JP5611720B2 - Seamless belt manufacturing apparatus and seamless belt manufacturing method - Google Patents

Seamless belt manufacturing apparatus and seamless belt manufacturing method Download PDF

Info

Publication number
JP5611720B2
JP5611720B2 JP2010182530A JP2010182530A JP5611720B2 JP 5611720 B2 JP5611720 B2 JP 5611720B2 JP 2010182530 A JP2010182530 A JP 2010182530A JP 2010182530 A JP2010182530 A JP 2010182530A JP 5611720 B2 JP5611720 B2 JP 5611720B2
Authority
JP
Japan
Prior art keywords
cylindrical mold
fixing means
seamless belt
pair
fixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010182530A
Other languages
Japanese (ja)
Other versions
JP2012040729A (en
Inventor
笠置 智之
智之 笠置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2010182530A priority Critical patent/JP5611720B2/en
Publication of JP2012040729A publication Critical patent/JP2012040729A/en
Application granted granted Critical
Publication of JP5611720B2 publication Critical patent/JP5611720B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Electrophotography Configuration And Component (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Description

本発明は、円筒状金型の内面に樹脂溶液が展開された当該円筒状金型を回転させて塗膜を均一化するシームレスベルトの製造装置、および、このシームレスベルトの製造装置を用いて、円筒状金型の内面に樹脂溶液が展開された当該円筒状金型を回転させて塗膜を均一化する工程と、円筒状金型の内面の塗膜を加熱硬化する工程とを有するシームレスベルトの製造方法に関する。   The present invention uses a seamless belt manufacturing apparatus that rotates the cylindrical mold in which a resin solution is developed on the inner surface of the cylindrical mold to make the coating film uniform, and the seamless belt manufacturing apparatus. A seamless belt comprising a step of rotating a cylindrical mold in which a resin solution is spread on the inner surface of the cylindrical mold to uniformize the coating film, and a step of heat-curing the coating film on the inner surface of the cylindrical mold. It relates to the manufacturing method.

電子写真複写機、プリンタ、ファクシミリ、これらの複合機等の画像形成装置に用いられる転写搬送ベルト、中間転写ベルト、転写定着ベルト、感光体ベルトには、高速化・高画質化が要求されるため、これら機能性ベルトにはシームレスベルトが使用されている。このシームレスベルトの製造は、例えば、樹脂の溶液を円筒状金型の内面に展開した後、円筒状金型を低速回転させながらレベリングさせ、乾燥皮膜化することが一般的に行われている。   Transfer transfer belts, intermediate transfer belts, transfer fixing belts, and photoreceptor belts used in image forming apparatuses such as electrophotographic copying machines, printers, facsimiles, and multi-function machines are required to have high speed and high image quality. These functional belts are seamless belts. The seamless belt is generally manufactured, for example, by spreading a resin solution on the inner surface of a cylindrical mold and then leveling the cylindrical mold while rotating at a low speed to form a dry film.

また、シームレスベルトの製造装置は、筒状金型の内面に樹脂溶液を展開した後、金型の一方端部を回転ホルダで片持ちにして回転させる機構(遠心成形機構)が知られている。また、他の製造装置として、筒状金型の両端部のそれぞれ着脱自在に嵌め合わされる一対の蓋を金型の外周に設け、この蓋と接触させて筒状金型を回転させる複数の駆動ローラを有し、駆動ローラを回転させて、これと当接する蓋および筒状金型を回転させる機構や、単に筒状金型の外周面と複数の駆動ローラを接触担持させ、筒状金型を回転させる機構が知られている(特許文献1,2参照)。   In addition, as a seamless belt manufacturing apparatus, a mechanism (centrifugal molding mechanism) is known in which a resin solution is spread on the inner surface of a cylindrical mold, and then one end of the mold is cantilevered by a rotating holder and rotated. . Further, as another manufacturing apparatus, a plurality of drives for rotating a cylindrical mold by providing a pair of lids that are detachably fitted to both ends of the cylindrical mold on the outer periphery of the mold. A mechanism having a roller and rotating a drive roller to rotate a lid and a cylindrical mold that are in contact with the roller, or simply contacting the outer peripheral surface of the cylindrical mold with a plurality of drive rollers to form a cylindrical mold There is known a mechanism for rotating the lens (see Patent Documents 1 and 2).

特許第3922840号Japanese Patent No. 3922840 特開2007‐1262号JP2007-1262

しかしながら、上記特許文献1のシームレスベルトの製造装置や他の製造装置等には以下の問題があった。遠心成形の精度を良くするため金型内周面の精度に加え外周面の精度も必要になる。また外周面の精度に影響され1000rpm以上の高速回転では金型の回転時にビビリが生じ、シームレスベルトの厚さ精度ばらつきや発塵が発生するという問題があった。   However, the seamless belt manufacturing apparatus and other manufacturing apparatuses of Patent Document 1 have the following problems. In order to improve the accuracy of centrifugal molding, the accuracy of the outer peripheral surface is required in addition to the accuracy of the inner peripheral surface of the mold. Further, there is a problem that chattering occurs when the mold rotates at high speed of 1000 rpm or more due to the accuracy of the outer peripheral surface, resulting in variations in the thickness accuracy of the seamless belt and dust generation.

このため、1000rpm以上の高速回転が行えず遠心力により展開させる樹脂溶液は粘度を下げる必要があり溶剤の使用量が多くなっていた。   For this reason, a resin solution that cannot be rotated at a high speed of 1000 rpm or more and developed by centrifugal force has to have a reduced viscosity, and the amount of solvent used has increased.

また、樹脂溶液粘度が低いものに対しては、遠心成形とともに加熱を行う場合に、加熱による溶液粘度低下が生じ、樹脂溶液が金型内周面に密着せずに流れ落ちる現象が生じやすく、溶剤残存量が下がるまでの間は一定の遠心力をかけ続ける乾燥工程も必要となる。   In addition, when the resin solution viscosity is low, when the heating is performed together with the centrifugal molding, the solution viscosity is lowered by the heating, and the resin solution is likely to flow down without being in close contact with the inner peripheral surface of the mold. A drying process in which a constant centrifugal force is continuously applied until the remaining amount decreases is also required.

また、上記特許文献1の製造装置では、駆動ローラに金型外面を接触担持させる場合、加熱による金型の寸法変化、使用されるスプロケットや駆動ローラの寸法磨耗等により、金型の上下動や微小なスリップを招くこととなる。これが原因で、厚さ精度のばらつきや金型の外周面と駆動ローラの接触に起因する発塵が出やすく良品率の低下が起こりやすい。   Further, in the manufacturing apparatus of Patent Document 1, when the outer surface of the mold is brought into contact with and supported by the drive roller, the vertical movement of the mold is caused by the dimensional change of the mold due to heating, the dimensional wear of the used sprocket and the drive roller, etc. A minute slip will be caused. Due to this, dust generation due to variations in thickness accuracy and contact between the outer peripheral surface of the mold and the driving roller is likely to occur, and the yield rate is likely to decrease.

本発明は、上記の問題に鑑みてなされたものであって、その目的は、シームレスベルトの厚さ精度のばらつきを抑制できるシームレスベルトの製造装置およびシームレスベルトの製造方法を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a seamless belt manufacturing apparatus and a seamless belt manufacturing method capable of suppressing variations in thickness accuracy of the seamless belt.

上記課題を解決するために、鋭意研究を重ねた結果、金型内に高粘度樹脂溶液を展開し、高速回転で短時間のうちにレベリング(均一化)させることが有効であり、さらに、塗膜の加熱硬化の際にはそれよりも低速回転で乾燥させる方法が有効であることを得た。   In order to solve the above problems, as a result of intensive research, it is effective to develop a high-viscosity resin solution in a mold and perform leveling (homogenization) in a short time with high-speed rotation. It was found that a method of drying at a lower speed than that was effective when the film was heat-cured.

本発明は、円筒状金型の内面に樹脂溶液が展開された当該円筒状金型を回転させて塗膜を均一化するシームレスベルトの製造装置であって、
前記円筒状金型の両端部を固定する、当該円筒状金型と同芯上に対向一対に配置される一対の固定手段と、
前記固定手段を前記円筒状金型端部に固定するように、当該円筒状金型の軸方向に進退可能に移動させる進退駆動手段と、
前記固定手段をその軸回りに回転させる回転駆動手段と、を有し、
前記円筒状金型の回転は、前記一対の固定手段で前記円筒状金型の両端部を固定し、当該固定手段を回転駆動手段で回転させて、当該円筒状金型を回転させることを特徴とする構成である。
The present invention is a seamless belt manufacturing apparatus for rotating a cylindrical mold in which a resin solution is spread on the inner surface of a cylindrical mold and uniformizing a coating film,
A pair of fixing means for fixing both ends of the cylindrical mold, and a pair of fixing means arranged on opposite sides on the same core as the cylindrical mold;
Advancing / retreating drive means for moving the advancing / retreating in the axial direction of the cylindrical mold so as to fix the fixing means to the end of the cylindrical mold;
Rotation driving means for rotating the fixing means around its axis,
The cylindrical mold is rotated by fixing both ends of the cylindrical mold with the pair of fixing means, rotating the fixing means with a rotation driving means, and rotating the cylindrical mold. The configuration is as follows.

「対向一対の固定手段」は、例えば対向一対のチャック手段が例示される。チャック手段として、例えば、同芯上に対向一対のチャックによりチャッキングできる円錐状コーンチャック、台錘状コーンチャック、内面が逆円錐状または台錘状のコーンチャック、円筒状金型端部を把持または挟持して固定する爪状のチャック等が挙げられる。上記の一対の各種コーンチャックの固定方法としは、円筒状金型の両端部を高圧力で挟みこんで固定する方法が例示される。   The “pair of opposing fixing means” is exemplified by a pair of opposing chucking means, for example. As a chuck means, for example, a conical cone chuck that can be chucked by a pair of opposed chucks on the same core, a trapezoid cone cone chuck, a cone cone having an inverted inner cone shape or a trapezoidal inner surface, and a cylindrical mold end grip Alternatively, a claw-like chuck that is sandwiched and fixed may be used. Examples of the method for fixing the pair of various cone chucks include a method in which both ends of a cylindrical mold are sandwiched and fixed at a high pressure.

一対の固定手段の一方は、回転駆動手段から伝達された回転作用によって、その軸周りに回転し、その他方の固定手段は、その軸周りに回転自在に構成される。進退駆動手段は、一方の固定手段で固定された端部とは異なる円筒状金型端部に対し、その他方の固定手段を円筒状金型端部に固定するように、円筒状金型の軸方向に進退可能に移動させるように構成できる。または一対の固定手段のそれぞれに対して進退駆動手段を設置し、それぞれの進退駆動手段が、それぞれの固定手段を移動させて円筒状金型端部を固定するように構成できる。   One of the pair of fixing means is rotated around its axis by the rotational action transmitted from the rotation driving means, and the other fixing means is configured to be rotatable around the axis. The advancing / retreating drive means is arranged so that the other fixing means is fixed to the cylindrical mold end with respect to the cylindrical mold end different from the end fixed by one fixing means. It can be configured to move in the axial direction so as to be able to advance and retract. Alternatively, the advancing / retreating driving means can be installed for each of the pair of fixing means, and each of the advancing / retreating driving means can be configured to move the respective fixing means to fix the cylindrical mold end.

この構成によって、円筒状金型の芯ぶれがなく高速回転を容易に行える。また、高粘度の樹脂溶液を用いても製造されるシームレスベルトの厚さ精度のばらつきを抑制できる。従来の特許文献1の製造装置等では、高粘度樹脂溶液を高速回転かつ短時間でレベリング(均一化)することができないが、本願発明はそれが可能である。すなわち、本発明によれば、高粘度樹脂溶液を展開し高速回転で短時間のうちにレベリングすることができ、うねりやスジのない膜厚の均一な厚さ精度、表面精度を有する高精度管状体のシームレスベルトを容易に得ることができる。このようなベルトを電子写真用画像形成装置の定着ベルト、転写ベルト、中間転写ベルト、搬送ベルト、感光体ベルト等の機能性ベルト及びこれ等の基材として使用した場合、優れた寸法精度を有するため、定着性、転写性、搬送性等求められる機能を最大限満足した機能性ベルトとして有用である。   With this configuration, the cylindrical mold does not run out and can be rotated easily at high speed. Moreover, even if a highly viscous resin solution is used, variation in the thickness accuracy of the seamless belt manufactured can be suppressed. The conventional manufacturing apparatus of Patent Document 1 cannot level (homogenize) a high-viscosity resin solution at high speed and in a short time, but the present invention can do so. That is, according to the present invention, it is possible to develop a high viscosity resin solution and level it in a short time with high-speed rotation, and a high-precision tube having uniform thickness accuracy and surface accuracy without waviness and streaks. The body seamless belt can be easily obtained. When such a belt is used as a functional belt such as a fixing belt, a transfer belt, an intermediate transfer belt, a conveyance belt, and a photosensitive belt of an electrophotographic image forming apparatus and a base material thereof, it has excellent dimensional accuracy. Therefore, it is useful as a functional belt that satisfies the required functions such as fixability, transferability, and transportability.

上記発明の一実施形態として、円筒状金型と一対の固定手段とが、同芯上に対向一対に配置調整する昇降手段を有する構成がある。昇降手段は、円筒状金型を載置するための昇降台と、昇降台を上下に昇降させる昇降駆動手段で構成される。この昇降台は、その設置面(水平)に対し平行(水平)に設置され、いずれの昇降位置においても水平が維持されていることが好ましい。本発明において「水平」は、厳密な意味での水平に限定されず、シームレスベルトの製造において問題のない範囲であれば、水平軸から傾いていてもよい。昇降台が水平であれば、それに載置される円筒状金型も水平を維持することになる。そして、固定手段と円筒状金型とが同芯上(それら中心軸が一致)にあり、固定手段で固定された後の円筒状金型も水平を維持することが好ましい。   As one embodiment of the present invention, there is a configuration in which the cylindrical mold and the pair of fixing means have lifting means for adjusting the arrangement of the opposing pair on the same core. The lifting / lowering means includes a lifting / lowering base for placing the cylindrical mold and a lifting / lowering driving means for moving the lifting / lowering base up and down. This lifting platform is preferably installed parallel (horizontal) to its installation surface (horizontal), and is maintained horizontal at any lifting position. In the present invention, “horizontal” is not limited to the horizontal in the strict sense, and may be inclined from the horizontal axis as long as there is no problem in the production of the seamless belt. If the lifting platform is horizontal, the cylindrical mold placed on it is also kept horizontal. And it is preferable that the fixing means and the cylindrical mold are concentric (the central axes thereof coincide), and the cylindrical mold after being fixed by the fixing means is also kept horizontal.

また別実施形態として、昇降手段は、昇降台に載置された円筒状金型を移動させ、固定手段と同芯上になるようにし、次いで、円筒状金型の一方端部を一方の固定手段に固定するように、昇降台を同芯方向に移動させるように構成できる。   As another embodiment, the elevating means moves the cylindrical mold placed on the elevating platform so that it is concentric with the fixing means, and then fixes one end of the cylindrical mold to the other. The lifting platform can be configured to move concentrically so as to be fixed to the means.

上記発明の一実施形態として、円筒状金型と一対の固定手段とが、同芯上に対向一対に配置させるように昇降手段を制御し、当該円筒状金型の軸方向に当該固定手段を移動させ、当該固定手段を当該円筒状金型端部に固定するように進退駆動手段を制御する制御手段を有する構成がある。   As one embodiment of the present invention, the cylindrical mold and the pair of fixing means control the elevating means so that they are arranged in a confronting pair on the same core, and the fixing means is arranged in the axial direction of the cylindrical mold. There is a configuration having a control means for controlling the advancing / retreating drive means to move and fix the fixing means to the end of the cylindrical mold.

この構成によれば、手動で昇降手段、進退駆動手段を操作する必要がなく、円筒状金型を昇降手段の昇降台に設置した後は、昇降動作、固定手段の進退動作を自動化できる。さらに、制御手段は、回転駆動手段を制御して、固定手段の回転制御を自動化するように構成できる。
According to this configuration, it is not necessary to manually operate the elevating means and the advancing / retreating drive means, and after the cylindrical mold is installed on the elevating table of the elevating means, the elevating operation and the advancing / retreating operation of the fixing means can be automated. Further, the control means controls the rotation driving means, it can be configured to automate the rotation control of the solid Teite stage.

また、上記の制御手段の一実施形態として、制御手段は、昇降手段の昇降台の所定位置に設置された円筒状金型と、当該円筒状金型端部に固定された固定手段とが同芯上に固定配置されているか否かを、当該固定手段の進出移動距離に基づいて判断する判断部を有し、判断部が、円筒状金型と固定手段とが同芯上に固定配置されていると判断した場合に、回転駆動手段による固定手段の回転を開始可能にする構成がある。   As one embodiment of the above control means, the control means includes a cylindrical mold installed at a predetermined position on the lifting platform of the lifting means and a fixing means fixed to the end of the cylindrical mold. It has a judgment part which judges whether it is fixedly arranged on the core based on the advance movement distance of the fixing means, and the judgment part is fixedly arranged on the same core with the cylindrical mold and the fixing means. If it is determined that the rotation means is in rotation, the rotation driving means can start the rotation of the fixing means.

この構成によれば、円筒状金型と固定手段とが同芯上に固定されているか否かを判断した後に、回転駆動手段による固定手段の回転を開始可能に構成できる。それらが同芯上に無い場合に回転させた場合には、シームレスベルトを均一に展開できず、膜厚のバラツキが大きく不良率が高くなるため好ましくないからである。さらに、制御手段は、それらが同芯上に無い場合に警告の旨を通知する手段(警報ランプ、音等)を備える構成がある。また、制御手段は、それらが同芯上に固定されていれば、回転駆動手段を制御して、固定手段の回転制御を自動化するように構成できる。 According to this configuration, the rotation of the fixing unit by the rotation driving unit can be started after determining whether or not the cylindrical mold and the fixing unit are fixed on the same core. If they are rotated when they are not concentric, the seamless belt cannot be uniformly spread, and the film thickness variation is large and the defect rate is high, which is not preferable. Furthermore, the control means has a configuration including means (warning lamp, sound, etc.) for notifying the warning when they are not concentric. The control means may, if they if fixed on the core, by controlling the rotation drive means, can be configured to automate the rotation control of the solid Teite stage.

上記の本発明は、樹脂溶液がポリアミド酸溶液を主成分とする溶液であり、樹脂溶液粘度が50〜500Pa・sであって、塗膜の均一化の際における円筒状金型の回転速度を1000rpm〜4000rpmの範囲となるように回転駆動手段を制御する制御手段を有する構成がある。   In the present invention, the resin solution is a solution containing a polyamic acid solution as a main component, the resin solution has a viscosity of 50 to 500 Pa · s, and the rotational speed of the cylindrical mold during the uniform coating is determined. There exists a structure which has a control means which controls a rotation drive means so that it may become the range of 1000 rpm-4000 rpm.

この構成によって、樹脂溶液粘度が50〜500Pa・sの高粘度であっても、1000rpm〜4000rpmの範囲の高速回転で、塗膜の均一化を短時間で行うことができる。塗膜の均一化時間は、樹脂溶液粘度、回転数、円筒状金型サイズ、樹脂溶液の塗布量によって設定されるが、例えば、30秒〜1時間の範囲が例示される。   With this configuration, even if the resin solution viscosity is a high viscosity of 50 to 500 Pa · s, the coating film can be made uniform in a short time by high-speed rotation in the range of 1000 rpm to 4000 rpm. The homogenization time of the coating film is set according to the resin solution viscosity, the number of rotations, the cylindrical mold size, and the coating amount of the resin solution, and examples thereof include a range of 30 seconds to 1 hour.

また、シームレスベルトの製造装置は、展開した樹脂溶液の均一化処理の際に、円筒状金型外周面を加熱手段で加熱し、塗膜の加熱硬化処理を行う構成が例示される。また、展開した樹脂溶液の均一化処理の後の塗膜の加熱硬化処理の際に、円筒状金型を回転する構成が例示される。そして、上記の回転駆動手段を制御する制御手段の一実施形態として、塗膜の加熱硬化の際における円筒状金型の回転速度を、塗膜の均一化の際における円筒状金型の回転速度よりも遅くするように回転駆動手段を制御する構成がある。これによって、高粘度樹脂溶液を展開して高速回転で短時間のうちに均一化し、それよりも低速回転で塗膜を加熱硬化できるため、うねりやスジのない膜厚の均一な厚さ精度、表面精度を有する高精度管状体のシームレスベルトを好適に製造できる。   Further, the seamless belt manufacturing apparatus is exemplified by a configuration in which the outer peripheral surface of the cylindrical mold is heated by a heating unit and the coating film is heat-cured in the process of homogenizing the developed resin solution. Moreover, the structure which rotates a cylindrical metal mold in the case of the heat-hardening process of the coating film after the equalization process of the expand | deployed resin solution is illustrated. As one embodiment of the control means for controlling the rotation driving means, the rotational speed of the cylindrical mold when the coating film is heat-cured is the rotational speed of the cylindrical mold when the coating film is uniformized. There is a configuration in which the rotation driving means is controlled so as to be slower. As a result, a high viscosity resin solution can be developed and uniformized in a short time with high speed rotation, and the coating film can be heated and cured at a lower speed than that, so that the film thickness is uniform without waviness and streaks, A seamless belt of a high-precision tubular body having surface accuracy can be suitably manufactured.

また、他の発明のシームレスベルトの製造方法は、
上記シームレスベルトの製造装置を用いて、円筒状金型の内面に樹脂溶液が展開された当該円筒状金型を回転させて塗膜を均一化する工程と、前記円筒状金型の内面の塗膜を加熱硬化する工程とを有するシームレスベルトの製造方法であって、
前記円筒状金型の両端部を当該円筒状金型と同芯上に対向一対になるように固定手段で固定し、当該固定手段をその軸周りに回転させることで、前記円筒状金型を回転させることを特徴とする構成である。
In addition, the manufacturing method of the seamless belt of the other invention,
Using the seamless belt manufacturing apparatus, the step of rotating the cylindrical mold in which the resin solution is spread on the inner surface of the cylindrical mold to make the coating film uniform, and the coating of the inner surface of the cylindrical mold A process for producing a seamless belt comprising heat-curing the film,
The cylindrical mold is fixed by fixing means so that both ends of the cylindrical mold are concentric with the cylindrical mold, and the fixing means is rotated around its axis, whereby the cylindrical mold is It is the structure characterized by rotating.

この構成によって、円筒状金型の芯ぶれがなく高速回転を容易に行える。また、高粘度の樹脂溶液を用いても製造されるシームレスベルトの厚さ精度のばらつきを抑制できる。すなわち、本発明によれば、高粘度樹脂溶液を展開し高速回転で短時間のうちにレベリングすることができ、うねりやスジのない膜厚の均一な厚さ精度、表面精度を有する高精度管状体のシームレスベルトを容易に得ることができる。   With this configuration, the cylindrical mold does not run out and can be rotated easily at high speed. Moreover, even if a highly viscous resin solution is used, variation in the thickness accuracy of the seamless belt manufactured can be suppressed. That is, according to the present invention, it is possible to develop a high viscosity resin solution and level it in a short time with high-speed rotation, and a high-precision tube having uniform thickness accuracy and surface accuracy without waviness and streaks. The body seamless belt can be easily obtained.

また、上記製造方法の一実施形態として、それぞれの固定手段をその原点位置から円筒状金型端部のそれぞれに固定配置するまでの進出移動距離に基づいて、当該円筒状金型と当該固定手段とが同芯上に固定配置されていることを判断した場合に、固定手段の回転を開始可能にする構成がある。   Further, as one embodiment of the above manufacturing method, the cylindrical mold and the fixing means based on the moving distance from the origin position to the respective fixed ends of the cylindrical mold. Is configured to be able to start rotation of the fixing means.

また、上記製造方法の一実施形態として、樹脂溶液がポリアミド酸溶液を主成分とする溶液であり、樹脂溶液粘度が50〜500Pa・sであって、塗膜の均一化の際における円筒状金型の回転速度を1000rpm〜4000rpmの範囲となるように回転制御する構成がある。   Moreover, as one embodiment of the above production method, the resin solution is a solution containing a polyamic acid solution as a main component, the resin solution has a viscosity of 50 to 500 Pa · s, and the cylindrical gold is used when the coating film is uniformized. There is a configuration in which the rotation of the mold is controlled to be in a range of 1000 rpm to 4000 rpm.

また、上記製造方法の一実施形態として、前記塗膜の加熱硬化の際に前記円筒状金型を回転させる工程を有し、当該回転速度を、前記塗膜の均一化の際における前記円筒状金型の回転速度よりも遅くするように回転制御する構成がある。これによって、高粘度樹脂溶液を展開して高速回転で短時間のうちに均一化し、それよりも低速回転で塗膜を加熱硬化できるため、うねりやスジのない膜厚の均一な厚さ精度、表面精度を有する高精度管状体のシームレスベルトを好適に製造できる。   Further, as an embodiment of the manufacturing method, the method includes a step of rotating the cylindrical mold during the heat curing of the coating film, and the rotation speed is set to the cylindrical shape during the uniformization of the coating film. There is a configuration in which the rotation is controlled to be slower than the rotational speed of the mold. As a result, a high viscosity resin solution can be developed and uniformized in a short time with high speed rotation, and the coating film can be heated and cured at a lower speed than that, so that the film thickness is uniform without waviness and streaks, A seamless belt of a high-precision tubular body having surface accuracy can be suitably manufactured.

シームレスベルトの製造装置について説明するための図Diagram for explaining a seamless belt manufacturing apparatus シームレスベルトの製造装置について説明するための図Diagram for explaining a seamless belt manufacturing apparatus シームレスベルトの製造装置について説明するための図Diagram for explaining a seamless belt manufacturing apparatus 固定手段の一例を説明するための図The figure for demonstrating an example of a fixing means 固定手段の一例を説明するための図The figure for demonstrating an example of a fixing means 固定手段の一例を説明するための図The figure for demonstrating an example of a fixing means 固定手段の一例を説明するための図The figure for demonstrating an example of a fixing means

以下、実施の形態について、適宜図面を参照しながら説明する。シームレスベルトの製造方法は、まず、シームレスベルトの成形材料となる樹脂溶液を準備する。樹脂溶液の粘度は50Pa・s以上の高粘度である。樹脂溶液の詳細は後述する。この樹脂溶液を円筒状金型に展開する。樹脂溶液を円筒金型内面に展開する方法は、ダイス、円筒形ノズル、カーテン塗工用ディスペンサー、スプレーコート、ロールコート等適宜公知の方法により選択できる。樹脂溶液がポリアミド酸の場合、円筒状金型をその周方向に回転させながらディスペンサーを用いて金型内面にらせん状に塗布することが好ましい。なお、展開は、金型内面の一部に展開されている場合もあり、また、展開された膜厚は、レベリング前では不均一である。   Hereinafter, embodiments will be described with reference to the drawings as appropriate. In the manufacturing method of the seamless belt, first, a resin solution that is a molding material for the seamless belt is prepared. The resin solution has a high viscosity of 50 Pa · s or higher. Details of the resin solution will be described later. This resin solution is developed in a cylindrical mold. The method of spreading the resin solution on the inner surface of the cylindrical mold can be appropriately selected by a known method such as a die, a cylindrical nozzle, a dispenser for curtain coating, spray coating, roll coating or the like. In the case where the resin solution is polyamic acid, it is preferable to spirally apply the inner surface of the mold using a dispenser while rotating the cylindrical mold in the circumferential direction. The development may be developed on a part of the inner surface of the mold, and the developed film thickness is non-uniform before leveling.

次いで、樹脂溶液が展開された円筒状金型を高速で回転し、短時間のうちにレベリング(均一化)する。膜厚の均一性が高いシームレスベルトの作製には円筒状金型の高速回転による塗膜のレベリングが必要である。さらに、加熱硬化(乾燥)工程における塗膜のレベリングが維持されていることが重要である。よって、展開後の均一化の際には、1000〜4000rpmの回転速度で円筒状金型を回転させ、展開塗膜に遠心力を与えて、塗膜厚を均一化した展開塗膜を形成し、加熱硬化(乾燥)工程では、それよりも遅い回転速度で円筒状金型を回転させて硬化させることが好ましい。   Next, the cylindrical mold in which the resin solution is developed is rotated at a high speed and leveled (homogenized) in a short time. In order to produce a seamless belt with high film thickness uniformity, coating film leveling by high-speed rotation of a cylindrical mold is necessary. Furthermore, it is important that the leveling of the coating film in the heat curing (drying) process is maintained. Therefore, at the time of homogenization after development, a cylindrical mold is rotated at a rotation speed of 1000 to 4000 rpm, and centrifugal force is applied to the developed coating film to form a developed coating film having a uniform coating thickness. In the heat curing (drying) step, it is preferable to cure by rotating the cylindrical mold at a lower rotational speed.

図1は、シームレスベルトの製造装置の一例を示す説明図である。円筒状金型1の内周面には樹脂溶液がすでに展開されている。円筒状金型1は昇降機の昇降台2に、予め位置決めされた位置に載置される。昇降台2および円筒状金型1は水平である。一対の円錐状コーンチャック3,4は、同じ形状であり、それらの中心軸(回転中心軸)が一致して対向しており、かつ原点位置に待機している。   FIG. 1 is an explanatory diagram showing an example of a seamless belt manufacturing apparatus. A resin solution has already been developed on the inner peripheral surface of the cylindrical mold 1. The cylindrical mold 1 is placed at a position previously positioned on a lifting platform 2 of an elevator. The lifting platform 2 and the cylindrical mold 1 are horizontal. The pair of conical cone chucks 3 and 4 have the same shape, their center axes (rotation center axes) are aligned and face each other, and stand by at the origin position.

円筒状金型1を昇降台2に載置させた後、制御装置(不図示)の制御盤操作で開始スイッチをONにすると、昇降台2が上昇し、円筒状金型1の中心軸と円錐状コーンチャック3,4の中心軸(回転中心軸)とが一致する位置で昇降台2が停止する。円筒状金型1のサイズまたは上昇高さを予め制御装置に入力し記憶しておくことで上昇距離が演算され自動停止が可能となる。   After the cylindrical mold 1 is placed on the lifting platform 2, when the start switch is turned on by operating the control panel of a control device (not shown), the lifting platform 2 is raised and the central axis of the cylindrical mold 1 is The lifting platform 2 stops at a position where the center axis (rotation center axis) of the conical cone chucks 3 and 4 coincides. When the size or height of the cylindrical mold 1 is previously input and stored in the control device, the ascent distance is calculated and automatic stop is possible.

また、別実施形態として、昇降台2に円筒状金型1が適正な所定姿勢にあると判断されると昇降台2が所定の高さの上昇を自動で行うように構成できる。複数の光学センサを用いて円筒状金型1を検出し上記所定姿勢にあるか否かを判断できる。   As another embodiment, when it is determined that the cylindrical mold 1 is in an appropriate predetermined posture with respect to the lifting / lowering table 2, the lifting / lowering table 2 can be automatically raised to a predetermined height. The cylindrical mold 1 is detected using a plurality of optical sensors, and it can be determined whether or not it is in the predetermined posture.

次に、図2および3に示すように、一方の円錐状コーンチャック3が進退駆動手段によって、その軸心方向に一定距離まで進出動作される。進退駆動手段としては、例えば、サーボモータ、エアシリンダ、油圧シリンダなどの駆動機構が挙げられる。   Next, as shown in FIGS. 2 and 3, one conical cone chuck 3 is advanced by advancing / retreating drive means to a certain distance in the axial direction. Examples of the advance / retreat drive means include drive mechanisms such as a servo motor, an air cylinder, and a hydraulic cylinder.

もう一方の円錐状コーンチャック4が進退駆動手段によってその軸心方向に進出動作する。これによって、円筒状金型1の両端部が一対の円錐状コーンチャック3,4によって圧着固定される。この場合において、円錐状コーンチャック3、4と円筒状金型1のそれぞれの中心軸は一致する(同芯上にある)が、例えば、円筒状金型1の端部変形や、昇降台2の昇降ゆがみ、円錐状コーンチャック3、4の形状変形、進退駆動手段の軸方向ゆがみ等の原因によって、円錐状コーンチャック3、4と円筒状金型1のそれぞれの中心軸が一致しない(同芯上にない)場合も想定される。このような場合に、円錐状コーンチャック3、4のそれぞれの進出距離が一定の距離に達しているか否かを判断することで、円筒状金型1と円錐状コーンチャック3、4とが同芯上にあるかどうかを判断できる(判断部の機能)。円筒状金型1と円錐状コーンチャック3、4とが同芯上にあれば、高速回転による遠心成形が可能になる。なお、それらが同芯上にあるとは、厳格な意味での同軸を意味するものに限定されず、本願発明目的を達成できる高速回転が可能な範囲の軸ブレは許容される。   The other conical cone chuck 4 moves forward in its axial direction by the advancing / retreating drive means. As a result, both ends of the cylindrical mold 1 are fixed by pressure with the pair of conical cone chucks 3 and 4. In this case, the central axes of the conical cone chucks 3 and 4 and the cylindrical mold 1 coincide (concentrically), but for example, deformation of the end of the cylindrical mold 1 or the lift 2 The center axes of the conical cone chucks 3 and 4 and the cylindrical mold 1 do not coincide with each other due to causes such as vertical distortion, deformation of the conical cone chucks 3 and 4 and axial distortion of the advancing and retreating drive means. It is also assumed that it is not on the core. In such a case, the cylindrical die 1 and the conical cone chucks 3 and 4 are identical by determining whether or not the advance distances of the conical cone chucks 3 and 4 have reached a certain distance. Whether it is on the core can be determined (the function of the determination unit). If the cylindrical mold 1 and the conical cone chucks 3 and 4 are concentric, centrifugal molding by high-speed rotation is possible. It should be noted that the fact that they are concentric is not limited to that which means a coaxial in a strict sense, but shaft blurring in a range where high-speed rotation capable of achieving the object of the present invention is possible is allowed.

次いで、円錐状コーンチャック3,4と円筒状金型1との圧着固定が完了すると昇降台2がもとの待機位置まで下降し、回転動作へ移行する(図3参照)。円筒状金型1の主軸線方向(図3において破線)を回転中心として回転して遠心成形し、塗膜厚を均一化する。   Next, when the crimping and fixing of the conical cone chucks 3 and 4 and the cylindrical mold 1 is completed, the lifting platform 2 is lowered to the original standby position and shifts to a rotating operation (see FIG. 3). The cylindrical mold 1 is rotated around the main axis direction (broken line in FIG. 3) as a center of rotation and centrifugally formed to make the coating thickness uniform.

この均一化の際の回転速度は、1000rpm〜4000rpmの範囲であり、より好ましくは1500rpm〜3500rpmであり、さらに好ましくは2500rpm〜3500rpmである。1000rpmより小さいと、円筒状金型1の内径にもよるが塗膜厚に対し充分な遠心力を与えることが難しく、円周方向の膜厚ムラが生じやすく、また塗膜厚を均一化するのに時間がかかり、製造コストも上昇するため好ましくない。また、4000rpmより大きいと、塗膜液へかかる遠心力が大きくなりすぎるため、円筒状金型1の幅方向に対して膜厚ムラが発生しやすくなり、また製造におけるエネルギー効率や作業安全上においても好ましくない。回転処理時間は、30秒〜1時間の範囲であり、樹脂溶液粘度、回転数、円筒状金型サイズ、樹脂溶液の塗布量によって設定される。   The rotation speed at the time of this homogenization is in the range of 1000 rpm to 4000 rpm, more preferably 1500 rpm to 3500 rpm, and even more preferably 2500 rpm to 3500 rpm. If it is less than 1000 rpm, although it depends on the inner diameter of the cylindrical mold 1, it is difficult to give sufficient centrifugal force to the coating film thickness, the film thickness unevenness in the circumferential direction is likely to occur, and the coating film thickness is made uniform. This is not preferable because it takes time and the production cost increases. On the other hand, if it is greater than 4000 rpm, the centrifugal force applied to the coating liquid becomes too large, and therefore, film thickness unevenness is likely to occur in the width direction of the cylindrical mold 1, and in terms of energy efficiency and work safety in manufacturing. Is also not preferred. The rotation processing time is in the range of 30 seconds to 1 hour, and is set by the resin solution viscosity, the number of rotations, the cylindrical mold size, and the application amount of the resin solution.

次いで、均一化のための回転処理動作が終了すると、昇降台2が所定の高さに上昇し、昇降台2に円筒状金型1を接触させる。次いで、円錐状コーンチャック3,4を原点位置に後退させて円筒状金型1との圧着固定を解除する。内周面に形成された塗膜とともに円筒状金型1を加熱硬化(乾燥)工程へ移行する。   Next, when the rotation processing operation for equalization is completed, the lifting platform 2 is raised to a predetermined height, and the cylindrical mold 1 is brought into contact with the lifting platform 2. Next, the conical cone chucks 3 and 4 are retracted to the original position to release the crimping and fixing to the cylindrical mold 1. The cylindrical mold 1 is transferred to a heat curing (drying) process together with the coating film formed on the inner peripheral surface.

次いで、加熱硬化(乾燥)工程において、加熱手段による加熱で、溶媒除去およびイミド転化を順次または、一部を同時に行う多段式加熱法により、ポリイミド系樹脂からなるシームレスベルトを得ることができる。加熱温度は、溶媒の除去工程においては溶媒の種類に応じて適宜に決定されるが、概して60〜200℃程度、イミド転化工程は構成されるポリマー成分に応じて適宜に決定されるが、概して200〜400℃程度である。加熱時間は適宜設定されるが、通常上記溶媒除去工程及びイミド転化工程とも20〜60分程度である。また、加熱硬化(乾燥)工程において、円筒状金型1を回転させながら行う場合には、その回転速度を、塗膜の均一化の際における円筒状金型の回転速度よりも遅く設定し、例えば、10rpm〜1000rpm未満の範囲が挙げられ、10rpm〜500rpmが好ましく、10rpm〜100rpmがより好ましい。   Next, in the heat curing (drying) step, a seamless belt made of a polyimide resin can be obtained by a multistage heating method in which solvent removal and imide conversion are sequentially or partially performed by heating by a heating means. The heating temperature is appropriately determined according to the type of the solvent in the solvent removal step, but is generally about 60 to 200 ° C., and the imide conversion step is appropriately determined according to the polymer component to be constituted. It is about 200-400 degreeC. Although the heating time is appropriately set, both the solvent removal step and the imide conversion step are usually about 20 to 60 minutes. Moreover, in the heat curing (drying) step, when the cylindrical mold 1 is rotated, the rotational speed is set slower than the rotational speed of the cylindrical mold when the coating film is made uniform, For example, the range of 10 rpm-less than 1000 rpm is mentioned, 10 rpm-500 rpm are preferable and 10 rpm-100 rpm are more preferable.

別実施形態として、この加熱硬化(乾燥)工程を、円錐状コーンチャック3,4を回転させながら、円筒状金型1の外周から加熱手段で加熱して行う構成もできる。ここでの回転速度は、塗膜の均一化の際における前記円筒状金型の回転速度よりも遅く設定でき、例えば、10rpm〜1000rpm未満の範囲が挙げられ、10rpm〜500rpmが好ましく、10rpm〜100rpmがより好ましい。   As another embodiment, the heat curing (drying) step may be performed by heating from the outer periphery of the cylindrical mold 1 with heating means while rotating the conical cone chucks 3 and 4. The rotation speed here can be set slower than the rotation speed of the cylindrical mold in the case of uniformization of the coating film, and examples include a range of 10 rpm to less than 1000 rpm, preferably 10 rpm to 500 rpm, and preferably 10 rpm to 100 rpm. Is more preferable.

(構成材料)
シームレスベルトの材料樹脂としては、ポリイミド系樹脂などが挙げられるが、樹脂溶液がポリアミド酸溶液を主成分とする溶液では、熱硬化性で高粘度樹脂に対し好適であるとともに、用途面からも耐熱性、機械的強度、化学的安定性などに優れた特性を生かすことができるポリイミド樹脂を成形しつつ、かつ膜厚均一性、平面度の優れたシームレスベルトに仕上げるのに非常に適した製造方法といえる。
(Constituent materials)
The material resin for the seamless belt includes a polyimide resin, etc., but the resin solution is mainly a polyamic acid solution that is thermosetting and suitable for a high viscosity resin, and is also heat resistant from the application side. Manufacturing method that is very suitable for finishing a seamless belt with excellent film thickness uniformity and flatness while molding a polyimide resin that can take advantage of excellent properties such as stability, mechanical strength, and chemical stability. It can be said.

ポリイミド系樹脂の原料液としては、例えば、テトラカルボン酸二無水物やその移動体とジアミンを溶媒中で重合反応させてなるポリアミド酸の溶液が使用可能である。ポリアミド酸を形成するテトラカルボン酸二無水物等やジアミンとしては適宜なものを使用することができる。   As the raw material liquid for the polyimide resin, for example, a solution of polyamic acid obtained by polymerizing tetracarboxylic dianhydride or its moving body and diamine in a solvent can be used. Any suitable tetracarboxylic dianhydride or diamine for forming the polyamic acid can be used.

テトラカルボン酸二無水物の具体例としては、ピロメリット酸二無水物(PMDA)、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BPDA)、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,3,3’,4−ビフェニルテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,2’−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、ビス(3,4一ジカルボキシフェニル)スルホン二無水物、ベリレン−3,4,9,10−テトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、エチレンテトラカルボン酸二無水物等が挙げられる。   Specific examples of tetracarboxylic dianhydride include pyromellitic dianhydride (PMDA), 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (BPDA), 3,3 ′, 4, 4'-biphenyltetracarboxylic dianhydride, 2,3,3 ', 4-biphenyltetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,5 6-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,2′-bis (3,4-dicarboxyphenyl) propane dianhydride, bis (3 4-dicarboxyphenyl) sulfone dianhydride, berylene-3,4,9,10-tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, ethylenetetracarboxylic acid Anhydride, and the like.

また、ジアミンとしては、4,4’−ジアミノジフェニルエーテル(DDE)、4,4’−ジアミノジフェニルメタン、3,3’−ジアミノジフェニルメタン、3,3’−ジクロロベンジン、4,4’−ジアミノジフェニルスルフィド−3,3’−ジアミノジフエニルスルホン、1,5−ジアミノナフタレン、m−フェニレンジアミン、p−フェニレンジアミン(PDA)、3、3’−ジメチル−4,4’−ビフェニルジアミン、ベンジジン、3,3’−ジメチルベンジジン、3,3’−ジメトキシベンジジン、4,4−ジアミノフェニルスルホン、4,4’−ジアミノフェニルスルホン、4,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルプロパン、2,4−ビス(β−アミノ−第三ブチル)トルエン、ビス(p−β−アミノ−第三ブチルフェニル〉エーテル、ビス(p−β−メチル−6−アミノフェニル)ベンゼン、ビス−P−(1,1−ジメチル−5−アミノ−ペンチル)ベンゼン、1−イソプロピル−2,4−m−フェニレンジアミン、m−キシリレンジアミン、p−キシリレンジアミン、ジ(p−アミノシクロヘキシル)メタン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ジアミノプロピルテトラメチレン、3−メチルヘプタメチレンジアミン、4,4−ジメチルヘプタメチレンジアミン、2,11−ジアミノドデカン、1,2−ビス−3−アミノプロポキシエタン、2,2−ジメチルプロピレンジアミン、3−メトキシヘキサメチレンジアミン、2,5−ジメチルヘキサメチレンジアミン、2,5−ジメチルヘプタメチレンジアミン、2,5−ジメチルヘプタメチレンジアミン、3−メチルヘプタメチレンジアミン、5−メチルノナメチレンジアミン、2,11−ジアミノドデカン、2,17−ジアミノエイコサデカン、1,4−ジアミノシクロヘキサン、1,10−ジアミノ−1,10ジアミノ−1,10−ジメチルデカン、1,12−ジアミノオクタデカン、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン、ピベラジンHN(CHO(CHO(CH)NH、HN(CHS(CHNH、HN(CHN(CH(CHNH、等が挙げられる。 Examples of the diamine include 4,4′-diaminodiphenyl ether (DDE), 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylmethane, 3,3′-dichlorobenzidine, 4,4′-diaminodiphenyl sulfide 3,3′-diaminodiphenylsulfone, 1,5-diaminonaphthalene, m-phenylenediamine, p-phenylenediamine (PDA), 3,3′-dimethyl-4,4′-biphenyldiamine, benzidine, 3,3 '-Dimethylbenzidine, 3,3'-dimethoxybenzidine, 4,4-diaminophenylsulfone, 4,4'-diaminophenylsulfone, 4,4'-diaminodiphenylsulfide, 4,4'-diaminodiphenylpropane, 2, 4-bis (β-amino-tert-butyl) toluene, bis (p-β-amino-tert-butyl) Ruphenyl> ether, bis (p-β-methyl-6-aminophenyl) benzene, bis-P- (1,1-dimethyl-5-amino-pentyl) benzene, 1-isopropyl-2,4-m-phenylenediamine , M-xylylenediamine, p-xylylenediamine, di (p-aminocyclohexyl) methane, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, diaminopropyltetramethylene, 3-methyl Heptamethylenediamine, 4,4-dimethylheptamethylenediamine, 2,11-diaminododecane, 1,2-bis-3-aminopropoxyethane, 2,2-dimethylpropylenediamine, 3-methoxyhexamethylenediamine, 2,5 -Dimethylhexamethylene Amine, 2,5-dimethylheptamethylenediamine, 2,5-dimethylheptamethylenediamine, 3-methylheptamethylenediamine, 5-methylnonamethylenediamine, 2,11-diaminododecane, 2,17-diaminoeicosadecane, 1,4-diaminocyclohexane, 1,10-diamino-1,10 diamino-1,10-dimethyldecane, 1,12-diaminooctadecane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, Piperazine H 2 N (CH 2 ) 3 O (CH 2 ) 2 O (CH 2 ) NH 2 , H 2 N (CH 2 ) 3 S (CH 2 ) 3 NH 2 , H 2 N (CH 2 ) 3 N ( CH 3 ) 2 (CH 2 ) 3 NH 2 , etc.

また、上記したテトラカルボン酸二無水物とジアミンを重合反応させる際の溶媒としても適宜なものを用いうるが、溶解性などの点より極性溶媒が好ましく用いうる。この極性溶媒の例としては、N,N−ジアルキルアミド類が有用であり、例えば、このうちの低分子量のものであるN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等が挙げられる。これらは、蒸発、置換または拡散によりポリアミド酸およびポリアミド酸成形品から容易に除去することができる。   Moreover, although a suitable thing can be used also as a solvent at the time of carrying out the polymerization reaction of the above-mentioned tetracarboxylic dianhydride and diamine, a polar solvent can be used preferably from points, such as solubility. N, N-dialkylamides are useful as examples of the polar solvent, and examples thereof include N, N-dimethylformamide and N, N-dimethylacetamide, which have low molecular weight. They can be easily removed from the polyamic acid and the polyamic acid molded article by evaporation, displacement or diffusion.

また、上記以外の有機極性溶媒として、N,N−ジエチルホルムアミド、N,N−ジエチルアセトアミド、N,N−ジメチルメトキシアセトアミド、ジメチルスルホキシド、ヘキサメチルボスボルトリアミド、N−メチル−2−ピロリドン、ピリジン、ジメチルスルホキシド、テトラメチレンスルホン、ジメチルテトラメチレンスルホン等が挙げられる。これらは単独で使用してもよいし、併せて用いても差し支えない。
ポリアミド酸の調製に際しては、テトラカルボン酸二無水物やその誘導体、ジアミン、極性溶媒の各々について1種または2種以上の試料を用いうる。
Examples of organic polar solvents other than the above include N, N-diethylformamide, N, N-diethylacetamide, N, N-dimethylmethoxyacetamide, dimethylsulfoxide, hexamethylbosboltriamide, N-methyl-2-pyrrolidone, Examples include pyridine, dimethyl sulfoxide, tetramethylene sulfone, dimethyl tetramethylene sulfone and the like. These may be used alone or in combination.
In the preparation of the polyamic acid, one or more samples can be used for each of the tetracarboxylic dianhydride, its derivative, diamine, and polar solvent.

テトラカルボン酸二無水物等とジアミンの使用割合は、等モルであることが一般的であるが、これに限定はされない。   The ratio of tetracarboxylic dianhydride and the like to the diamine is generally equimolar, but is not limited thereto.

反応開始時のモノマー濃度は反応条件等により適宜に決定しうるが、一般的には5〜30重量%が適当である。
また、導電性を出すためにケッチェンブラックやアセチレンブラック等のカーボンブラック、アルミニウムやニッケルのような金属、酸化錫のような酸化金属化合物、チタン酸カリウム等の導電性粉末、あるいはポリアニリンやポリアセチレンのような導電性ポリマー等の適宜なものの1種又は2種以上を用いることができる。
The monomer concentration at the start of the reaction can be appropriately determined depending on the reaction conditions and the like, but generally 5 to 30% by weight is appropriate.
In addition, carbon black such as ketjen black and acetylene black, metal such as aluminum and nickel, metal oxide compound such as tin oxide, conductive powder such as potassium titanate, or polyaniline and polyacetylene One type or two or more types of suitable conductive polymers can be used.

(粘度)
ポリアミド酸溶液の粘度は50〜1000Pa・s、好ましくは100〜800Pa・s(B型粘度計、ロータNo.7,25℃)程度である。粘度が50Pa・s以下であるといわゆるタレや塗布層のハジキが生じ易く、塗膜厚の均一性が得られ難くなるため好ましくない。また、このような低粘度溶液では加熱による溶液粘度低下で供給された溶液が金型内周面に密着せずに流れ落ちる現象がおきやすく、塗布後加熱で継続的に溶剤残存量が下がるまで間は一定の遠心力を掛け続ける必要があり、経済及びコスト的に好ましくない。一方、1000Pa・s以上であると、吐出の際に高い圧力をかける必要があり、またレベリングの際の成形が困難となるので好ましくない。
(viscosity)
The viscosity of the polyamic acid solution is about 50 to 1000 Pa · s, preferably about 100 to 800 Pa · s (B-type viscometer, rotor No. 7, 25 ° C.). When the viscosity is 50 Pa · s or less, so-called sagging or repellency of the coating layer is likely to occur, and it becomes difficult to obtain a uniform coating thickness. In addition, in such a low viscosity solution, there is a tendency that the solution supplied due to the decrease in the solution viscosity due to heating does not adhere to the inner peripheral surface of the mold, and the phenomenon that the solvent remains is reduced continuously by heating after coating. It is necessary to keep applying a certain centrifugal force, which is not preferable in terms of economy and cost. On the other hand, if it is 1000 Pa · s or more, it is necessary to apply a high pressure at the time of discharge, and molding during leveling becomes difficult, which is not preferable.

(円筒状金型の構成)
本発明で使用される円筒状金型1としては、アルミ、鉄、真ちゅう、ステンレス等のものである。また、金型からの剥離性を考慮してフッ素系やシリコン系の離型剤をその内面に塗布することも可能である。
(Configuration of cylindrical mold)
The cylindrical mold 1 used in the present invention is made of aluminum, iron, brass, stainless steel or the like. It is also possible to apply a fluorine-based or silicon-based mold release agent on the inner surface in consideration of releasability from the mold.

円筒状金型1の内径は、対向一対の円錐状コーンチャック3,4、台錘状コーンチャック3,4(図4)によりチャッキングできるものであれば内径の制限はない。また、円筒状金型1の外径は、対向一対の内面台錐状コーンチャック5,6(図5)、3点爪チャック7,8(図6)によりチャッキングできるものであれば外径の制限はない。   The inner diameter of the cylindrical mold 1 is not limited as long as it can be chucked by the pair of conical cone chucks 3 and 4 and the cone cone chucks 3 and 4 (FIG. 4). Further, the outer diameter of the cylindrical mold 1 is an outer diameter as long as it can be chucked by a pair of opposed inner surface truncated cone cone chucks 5 and 6 (FIG. 5) and three-point claw chucks 7 and 8 (FIG. 6). There is no limit.

(固定手段)
一対の固定手段としては、図1に示す円錐状コーンチャック3,4、図4に示す台錘状コーンチャック3,4、図5に示す内面台錐状コーンチャック5,6、図6に示す3点爪チャック7,8が例示される。円錐状コーンチャック3,4の周面(不図示)および台錐状コーンチャック3,4の周面31、41が円筒状金型1端部の内縁部分に当接する。また、内面台錐状コーンチャック5,6の内周面51、61が円筒状金型1端部の外縁部分に当接する。3点爪チャック8は、3つの爪81,82,83を有し、それぞれが円筒状金型1端部の外縁部分をチャッキングする(3点爪チャック7も同様の構成である)。図7は、3点爪チャックを説明するための模式図であるが、説明を簡単にするために爪を2つとしている。図7は、対向一対の3点爪チャック本体部分のそれぞれが円筒状金型1の端部に当接するまで移動し、次いで、3点爪部分が円筒状金型1の端部外周を挟み込んで固定する。
(Fixing means)
As the pair of fixing means, the cone cone chucks 3 and 4 shown in FIG. 1, the trapezoid cone cone chucks 3 and 4 shown in FIG. 4, the inner cone cone chucks 5 and 6 shown in FIG. Three-point claw chucks 7 and 8 are illustrated. The peripheral surfaces (not shown) of the conical cone chucks 3 and 4 and the peripheral surfaces 31 and 41 of the trapezoidal cone chucks 3 and 4 are in contact with the inner edge portion of the end portion of the cylindrical mold 1. Further, the inner peripheral surfaces 51 and 61 of the inner cone cone chucks 5 and 6 abut against the outer edge portion of the end portion of the cylindrical mold 1. The three-point claw chuck 8 has three claws 81, 82, and 83, and each chucks the outer edge portion of one end of the cylindrical mold (the three-point claw chuck 7 has the same configuration). FIG. 7 is a schematic diagram for explaining the three-point claw chuck, but two claws are used for the sake of simplicity. In FIG. 7, each of the opposed pair of three-point claw chuck main body parts moves until they abut against the end of the cylindrical mold 1, and then the three-point claw part sandwiches the outer periphery of the end of the cylindrical mold 1. Fix it.

各種チャックの構成材料は、円筒状金型1を固定できる機能を実現できれば特に制限されず、例えば、その表面を金属、硬質プラスチック等で構成できる。   The constituent materials of the various chucks are not particularly limited as long as a function capable of fixing the cylindrical mold 1 can be realized. For example, the surface can be made of metal, hard plastic, or the like.

また、一対の固定手段のそれぞれが、同じ形状、構成である必要はなく、例えば、一方が台錐状コーンチャック3で、その他方が内面台錐状コーンチャック6の構成もできる。   In addition, each of the pair of fixing means does not have to have the same shape and configuration. For example, one can be configured as a truncated cone cone chuck 3 and the other can be configured as an inner truncated cone cone chuck 6.

1 円筒状金型
2 昇降台
3、4 円錐状コーンチャック、台錐状コーンチャック
5、6 内面台錐状コーンチャック
7、8 3点爪チャック
DESCRIPTION OF SYMBOLS 1 Cylindrical metal mold 2 Elevating stand 3, 4 Conical cone chuck, trapezoid cone cone chuck 5, 6 Inner surface cone cone chuck 7, 8, Three-point claw chuck

Claims (9)

円筒状金型の内面に樹脂溶液が展開された当該円筒状金型を回転させて塗膜を均一化するシームレスベルトの製造装置であって、
前記円筒状金型の両端部を固定する、当該円筒状金型と同芯上に対向一対に配置される一対の固定手段と、
前記固定手段を前記円筒状金型端部に固定するように、当該円筒状金型の軸方向に進退可能に移動させる進退駆動手段と、
前記固定手段をその軸回りに回転させる回転駆動手段と、
前記円筒状金型と前記一対の固定手段とが、同芯上に対向一対に配置調整する昇降手段と、
前記円筒状金型と前記一対の固定手段とが、同芯上に対向一対に配置させるように前記昇降手段を自動的に制御し、当該円筒状金型の軸方向に当該固定手段を自動的に移動させ、当該固定手段を当該円筒状金型端部に固定するように進退駆動手段を自動的に制御する制御手段と、を有し、
前記制御手段は、前記昇降手段の昇降台の所定位置に設置された前記円筒状金型と、当該円筒状金型端部に固定された前記固定手段とが同芯上に固定配置されているか否かを、当該固定手段の進出移動距離に基づいて、判断する判断部を有し、前記判断部が、前記円筒状金型と前記固定手段とが同芯上に固定配置されていると判断した場合に、前記回転駆動手段による固定手段の回転を自動的に開始可能にし、
前記円筒状金型の回転は、前記一対の固定手段で前記円筒状金型の両端部を固定し、当該固定手段を回転駆動手段で回転させて、当該円筒状金型を回転させることを特徴とするシームレスベルトの製造装置。
A seamless belt manufacturing apparatus for rotating a cylindrical mold in which a resin solution is spread on the inner surface of a cylindrical mold and uniformizing a coating film,
A pair of fixing means for fixing both ends of the cylindrical mold, and a pair of fixing means arranged on opposite sides on the same core as the cylindrical mold;
Advancing / retreating drive means for moving the advancing / retreating in the axial direction of the cylindrical mold so as to fix the fixing means to the end of the cylindrical mold;
Rotation driving means for rotating the fixing means around its axis;
Lifting means for adjusting the arrangement of the cylindrical mold and the pair of fixing means facing each other on the same core;
The lifting / lowering means is automatically controlled so that the cylindrical mold and the pair of fixing means are arranged in a confronting pair on the same core, and the fixing means is automatically moved in the axial direction of the cylindrical mold. And a control means for automatically controlling the advancing / retreating drive means so as to fix the fixing means to the end of the cylindrical mold.
Whether the control means is arranged such that the cylindrical mold installed at a predetermined position of the lifting platform of the lifting means and the fixing means fixed to the end of the cylindrical mold are fixedly arranged on the same core. A determination unit that determines whether or not the fixing means is based on an advancing movement distance of the fixing unit, and the determination unit determines that the cylindrical mold and the fixing unit are fixedly disposed on the same core. In this case, the rotation of the fixing means by the rotation driving means can be automatically started,
The cylindrical mold is rotated by fixing both ends of the cylindrical mold with the pair of fixing means, rotating the fixing means with a rotation driving means, and rotating the cylindrical mold. Seamless belt manufacturing equipment.
前記一対の固定手段が円錐状コーンチャックである、請求項1に記載のシームレスベルトの製造装置。The seamless belt manufacturing apparatus according to claim 1, wherein the pair of fixing means are conical cone chucks. 前記一対の固定手段が前記円筒状金型の端部外周を挟み込んで固定する爪チャックである、請求項1に記載のシームレスベルトの製造装置。The seamless belt manufacturing apparatus according to claim 1, wherein the pair of fixing means is a claw chuck that sandwiches and fixes the outer periphery of the end of the cylindrical mold. 前記樹脂溶液がポリアミド酸溶液を主成分とする溶液であり、樹脂溶液粘度が50〜500Pa・sであって、
前記塗膜の均一化の際における前記円筒状金型の回転速度を1000rpm〜4000rpmの範囲となるように前記回転駆動手段を制御する制御手段を有する請求項1から3のいずれか1項に記載のシームレスベルトの製造装置。
The resin solution is a solution containing a polyamic acid solution as a main component, and the resin solution viscosity is 50 to 500 Pa · s,
4. The apparatus according to claim 1, further comprising a control unit configured to control the rotation driving unit so that a rotation speed of the cylindrical mold in the uniformization of the coating film is in a range of 1000 rpm to 4000 rpm. Seamless belt manufacturing equipment.
請求項1から4のいずれか1項に記載のシームレスベルトの製造装置を用いて、円筒状金型の内面に樹脂溶液が展開された当該円筒状金型を回転させて塗膜を均一化する工程と、前記円筒状金型の内面の塗膜を加熱硬化する工程とを有し、
前記円筒状金型の両端部を当該円筒状金型と同芯上に対向一対になるように固定手段で固定し、当該固定手段をその軸周りに回転させることで、前記円筒状金型を回転させる、シームレスベルトの製造方法であって、
昇降台の所定位置に設置された円筒状金型と一対の固定手段とが、同芯上に対向一対に配置させるように自動的に昇降台を昇降させ、
円筒状金型の軸方向に固定手段を移動させて、当該固定手段を当該円筒状金型端部に自動的に固定させ、
前記それぞれの固定手段をその原点位置から前記円筒状金型端部のそれぞれに固定配置するまでの進出移動距離に基づいて、当該円筒状金型と当該固定手段とが同芯上に固定配置されていると判断した場合に、固定手段の回転を自動的に開始可能にすることを特徴とするシームレスベルトの製造方法。
Using the seamless belt manufacturing apparatus according to any one of claims 1 to 4, the cylindrical mold in which the resin solution is spread on the inner surface of the cylindrical mold is rotated to uniformize the coating film. And a step of heat curing the coating film on the inner surface of the cylindrical mold,
The cylindrical mold is fixed by fixing means so that both ends of the cylindrical mold are concentric with the cylindrical mold, and the fixing means is rotated around its axis, whereby the cylindrical mold is A method of manufacturing a seamless belt that rotates .
A cylindrical mold and a pair of fixing means installed at a predetermined position of the lifting platform automatically raise and lower the lifting platform so that they are arranged in a pair facing each other on the same core,
The fixing means is moved in the axial direction of the cylindrical mold, and the fixing means is automatically fixed to the end of the cylindrical mold,
The cylindrical mold and the fixing means are fixedly arranged concentrically on the basis of the advancing movement distance from the origin position to each of the cylindrical mold end portions. A method of manufacturing a seamless belt, wherein the rotation of the fixing means can be automatically started when it is determined that the fixing belt is rotating .
前記一対の固定手段が円錐状コーンチャックである、請求項5に記載のシームレスベルトの製造方法。 The seamless belt manufacturing method according to claim 5, wherein the pair of fixing means are conical cone chucks . 前記一対の固定手段が前記円筒状金型の端部外周を挟み込んで固定する爪チャックである、請求項5に記載のシームレスベルトの製造方法。 The seamless belt manufacturing method according to claim 5, wherein the pair of fixing means is a claw chuck that pinches and fixes an outer periphery of an end of the cylindrical mold . 前記樹脂溶液がポリアミド酸溶液を主成分とする溶液であり、樹脂溶液粘度が50〜500Pa・sであって、
前記塗膜の均一化の際における前記円筒状金型の回転速度を1000rpm〜4000rpmの範囲となるように回転制御する請求項5から7のいずれか1項に記載のシームレスベルトの製造方法。
The resin solution is a solution containing a polyamic acid solution as a main component, and the resin solution viscosity is 50 to 500 Pa · s,
The method for producing a seamless belt according to any one of claims 5 to 7, wherein the rotation speed of the cylindrical mold at the time of uniformizing the coating film is controlled to be in a range of 1000 rpm to 4000 rpm.
前記塗膜の加熱硬化の際に前記円筒状金型を回転させる工程を有し、当該回転速度を、前記塗膜の均一化の際における前記円筒状金型の回転速度よりも遅くするように回転制御する請求項8に記載のシームレスベルトの製造方法。
A step of rotating the cylindrical mold during the heat curing of the coating film, so that the rotation speed is slower than the rotation speed of the cylindrical mold during the uniformization of the coating film. The method for producing a seamless belt according to claim 8, wherein the rotation is controlled.
JP2010182530A 2010-08-17 2010-08-17 Seamless belt manufacturing apparatus and seamless belt manufacturing method Expired - Fee Related JP5611720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010182530A JP5611720B2 (en) 2010-08-17 2010-08-17 Seamless belt manufacturing apparatus and seamless belt manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010182530A JP5611720B2 (en) 2010-08-17 2010-08-17 Seamless belt manufacturing apparatus and seamless belt manufacturing method

Publications (2)

Publication Number Publication Date
JP2012040729A JP2012040729A (en) 2012-03-01
JP5611720B2 true JP5611720B2 (en) 2014-10-22

Family

ID=45897579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010182530A Expired - Fee Related JP5611720B2 (en) 2010-08-17 2010-08-17 Seamless belt manufacturing apparatus and seamless belt manufacturing method

Country Status (1)

Country Link
JP (1) JP5611720B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018001553A (en) * 2016-06-30 2018-01-11 クオドラントポリペンコジャパン株式会社 Centrifugal molding die and manufacturing method of hollow cylindrical body
CN106738645A (en) * 2016-12-20 2017-05-31 柳州通为机械有限公司 A kind of die combination device for making automobile water chamber

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3667407B2 (en) * 1995-10-27 2005-07-06 株式会社イノアックコーポレーション Centrifugal molding machine
JPH11179743A (en) * 1997-12-19 1999-07-06 Suzuka Fuji Xerox Co Ltd Apparatus and method for producing tubular article
JP2001009850A (en) * 1999-04-27 2001-01-16 Ricoh Co Ltd Tool for molding thin-walled cylindrical article, apparatus for separating thin-walled cylindrical article, and method for separating it
JP2004082445A (en) * 2002-08-26 2004-03-18 Nitto Denko Corp Seamless belt and method for manufacturing it
JP4229727B2 (en) * 2003-03-12 2009-02-25 日東電工株式会社 Method for manufacturing semiconductive belt
JP2007144817A (en) * 2005-11-28 2007-06-14 Fuji Xerox Co Ltd Method for producing endless belt
JP4874834B2 (en) * 2007-02-19 2012-02-15 日東電工株式会社 Seamless belt manufacturing method
JP2008254839A (en) * 2007-04-02 2008-10-23 Mitsubishi Heavy Ind Ltd Paper roll supporting device, paper feeding device, rotary press and paper roll fitting method
JP2010069611A (en) * 2008-08-22 2010-04-02 Jtekt Corp Chuck and method for gripping work

Also Published As

Publication number Publication date
JP2012040729A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP2010215709A (en) Polyamic acid composition, polyimide endless belt, fixing member and image forming apparatus
JP5611720B2 (en) Seamless belt manufacturing apparatus and seamless belt manufacturing method
JP2006259248A (en) Transfer fixing belt
JP4014153B2 (en) Seamless belt manufacturing method using induction heating
JP4551576B2 (en) Seamless belt manufacturing method
JP5101137B2 (en) Polyimide belt and manufacturing method thereof
JP5220576B2 (en) Polyimide resin belt and manufacturing method thereof
JP5064615B2 (en) Method for producing semiconductive seamless belt
JP2004291410A (en) Method of manufacturing thermosetting resin molded body, and thermosetting resin molded body manufactured by the method
JP2008095006A (en) Polyamic acid composition, polyimide molded article, method for preparation of the same, and image forming apparatus
JP2007293028A (en) Seamless belt
JP2001215821A (en) Fixing belt and method of producing the same
JP4305708B2 (en) Manufacturing method of high-precision tubular body
JP5237071B2 (en) Seamless belt manufacturing method
JP2007083424A (en) Tubular body and its manufacturing method
JP2007058059A (en) Flatness measuring method for seamless belt, flatness measuring device, seamless belt, seamless belt deciding method and image forming apparatus equipped with the seamless belt
JP5817944B1 (en) Endless belt manufacturing method
JP2012086482A (en) Method of manufacturing seamless belt
JP3979865B2 (en) Manufacturing method of high-precision tubular body
JP5576439B2 (en) Method for producing polyimide composite tubular material and polyimide composite tubular material
JP4486106B2 (en) Manufacturing method of high-precision tubular body
JP5079629B2 (en) Method for producing polyimide composite tubular material and polyimide composite tubular material
JP3836054B2 (en) Composite tubular body
JP5554955B2 (en) Tubular body
JP5758141B2 (en) Electromagnetic induction heating apparatus and seamless belt manufacturing method using the apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140903

R150 Certificate of patent or registration of utility model

Ref document number: 5611720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees