JPS61209757A - Method for casting continuously copper or copper alloy with heated mold and casting machine with heated mold - Google Patents

Method for casting continuously copper or copper alloy with heated mold and casting machine with heated mold

Info

Publication number
JPS61209757A
JPS61209757A JP4915285A JP4915285A JPS61209757A JP S61209757 A JPS61209757 A JP S61209757A JP 4915285 A JP4915285 A JP 4915285A JP 4915285 A JP4915285 A JP 4915285A JP S61209757 A JPS61209757 A JP S61209757A
Authority
JP
Japan
Prior art keywords
molten metal
mold
copper
casting machine
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4915285A
Other languages
Japanese (ja)
Inventor
Kosaku Nakano
中野 耕作
Akira Yamazaki
明 山崎
Atsumi Ono
大野 篤美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
OCC Co Ltd
Original Assignee
Furukawa Electric Co Ltd
OCC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, OCC Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4915285A priority Critical patent/JPS61209757A/en
Publication of JPS61209757A publication Critical patent/JPS61209757A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To produce stably an ingot having excellent guality with economized energy by setting a casting machine provided with a heated mold to a pouring basin having a molten metal inflow port and discharge port in a molten metal transfer line or in the branch line provided to said line and executing continuous casting. CONSTITUTION:The casting machine with the heated mold is set to the pouring basin 10 in continuous casting or a branch spout 8d is attached to the pouring basin 10 and the casting machine 13 with the heated mold is set thereto, then the continuous casting by the heated mold is executed. The excess molten metal overflowing from the casting machine 13 is returned by a spout 8e to a spout 8c for transferring the molten metal to a pot 11. The temp. of the molten metal transfer line is maintained by butane or gaseous butane combustion. The continuous casting is executed by utilizing part of the molten metal in the above- mentioned manner, by which the use of a vertical type melting furnace using a gas of low combustion cost as a heat source is thus made possible. This method is superior in terms of equipment and energy economization.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は銅又は銅合金の加熱鋳型連続鋳造法及び加熱鋳
型鋳造機に関し、特に竪型溶解炉のによって大量に得ら
れる溶湯の一部を利用し、品質の優れた鋳塊を安定して
生産すると共に、省エネルギー、低コスト、作業性等の
向上を計ったものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a hot mold continuous casting method and a hot mold casting machine for copper or copper alloy, and in particular to a method for continuously casting a hot mold for copper or copper alloy, and in particular for a method for continuously casting molten metal obtained in large quantities by a vertical melting furnace. In addition to stably producing high-quality ingots, the aim is to save energy, reduce costs, and improve workability.

(従来の技術〕 一般に銅又は銅合金素材の製造には、筒状の炉内に上部
から投入した銅原料を、下部に設けた燃焼加熱装置によ
って連続的に溶解する竪型溶解炉、例えばシャフト炉を
用い、得られた銅又は銅合金溶湯を保持炉又は合金溶湯
調整炉に導入した後、溶湯をベルトアンドホイール鋳造
機、ツインベルト鋳造機、竪型鋳造機、横型鋳造機等の
鋳型を水冷して鋳造する水冷鋳型鋳造機に移送して連続
的に鋳造している。
(Prior Art) Generally, in the production of copper or copper alloy materials, a vertical melting furnace, such as a shaft shaft After introducing the obtained copper or copper alloy molten metal into a holding furnace or alloy molten metal conditioning furnace using a furnace, the molten metal is cast into a mold such as a belt and wheel casting machine, twin belt casting machine, vertical casting machine, horizontal casting machine, etc. It is transferred to a water-cooled mold casting machine, which performs water-cooled casting, and is continuously cast.

一方高品質の銅又は銅合金素材の製造には、鋳型を鋳造
金属の融点以上に加熱し、冷却水を直接鋳塊にあてて鋳
造する加熱鋳型鋳造機により連続的に鋳造している。こ
の方法は鋳型からの固相生成及び成長を防ぎ、鋳塊表面
を最終凝固部とするため、内部及び表面品質に優れた一
方向凝固組成の鋳塊を得ることができる。加熱鋳型連続
鋳造機は第5図に示すように鋳型(1)を発熱体により
鋳造金属の融点以上に加熱し、鋳塊(3b)を鋳型(1
)の出口近く側にセットした冷却装置(4)により冷却
して鋳型(1)内の溶湯(3a)を凝固せしめて、ピン
チロール(5)により鋳塊(3b)を連続的に引き出す
ようにしたものである。
On the other hand, in order to manufacture high-quality copper or copper alloy materials, continuous casting is carried out using a heated mold casting machine that heats a mold above the melting point of the cast metal and casts the ingot by directing cooling water to the ingot. This method prevents solid phase formation and growth from the mold and makes the surface of the ingot the final solidified part, so it is possible to obtain an ingot with a unidirectionally solidified composition that has excellent internal and surface quality. As shown in Fig. 5, the heating mold continuous casting machine heats the mold (1) using a heating element to a temperature higher than the melting point of the cast metal, and then inserts the ingot (3b) into the mold (1).
) The molten metal (3a) in the mold (1) is cooled and solidified by the cooling device (4) set near the outlet of the mold, and the ingot (3b) is continuously pulled out by the pinch rolls (5). This is what I did.

(発明が解決しようとする問題点〕 加熱鋳型鋳造法では凝固界面部において、液体から固体
に相変換するとき、体積収縮と凝固に伴う熱収縮によっ
て鋳塊と鋳型の間に空隙が生じその部分を溶湯が満たし
ている。この部分の溶湯の存在が鋳塊品質の向上のため
に重要で、潤滑剤の役目をはだすことにより光沢のある
無欠陥の表面を持つ鋳塊が得られる。しかるに第6図(
イ)に示すように鋳塊(3b)表面の凝固先端部(A>
と溶湯の侵入先端部(B)の間隔(X)の長さが鋳塊品
質向上に重要であり、X=Oの状態が理想である。とこ
ろで溶1(3a)の静水圧が高くなるとXが大きくなっ
て、溶湯(3a)が冷却された鋳塊(3b)と加熱され
た鋳型(1)に接触するため、第6図(ロ)に示すよう
に板厚の変化した鋳塊(3b)、或いは第6図(ハ)に
示すように鋳塊(3b)の表面からの同相成長による薄
い凝固殻が鋳型との摩擦により破談し、クラック(6)
を生ずる欠点がある。
(Problems to be solved by the invention) In the hot mold casting method, when the phase changes from liquid to solid at the solidification interface, a void is created between the ingot and the mold due to volumetric contraction and thermal contraction accompanying solidification. The presence of molten metal in this area is important for improving the quality of the ingot, and by acting as a lubricant, an ingot with a glossy and defect-free surface can be obtained.However, Figure 6 (
As shown in b), the solidified tip (A>) on the surface of the ingot (3b)
The length of the distance (X) between the inlet tip (B) and the molten metal penetration tip (B) is important for improving the quality of the ingot, and the ideal state is X=O. By the way, as the hydrostatic pressure of the molten metal 1 (3a) increases, X increases and the molten metal (3a) comes into contact with the cooled ingot (3b) and the heated mold (1). As shown in Figure 6 (c), an ingot (3b) with a changed plate thickness, or a thin solidified shell due to in-phase growth from the surface of the ingot (3b) as shown in Figure 6 (c) breaks due to friction with the mold. crack (6)
There is a drawback that it causes

このため鋳塊引き出し方向が上方引き上げ、水平引き上
げにおいても静水圧、即ち湯面の高さを一定もしくはほ
とんど零にする必要がある。
For this reason, it is necessary to keep the hydrostatic pressure, that is, the height of the molten metal level, constant or almost zero even when the ingot is pulled upward and horizontally.

また加熱鋳型鋳造法は品質の優れた鋳塊を製造すること
が可能であるが、鋳型を冷却せずに鋳塊の冷却のみで鋳
造をするため、通常の冷却鋳型を用いた鋳造法に比べて
生産性が劣る欠点がある。また一般的に用いられるガス
加熱や電気加熱式の溶解炉、保持炉、鋳造炉等を利用し
て加熱鋳型による連続鋳造を行なう場合、設備費及び保
持電力等が生産量に対して割高となり、しかも溶解炉か
らの出湯はオーバーフロータイプもしくは炉頭法による
が、この場合前者では原料投入時に、後者では炉傾転時
に出湯量が一時的に増加する。設備費を安価にするため
、溶解炉の後に加熱鋳型を有する鋳造炉を配置すること
も考えられるが、この場合鋳造炉内の湯面が大幅に変動
するため、溶解炉の後に保持炉を設け、ノズルストッパ
ー等によって鋳造炉に溶湯を供給せざるを得す、設備費
は高価なものとなる。
In addition, the heating mold casting method can produce ingots of excellent quality, but since casting is performed only by cooling the ingot without cooling the mold, it is less expensive than the casting method using a normal cooling mold. The disadvantage is that productivity is low. Furthermore, when continuous casting is performed using heated molds using commonly used gas-heated or electrically heated melting furnaces, holding furnaces, casting furnaces, etc., equipment costs and holding power are relatively high compared to production volume. Moreover, the amount of hot metal discharged from the melting furnace is either an overflow type or a furnace head method, and in this case, the amount of hot metal temporarily increases when raw materials are charged in the former case, and when the furnace is tilted in the latter case. In order to reduce equipment costs, it is conceivable to place a casting furnace with a heated mold after the melting furnace, but in this case, the molten metal level in the casting furnace will fluctuate significantly, so it is necessary to install a holding furnace after the melting furnace. , the molten metal must be supplied to the casting furnace using a nozzle stopper, etc., and the equipment cost is high.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこれに鑑み種々検討の結果、燃焼コストが易い
ガスを熱源とする竪型溶解炉を用いた銅又は銅合金の水
冷鋳型を用いた連続溶解鋳造ラインの溶湯を利用するこ
とが、設備的にも省エネルギーにおいても、更には鋳塊
の品質を左右する湯面コントロールにおいても優れてお
り、最も効率よく良品材を製造し得ることを知見し、更
に検討の結果、銅又は銅合金の加熱鋳型連続鋳造法及び
加熱鋳型鋳造機を開発したものである。
In view of this, as a result of various studies, the present invention has found that it is possible to utilize the molten metal from a continuous melting and casting line using a water-cooled copper or copper alloy mold using a vertical melting furnace that uses gas as a heat source, which is easy to burn. It has been found that it is excellent in terms of energy efficiency and energy saving, and is also excellent in controlling the hot water level which affects the quality of the ingot, and can produce high-quality materials in the most efficient manner.As a result of further investigation, the heating of copper or copper alloys has been found to be A continuous mold casting method and a heated mold casting machine were developed.

本発明鋳造法は、竪型溶解炉により連続的に溶解した銅
又は銅合金溶湯を保持炉又は調整炉に導入した後、水冷
鋳型鋳造機に移送して連続鋳造する溶湯移送ライン内又
は該ラインに分岐ラインを設けて溶湯流入口と排出口を
有する温潤りに加熱鋳型を設けた鋳造機をセットして連
続鋳造することを特徴とするものである。
In the casting method of the present invention, copper or copper alloy molten metal continuously melted in a vertical melting furnace is introduced into a holding furnace or an adjustment furnace, and then transferred to a water-cooled mold casting machine for continuous casting in or on a molten metal transfer line. The method is characterized in that continuous casting is carried out by setting a casting machine equipped with a heating mold in a heated mold having a branch line and a molten metal inlet and outlet.

また本発明鋳造機は、溶湯流入口と濡面を一定に保持す
る排出口を設けた温潤りに加熱鋳型を取付け、流入口と
鋳型取付部間に堰を設けて、流入した溶湯をアンダーフ
ローとして鋳型内に供給することを特徴とするものであ
る。
In addition, the casting machine of the present invention has a heating mold installed in a heating chamber equipped with a molten metal inlet and a discharge port that maintains a constant wetted surface, and a weir is provided between the inlet and the mold mounting part to direct the inflowing molten metal to the underside. It is characterized by being supplied into the mold as a flow.

即ち本発明は第1図に示すようにシャフト炉のような竪
型溶解(7)により連続的に溶解した溶湯を樋(8a)
により保持炉又は調整炉(9)に導入して調整し、調整
した銅又は銅合金溶湯を樋(8b)により湯溜り(10
)に移送し、樋(8C)により冷却鋳型鋳造機(12)
のポット(11)に供給して連続鋳造を行なう。この連
続鋳造における湯溜り(10)に加熱鋳型鋳造機をセッ
トするか、又は図に示すように湯溜り(10)に分岐樋
(8d)を取付け、これに加熱鋳型鋳造機(13)をセ
ットして加熱鋳型による連続鋳造を行ない、該鋳造機(
13)からオーバーフローした余分の溶湯を樋(8e)
によりポット(11)に溶湯を移送する61(80)に
戻す。尚上記溶湯移送ラインはブタンガス燃焼により保
温する。
That is, as shown in FIG.
The molten copper or copper alloy is introduced into a holding furnace or conditioning furnace (9), and the adjusted molten copper or copper alloy is passed through a gutter (8b) to a pool (10
) and cooled by the gutter (8C).
Continuous casting is performed by supplying the liquid to the pot (11). Either set a heating mold casting machine in the trough (10) in this continuous casting, or attach a branch gutter (8d) to the trough (10) as shown in the figure, and set the heating mold casting machine (13) there. Continuous casting is performed using a heated mold, and the casting machine (
13) Drain the excess molten metal that overflowed from the gutter (8e)
The molten metal is returned to 61 (80), which transfers it to the pot (11). The molten metal transfer line is kept warm by burning butane gas.

加熱鋳型鋳造機としては上方向引き上げ鋳造機、水平横
引き出し鋳造機、下方向引き出し鋳造機が用いられる。
As the heating mold casting machine, an upward pull casting machine, a horizontal horizontal draw casting machine, and a downward drawing casting machine are used.

上方向引き上げ鋳造機は第2図に示すように湯溜り(1
3)内の上方に周囲に発熱体を有する加熱鋳型(1)を
冶具(1a)により垂直に固定し、湯溜り(13)に溶
湯流入口(14)と溶湯(3a)の表面を一定に保持す
るためオーバーフローさせる排出口(15)を設けて湯
面を詩形(1)のほぼ中央に位置させる。
As shown in Figure 2, the upward pulling casting machine
3) Fix the heating mold (1) with a heating element around it vertically above the inside using the jig (1a), and keep the molten metal inlet (14) and the surface of the molten metal (3a) constant in the sump (13). A discharge port (15) for overflow is provided to maintain the hot water level, and the hot water level is positioned approximately at the center of the poem shape (1).

水平横引き出し鋳造機は第3図に示すように湯溜り(1
3)内に周囲に発熱体(2)を有する加熱鋳型(1)を
水平に固定Q、濶湯溜(13)に同様の溶湯流人口(1
4)と排出口(15)を設けて湯面を鋳型(1)の上方
に位置させる。下方向引き出し鋳造機は第4図に示すよ
うに湯溜り(13)内の下方に周囲に発熱体(2)を有
する加熱鋳型(1)を垂直に固定し、湯溜り(13)に
同様の溶湯流人口(14)と排出口(15)を設けて湯
面を加熱鋳型(1)の上端より高い所に位置せしめる。
The horizontal side drawer casting machine has a trough (1) as shown in Figure 3.
3) A heating mold (1) with a heating element (2) around it is fixed horizontally Q, and a similar molten metal flow rate (1
4) and a discharge port (15) are provided to position the molten metal surface above the mold (1). As shown in Fig. 4, the downward draw casting machine vertically fixes a heating mold (1) having a heating element (2) around the lower part of a tundish trough (13), and places a similar type of mold in the tundish trough (13). A molten metal flow port (14) and a discharge port (15) are provided to position the molten metal level higher than the upper end of the heating mold (1).

このようにして何れも湯溜り(13)内の溶湯流入口(
14)と鋳型取付部間に堰(16)を設け、流入した溶
湯(3a)をアンダー70−で鋳型(1)内に供給し、
溶湯流入による湯面の乱れが鋳型(1)内に影響しない
ようにし、湯溜り(13)内の上部には保温用のガスバ
ーナー又は非金属発熱体(17)を設けたものである。
In this way, the molten metal inlet (
A weir (16) is provided between the mold mounting part 14) and the mold mounting part, and the flowing molten metal (3a) is supplied into the mold (1) with the under 70-,
A gas burner or a non-metallic heating element (17) for heat retention is provided in the upper part of the molten metal pool (13) to prevent the disturbance of the molten metal surface caused by the inflow of the molten metal from affecting the inside of the mold (1).

〔作 用〕[For production]

本発明は通常の銅又は銅合金の水冷鋳型鋳造機による連
続鋳造ラインにおいて、溶湯の一部を利用して加熱鋳型
鋳造機による連続鋳造を行なうもので、燃焼コストが安
いガスを熱源とする竪型溶解炉の使用が可能となり、設
備的にも省エネルギーにおいても優れている。また加熱
鋳型鋳造機として鋳型を取付ける湯溜り内に堰を設け、
かつ湯溜りに溶湯流人口と溶湯をオーバーフローさせて
排出する排出口を設けることにより、鋳塊品質を左右す
る湯面コントロールが容易となり、品質の優れた鋳塊を
安定して生産する・ことができる。
The present invention utilizes a part of the molten metal to carry out continuous casting using a heated mold casting machine in a conventional continuous casting line using a water-cooled mold casting machine for copper or copper alloy. It becomes possible to use a mold melting furnace, which is superior in terms of equipment and energy savings. In addition, as a heating mold casting machine, a weir is installed in the hot water tank where the mold is installed.
In addition, by providing a molten metal flow rate and a discharge port for overflowing and discharging the molten metal in the molten metal pool, it becomes easy to control the molten metal level, which affects the quality of the ingot, and it is possible to stably produce ingots of excellent quality. can.

〔実施例〕〔Example〕

第1図に示すように溶解能力20tOn /hrのシャ
フト炉により銅原料を連続的に溶解し、得られた溶湯を
容量15tonの保持炉に導入した。
As shown in FIG. 1, the copper raw material was continuously melted in a shaft furnace with a melting capacity of 20 ton/hr, and the resulting molten metal was introduced into a holding furnace with a capacity of 15 tons.

この保持炉で調整した溶湯を湯溜りに移送し、容fil
tonのポットを介して水冷鋳型鋳造機に連続鋳造した
。この鋳造ラインにおいて湯溜りから樋により第3図に
示す水平横引き出し加熱鋳型鋳造機に供湯して連続的に
鋳造し、オーバーフローした7111Mは樋により上記
ポットに戻した。
The molten metal adjusted in this holding furnace is transferred to a molten metal tank and filled with water.
Continuous casting was carried out in a water-cooled mold casting machine through a ton pot. In this casting line, the molten metal was fed from the trough to the horizontal horizontal draw-out heating mold casting machine shown in FIG. 3 for continuous casting, and overflowing 7111M was returned to the pot via the gutter.

加熱鋳型鋳造機には巾25011m、深さ300馴、長
さ800mの湯溜りに内径15.、外径25mの炭化硅
素からなる加熱鋳型を10本並べて溶湯中SO,。
The heating mold casting machine has a pool with a width of 25,011 m, a depth of 300 m, and a length of 800 m, with an inner diameter of 15 mm. , 10 heating molds made of silicon carbide with an outer diameter of 25 m were lined up and SO was placed in the molten metal.

の深さにセットした。このようにして200rIR/m
inの速度で鋳造を開始し、10時間、50時間。
It was set to a depth of . In this way, 200rIR/m
Casting was started at a speed of 100 m, then 50 h.

100時間経過後の1時間当りの線径のバラツキ及び渦
流探傷法による表面品質を検査した。
After 100 hours, the variation in wire diameter per hour and the surface quality were inspected by eddy current flaw detection.

これ等の結果を従来の誘導溶解炉(溶解能力0.5to
n /hr)を用いて銅原料を溶解し、溶湯を同様の加
熱鋳型をセットした2 00 Kgの鋳造炉に移送して
、200s/Winの速度で鋳造したものと比較して第
1表に示す。
These results were compared to a conventional induction melting furnace (melting capacity 0.5 to
The results are shown in Table 1 in comparison with those in which the copper raw material was melted at a speed of 200 s/win, and the molten metal was transferred to a 200 kg casting furnace equipped with a similar heating mold. show.

第1表 第1表から明らかなように従来法は経時的に劣化してし
ているが、本発明法では全く劣化が認められない。また
消費したエネルギーコストは従来法の1/10であり、
大巾な省エネルギーを達成することができた。
As is clear from Table 1, the conventional method deteriorates over time, but no deterioration is observed in the method of the present invention. In addition, the energy cost consumed is 1/10 of the conventional method,
We were able to achieve significant energy savings.

〔発明の効果〕〔Effect of the invention〕

このような本発明によれば、加熱鋳型を用いた連続鋳造
法において、鋳塊品質を向上させ、かつ安定して生産す
ることができるばかりか、省エネルギー、低コスト化1
作業性の向上等工業上顕著な効果を奏するものである。
According to the present invention, in a continuous casting method using a heated mold, it is possible to not only improve ingot quality and stably produce, but also save energy and reduce costs.
This has significant industrial effects such as improved workability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明鋳造法の一例を示す説明図。 第2図は本発明上方向引き上げ鋳造機の一例を示す側断
面第3図は本発明水平横引き出し鋳造機の一例を示す側
断面図、第4図は本発明下方向引き出し鋳造機の一例を
示す側断面図、第5図は従来の加熱鋳型鋳造法の一例を
示す説明図。 第6図(イ)、(ロ)、(ハ)は従来の鋳造法の鋳塊欠
陥発生状態を示すもので、(イ)は発生原因の説明図、
(ロ)は発生状況の一例を示す説明図、(ハ)は発生状
況の他の一例を示す説明図である。 1・・・ 鋳型     2・・・ 発熱体3a・・・
 溶湯     3b・・・ 鋳塊4・・・ 冷却装置
   5・・・ ピンチロール6・・・クラック   
 7・・・ 竪型溶解炉8a、 8b、 8c、 8d
、 8e・・・  樋9・・・ 保持炉    10・
・・ 湯溜り11・・・ ボット    12・・・ 
水冷鋳型鋳造機13・・・加熱鋳型鋳造@  14・・
・ 溶湯流人口15・・・ 溶湯排出口  16・・・
 堰17・・・発熱体     18・・・排気口第5
図 第6図
FIG. 1 is an explanatory diagram showing an example of the casting method of the present invention. FIG. 2 is a side sectional view showing an example of an upward draw casting machine according to the present invention. FIG. 3 is a side sectional view showing an example of a horizontal lateral draw casting machine according to the invention. The side sectional view shown in FIG. 5 is an explanatory view showing an example of a conventional heating mold casting method. Figures 6 (a), (b), and (c) show the occurrence of ingot defects in conventional casting methods, and (a) is an explanatory diagram of the cause of the occurrence;
(B) is an explanatory diagram showing an example of the occurrence situation, and (C) is an explanatory diagram showing another example of the occurrence situation. 1... Mold 2... Heating element 3a...
Molten metal 3b... Ingot 4... Cooling device 5... Pinch roll 6... Crack
7... Vertical melting furnaces 8a, 8b, 8c, 8d
, 8e... Gutter 9... Holding furnace 10.
... Hot water pool 11... Bot 12...
Water-cooled mold casting machine 13... Heated mold casting @ 14...
・ Molten metal flow population 15... Molten metal outlet 16...
Weir 17... Heating element 18... Exhaust port No. 5
Figure 6

Claims (4)

【特許請求の範囲】[Claims] (1)竪型溶解炉により連続的に溶解した銅又は銅合金
溶湯を保持炉又は調整炉に導入した後、水冷鋳型鋳造機
に移送して連続鋳造する溶湯移送ライン内又は該ライン
に分岐ラインを設けて、溶湯流入口と排出口を有する湯
溜りに加熱鋳型を設けた鋳造機をセットして連続鋳造す
ることを特徴とする銅又は銅合金の加熱鋳型連続鋳造法
(1) The copper or copper alloy molten metal continuously melted in the vertical melting furnace is introduced into the holding furnace or adjustment furnace, and then transferred to the water-cooled mold casting machine for continuous casting.In the molten metal transfer line or branch line to this line A hot mold continuous casting method for copper or copper alloy, characterized in that continuous casting is carried out by setting a casting machine equipped with a hot mold in a pool having a molten metal inlet and a molten metal outlet.
(2)湯溜り内に流入した余分の溶湯を排出口より水冷
鋳型鋳造機の溶湯移送ラインに戻し、湯溜り内の湯面を
一定に保持する特許請求の範囲第1項記載の銅又は銅合
金の加熱鋳型連続鋳造法。
(2) The copper or copper according to claim 1, wherein the excess molten metal that has flowed into the molten metal pool is returned to the molten metal transfer line of the water-cooled mold casting machine through the discharge port, and the molten metal level in the molten metal pool is maintained constant. Continuous heating mold casting method for alloys.
(3)湯溜りが大型の場合に、湯溜りを加熱する特許請
求の範囲第1項又は第2項記載の銅又は銅合金の加熱鋳
型連続鋳造法。
(3) A hot mold continuous casting method for copper or copper alloy according to claim 1 or 2, which heats the hot water pool when the hot water pool is large.
(4)溶湯流入口と湯面を一定に保持する排出口を設け
た湯溜りに加熱鋳型を取付け、流入口と鋳型取付部間に
堰を設けて、流入した溶湯をアンダーフローとして鋳型
内に供給することを特徴とする銅又は銅合金の加熱鋳型
鋳造機。
(4) A heating mold is attached to a molten metal pool with a molten metal inlet and an outlet that maintains a constant molten metal level, and a weir is provided between the inlet and the mold mounting part to allow the molten metal that has flowed into the mold to become an underflow. A heating mold casting machine for copper or copper alloy.
JP4915285A 1985-03-12 1985-03-12 Method for casting continuously copper or copper alloy with heated mold and casting machine with heated mold Pending JPS61209757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4915285A JPS61209757A (en) 1985-03-12 1985-03-12 Method for casting continuously copper or copper alloy with heated mold and casting machine with heated mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4915285A JPS61209757A (en) 1985-03-12 1985-03-12 Method for casting continuously copper or copper alloy with heated mold and casting machine with heated mold

Publications (1)

Publication Number Publication Date
JPS61209757A true JPS61209757A (en) 1986-09-18

Family

ID=12823124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4915285A Pending JPS61209757A (en) 1985-03-12 1985-03-12 Method for casting continuously copper or copper alloy with heated mold and casting machine with heated mold

Country Status (1)

Country Link
JP (1) JPS61209757A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093310A1 (en) 2010-01-26 2011-08-04 三菱マテリアル株式会社 Process for producing copper alloy wire containing active element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093310A1 (en) 2010-01-26 2011-08-04 三菱マテリアル株式会社 Process for producing copper alloy wire containing active element
EP2529860A4 (en) * 2010-01-26 2017-02-22 Mitsubishi Materials Corporation Process for producing copper alloy wire containing active element

Similar Documents

Publication Publication Date Title
CN110280746B (en) Method for single-source high-intensity ultrasonic-assisted casting of large-specification 2XXX series aluminum alloy round ingot
JPH0688106B2 (en) Horizontal continuous casting method for strip-shaped metal ingot and its equipment
JPS61209757A (en) Method for casting continuously copper or copper alloy with heated mold and casting machine with heated mold
JPS63273553A (en) Method and apparatus for producing hollow billet
JP3988538B2 (en) Manufacturing method of continuous cast slab
JPH0262105B2 (en)
CN106001469A (en) Horizontal continuous casting crystallizer of cast iron and preparing method of cast iron proximate matter
CN201371225Y (en) Device for forming hollow profile of cast iron through continuous casting limited by composite physical field
CN108465790A (en) It is used to prepare the continuous liquid supply device and application method of the long slab ingot of the big specification of magnesium alloy
CN212264472U (en) Graphite pouring pipe for vertical continuous casting
CN217492625U (en) Electromagnetic heating and water cooling dual-function casting mold
CN211679898U (en) Pouring pipe device in steelmaking gating system
RU2253541C2 (en) Aggregate for making thin strips
JPS6235562Y2 (en)
SU916067A1 (en) Unit of continuous casting of slabs
RU2080206C1 (en) Method of production of ingots
JPS6342540B2 (en)
CN116586570A (en) Preparation method of 5083 aluminum alloy cast ingot
Reeve Present trends in methods of production of aluminium alloy slabs and billets for working
RU2003433C1 (en) Method of batch-type electric slag casting of ingots
SU996072A1 (en) Metal continuous casting method
JPH0255141B2 (en)
JPS61232047A (en) Method for controlling temperature of molten metal for continuous casting
SU1034833A1 (en) Method of producing casting by radial-direction solidification
RU2043832C1 (en) Method of continuous casting of metal