JPH10216905A - Method for continuously casting active element-containing copper alloy - Google Patents

Method for continuously casting active element-containing copper alloy

Info

Publication number
JPH10216905A
JPH10216905A JP2260497A JP2260497A JPH10216905A JP H10216905 A JPH10216905 A JP H10216905A JP 2260497 A JP2260497 A JP 2260497A JP 2260497 A JP2260497 A JP 2260497A JP H10216905 A JPH10216905 A JP H10216905A
Authority
JP
Japan
Prior art keywords
active element
copper alloy
molten
gutter
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2260497A
Other languages
Japanese (ja)
Inventor
Fumihiro Hosokawa
文広 細川
Koichi Yoshida
浩一 吉田
Koichi Ohara
弘一 尾原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2260497A priority Critical patent/JPH10216905A/en
Publication of JPH10216905A publication Critical patent/JPH10216905A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To add the active elements of Ti, Zr, Cr, Al, etc., in high yield and to obtain an ingot having high quality. SOLUTION: This casting method is constituted so as to flow molten copper 10 of low oxygen tapped from a melting so as to flow molten a trough 30, continuously add the active element 32 at a prescribed position in the trough 30 and to flow the molten copper alloy 11 after adding the active element 32 into a mold 50 through a tundish 40 to execute the continuous casting. In such a case, at least the surrounding of the molten copper alloy 11 after adding the active element is made to an Ar gas atmosphere. Therefore, since the surrounding of the molten copper alloy after adding the active element into the molten low oxygen copper, is made to the Ar gas atmosphere having non- activity with the active element, the adding yield of the active element is improved, and since oxide and nitride are not generated, the quality of the ingot is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Ti、Zr、C
r、Alなどの活性元素を高歩留りで添加でき、かつ高
品質の鋳塊が得られる活性元素含有銅合金の連続鋳造方
法に関する。
TECHNICAL FIELD The present invention relates to Ti, Zr, C
The present invention relates to a continuous casting method of an active element-containing copper alloy which can add an active element such as r or Al at a high yield and can obtain a high quality ingot.

【0002】[0002]

【従来の技術】銅は電気・熱伝導性に優れるため、リー
ドフレーム材、端子材、コネクタ材などのエレクトロニ
クス分野の基礎材料に多用されている。近年、LSIの
高密度化、実装部品の軽量化などの要請から、前記基礎
材料に対し、高強度、高導電性の要求が高まり、それに
応じて、銅合金の合金元素としてTi、Zr、Cr、A
l、Mg、Ca、Si、Ceなどの活性元素が用いられ
るようになってきた。従来、このような活性元素は、不
活性ガス雰囲気とした溶解炉または保持炉の銅溶湯中に
添加されていたが、溶湯中の酸素による酸化ロスが多
く、また生成する酸化物が鋳塊内に混入して鋳塊品質が
悪化するという問題があった。
2. Description of the Related Art Copper, which has excellent electrical and thermal conductivity, is widely used as a basic material in the electronics field such as lead frame materials, terminal materials and connector materials. In recent years, demands for higher density of LSIs and weight reduction of mounted parts have increased the demand for high strength and high conductivity for the basic materials. Accordingly, Ti, Zr, and Cr have been used as alloying elements for copper alloys. , A
Active elements such as 1, Mg, Ca, Si, and Ce have come to be used. Conventionally, such an active element has been added to the molten copper in a melting furnace or a holding furnace in an inert gas atmosphere. However, the oxidation loss due to oxygen in the molten metal is large, and the generated oxide is contained in the ingot. To deteriorate the quality of the ingot.

【0003】[0003]

【発明が解決しようとする課題】そこで、溶解炉、保持
炉、樋、タンディッシュ、鋳型などをCO+N2 の還元
性ガス雰囲気にして銅溶湯中の酸素量を低減して添加す
る方法が考えられたが、この方法では活性元素が雰囲気
中のCOガスを還元して酸化物となり、またN2ガスと
反応して窒化物となるため、合金元素の添加歩留りが低
下し、また前記酸化物や窒化物は鋳塊に混入して鋳塊欠
陥の原因になるという問題があった。ここで、活性元素
をArガス噴射とともに溶湯中に添加する方法がある
が、銅溶湯よりも比重の軽い活性元素では、添加後、未
溶解の元素が溶湯上に浮き、雰囲気ガスと反応してしま
い、効果がない。本発明は、活性元素が高歩留りで添加
され、しかも高品質の鋳塊が得られる活性元素含有銅合
金の連続鋳造方法を提供することを目的とする。
In view of the above, a method has been considered in which a melting furnace, a holding furnace, a gutter, a tundish, a mold, and the like are added in a CO + N 2 reducing gas atmosphere to reduce the amount of oxygen in the molten copper. However, in this method, the active element reduces the CO gas in the atmosphere to an oxide, and reacts with the N 2 gas to form a nitride, so that the yield of alloying elements decreases, and There has been a problem that the nitride is mixed into the ingot and causes an ingot defect. Here, there is a method in which the active element is added into the molten metal together with the Ar gas injection. In the case of an active element having a specific gravity lower than that of the molten copper, the undissolved element floats on the molten metal and reacts with the atmosphere gas after the addition. It has no effect. An object of the present invention is to provide a continuous casting method of an active element-containing copper alloy in which an active element is added at a high yield and a high-quality ingot is obtained.

【0004】[0004]

【課題を解決するための手段】請求項1記載の発明は、
溶解炉から出湯される低酸素の銅溶湯を樋に移送し、前
記樋の所定箇所で活性元素を連続的に添加し、前記活性
元素添加後の銅合金溶湯をタンディッシュを介して鋳型
に移送して連続鋳造する方法において、少なくとも活性
元素添加後の銅合金溶湯周囲をArガス雰囲気にするこ
とを特徴とする活性元素含有銅合金の連続鋳造方法であ
る。
According to the first aspect of the present invention,
The low-oxygen copper melt discharged from the melting furnace is transferred to a gutter, an active element is continuously added at a predetermined location of the gutter, and the copper alloy melt after the addition of the active element is transferred to a mold via a tundish. And continuously casting an active element-containing copper alloy, wherein at least the periphery of the copper alloy melt after the addition of the active element is set in an Ar gas atmosphere.

【0005】請求項2記載の発明は、樋の所定箇所に雰
囲気分離堰を設け、その下流側(タンディッシュ側)で
活性元素を添加することを特徴とする請求項1記載の活
性元素含有銅合金の連続鋳造方法である。
According to a second aspect of the present invention, there is provided an active element-containing copper according to the first aspect, wherein an atmosphere separating weir is provided at a predetermined location of the gutter, and an active element is added at a downstream side (a tundish side). This is a continuous casting method for alloys.

【0006】[0006]

【発明の実施の形態】本発明において、活性元素を低酸
素の銅溶湯に添加する理由は、銅溶湯中の酸素に消費さ
れる活性元素の量を少なくし、また鋳塊欠陥の原因にな
る酸化物の生成量を減らすためである。ここで、低酸素
の銅溶湯とは、銅溶湯中の酸素量が十数PPM以下、特
には数PPM以下が望ましい。このような低酸素銅は溶
解炉、保持炉、および樋の活性元素添加前の銅溶湯周囲
を還元性ガス雰囲気にすることにより得られる。ここ
で、還元性ガスとは、COガスに窒素ガス、Arガスな
どの不活性ガスを混合したガスなどで、銅溶湯中の酸素
を除去し得るガスであれば任意である。本発明におい
て、活性元素は粒状にして添加するのが経済的である
が、線状など他の形状にして添加しても差し支えない。
また、活性元素以外の元素は、溶解炉または保持炉で添
加しておいても良いし、活性元素と一緒に添加しても良
い。本発明において、活性元素添加後の銅溶湯周囲をA
rガス雰囲気にする理由は、活性元素はArとは反応せ
ず、従って活性元素の添加歩留りの低下および反応物の
生成を抑制できるためである。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the reason for adding an active element to a low-oxygen copper melt is to reduce the amount of the active element consumed by oxygen in the copper melt and cause ingot defects. This is for reducing the amount of oxide generated. Here, the low-oxygen copper melt preferably has an oxygen content in the copper melt of not less than ten PPM, particularly preferably not more than several PPM. Such low-oxygen copper is obtained by setting the surroundings of the molten copper before adding the active element in the melting furnace, the holding furnace, and the gutter to a reducing gas atmosphere. Here, the reducing gas is a gas obtained by mixing an inert gas such as a nitrogen gas and an Ar gas with a CO gas, and may be any gas that can remove oxygen from the molten copper. In the present invention, it is economical to add the active element in the form of granules, but the active element may be added in another form such as a linear form.
Elements other than the active element may be added in a melting furnace or a holding furnace, or may be added together with the active element. In the present invention, A around the copper melt after adding the active element
The reason for using the r gas atmosphere is that the active element does not react with Ar, and therefore, it is possible to suppress a decrease in the yield of addition of the active element and generation of a reactant.

【0007】以下に本発明を図を参照して具体的に説明
する。図1は本発明の連続鋳造方法の例を示す側面説明
図である。溶解炉20にて溶解された銅溶湯10を、保持炉
21で保持したのち、筒状の樋30に移送し、樋30の途中に
取付けられた合金元素添加装置31から粒状の活性元素32
を添加し、次いで活性元素32が添加された銅合金溶湯11
をタンディッシュ40に移送して整流したのち、鋳型50に
てビレット60に連続鋳造する。合金元素添加装置31の上
流側(保持炉側)に板状の雰囲気分離堰(以下、分離堰
と略記する)33が樋内壁に密着して設けられていて、分
離堰33より上流側のCO+N2 ガスと下流側のArガス
とが混じらないようになっている。分離堰33の銅(銅合
金)溶湯10,11 に没する下部には溶湯通路34が開けてあ
る。前記Arガスはタンディッシュ40の通孔41から導入
され、合金元素添加装置31の上方から放出される。な
お、図で12は原料である。CO+N2 ガスの導入孔およ
び排気孔は省略した。
Hereinafter, the present invention will be specifically described with reference to the drawings. FIG. 1 is an explanatory side view showing an example of the continuous casting method of the present invention. The molten copper 10 melted in the melting furnace 20 is held in a holding furnace.
After being held at 21, it is transferred to a cylindrical gutter 30, and a granular active element 32 is fed from an alloy element addition device 31 attached in the middle of the gutter 30.
, And then the molten copper alloy 11 to which the active element 32 has been added.
Is transferred to a tundish 40 and straightened, and then continuously cast into a billet 60 by a mold 50. At the upstream side (holding furnace side) of the alloy element addition device 31, a plate-shaped atmosphere separation weir (hereinafter, abbreviated as separation weir) 33 is provided in close contact with the inner wall of the gutter, and CO + N upstream of the separation weir 33 is provided. The two gases and the Ar gas on the downstream side are not mixed. A molten metal passage 34 is opened in a lower part of the separating weir 33 immersed in the molten copper (copper alloy) 10,11. The Ar gas is introduced from the through hole 41 of the tundish 40 and is discharged from above the alloying element adding device 31. In the figure, reference numeral 12 denotes a raw material. The CO + N 2 gas inlet and exhaust holes are omitted.

【0008】[0008]

【実施例】以下に本発明を実施例により詳細に説明す
る。 (実施例1)図1に示した連続鋳造方法によりCu-0.3
wt%Ti合金ビレット(250mmφ、重量4トン)を連
続鋳造した。分離堰33の溶湯通路34に木製コルク(図示
せず)を配しておき、分離堰33より上流側をCO+CO
2 +N2 ガス雰囲気に、下流側をArガス雰囲気にし
た。この状態で保持炉21から1300℃の銅溶湯10を樋30に
移送した。前記木製コルクは銅溶湯の熱により速やかに
焼失して溶湯通路34が開通し、開通と同時にTiの球状
粒(直径約 0.5mm)を合金元素添加装置31から連続的に
添加し、Ti添加後の銅合金溶湯11をタンディッシュ40
を介して鋳型50内に注入してビレット60に連続鋳造し
た。なお、分離堰33前の雰囲気は2通りに変えた。
The present invention will be described below in detail with reference to examples. (Example 1) Cu-0.3 was obtained by the continuous casting method shown in FIG.
A wt% Ti alloy billet (250 mmφ, weight 4 tons) was continuously cast. A wooden cork (not shown) is arranged in the molten metal passageway 34 of the separation weir 33, and the upstream of the separation weir 33 is CO + CO
An atmosphere of 2 + N 2 gas was used, and an atmosphere of Ar gas was used on the downstream side. In this state, the molten copper 10 at 1300 ° C. was transferred from the holding furnace 21 to the gutter 30. The wooden cork is quickly burned down by the heat of the molten copper, and the molten metal passage 34 is opened. At the same time as the opening, spherical particles of Ti (about 0.5 mm in diameter) are continuously added from the alloying element adding device 31. Copper alloy melt 11 in tundish 40
, And was continuously cast into a billet 60. The atmosphere before the separation weir 33 was changed in two ways.

【0009】(比較例1)実施例1において、樋に分離
堰を配さず、溶解炉20から鋳型50に到るまでをCO+C
2 +N2 ガス雰囲気にした他は、実施例1と同じ方法
によりCu-0.3wt%Ti合金ビレットを連続鋳造した。
(Comparative Example 1) In Example 1, the separation from the melting furnace 20 to the mold 50 was carried out with CO + C
A Cu-0.3 wt% Ti alloy billet was continuously cast in the same manner as in Example 1 except that the atmosphere was changed to an O 2 + N 2 gas atmosphere.

【0010】(比較例2)実施例1において、樋に分離
堰を配さず、溶解炉20内をCO+CO2 +N2 ガス雰囲
気とし、保持炉から鋳型50に到るまでをArガス雰囲気
にした他は、実施例1と同じ方法によりCu-0.3wt%T
i合金ビレットを連続鋳造した。
Comparative Example 2 In Example 1, the inside of the melting furnace 20 was set to a CO + CO 2 + N 2 gas atmosphere without a separation weir on the gutter, and the Ar gas atmosphere was used from the holding furnace to the mold 50. Otherwise, the same method as in Example 1 was used to prepare Cu-0.3wt% T
An i-alloy billet was continuously cast.

【0011】このようにして得られた各々のビレットに
ついてTiの添加歩留りと鋳塊欠陥の個数を調査した。
結果を表1に示す。
The yield of Ti addition and the number of ingot defects were investigated for each of the billets thus obtained.
Table 1 shows the results.

【0012】[0012]

【表1】 (注)*体積百分率。#溶解炉内はCO:CO2:N2(20:5:75)の還元性雰囲気。[Table 1] (Note) * Volume percentage. #Reducing atmosphere of CO: CO 2 : N 2 (20: 5: 75) in the melting furnace.

【0013】表1より明らかなように、本発明例のNo.
1,2はいずれもTiの添加歩留りが高く、したがって鋳
塊欠陥も少なかった。これに対し、比較例のNo.3は溶解
炉から鋳型に到るまでがCOを含む還元性ガス雰囲気
で、Tiの多くが酸化物または窒化物になったため、T
iの添加歩留りが低下し、また前記酸化物または窒化物
がビレット中に混入して鋳塊欠陥が多数発生した。また
比較例のNo.4は保持炉以降の雰囲気がArガスで溶湯中
の酸素がやや多くなったため、Tiがかなりの量酸化物
となりTiの添加歩留りが低下し、鋳塊欠陥が多数発生
した。
As is clear from Table 1, No. 1 of the present invention example
In each of Examples 1 and 2, the yield of addition of Ti was high, and therefore, ingot defects were small. On the other hand, No. 3 of the comparative example had a reducing gas atmosphere containing CO from the melting furnace to the mold, and most of the Ti became oxide or nitride.
The yield of addition of i decreased, and the oxides or nitrides were mixed in the billet to generate many ingot defects. In Comparative Example No. 4, since the atmosphere after the holding furnace was Ar gas and the oxygen in the molten metal was slightly increased, Ti became a considerable amount of oxide, the Ti addition yield decreased, and many ingot defects occurred. .

【0014】[0014]

【発明の効果】以上に述べたように、本発明の連続鋳造
方法では、溶湯移送路となる樋中の低酸素銅溶湯に活性
元素を添加したあとの銅合金溶湯周囲を、活性元素と非
反応性のArガス雰囲気にするので活性元素の添加歩留
りが向上し、また酸化物や窒化物が生成しないので鋳塊
品質も向上する。前記低酸素銅溶湯は活性元素添加前の
銅溶湯周囲をCOを含む還元性ガス雰囲気にすることに
より容易に得られる。前記還元性ガスとArガスとは、
樋の所定箇所に分離堰を設けることにより混合を防止で
きる。依って、工業上顕著な効果を奏する。
As described above, in the continuous casting method according to the present invention, the active element is added to the low-oxygen copper molten metal in the gutter serving as the molten metal transfer path, after the active element is added thereto, and the active element is not mixed with the active element. Since a reactive Ar gas atmosphere is used, the yield of addition of the active element is improved, and the quality of the ingot is also improved because no oxide or nitride is generated. The low oxygen copper melt can be easily obtained by setting the surroundings of the copper melt before adding the active element to a reducing gas atmosphere containing CO. The reducing gas and the Ar gas are
Mixing can be prevented by providing a separation weir at a predetermined location in the gutter. Therefore, an industrially remarkable effect is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の連続鋳造方法の例を示す説明図であ
る。
FIG. 1 is an explanatory view showing an example of a continuous casting method of the present invention.

【符号の説明】[Explanation of symbols]

10 銅溶湯 11 銅合金溶湯 12 原料 20 溶解炉 21 保持炉 30 樋 31 合金元素添加装置 32 活性元素 33 雰囲気分離堰 34 雰囲気分離堰に開けられた溶湯通路 40 タンディッシュ 41 Arガス導入用通孔 50 鋳型 60 ビレット 10 Molten copper 11 Molten copper alloy 12 Raw material 20 Melting furnace 21 Holding furnace 30 Gutter 31 Alloy element addition device 32 Active element 33 Atmosphere separation weir 34 Molten passage opened in atmosphere separation weir 40 Tundish 41 Ar gas introduction hole 50 Mold 60 billet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 溶解炉から出湯される低酸素の銅溶湯を
樋に移送し、前記樋の所定箇所で活性元素を連続的に添
加し、前記活性元素添加後の銅合金溶湯をタンディッシ
ュを介して鋳型に移送して連続鋳造する方法において、
少なくとも活性元素添加後の銅合金溶湯周囲をArガス
雰囲気にすることを特徴とする活性元素含有銅合金の連
続鋳造方法。
1. A low-oxygen copper melt discharged from a melting furnace is transferred to a gutter, an active element is continuously added at a predetermined position of the gutter, and the copper alloy melt after the addition of the active element is tundished. In the method of continuous casting by transferring to the mold through
A continuous casting method for an active element-containing copper alloy, characterized in that at least the periphery of the copper alloy melt after the addition of the active element is in an Ar gas atmosphere.
【請求項2】 樋の所定箇所に雰囲気分離堰を設け、そ
の下流側(タンディッシュ側)で活性元素を添加するこ
とを特徴とする請求項1記載の活性元素含有銅合金の連
続鋳造方法。
2. The continuous casting method for an active element-containing copper alloy according to claim 1, wherein an atmosphere separating weir is provided at a predetermined location of the gutter, and an active element is added downstream (tundish side) thereof.
JP2260497A 1997-02-05 1997-02-05 Method for continuously casting active element-containing copper alloy Pending JPH10216905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2260497A JPH10216905A (en) 1997-02-05 1997-02-05 Method for continuously casting active element-containing copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2260497A JPH10216905A (en) 1997-02-05 1997-02-05 Method for continuously casting active element-containing copper alloy

Publications (1)

Publication Number Publication Date
JPH10216905A true JPH10216905A (en) 1998-08-18

Family

ID=12087453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2260497A Pending JPH10216905A (en) 1997-02-05 1997-02-05 Method for continuously casting active element-containing copper alloy

Country Status (1)

Country Link
JP (1) JPH10216905A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341268A (en) * 2005-06-08 2006-12-21 Mitsubishi Materials Corp Apparatus and method for continuously manufacturing copper alloy
WO2011093310A1 (en) * 2010-01-26 2011-08-04 三菱マテリアル株式会社 Process for producing copper alloy wire containing active element
JP2021146391A (en) * 2020-03-23 2021-09-27 日立金属株式会社 Alloy element additive, copper alloy material production device and production method for copper alloy material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006341268A (en) * 2005-06-08 2006-12-21 Mitsubishi Materials Corp Apparatus and method for continuously manufacturing copper alloy
WO2011093310A1 (en) * 2010-01-26 2011-08-04 三菱マテリアル株式会社 Process for producing copper alloy wire containing active element
CN102686337A (en) * 2010-01-26 2012-09-19 三菱综合材料株式会社 Process for producing copper alloy wire containing active element
JP5613907B2 (en) * 2010-01-26 2014-10-29 三菱マテリアル株式会社 Method for producing active element-containing copper alloy wire
CN102686337B (en) * 2010-01-26 2015-06-17 三菱综合材料株式会社 Process for producing copper alloy wire containing active element
JP2021146391A (en) * 2020-03-23 2021-09-27 日立金属株式会社 Alloy element additive, copper alloy material production device and production method for copper alloy material

Similar Documents

Publication Publication Date Title
US5037471A (en) Method for manufacturing oxygen-free copper
JPH10216905A (en) Method for continuously casting active element-containing copper alloy
JPH1192837A (en) Refinement of copper alloy
JP3235237B2 (en) Production method of P-containing low oxygen copper using shaft furnace
JP4182429B2 (en) Method for producing Cr-Zr-Al based copper alloy wire material
FI88730B (en) PROCEDURE FOR THE FRAMEWORK OF FRAMSTAELLNING AV EN KOPPARBASERAD LEGERING
JP2000317580A (en) Method for casting copper alloy
CN107760902A (en) A kind of method of refining of aluminium silicon systems cast aluminium alloy gold
CN106350696B (en) Copper alloy material and method for producing same
JP2006312174A (en) Continuous casting method for molten metal
JPH0995743A (en) Production of smelted metallic material, smelted metallic material and electron beam melting equipment
RU2087560C1 (en) Method of refining of copper alloys
CN218192451U (en) Production device of high-purity oxygen-free copper ingot blank
JP2002030358A (en) Method and apparatus for producing low oxygen copper cast block
JP7491941B2 (en) Steel ingot manufacturing method
US20060260778A1 (en) Method for adding boron to metal alloys
KR100573781B1 (en) Flux for the Melting Treatment Method of Copper and Copper Alloy
JPH04120225A (en) Manufacture of ti-al series alloy
JP3375651B2 (en) Continuous casting mold powder for copper alloy
JP2002263808A (en) Method for cleaning molten steel in tundish
US4735773A (en) Inertial mixing method for mixing together molten metal streams
EP3603850A1 (en) Nozzle, casting device, and method for manufacturing cast material
JPH04147755A (en) Method for adding active metal to molten copper
JPH07197144A (en) Production of cu or cu alloy casting product
JP2001259799A (en) Method for continuously casting copper and copper alloy