JPH08956B2 - Method for manufacturing copper alloy member - Google Patents

Method for manufacturing copper alloy member

Info

Publication number
JPH08956B2
JPH08956B2 JP61101479A JP10147986A JPH08956B2 JP H08956 B2 JPH08956 B2 JP H08956B2 JP 61101479 A JP61101479 A JP 61101479A JP 10147986 A JP10147986 A JP 10147986A JP H08956 B2 JPH08956 B2 JP H08956B2
Authority
JP
Japan
Prior art keywords
mold
copper alloy
continuous casting
cast
alloy member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61101479A
Other languages
Japanese (ja)
Other versions
JPS62256952A (en
Inventor
篤美 大野
由弘 中井
和夫 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61101479A priority Critical patent/JPH08956B2/en
Publication of JPS62256952A publication Critical patent/JPS62256952A/en
Publication of JPH08956B2 publication Critical patent/JPH08956B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、電線用導体や電極用チップ等に用いられ
る銅合金部材、具体的にはCrを0.1〜1.2%またはZrを0.
05〜0.5%含有する銅合金部材の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a copper alloy member used for conductors for electric wires, tips for electrodes, etc., specifically 0.1 to 1.2% of Cr or 0.
The present invention relates to a method for producing a copper alloy member containing 05 to 0.5%.

[従来の技術]および[発明が解決しようとする問題
点] 各種材料の製造方法は、生産効率や歩留りの向上のた
め連続化が進められている。電線用導体やその他の導電
用用途に用いられる銅合金も、多くは横型連続鋳造法な
どによって鋳造されている。この横型連続鋳造法を第2
図に模式的に示す。
[Prior Art] and [Problems to be Solved by the Invention] Manufacturing methods for various materials are being continuously made in order to improve production efficiency and yield. Many copper alloys used for electric wire conductors and other conductive applications are also cast by a horizontal continuous casting method or the like. This horizontal continuous casting method is the second
It is shown schematically in the figure.

第2図において、1は鋳型、2はヒータ、3は溶湯で
ある。鋳型出口部1aは、たとえば水を用いた冷却手段4
によって冷却されている。この横型連続鋳造法によれ
ば、溶湯3は鋳型1内で完全に凝固し、この凝固したも
のを鋳型出口部1aから引き抜く。そのため、使用される
鋳型1としては、潤滑性のある黒鉛が最適であると考え
られている。しかし、炭化物を作りやすいような元素、
たとえばCrやZrを含む合金では、それらの元素が凝固時
に鋳型材料である黒鉛と反応するため、鋳造が不可能で
あった。
In FIG. 2, 1 is a mold, 2 is a heater, and 3 is a molten metal. The mold outlet portion 1a is a cooling means 4 using, for example, water.
Is cooled by. According to this horizontal continuous casting method, the molten metal 3 is completely solidified in the mold 1, and the solidified product is pulled out from the mold outlet 1a. Therefore, it is considered that graphite having lubricity is optimal as the mold 1 used. However, elements that make it easy to make carbides,
For example, alloys containing Cr and Zr cannot be cast because these elements react with graphite, which is the mold material, during solidification.

また、何らかの方法でCrまたはZrを含有する銅合金を
鋳造したとしても、それを再加熱して熱間加工を施した
り、溶体化処理(高温からの焼入れ)などを施したりし
なければならず、エネルギロスが大きかった。さらに、
再加熱の際に、合金表面が酸化しやすく、加工性が悪く
なるという問題点もあった。
Even if a copper alloy containing Cr or Zr is cast by some method, it must be reheated to be hot-worked or solution-treated (quenching from high temperature). , Energy loss was large. further,
There is also a problem that the surface of the alloy is easily oxidized during reheating and the workability is deteriorated.

それゆえに、この発明の目的は、炭化物を作りやすい
CrやZrを含む銅合金であっても容易に連続鋳造すること
ができ、なおかつ省エネルギ、生産性の向上にも寄与し
得る銅合金部材の製造方法を提供することである。
Therefore, the purpose of this invention is to facilitate the formation of carbides.
It is an object of the present invention to provide a method for producing a copper alloy member, which can easily continuously cast even a copper alloy containing Cr or Zr and can contribute to energy saving and improvement in productivity.

[問題点を解決するための手段] この発明に従った銅合金部材の製造方法は、Crを0.1
〜1.2%またはZrを0.05〜0.5%含有する銅合金を、加熱
鋳型を用いた連続鋳造法により鋳造し、こうして得られ
た鋳塊を冷間もしくは温間において50%以上の加工度で
加工した後、350〜700℃にて加熱処理することを特徴と
する。
[Means for Solving Problems] A method of manufacturing a copper alloy member according to the present invention is characterized by adding Cr to 0.1
Copper alloy containing ~ 1.2% or 0.05-0.5% Zr was cast by a continuous casting method using a heating mold, and the ingot thus obtained was processed at a working degree of 50% or more in cold or warm. After that, it is characterized in that it is heat-treated at 350 to 700 ° C.

[作用] ここで言う「加熱鋳型」とは、鋳型出口部の温度が鋳
造金属の凝固温度以上に加熱されている鋳型のことであ
る。第1図に、そのような鋳型を模式的に示している。
この図において、1は鋳型、1aは鋳型出口部、2はヒー
タ、3は溶湯、5はヒータ、6は冷却手段を示してい
る。ヒータ5によって、鋳型出口部1aは、鋳造金属3の
凝固温度以上に加熱されている。このような加熱鋳型を
用いれば、溶湯3が鋳型1内において凝固を完了すると
いうことはない。したがって、鋳塊引出時において、鋳
型1と鋳塊との間に摩擦が生じない。さらに、鋳型が黒
鉛製であり、かつ鋳造すべき金属が炭化物を作りやすい
CrやZrを含有する銅合金であったとしても、溶湯の凝固
が鋳型出口部の外で起こるので、CrやZrが鋳型材料であ
る黒鉛と反応することはなく、良好な連続鋳造を行なう
ことが可能である。従来では、CrやZrを含有する銅合金
を連続鋳造しようとした場合、溶湯が鋳型内で凝固する
ときにCrやZrが鋳型材料である黒鉛と反応し、炭化物を
形成していた。そのため、鋳型表面に凹凸を生じ、鋳塊
を連続的に引出すことができなかった。
[Operation] The “heating mold” mentioned here is a mold in which the temperature of the mold outlet is heated to the solidification temperature of the casting metal or higher. FIG. 1 schematically shows such a mold.
In this figure, 1 is a mold, 1a is a mold outlet, 2 is a heater, 3 is a molten metal, 5 is a heater, and 6 is a cooling means. The mold outlet part 1a is heated by the heater 5 to a temperature above the solidification temperature of the cast metal 3. If such a heating mold is used, the molten metal 3 will not complete solidification in the mold 1. Therefore, no friction occurs between the mold 1 and the ingot when the ingot is drawn out. In addition, the mold is made of graphite, and the metal to be cast easily forms carbides.
Even if it is a copper alloy containing Cr or Zr, solidification of the molten metal occurs outside the mold outlet, so Cr or Zr does not react with graphite, which is the mold material, and good continuous casting should be performed. Is possible. Conventionally, when a copper alloy containing Cr or Zr was tried to be continuously cast, when the molten metal solidified in the mold, Cr or Zr reacted with graphite as a mold material to form a carbide. Therefore, the mold surface was uneven, and the ingot could not be continuously drawn out.

連続鋳造法によって得られた鋳塊を冷間もしくは温間
において50%以上の加工度で加工するのは、加工硬化に
よる強度の増加を得ようとするものである。また、その
ような加工は、時効析出を促進させる効果も生じさせ
る。50%未満の加工度であれば、これらの効果があまり
期待できない。
The ingot obtained by the continuous casting method is cold or warm processed with a workability of 50% or more in order to obtain an increase in strength due to work hardening. Such processing also produces the effect of promoting age precipitation. If the workability is less than 50%, these effects cannot be expected.

さらに、350〜700℃にて加熱処理するのは、十分な時
効析出を生じさせ、かつ導電率を十分に回復させるため
である。350℃未満の加熱処理であれば、時効析出が十
分でなく、導電率が十分に回復しない。一方、700℃を
越えるような加熱処理であれば、過時効になって十分な
機械的特性が得られなくなるとともに、酸化しやすくな
る。さらに、加工硬化の効果も失われるおそれがある。
加熱処理時間としては、たとえば450℃の加熱温度であ
れば約1時間程度である。加熱温度が高くなれば処理時
間は短くなり、加熱温度が低くなれば処理時間は長くな
る。
Furthermore, the heat treatment at 350 to 700 ° C. is for causing sufficient age precipitation and for sufficiently recovering the electrical conductivity. If the heat treatment is performed at a temperature lower than 350 ° C, the aging precipitation is insufficient and the electrical conductivity is not sufficiently recovered. On the other hand, if the heat treatment is performed at a temperature higher than 700 ° C., it becomes over-aged, sufficient mechanical properties cannot be obtained, and oxidation tends to occur. Further, the effect of work hardening may be lost.
The heat treatment time is about 1 hour at a heating temperature of 450 ° C., for example. The higher the heating temperature, the shorter the treatment time, and the lower the heating temperature, the longer the treatment time.

加熱鋳型を用いて連続鋳造するものであるので、細径
のものに連続的に鋳造することも可能である。したがっ
て、再加熱による熱間加工や溶体化処理が不要となる。
こうして、省エネルギに貢献でき、また酸化による加工
性劣化を防止できる。従来では、溶体化処理時等におい
て、表面が酸化したり、また一部表面近傍が内部酸化し
たりして、以後の加工が必要な用途では加工性を害して
いた。しかし、この発明によれば、そのようなことを防
止できる。
Since continuous casting is performed using a heating mold, it is also possible to continuously cast into a small diameter. Therefore, hot working or solution treatment by reheating is not necessary.
Thus, it is possible to contribute to energy saving and prevent workability deterioration due to oxidation. Conventionally, during solution treatment or the like, the surface is oxidized or a portion near the surface is internally oxidized, which impairs workability in applications requiring subsequent processing. However, according to the present invention, such a thing can be prevented.

[実施例] Cu-0.5%Cr合金を、加熱鋳型を用いて、鋳型内で完全
に凝固させない方法にて3mmφに連続的に鋳造した。こ
れを1mmφにまで伸線加工した後、470℃で1時間時効処
理をし、さらにこれを40μmφにまで伸線加工した。こ
のときの伸線性を、従来の方法によって得られたものと
比較した。すなわち、同じ組成の合金で従来の方法によ
り得られた荒引き線を同様に40μmφにまで伸線したと
きの伸線性を100としたとき、上述の方法(本発明例)
は500であった。なお、ここでいう従来の方法とは、バ
ッチ式にインゴットを作成し、これを約900℃に再加熱
して8mmφにまで熱間圧延し、さらに約950℃まで再加熱
した後、溶体化処理、水焼入れをするものである。
[Example] A Cu-0.5% Cr alloy was continuously cast into 3 mmφ using a heating mold by a method that did not completely solidify in the mold. This was wire-drawn to 1 mmφ, then anged at 470 ° C. for 1 hour, and further wire-drawn to 40 μmφ. The wire drawability at this time was compared with that obtained by the conventional method. That is, when the wire drawing property of an alloy of the same composition obtained by the conventional method by wire drawing up to 40 μmφ is similarly set to 100, the above method (Example of the present invention)
Was 500. The conventional method referred to here is to prepare an ingot in a batch method, reheat it to about 900 ° C., hot-roll it to 8 mmφ, and then reheat it to about 950 ° C., then solution heat treat it. , Water quenching.

なお、比較のため、冷却した黒鉛鋳型を使用した横型
連続鋳造機を用いて、20mmφ、3mmφに連続鋳造しよう
としたが、前者では最初の短時間のみ連続鋳造すること
ができ、後者では全く連続鋳造することができなかっ
た。
For comparison, using a horizontal continuous casting machine using a cooled graphite mold, it was tried to continuously cast 20mmφ, 3mmφ, the former can be continuous casting only the first short time, the latter is completely continuous Could not be cast.

また、本発明例によて得られた4μmφの合金線を65
0℃のトンネル炉で連続的に調質した後の特性は、以下
のとおりであった。比較のため、従来例によって得られ
た合金線の特性も以下に記す。
In addition, the alloy wire of 4 μmφ obtained according to the present invention is
The properties after continuous tempering in a 0 ° C tunnel furnace were as follows. For comparison, the characteristics of the alloy wire obtained by the conventional example are also described below.

本発明例 組成:Cu-0.5%Cr 引張り強さ:50kg/mm2 伸び:4% 導電率:88%IACS 従来例 組成:Cu-0.5%Cr 引張り強さ:50kg/mm2 伸び:3% 導電率:87%IACS 上記結果から明らかなように、本発明例では、溶体化
処理を実施せず効率良く製造したが、その特性において
は従来のものと何ら遜色のないものが得られた。
Inventive Example Composition: Cu-0.5% Cr Tensile Strength: 50kg / mm 2 Elongation: 4% Conductivity: 88% IACS Conventional Example Composition: Cu-0.5% Cr Tensile Strength: 50kg / mm 2 Elongation: 3% Conductive Rate: 87% IACS As is clear from the above results, in the examples of the present invention, the solution treatment was not carried out efficiently, but the characteristics were comparable to those of the conventional ones.

[発明の効果] この発明によれば、以下の効果が得られる。[Effects of the Invention] According to the present invention, the following effects can be obtained.

(1)加熱鋳型を用いて鋳造するものであるので、黒鉛
と反応しやすいCrやZrを含有する銅合金であっても連続
的に鋳造することが可能となる。このことにより、省エ
ネルギ、歩留りの向上、生産性の向上が期待できる。
(1) Since the casting is performed using a heating mold, it is possible to continuously cast even a copper alloy containing Cr or Zr that easily reacts with graphite. This can be expected to save energy, improve yield, and improve productivity.

(2)上記(1)に関連して、細径のものに連続的に鋳
造することも可能である。したがって、再加熱や熱間圧
延等の工程が省略できることに加えて、連続鋳造時の冷
却速度を速くすることができる。こうして、時効析出型
合金の特性を発揮するのに必要な溶体化処理を実施しな
くとも、溶体化処理を実施したのと同様の時効析出の効
果が発揮され得る。
(2) In connection with the above (1), it is also possible to continuously cast into a small diameter. Therefore, steps such as reheating and hot rolling can be omitted, and the cooling rate during continuous casting can be increased. Thus, even if the solution treatment necessary for exhibiting the properties of the age precipitation alloy is not performed, the same effect of age precipitation as that obtained by the solution treatment can be exhibited.

(3)溶体化処理や熱間加工は、工業的には、大気中の
酸化雰囲気下で実施されるが、その際の表面酸化や表面
近傍の内部酸化を防止することは困難である。しかし、
本発明によれば、鋳型出口部を非酸化雰囲気にするだけ
で効果的に酸化防止をすることが可能である。したがっ
て、本発明によって細線導体等を得ようとする場合、伸
線加工性の著しい向上に寄与し得る。
(3) Solution treatment and hot working are industrially carried out in an oxidizing atmosphere in the air, but it is difficult to prevent surface oxidation or internal oxidation near the surface at that time. But,
According to the present invention, it is possible to effectively prevent oxidation simply by setting the mold outlet portion in a non-oxidizing atmosphere. Therefore, when trying to obtain a thin wire conductor or the like according to the present invention, it can contribute to a remarkable improvement in wire drawing workability.

【図面の簡単な説明】[Brief description of drawings]

第1図は、加熱鋳型を用いた連続鋳造法を模式的に示す
図である。第2図は、従来の横型連続鋳造法を模式的に
示す図である。 図において、1は鋳型、1aは鋳型出口部、2はヒータ、
3は溶湯、4は冷却手段、5はヒータ、6は冷却手段を
示す。
FIG. 1 is a diagram schematically showing a continuous casting method using a heating mold. FIG. 2 is a diagram schematically showing a conventional horizontal continuous casting method. In the figure, 1 is a mold, 1a is a mold outlet, 2 is a heater,
Reference numeral 3 is a molten metal, 4 is a cooling means, 5 is a heater, and 6 is a cooling means.

フロントページの続き (72)発明者 澤田 和夫 大阪府大阪市此花区島屋1丁目1番3号 住友電気工業株式会社大阪製作所内 (56)参考文献 特公 昭55−46265(JP,B2)Front Page Continuation (72) Inventor Kazuo Sawada 1-3-3 Shimaya, Konohana-ku, Osaka City, Osaka Prefecture Sumitomo Electric Industries, Ltd. Osaka Works (56) References JP-B-55-46265 (JP, B2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Crを0.1〜1.2%またはZrを0.05〜0.5%含
有する銅合金を、加熱鋳型を用いた連続鋳造法により鋳
造し、こうして得られた鋳塊を冷間もしくは温間におい
て50%以上の加工度で加工した後、350〜700℃にて加熱
処理することを特徴とする、銅合金部材の製造方法。
1. A copper alloy containing 0.1 to 1.2% of Cr or 0.05 to 0.5% of Zr is cast by a continuous casting method using a heating mold, and the ingot thus obtained is cold or warm to 50%. %, And then heat-treated at 350 to 700 ° C., the method for producing a copper alloy member.
JP61101479A 1986-04-30 1986-04-30 Method for manufacturing copper alloy member Expired - Lifetime JPH08956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61101479A JPH08956B2 (en) 1986-04-30 1986-04-30 Method for manufacturing copper alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61101479A JPH08956B2 (en) 1986-04-30 1986-04-30 Method for manufacturing copper alloy member

Publications (2)

Publication Number Publication Date
JPS62256952A JPS62256952A (en) 1987-11-09
JPH08956B2 true JPH08956B2 (en) 1996-01-10

Family

ID=14301855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61101479A Expired - Lifetime JPH08956B2 (en) 1986-04-30 1986-04-30 Method for manufacturing copper alloy member

Country Status (1)

Country Link
JP (1) JPH08956B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093310A1 (en) 2010-01-26 2011-08-04 三菱マテリアル株式会社 Process for producing copper alloy wire containing active element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4904455B2 (en) * 2004-09-21 2012-03-28 Dowaメタルテック株式会社 Copper alloy and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546265A (en) * 1978-09-28 1980-03-31 Furukawa Battery Co Ltd:The Manufacturing method of battery plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093310A1 (en) 2010-01-26 2011-08-04 三菱マテリアル株式会社 Process for producing copper alloy wire containing active element

Also Published As

Publication number Publication date
JPS62256952A (en) 1987-11-09

Similar Documents

Publication Publication Date Title
US2842438A (en) Copper-zirconium alloys
JP5051647B2 (en) High-strength and high-conductivity Cu-Ag alloy wire and method for producing the same
JPS633936B2 (en)
JPH08956B2 (en) Method for manufacturing copper alloy member
JPS6328971B2 (en)
JP3759053B2 (en) Precipitation strengthened copper alloy trolley wire and manufacturing method thereof
JP3763234B2 (en) Method for producing high-strength, high-conductivity, high-heat-resistant copper-based alloy
JP2582073B2 (en) Method for producing high-strength heat-resistant aluminum alloy for electric conduction
JPH0125822B2 (en)
JPH08277447A (en) Production of conductive aluminum alloy wire
JP3768899B2 (en) Precipitation strengthened copper alloy trolley wire and manufacturing method thereof
JP2566877B2 (en) Method for producing Cu-Ag alloy conductor
JPH06240426A (en) Production of high strength copper alloy trolley wire
JP2835041B2 (en) Method of manufacturing heat-resistant aluminum alloy conductive wire
JP2932726B2 (en) Manufacturing method of copper alloy wire
JPH11350093A (en) Manufacture of heat resistant aluminum alloy conducting wire
JP2570559B2 (en) Manufacturing method of copper alloy trolley wire and suspension wire
JP2500143B2 (en) Copper alloy member with both conductivity and strength
JPH03271351A (en) Heat treatment for corson alloy
JPH1143750A (en) Production of silver alloy
JP2530657B2 (en) Copper alloy and method for producing the same
JPH07300658A (en) Production of trolley line excellent in wear resistance
JPH0215625B2 (en)
JP4019892B2 (en) Manufacturing method of electrode wire for wire electric discharge machining and electrode wire for wire electric discharge machining manufactured using the manufacturing method
JP2869859B2 (en) High strength conductive Cr-containing copper alloy and method for producing the same