 15 is an inert atmosphere.

鋳造炉20は、保持炉13から移送された溶銅を貯留する炉である。この鋳造炉20は、図2に示すように、チャンバ21と、炉本体23と、加熱手段(加熱装置)24とを具備する。チャンバ21の内部は不活性ガス雰囲気とされている。また、加熱手段24は、貯留した溶銅の温度を調整するために設けられており、本実施形態では輻射ヒータが設けられている。さらに、炉本体23及びチャンバ21の底面部分には、注湯孔26が穿設されている。
この鋳造炉20のうち、溶銅が貯留される炉本体23の内部の水平方向に沿った断面の断面積Sfは、20000mm≦Sf≦34600mmの範囲内に設定されている。さらに、この鋳造炉20には、炉本体23の内部に貯留された溶銅の湯面位置を検知するためのレベルセンサ(図示なし)が配設されている。
The casting furnace 20 is a furnace for storing the molten copper transferred from the holding furnace 13. As shown in FIG. 2, the casting furnace 20 includes a chamber 21, a furnace body 23, and a heating means (heating device) 24. The inside of the chamber 21 is an inert gas atmosphere. Moreover, the heating means 24 is provided in order to adjust the temperature of the stored molten copper, and the radiation heater is provided in this embodiment. Further, a pouring hole 26 is formed in the bottom surface portion of the furnace body 23 and the chamber 21.
Of the casting furnace 20, the cross-sectional area Sf of a cross section along the horizontal direction of the interior of the furnace body 23 which molten copper is stored is set in the range of 20000mm 2 ≦ Sf ≦ 34600mm 2. Further, the casting furnace 20 is provided with a level sensor (not shown) for detecting the position of the molten copper surface stored in the furnace body 23.

鋳型30は、図3に示すように、軸方向に貫通した鋳造孔36を備えた筒状の形状を有する。鋳型30は、鋳造孔36の内周面に設けられた黒鉛スリーブ31と、この黒鉛スリーブ31の外周側に位置する冷却ジャケット32とを具備する。冷却ジャケット32の内部には、冷却水を流通させるための水路33が設けられており、黒鉛スリーブ31を冷却するようになっている。
この鋳型30は、鋳造炉20の鉛直方向下方側に接続されており、図2及び図3に示すように、鋳造炉20の注湯孔26と鋳型30の鋳造孔36が連通するように配設されている。鋳型30の鋳造孔36の直径は、50mm以下、好ましくは10mm以上40mm以下に設定される。本実施形態では、鋳造孔36の直径は30mmに設定されている。
As shown in FIG. 3, the mold 30 has a cylindrical shape including a casting hole 36 penetrating in the axial direction. The mold 30 includes a graphite sleeve 31 provided on the inner peripheral surface of the casting hole 36 and a cooling jacket 32 positioned on the outer peripheral side of the graphite sleeve 31. Inside the cooling jacket 32, a water channel 33 for circulating cooling water is provided to cool the graphite sleeve 31.
The mold 30 is connected to the lower side in the vertical direction of the casting furnace 20, and is arranged so that the pouring hole 26 of the casting furnace 20 and the casting hole 36 of the mold 30 communicate with each other as shown in FIGS. It is installed. The diameter of the casting hole 36 of the mold 30 is set to 50 mm or less, preferably 10 mm to 40 mm. In the present embodiment, the diameter of the casting hole 36 is set to 30 mm.

鋳型30の水平方向の断面積Scと、鋳造炉20の水平方向の断面積Sfとの断面積比Sf/Scは、5以上(Sf/Sc≧5)に設定される。この断面積比Sf/Scは、好ましくは10以上(Sf/Sc≧10)である。   The cross-sectional area ratio Sf / Sc between the horizontal cross-sectional area Sc of the mold 30 and the horizontal cross-sectional area Sf of the casting furnace 20 is set to 5 or more (Sf / Sc ≧ 5). The cross-sectional area ratio Sf / Sc is preferably 10 or more (Sf / Sc ≧ 10).

そして、鋳型30の黒鉛スリーブ31と、鋳造炉20の炉本体23との間には、断熱部材40が配設されており、本実施形態では、断熱部材40は、チャンバ21の底面外側と炉本体23の底面外側との間に配置されている。また、この断熱部材40は貫通孔46を有する筒状をなしており、貫通孔46の内周面が、鋳型30の鋳造孔36及び鋳造炉20の注湯孔26の内周面に連なるように配置されている。
断熱部材40は、例えばAl,SiO等のセラミックスからなり、その熱伝導率が、常温で40W/(m・K)以下であり、厚さが5mm以上60mm以下に設定されている。
A heat insulating member 40 is disposed between the graphite sleeve 31 of the mold 30 and the furnace main body 23 of the casting furnace 20. In this embodiment, the heat insulating member 40 is connected to the outside of the bottom surface of the chamber 21 and the furnace. It is arranged between the bottom surface outside of the main body 23. The heat insulating member 40 has a cylindrical shape having a through hole 46, and the inner peripheral surface of the through hole 46 is continuous with the inner peripheral surface of the casting hole 36 of the mold 30 and the pouring hole 26 of the casting furnace 20. Are arranged.
The heat insulating member 40 is made of ceramics such as Al 2 O 3 and SiO 2 , and has a thermal conductivity of 40 W / (m · K) or less at room temperature and a thickness of 5 mm to 60 mm. .

次に、前述した連続鋳造装置10を用いた本実施形態の活性元素含有銅合金線材の製造方法について説明する。
この活性元素含有銅合金線材の製造方法は、図4に示すように、銅原料を溶解して溶銅を生成する溶銅生成工程S01と、得られた溶銅中に活性元素を添加する活性元素添加工程S02と、保持炉13から鋳造炉20への溶銅を移送する溶銅移送工程S03と、活性元素が添加された溶銅を鋳造炉20内に保持する保持工程S04と、この鋳造炉20に接続された鋳型30によって鋳塊Wを連続的に製出する鋳造工程S05と、を有している。
Next, the manufacturing method of the active element containing copper alloy wire of this embodiment using the continuous casting apparatus 10 mentioned above is demonstrated.
As shown in FIG. 4, the manufacturing method of the active element-containing copper alloy wire includes a molten copper production step S01 in which a copper raw material is dissolved to produce molten copper, and an activity in which an active element is added to the obtained molten copper. The element addition step S02, the molten copper transfer step S03 for transferring the molten copper from the holding furnace 13 to the casting furnace 20, the holding step S04 for holding the molten copper added with the active element in the casting furnace 20, and the casting A casting step S05 in which the ingot W is continuously produced by the mold 30 connected to the furnace 20.

(溶銅生成工程S01)
まず、銅原料として、純度が99.99質量%以上99.999質量%未満の純銅(4NCu)のカソードを準備する。この4NCuカソードを、原料投入口11Aから溶解炉11内に投入し、溶解炉11で加熱溶解して溶銅を製出する。そして、得られた溶銅は、溶銅排出口11Bから連結樋12を介して保持炉13へと供給される。
(Molten copper production step S01)
First, a pure copper (4NCu) cathode having a purity of 99.99 mass% or more and less than 99.999 mass% is prepared as a copper raw material. This 4NCu cathode is charged into the melting furnace 11 from the raw material charging port 11A, and heated and melted in the melting furnace 11 to produce molten copper. And the obtained molten copper is supplied to the holding furnace 13 through the connecting rod 12 from the molten copper discharge port 11B.

(活性元素添加工程S02)
保持炉13では、供給された溶銅を一時保持するとともに、ヒータや誘導加熱コイル等の加熱手段(加熱装置)(図示なし)によって、溶銅の温度を、例えば1100〜1400℃に制御する。そして、保持炉13内の溶銅に、Cr,Zr,Si等の活性元素を添加し、溶銅の成分を調整する。このとき、保持炉13内は不活性ガス雰囲気とされており、Cr,Zr,Si等の活性元素の酸化が抑制されている。
(Active element addition step S02)
In the holding furnace 13, the supplied molten copper is temporarily held, and the temperature of the molten copper is controlled to, for example, 1100 to 1400 ° C. by a heating means (heating device) (not shown) such as a heater or an induction heating coil. And active elements, such as Cr, Zr, Si, are added to the molten copper in the holding furnace 13, and the component of molten copper is adjusted. At this time, the inside of the holding furnace 13 is an inert gas atmosphere, and oxidation of active elements such as Cr, Zr, and Si is suppressed.

(溶銅移送工程S03)
保持炉13においてCr,Zr,Si等の活性元素が添加された溶銅は、移送樋15を介して鋳造炉20へと供給される。この移送樋15の内部は、前述のように、不活性ガス雰囲気とされており、溶銅及び活性元素の酸化が防止されている。
(Molten copper transfer step S03)
The molten copper to which an active element such as Cr, Zr, or Si is added in the holding furnace 13 is supplied to the casting furnace 20 through the transfer rod 15. As described above, the inside of the transfer rod 15 is an inert gas atmosphere, and oxidation of molten copper and active elements is prevented.

(保持工程S04)
この鋳造炉20では、Cr,Zr,Si等の活性元素が添加された溶銅を保持しつつ、輻射ヒータなどの加熱手段(加熱装置)24によって、溶銅の温度を、例えば1100〜1400℃に制御する。なお、この鋳造炉20の炉本体23内に貯留された溶銅の湯面位置は、レベルセンサによって検知されており、湯面位置が一定となるように、保持炉13からの溶銅の移送量が調整される。
(Holding step S04)
In this casting furnace 20, while holding the molten copper to which an active element such as Cr, Zr, or Si is added, the temperature of the molten copper is set to, for example, 1100 to 1400 ° C. by a heating means (heating device) 24 such as a radiation heater. To control. In addition, the molten metal surface position stored in the furnace body 23 of the casting furnace 20 is detected by a level sensor, and the molten copper is transferred from the holding furnace 13 so that the molten metal surface position is constant. The amount is adjusted.

(鋳造工程S05)
そして、鋳造炉20内に貯留された溶銅は、注湯孔26を介して鋳型30の鋳造孔36内へと供給される。鋳型30内に供給された溶銅は、冷却ジャケット32にて冷却された黒鉛スリーブ31部分で凝固し、鋳造孔36の下端側から鋳塊Wが製出されることになる。なお、鋳塊Wの引き出し速度は、ピンチロール17によって制御されており、本実施形態では、間欠的に鋳塊Wを引き出すように構成されている。
(Casting process S05)
Then, the molten copper stored in the casting furnace 20 is supplied into the casting hole 36 of the mold 30 through the pouring hole 26. The molten copper supplied into the mold 30 is solidified at the graphite sleeve 31 portion cooled by the cooling jacket 32, and the ingot W is produced from the lower end side of the casting hole 36. Note that the drawing speed of the ingot W is controlled by the pinch roll 17, and in this embodiment, the ingot W is drawn out intermittently.

鋳造工程05における鋳塊Wの引き出し速度は、200mm/min以上600mm/min以下に調整されている。また、鋳造炉20への溶銅の供給速度は、0.5t/時間以上10t/時間以下に調整されている。   The drawing speed of the ingot W in the casting process 05 is adjusted to 200 mm / min or more and 600 mm / min or less. Moreover, the supply speed of the molten copper to the casting furnace 20 is adjusted to 0.5 t / hour or more and 10 t / hour or less.

また、この鋳造工程S05においては、鋳造炉20の炉本体23内に貯留されている溶銅の水頭圧が鋳型30内に作用するように構成されており、本実施形態では、鋳型30の上端30aからの炉本体23内の溶銅の水頭が100mm以上となるように、炉本体23内の溶銅の湯面高さが制御されている。
さらに、この鋳造工程S05では、鋳型30の黒鉛スリーブ31の上端部分31aの温度が450℃以下に設定されており、断熱部材40部分の溶銅温度が、溶銅の融点よりも高くなるように設定されている。
Moreover, in this casting process S05, it is comprised so that the hydraulic head pressure of the molten copper stored in the furnace main body 23 of the casting furnace 20 may act in the casting_mold | template 30, and in this embodiment, the upper end of the casting_mold | template 30 is comprised. The height of the molten copper in the furnace body 23 is controlled so that the head of the molten copper in the furnace body 23 from 30a becomes 100 mm or more.
Further, in this casting step S05, the temperature of the upper end portion 31a of the graphite sleeve 31 of the mold 30 is set to 450 ° C. or less, and the molten copper temperature of the heat insulating member 40 portion is higher than the melting point of the molten copper. Is set.

このようにして得られた鋳塊Wは、冷却手段(図示なし)によって冷却されてコイル状に巻き取られる。本実施形態では、冷却手段によって例えば950℃以上の長尺鋳塊Wを、50℃/min以上の冷却速度で常温まで冷却することによって、鋳塊Wの溶体化処理を行う構成とされている。
そして、常温まで冷却された鋳塊Wに熱処理や冷間加工等を施すことにより、所定の特性とされた活性元素含有銅合金線材が製出されることになる。
The ingot W obtained in this way is cooled by a cooling means (not shown) and wound into a coil. In the present embodiment, the ingot W is subjected to a solution treatment by cooling a long ingot W of, for example, 950 ° C. or higher to a room temperature at a cooling rate of 50 ° C./min or higher by the cooling means. .
Then, by subjecting the ingot W cooled to room temperature to heat treatment, cold working, or the like, an active element-containing copper alloy wire having predetermined characteristics is produced.

このような工程を有する本実施形態の活性元素含有銅合金線材の製造方法によれば、鋳型30の黒鉛スリーブ31と鋳造炉20の炉本体23との間に断熱部材40が配設されているので、炉本体23内の溶銅が鋳型30の黒鉛スリーブ31に直接、接触することが防止される。このため、黒鉛スリーブ31とCr,Zr,Si等の活性元素との反応を抑制できる。これにより、黒鉛スリーブ31と鋳塊Wとの固着を防止でき、黒鉛スリーブ31の劣化を防止できる。また、黒鉛スリーブ31の酸化損耗が抑制され、鋳造を長期間安定して行うことができる。   According to the method for producing an active element-containing copper alloy wire of this embodiment having such steps, the heat insulating member 40 is disposed between the graphite sleeve 31 of the mold 30 and the furnace body 23 of the casting furnace 20. Therefore, the molten copper in the furnace body 23 is prevented from coming into direct contact with the graphite sleeve 31 of the mold 30. For this reason, the reaction between the graphite sleeve 31 and an active element such as Cr, Zr, or Si can be suppressed. Thereby, adhesion with the graphite sleeve 31 and the ingot W can be prevented, and deterioration of the graphite sleeve 31 can be prevented. Further, oxidation wear of the graphite sleeve 31 is suppressed, and casting can be performed stably for a long period of time.

そして、鋳型30が鋳造炉20の鉛直方向下方側に配設されているので、鋳造工程S05では鋳造炉20の炉本体23内に保持された溶銅の水頭圧を鋳型30内に作用させながら鋳型30において溶銅を冷却・凝固させることができ、断熱部材40を介在させても溶銅を鋳型30の鋳造孔36内に確実に供給することが可能となり、安定して鋳造を行うことができる。特に本実施形態では、鋳造工程S05において、鋳型30の上端からの炉本体23内の溶銅の水頭が100mm以上とされていることから、鋳型30内に向けて溶銅を確実に供給することができ、鋳造を安定して行うことができる。また、ミクロ空孔の発生を抑制でき、高品質な鋳塊Wを製出することができる。   And since the casting_mold | template 30 is arrange | positioned by the vertical direction lower side of the casting furnace 20, in the casting process S05, making the inside pressure 30 of the molten copper hold | maintained in the furnace main body 23 of the casting furnace 20 act in the casting_mold | template 30 The molten copper can be cooled and solidified in the mold 30, and even when the heat insulating member 40 is interposed, the molten copper can be reliably supplied into the casting hole 36 of the mold 30, and stable casting can be performed. it can. In particular, in the present embodiment, in the casting step S05, since the water head of the molten copper in the furnace body 23 from the upper end of the mold 30 is set to 100 mm or more, the molten copper is reliably supplied toward the mold 30. And casting can be performed stably. Moreover, generation | occurrence | production of a micro void | hole can be suppressed and high quality ingot W can be produced.

また、鋳型30の黒鉛スリーブ31の上端部分31aの温度が450℃以下に保持されているので、黒鉛スリーブ31の早期損耗を抑制できるとともに、Cr,Zr,Si等の活性元素との反応を抑制できる。また、断熱部材40を介して鋳型30の黒鉛スリーブ31と鋳造炉20の炉本体23とが接続されているため、鋳型30の温度が450℃以下になるように鋳型30を冷却しても、鋳造炉20内の溶銅の温度低下を防止できる。   Further, since the temperature of the upper end portion 31a of the graphite sleeve 31 of the mold 30 is maintained at 450 ° C. or less, early wear of the graphite sleeve 31 can be suppressed, and reaction with active elements such as Cr, Zr, and Si can be suppressed. it can. In addition, since the graphite sleeve 31 of the mold 30 and the furnace body 23 of the casting furnace 20 are connected via the heat insulating member 40, even if the mold 30 is cooled so that the temperature of the mold 30 is 450 ° C. or less, The temperature drop of the molten copper in the casting furnace 20 can be prevented.

さらに、断熱部材40部分の溶銅温度が、溶銅の融点より高くなるように設定されているので、断熱部材40部分における溶銅の流動性が保持され、鋳造炉20内の溶銅の水頭圧によって、溶銅を鋳型30内に確実に供給することができる。また、断熱部材40を介して鋳型30と鋳造炉20が接続されていることから、断熱部材40部分の溶銅温度を溶銅の融点よりも高くなるように設定しても、鋳型30が高温に曝されることがなく、鋳型30の早期損耗や活性元素との反応を抑制することができる。
特に、本実施形態では、断熱部材40の熱伝導率が、常温で40W/(m・K)以下とされ、断熱部材40の厚さが5mm以上60mm以下に設定されていることから、鋳型30の黒鉛スリーブ31と鋳造炉20の炉本体23との間の伝熱を確実に抑制することができる。
Furthermore, since the molten copper temperature in the heat insulating member 40 is set to be higher than the melting point of the molten copper, the fluidity of the molten copper in the heat insulating member 40 is maintained, and the molten copper head in the casting furnace 20 is maintained. The molten copper can be reliably supplied into the mold 30 by the pressure. In addition, since the mold 30 and the casting furnace 20 are connected via the heat insulating member 40, the mold 30 remains hot even if the molten copper temperature of the heat insulating member 40 is set to be higher than the melting point of the molten copper. It is possible to suppress the early wear of the mold 30 and the reaction with the active element.
In particular, in the present embodiment, the heat conductivity of the heat insulating member 40 is set to 40 W / (m · K) or less at normal temperature, and the thickness of the heat insulating member 40 is set to 5 mm or more and 60 mm or less. Heat transfer between the graphite sleeve 31 and the furnace body 23 of the casting furnace 20 can be reliably suppressed.

鋳型30の鋳造孔36の水平方向の断面積Scと、鋳造炉20の水平方向の断面積Sfとの断面積比Sf/Scは、Sf/Sc≧5、好ましくはSf/Sc≧10を満たすように設定されている。このため、鋳造工程S05において、炉本体23内の溶銅の湯面変動を小さく抑えることができ、溶銅の水頭圧が安定することになる。よって、高品質な鋳塊Wを製出できる。   The sectional area ratio Sf / Sc between the horizontal sectional area Sc of the casting hole 36 of the mold 30 and the horizontal sectional area Sf of the casting furnace 20 satisfies Sf / Sc ≧ 5, preferably Sf / Sc ≧ 10. Is set to For this reason, in casting process S05, the molten metal surface fluctuation | variation of the molten copper in the furnace main body 23 can be suppressed small, and the water head pressure of molten copper will be stabilized. Therefore, a high quality ingot W can be produced.

さらに、鋳造炉20の前段に、溶解炉11と保持炉13と連結樋12とが設けられており、溶銅生成工程S01で生成された溶銅が連続的に鋳造炉20内に供給される。このため、鋳塊Wを効率良く製造できる。
また、本実施形態では、溶解炉11、保持炉13、移送樋15、鋳造炉20の内部を不活性ガス雰囲気としているので、溶銅及びCr,Zr,Si等の活性元素の酸化を防止でき、高品質の鋳塊Wを製出できる。
Further, a melting furnace 11, a holding furnace 13, and a connecting rod 12 are provided in the previous stage of the casting furnace 20, and the molten copper produced in the molten copper production step S 01 is continuously supplied into the casting furnace 20. . For this reason, the ingot W can be manufactured efficiently.
Moreover, in this embodiment, since the inside of the melting furnace 11, the holding furnace 13, the transfer rod 15, and the casting furnace 20 is made into inert gas atmosphere, oxidation of active elements, such as molten copper and Cr, Zr, Si, can be prevented. High quality ingots W can be produced.

以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば、本実施形態では、得られた鋳塊Wを急冷して溶体化処理を行う場合を説明したが、これに限定されない。例えば、鋳塊Wを冷却し、次いで溶体化処理を行ってもよいし、溶体化処理自体を実施しなくてもよい。
As mentioned above, although embodiment of this invention was described, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
For example, in this embodiment, although the case where the obtained ingot W was rapidly cooled and solution treatment was performed was demonstrated, it is not limited to this. For example, the ingot W may be cooled, and then the solution treatment may be performed, or the solution treatment itself may not be performed.

また、溶解炉11と保持炉13と連結樋12とを備えた連続鋳造装置10を用いて説明したが、これに限定されない。例えば、図5に示すように、バッチ式溶解炉111によって溶銅を生成し、移送樋15を介して鋳造炉20に溶銅を供給してもよい。この場合、バッチ式溶解炉111において、成分調整を行うことができる。すなわち、溶銅生成工程S01と活性元素添加工程S02とを同時に行うことができる。また、複数台のバッチ式溶解炉111を鋳造炉20に接続し、バッチ式溶解炉111から鋳造炉20へ交互に溶銅を供給することによって、長尺の鋳塊Wを製出できる。   Moreover, although demonstrated using the continuous casting apparatus 10 provided with the melting furnace 11, the holding furnace 13, and the connecting rod 12, it is not limited to this. For example, as shown in FIG. 5, molten copper may be generated by a batch-type melting furnace 111 and supplied to the casting furnace 20 via a transfer rod 15. In this case, component adjustment can be performed in the batch melting furnace 111. That is, the molten copper production step S01 and the active element addition step S02 can be performed simultaneously. Further, a long ingot W can be produced by connecting a plurality of batch melting furnaces 111 to the casting furnace 20 and alternately supplying molten copper from the batch melting furnace 111 to the casting furnace 20.

本実施形態では、Cr:0.25質量%以上0.45質量%以下、Zr:0.05質量%以上0.15質量%以下、Si:0.01質量%以上0.05質量%以下を含有し、残部としてCuと不可避不純物を含むCu−Cr−Zr−Si合金の銅合金線材を製出する場合について説明したが、これに限定されない。例えば、銅合金線材は、Cr,Zr,Siのいずれか1種または2種以上の活性元素を含有してよいし、その他の元素を含有してもよい。
鋳型30の鋳造孔36の直径が50mm以下であり、好ましくは10mm以上40mm以下である場合について説明したが、これに限定されない。
In the present embodiment, Cr: 0.25% by mass to 0.45% by mass, Zr: 0.05% by mass to 0.15% by mass, Si: 0.01% by mass to 0.05% by mass Although the case of producing a copper alloy wire of a Cu—Cr—Zr—Si alloy containing Cu and the inevitable impurities as a balance has been described, it is not limited to this. For example, the copper alloy wire may contain one or more active elements of Cr, Zr, and Si, or may contain other elements.
Although the case where the diameter of the casting hole 36 of the mold 30 is 50 mm or less, preferably 10 mm or more and 40 mm or less has been described, the present invention is not limited to this.

また、鋳造工程における鋳塊Wの引き出し速度や鋳造炉20への溶銅の供給速度は、本実施形態に限定されない。
注湯孔26及び鋳造孔36がそれぞれ一つだけ設けられた場合を図に示して説明したが、これに限定されない。例えば、注湯孔26及び鋳造孔36が複数設けられ、複数本の鋳塊Wを同時に製出してもよい。
鋳塊Wを間欠的に引き出す場合を説明したが、これに限定されることはない。例えば、鋳塊Wを連続して引き出してもよい。
Moreover, the drawing speed of the ingot W in the casting process and the supply speed of the molten copper to the casting furnace 20 are not limited to this embodiment.
Although the case where only one pouring hole 26 and only one casting hole 36 are provided has been described with reference to the drawings, the present invention is not limited to this. For example, a plurality of pouring holes 26 and casting holes 36 may be provided, and a plurality of ingots W may be produced simultaneously.
Although the case where the ingot W is pulled out intermittently has been described, the present invention is not limited to this. For example, the ingot W may be pulled out continuously.

また、溶解炉11、保持炉13、移送樋15、及び鋳造炉20の内部を不活性ガス雰囲気とする場合を説明したが、これに限定されない。例えば、真空(減圧)状態として、溶銅や活性金属の酸化を防止してもよい。
鋳型30が黒鉛スリーブ31を備える場合を説明したが、これに限定されない。例えば、鋳型30が窒化硼素(BN)等の固体潤滑性を有する他の材料によって構成されていてもよい。
Moreover, although the case where the inside of the melting furnace 11, the holding furnace 13, the transfer rod 15, and the casting furnace 20 was made into inert gas atmosphere was demonstrated, it is not limited to this. For example, oxidation of molten copper or active metal may be prevented in a vacuum (reduced pressure) state.
Although the case where the mold 30 includes the graphite sleeve 31 has been described, the present invention is not limited to this. For example, the mold 30 may be made of another material having solid lubricity such as boron nitride (BN).

断熱部材40の貫通孔46の内周面が、鋳型30の鋳造孔36の内周面に連なるように配置された場合を説明したが、これに限定されない。例えば、貫通孔46の内周面が鋳造孔36の内周面よりも径方向外方に後退していてもよい。すなわち、貫通孔46の直径が鋳造孔36の直径よりも大きくてもよい。
また、鋳型30の構成部材は、本実施形態に限定されない。例えば、冷却ジャケット32の構造や水冷配管(水路33)の配置等は適宜、設計変更してもよい。
Although the case where the inner peripheral surface of the through hole 46 of the heat insulating member 40 is arranged to be continuous with the inner peripheral surface of the casting hole 36 of the mold 30 has been described, the present invention is not limited to this. For example, the inner peripheral surface of the through hole 46 may recede radially outward from the inner peripheral surface of the casting hole 36. That is, the diameter of the through hole 46 may be larger than the diameter of the casting hole 36.
Moreover, the structural member of the casting_mold | template 30 is not limited to this embodiment. For example, the design of the structure of the cooling jacket 32 and the arrangement of the water cooling pipe (water channel 33) may be changed as appropriate.

本発明の一態様によれば、活性金属を含有する銅合金からなる銅合金線材を、効率良く、かつ安定して製出できる。活性金属を含有する銅合金線材は、強度が高く、かつ電気伝導性が良好であるため、例えば高速鉄道用のトロリー線などに利用できる。本発明の一態様は、この銅合金線材の製造工程に好適に適用できる。   According to one aspect of the present invention, a copper alloy wire made of a copper alloy containing an active metal can be produced efficiently and stably. Since the copper alloy wire containing the active metal has high strength and good electrical conductivity, it can be used for, for example, a trolley wire for high-speed railways. One embodiment of the present invention can be suitably applied to the manufacturing process of this copper alloy wire.

W 鋳塊、11 溶解炉、13 保持炉、20 鋳造炉、30 鋳型、30a 鋳型の上端、40 断熱部材、S01 溶銅生成工程、S02 活性元素添加工程、S04 保持工程、S05 鋳造工程。   W ingot, 11 melting furnace, 13 holding furnace, 20 casting furnace, 30 mold, 30a upper end of mold, 40 heat insulating member, S01 molten copper production process, S02 active element addition process, S04 holding process, S05 casting process.

Claims (6)

銅原料を溶解して溶銅を生成する溶銅生成工程と、
前記溶銅中にCr,Zr,Siのいずれか1種または2種以上の活性元素を添加する活性元素添加工程と、
前記溶銅を鋳造炉内に保持する保持工程と、
前記鋳造炉に接続された鋳型によって鋳塊を連続的に製出する鋳造工程とを有し、
前記鋳型は、黒鉛スリーブを具備し、前記鋳造炉内に貯留されている前記溶銅の水頭圧が前記鋳型内に作用するように、前記鋳造炉の鉛直方向下方側に断熱部材を介して接続されており、
前記鋳造工程では、前記鋳型内に向けて圧力を作用させて前記鋳型内に前記溶銅を供給し、前記鋳型において前記溶銅を冷却・凝固させることを特徴とする活性元素含有銅合金線材の製造方法。
A molten copper production process for dissolving the copper raw material to produce molten copper;
An active element addition step of adding one or more active elements of Cr, Zr, and Si into the molten copper;
A holding step of holding the molten copper in a casting furnace;
A casting step of continuously producing an ingot by a mold connected to the casting furnace,
The mold includes a graphite sleeve, and is connected to the lower side in the vertical direction of the casting furnace via a heat insulating member so that the hydraulic head pressure of the molten copper stored in the casting furnace acts in the mold. Has been
In the casting process, the molten copper is supplied into the mold by applying pressure toward the mold, and the molten copper is cooled and solidified in the mold. Production method.
前記鋳型の温度が450℃以下に保持されていることを特徴とする請求項1に記載の活性元素含有銅合金線材の製造方法。   The method for producing an active element-containing copper alloy wire according to claim 1, wherein the temperature of the mold is maintained at 450 ° C or lower. 前記断熱部材部分の前記溶銅の温度が、前記溶銅の融点よりも高くなるように設定されていることを特徴とする請求項1又は2に記載の活性元素含有銅合金線材の製造方法。   The method for producing an active element-containing copper alloy wire according to claim 1 or 2, wherein the temperature of the molten copper in the heat insulating member portion is set to be higher than the melting point of the molten copper. 前記鋳造工程において、前記鋳型の上端からの鋳造炉内溶銅の水頭が100mm以上とされていることを特徴とする請求項1〜3のいずれか一項に記載の活性元素含有銅合金線材の製造方法。   In the said casting process, the water head of the molten copper in a casting furnace from the upper end of the said mold is 100 mm or more, The active element containing copper alloy wire as described in any one of Claims 1-3 characterized by the above-mentioned. Production method. 前記鋳型の水平方向の断面積Scと、前記鋳造炉の水平方向の断面積Sfとの断面積比Sf/Scが5以上であることを特徴とする請求項1〜4のいずれか一項に記載の活性元素含有銅合金線材の製造方法。   The cross-sectional area ratio Sf / Sc between the horizontal cross-sectional area Sc of the mold and the horizontal cross-sectional area Sf of the casting furnace is 5 or more, according to any one of claims 1 to 4. The manufacturing method of the active element containing copper alloy wire of description. 前記鋳造炉の前段には、連続溶解炉と保持炉が設けられており、前記溶銅生成工程で生成された前記溶銅が連続的に前記鋳造炉内に供給されることを特徴とする請求項1〜5のいずれか一項に記載の活性元素含有銅合金線材の製造方法。   A continuous melting furnace and a holding furnace are provided in a preceding stage of the casting furnace, and the molten copper generated in the molten copper generation step is continuously supplied into the casting furnace. The manufacturing method of the active element containing copper alloy wire as described in any one of claim | item 1 -5.
JP2011551866A 2010-01-26 2011-01-26 Method for producing active element-containing copper alloy wire Active JP5613907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011551866A JP5613907B2 (en) 2010-01-26 2011-01-26 Method for producing active element-containing copper alloy wire

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010014397 2010-01-26
JP2010014397 2010-01-26
JP2011551866A JP5613907B2 (en) 2010-01-26 2011-01-26 Method for producing active element-containing copper alloy wire
PCT/JP2011/051433 WO2011093310A1 (en) 2010-01-26 2011-01-26 Process for producing copper alloy wire containing active element

Publications (2)

Publication Number Publication Date
JPWO2011093310A1 JPWO2011093310A1 (en) 2013-06-06
JP5613907B2 true JP5613907B2 (en) 2014-10-29

Family

ID=44319296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011551866A Active JP5613907B2 (en) 2010-01-26 2011-01-26 Method for producing active element-containing copper alloy wire

Country Status (5)

Country Link
EP (1) EP2529860A4 (en)
JP (1) JP5613907B2 (en)
CN (1) CN102686337B (en)
TW (1) TWI520799B (en)
WO (1) WO2011093310A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2866962B1 (en) 2012-06-29 2017-01-18 Le Bronze Industriel Crucible for a machine for continuously casting a bar or a coil of a metal alloy
CN103143690A (en) * 2013-04-02 2013-06-12 安泰科技股份有限公司 Continuous casting device and method for directly preparing metal rod or wire
CN105829554B (en) * 2013-12-17 2018-12-18 三菱综合材料株式会社 The manufacturing method of the copper alloy containing Ca
CN104190891B (en) * 2014-09-10 2016-04-06 西安工业大学 Prepare the device of minor diameter metal single crystal wire rod
JP6753647B2 (en) * 2015-01-07 2020-09-09 大豊工業株式会社 Copper alloys for plain bearings and plain bearings
CN107138698B (en) * 2017-05-05 2019-04-16 哈尔滨工业大学 A kind of metal or alloy wire rod preparation facilities and the method for preparing metal or alloy wire rod with the device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246334A (en) * 1988-03-29 1989-10-02 Nippon Mining Co Ltd Copper material for acoustic and picture signal transmission wiring
JPH02307649A (en) * 1989-05-22 1990-12-20 Shinnitsutou Kinzoku Kk Method and device for continuously casting copper and copper alloy
JPH035046A (en) * 1989-05-31 1991-01-10 Sumitomo Metal Mining Co Ltd Graphite mold device for continuously casting metal cast billet
JPH10216905A (en) * 1997-02-05 1998-08-18 Furukawa Electric Co Ltd:The Method for continuously casting active element-containing copper alloy
JPH11170008A (en) * 1997-12-03 1999-06-29 Kobe Steel Ltd Mold for horizontal continuous casting
JPH11207441A (en) * 1998-01-26 1999-08-03 Dowa Mining Co Ltd Method for continuously casting metal and apparatus therefor
JP2006341268A (en) * 2005-06-08 2006-12-21 Mitsubishi Materials Corp Apparatus and method for continuously manufacturing copper alloy
JP2007144428A (en) * 2005-11-24 2007-06-14 Mitsubishi Electric Corp Rare earth-iron-boron-based magnet alloy, and manufacturing method and device for the same alloy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61209757A (en) * 1985-03-12 1986-09-18 Furukawa Electric Co Ltd:The Method for casting continuously copper or copper alloy with heated mold and casting machine with heated mold
JPH08956B2 (en) 1986-04-30 1996-01-10 株式会社オ−・シ−・シ− Method for manufacturing copper alloy member
JPH06226406A (en) * 1993-02-02 1994-08-16 Mitsubishi Electric Corp Continuous casting apparatus and continuous casting method
US20060086437A1 (en) 2004-10-22 2006-04-27 Russell Nippert Method for manufacturing copper alloys

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246334A (en) * 1988-03-29 1989-10-02 Nippon Mining Co Ltd Copper material for acoustic and picture signal transmission wiring
JPH02307649A (en) * 1989-05-22 1990-12-20 Shinnitsutou Kinzoku Kk Method and device for continuously casting copper and copper alloy
JPH035046A (en) * 1989-05-31 1991-01-10 Sumitomo Metal Mining Co Ltd Graphite mold device for continuously casting metal cast billet
JPH10216905A (en) * 1997-02-05 1998-08-18 Furukawa Electric Co Ltd:The Method for continuously casting active element-containing copper alloy
JPH11170008A (en) * 1997-12-03 1999-06-29 Kobe Steel Ltd Mold for horizontal continuous casting
JPH11207441A (en) * 1998-01-26 1999-08-03 Dowa Mining Co Ltd Method for continuously casting metal and apparatus therefor
JP2006341268A (en) * 2005-06-08 2006-12-21 Mitsubishi Materials Corp Apparatus and method for continuously manufacturing copper alloy
JP2007144428A (en) * 2005-11-24 2007-06-14 Mitsubishi Electric Corp Rare earth-iron-boron-based magnet alloy, and manufacturing method and device for the same alloy

Also Published As

Publication number Publication date
TW201201925A (en) 2012-01-16
WO2011093310A1 (en) 2011-08-04
JPWO2011093310A1 (en) 2013-06-06
TWI520799B (en) 2016-02-11
CN102686337B (en) 2015-06-17
EP2529860A4 (en) 2017-02-22
EP2529860A1 (en) 2012-12-05
CN102686337A (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP5613907B2 (en) Method for producing active element-containing copper alloy wire
JP6743034B2 (en) Ultrasonic grain refinement
JP2000264775A (en) Electromagnetic induction casting apparatus
CN113444890B (en) Feeding production method of high-quality large-tonnage electroslag ingot
JP5765115B2 (en) Method for producing Cr-containing copper alloy wire
CN105695777A (en) Method for refining nickel-based high-temperature alloy via electron beam directional solidification technology
CN107739877B (en) One Albatra metal roller set and preparation method thereof
US20070284075A1 (en) Apparatus for Horizontal Continuous Casting of Magnesium Alloys Plate and Manufacturing Method Thereof
CN100406161C (en) Oriented freezing cast method
CN109047685B (en) Method for preparing steel ingot
JPS63273553A (en) Method and apparatus for producing hollow billet
JP6070080B2 (en) Continuous casting method of Cu-Zn-Si alloy
JP5689669B2 (en) Continuous casting method of Al-Si aluminum alloy
CN110484742B (en) Method for preparing Fe-W intermediate alloy by electron beam melting and high purification
JP6969411B2 (en) Continuous casting method of Cu-Zn-Si based alloy
JP5203680B2 (en) Metal electroslag remelting process and ingot mold used therefor
TWI529266B (en) Silicon electromagnetic casting device
JP5082157B2 (en) Zinc casting apparatus and casting method, and zinc rod and zinc rod manufacturing method
JP2005059015A (en) Device for melting and casting metal
JP2015134377A (en) Melting continuous casting apparatus for high purity ingot and melting continuous casting method for high purity ingot
RU2753537C1 (en) Alloy based on aluminum for production of wire and method for obtaining it
JP2005042178A (en) Electron beam melting method for high melting point metal material
KR101190772B1 (en) A continuous casting method of bulk amorphous alloy strip and low melting temperature bulk amorphous alloy strip produced thereby
WO2023084867A1 (en) Aluminum alloy ingot, aluminum alloy material, and method for manufacturing aluminum alloy material
WO2023084864A1 (en) Aluminum alloy ingot, aluminum alloy material, and method for manufacturing aluminum alloy material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140818

R150 Certificate of patent or registration of utility model

Ref document number: 5613907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150