JP4305708B2 - Manufacturing method of high-precision tubular body - Google Patents

Manufacturing method of high-precision tubular body Download PDF

Info

Publication number
JP4305708B2
JP4305708B2 JP2000203945A JP2000203945A JP4305708B2 JP 4305708 B2 JP4305708 B2 JP 4305708B2 JP 2000203945 A JP2000203945 A JP 2000203945A JP 2000203945 A JP2000203945 A JP 2000203945A JP 4305708 B2 JP4305708 B2 JP 4305708B2
Authority
JP
Japan
Prior art keywords
tubular body
cylindrical mold
discharge port
acid solution
polyamic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000203945A
Other languages
Japanese (ja)
Other versions
JP2002018872A (en
Inventor
哲 石崎
洋 松尾
正和 杉本
勝司 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2000203945A priority Critical patent/JP4305708B2/en
Publication of JP2002018872A publication Critical patent/JP2002018872A/en
Application granted granted Critical
Publication of JP4305708B2 publication Critical patent/JP4305708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coating Apparatus (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、円筒状型の内面にポリアミド酸溶液をディスペンサーにより塗布した後、回転遠心、溶媒除去、イミド転化を行う高精度管状体の製造方法に関する。
【0002】
【従来の技術】
従来よりポリイミド樹脂材料は、その高い機械的強度、耐熱性等の理由から宇宙航空分野から電気電子材料まで幅広い分野において実用化されている。その中でもポリイミド樹脂製管状体は、複写機、レーザービームプリンター、ファクシミリ等の電子写真画像形成装置の定着ベルト、転写ベルト、中間転写ベルト、搬送ベルト、感光体ベルト等の機能性ベルト及びこれらの基材として使用されている。これらのベルトは未定着トナー像を加圧加熱しながら転写体を搬送させたり、現像部で現像させた像をトナー像として保持しつつ転写体に転写する等、ベルトとして複数の機能を複合化させた形で機能を果たしている。このため、その熱伝導性、導電性、半導電性といった機能だけでなく、かような機能にも影響を与える表面精度、膜厚精度等の寸法精度に対する要求が強くなっている。
【0003】
このようなベルトの製造方法としては、ポリイミドフイルムを円筒状にし加熱溶融等により接合ベルトとする方法が存在するが、接合部の凹凸が画像に影響を与えてるため、検知する機構を設ける必要が生じたり、また、接合部の強度が弱いという問題もある。このため、接合によらないシームレス状管状体の製造方法が幾つか提案されている。
【0004】
その一例としては、円筒状金型(内型)をポリアミド酸溶液中に浸漬塗布し、次いで円筒状金型に対し所定の内径を有する外金型を自重落下させて塗布した後、加熱硬化させる管状体の製造方法が知られている(特開平7−186162号公報)。しかし、この浸漬塗布方法の場合においては、浸漬用溶液の濃度管理を徹底する必要があり、管状体とする場合塗布する必要のない部分にまで塗布するため溶液のロスが多くなり経済的に不利となる等の問題点があった。
【0005】
一方、円筒状金型の内面に液状の耐熱樹脂を塗布する際に、円筒状金型を回転させながら、ディスペンサーの供給部(吐出口)を金型軸方向に移動することにより塗布層を形成し、次いで硬化させて管状体を製造する方法が知られている(特開平3−34817号公報、特開平9−85756号公報)。
【0006】
【発明が解決しようとする課題】
しかしながら、特開平3−34817号公報のように、円筒状型の内面に移動可能な吐出口から筋状に吐出させ塗布する方法では、ポリアミド酸溶液を吐出するための溶液供給管の長さを少なくとも管状体の幅以上にする必要があり、塗布時に供給管が高速で移動すること等による管の撓みや振動が発生し、吐出口と型内面の間の距離にバラツキが発生し、これによる塗布ムラやこれに起因する寸法精度の悪化が発生じ易い。また、吐出口と型内面の間の距離が比較的大きいため、塗布する溶液の乱れによる影響も生じ易い。
【0007】
一方、特開平9−85756号公報では、塗布の際に金型内面にディスペンサーの供給部を接触させる方法のため、上記の撓みによる問題は解消されるものの、吐出部と型が接触しているために型の塗布面に傷が入ったり、吐出部の磨耗によりポリアミド酸溶液中に磨耗くずが入り、これが異物混入や表面精度の悪化の原因となる恐れがある。
【0008】
そこで、本発明の目的は、上記のような問題点を解決すべく、うねりやスジのない均一な厚さ精度と表面精度を有する高精度管状体を容易に得ることができる高精度の管状物の製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく、ポリアミド酸溶液を塗布する際の円筒状型の駆動方式やディスペンサーの吐出口の配置などについて鋭意研究したところ、ディスペンサーの吐出口を相対的に固定状態に配置して円筒状型をスパイラル状に駆動する方式により、型内面と所定間隔を隔てて配置した吐出口から均一な塗布が行えることを見出し、本発明を完成するに至った。
【0010】
即ち、本発明の高精度管状体の製造方法は、円筒状型の内面にポリアミド酸溶液をディスペンサーにより塗布した後、少なくとも回転遠心、溶媒除去、及びイミド転化を順次又は一部同時に行って管状体を製造する方法において、前記ディスペンサーの吐出口を前記円筒状型の内面から距離を隔てて相対的に固定状態に配置した状態で、前記円筒状型を周方向に回転させつつ回転軸方向に移動させることにより、前記ポリアミド酸溶液をスパイラル状に塗布することを特徴とする。
【0011】
上記において、前記吐出口と前記円筒状型の内面との距離が、0.01〜5.0mmであることが好ましい。
【0012】
また、塗布される前記ポリアミド酸溶液のB型粘度計による粘度が、10〜10000ポアズ(23℃)であることが好ましい。
【0013】
更に、前記吐出口の開口形状が長方形であり、その回転軸方向の長さが5〜100mmであることが好ましい。
【0014】
また、前記吐出口を2箇所以上設けて塗布を行うことが好ましい。
【0015】
[作用効果]
本発明によると、ディスペンサーの吐出口を固定あるいは低速で移動した状態で円筒状型を駆動させるため、ディスペンサー側を高速駆動することによる構成部材等の制約が少なくなり、吐出口の変位、振動等を抑え易くなる。特に、吐出口を固定する場合には、一方のみを駆動させるため、両者を駆動する場合と比較して、相対的な駆動精度も向上する。従って、精度良く吐出口と型内面との位置関係を維持することができ、これにより均一な塗布を行うことができる。つまり、吐出口の接触による問題を回避すべく、円筒状型の内面から距離を隔てて吐出口を固定する方式では、特に、吐出口と型内面との位置関係を高精度に維持することが重要であるが、本発明では上記の駆動方式によりこの問題を解決することができる。その結果、実施例の結果が示すように、うねりやスジのない均一な厚さ精度と表面精度を有する高精度管状体を容易に得ることができる。
【0016】
また、前記吐出口と前記円筒状型の内面との距離が、0.01〜5.0mmである場合、従来の駆動方式ではディスペンサー供給部の振動等により均一な塗布が行えなかったことろ、本発明では吐出口と型内面との位置関係が高精度に維持されるため、塗布時の溶液の乱れの影響を殆ど受けずに、より均一な塗布が行えるようになる。
【0017】
塗布される前記ポリアミド酸溶液のB型粘度計による粘度が、10〜10000ポアズ(23℃)である場合、上記のような塗布方式に特に好ましい溶液粘度となる。
【0018】
前記吐出口の開口形状が矩形であり、その回転軸方向の長さが5〜100mmである場合、吐出口の開口形状が長方形であるため、塗布量が回転軸方向に均一になり易く、また回転軸方向の長さが5〜100mmであるため、スパイラル状に塗布する上で適当な塗布幅となる。
【0019】
前記吐出口を2箇所以上設けて塗布を行う場合、同時に複数の塗布を行うことで塗布に要する時間を短縮することができる。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。図1は、本発明の管状体の製造方法を説明するための模式図であり、図2は、塗布部を説明するための模式図である。
【0021】
本発明の高精度管状体の製造方法は、図1に示すように、円筒状型2の内面にポリアミド酸溶液1をディスペンサーにより塗布する際に、ディスペンサーの吐出口3aを円筒状型2の内面から距離を隔てて相対的に固定状態に配置した状態で、円筒状型2を周方向(矢印A1)に回転させつつ回転軸方向(矢印A2)に移動させることにより、ポリアミド酸溶液1をスパイラル状に塗布することを特徴とする。
【0022】
ポリアミド酸溶液としては、溶媒中にポリアミド酸が溶解していればよく、一部イミド化したものや、共重合成分、その他の成分、充填材等が含まれていてもよい。
【0023】
ポリアミド酸溶液としては、公知のものを使用することができ、酸二無水物とジアミンを溶媒中で重合反応させてなるポリアミド酸溶液が好適に使用できる。特に、芳香族ポリイミド樹脂であると、得られる管状体の機械的強度や耐熱性が好適なものが得られる。
【0024】
好適な酸二無水物の例として、ピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,3,3’,4−ビフェニルテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物等が挙げられる。
【0025】
一方、ジアミンの例としては、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルメタン、3,3’−ジアミノジフェニルメタン、3,3’−ジクロロベンジジン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルフォン、1,5−ジアミノナフタレン、m−フェニレンジアミン、p−フェニレンジアミン、3,3’−ジメチル4,4’−ビフェニルジアミン、ベンジジン、3,3’−ジメチルベンジジン、3,3’−ジメトキシベンジジン、4,4’−ジアミノジフェニルスルフォン、4,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルプロパン等が挙げられる。
【0026】
これらの酸無水物とジアミンを重合反応させる際の溶媒としては適宜なものを用いうるが、溶解性等の点から極性溶媒が好ましく用いられ、具体的には、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルホルムアミド、N,N−ジエチルアセトアミド、N,N−ジメチルメトキシアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルトリアミド、N−メチル−2−ピロリドン、ピリジン、ジメチルスルホキシド、テトラメチレンスルホン、ジメチルテトラメチレンスルホン等が挙げられる。これらは単独で用いても構わないし、併せて用いても差し支えない。さらに、上記有機極性溶媒にクレゾール、フェノール、キシレノール等のフェノール類、ベンゾニトリル、ジオキサン、ブチロラクトン、キシレン、シクロヘキサン、ヘキサン、ベンゼン、トルエン等を単独もしくは併せて混合することもできる。なお水の存在によってポリアミド酸が加水分解して低分子量化するので、ポリアミド酸の合成、保存は無水環境下で行うのが好ましい。
【0027】
上記の酸無水物(a)とジアミン(b)とを有機極性溶媒中で反応させることによりポリアミド酸溶液が得られる。その際のモノマー濃度(溶媒中における(a)+(b)の濃度)は、種々の条件に応じて設定されるが、5〜30重量%が好ましい。また、反応温度は80℃以下に設定することが好ましく、特に好ましくは5〜50℃であり、反応時間は0. 5〜10時間が好ましい。
【0028】
本発明では管状体に熱伝導性、導電性、帯電防止性、半導電性、耐磨耗性等所望の機能を付与するために、適宜無機粒子、無機酸化物、金属酸化物、界面活性剤等充填材を混入することが可能である。充填材の混入量は、種々の条件に応じて設定されるが、1〜60重量%、好ましくは5〜50重量%である。上記充填量より少ないと目的とする特性を発揮させることが難しく、一方多いと脆性のため機械的強度が管状体として不足する傾向がある。
【0029】
以上のようにしてポリアミド酸を得ることができ、その反応の進行に伴い溶液粘度が増大する。これによりB型粘度計における粘度を調整することができ、また前記モノマー濃度による調整も可能である。
【0030】
塗布するポリアミド酸溶液の粘度は10〜10000ポアズ、好ましくは50〜5000ポアズ(B型粘度計,23℃)程度である。粘度が10ポアズ未満であるといわゆるタレや塗布層のハジキが生じ易くなり、塗膜厚の均一性が得られ難くなる傾向がある。また、このような低粘度溶液では塗布後継続的に高速で回転しながら乾燥、固化しなければならず、経済及びコスト的に不利になる傾向がある。一方、10000ポアズを超えると、吐出の際に高い圧力をかける必要があり、また後述するレベリングの際の成形が困難となる成功がある。
【0031】
ポリアミド酸溶液は、円筒状型2を周方向(矢印A1)に回転させつつ回転軸方向(矢印A2)に移動させることにより、円筒状型2をスパイラル状に駆動することで、スパイラル状に塗布される。
【0032】
円筒状型2の駆動は、矢印A1方向の回転と矢印A2方向の移動とを同期させる駆動方法で行えばよく、例えば円筒状型2を片持ちの回転軸で支持しつつ、その回転軸を一定速度で回転させながら、円筒状型2を支持・回転機構と共に一定速度で移動させる方式が採用できる。また、円筒状型2を片持ち支持する軸を雄ねじ加工し、雌ねじ部を形成した支持台で前記軸を螺合支持した状態で、円筒状型2を外周部からローラで支持しつつ、周方向又は螺旋方向に回転力を与える方式を採用することも可能である。何れの駆動方式を採用しても、ディスペンサーの吐出口3aを固定しているため、両者を駆動する場合と比較して、相対的な駆動精度も向上するので、精度良く吐出口3aと型内面との位置関係を高精度に維持することができる。
【0033】
ディスペンサーやその供給部は、従来公知のものが使用できるが、供給部を駆動させる必要がないため、その構成部材の制約が少なく、変位や振動が生じにくい材料、構造を採用することができる。吐出口3aからのポリアミド酸溶液の供給量は、塗布膜の厚みが50〜1000μmとなる程度が好ましい。塗布膜の厚みは、円筒状型2の駆動速度によっても制御する事ができる。
【0034】
らせん状に塗布された塗布層は、隣接部分で一定のラッピング部分を持たせるように塗布すると、塗膜面が均一になりやすいため好ましい。この際ラップ量は、±5mm、より好ましくは±3mm程度持たせると好ましい。ここでいうラップ量とは、図2に示すように円筒状型2に既に塗布された塗膜面4と吐出口3aから塗布されるポリアミド酸溶液1の重なり7を示したものであり、本明細書中においてはラップ量が0の時ディスペンサー吐出口3aと塗膜面4の端が一致している場合を示し、プラス値の場合は重なりがある時の度合いを長さで示したもの、マイナスの場合は重なりが無い時の度合いを長さで示したものを指す。上記の最適なラップ量は溶液の粘度や円筒状型の回転数、塗布幅等で変わるため、適宜実験的に確認する必要がある。ラップ量が小さすぎると膜厚の薄い部分が発生し塗膜面の凹凸が発生し、ラップ量が大きすぎると後ほど行うレベリングに時間がかかり、また膜厚ムラの原因となる傾向がある。
【0035】
ディスペンサーの吐出口3aの開口形状は、種々の条件により適宜決定されるが、回転軸方向に長辺をもつ長方形であると好ましい。開口形状における短辺と長辺は、短辺が0.5〜5mm、長辺が5〜100mm、好ましくは10〜50mmであるが、種々の条件により適宜決定される。
【0036】
本発明では、吐出口3aと円筒状型2の内面との距離(ギャップ量)が塗膜面の均一性に大きく影響を与えることが実験的に確認されている。ここでいうギャップ量は、図2で示すように円筒状型2とディスペンサー吐出口3aの距離6を示す。適切なギャップ量は0.01〜5.0mm、好ましくは0. 1〜3.0mmである。ラップ量との兼ね合いもあるが、ギャップ量が小さすぎると塗膜面と吐出口が接触するため塗膜面に筋が残ってしまい、ギャップ量が大きすぎると塗布時に溶液に乱れが生じて厚み精度等の寸法精度を悪化させる傾向がある。
【0037】
ディスペンサー吐出口3aは複数あると、迅速に円筒状型内面全体を塗布することが可能となり、製造の迅速化がはかれるため好ましい。また、材質の異なる層を積層させる場合、従来は低粘度ポリアミド酸溶液を塗布後、高速回転で平滑化、乾燥固化して、再度低粘度ポリアミド酸溶液を塗布していた。しかし、本発明の方法によれば、ポリアミド酸溶液を塗布後、低速で回転しレベリングを行いながらその上にポリアミド酸溶液を塗布できるので、工程的にも少ない工程で安く高精度の積層管状体を得ることが可能となる。
【0038】
本発明では、以上のようにしてポリアミド酸溶液を塗布した後、従来法と同様にして、少なくとも回転遠心、溶媒除去、及びイミド転化を順次又は一部同時に行って管状体を製造する。この回転遠心(レベリング)によって、塗布層のラッピングによる凸部5(又は塗布帯の隙間部分)の膜厚を均一化することができる。
【0039】
従って、回転遠心の好ましい条件は、溶液の粘度やギャップ量によって異なるが、100〜10000rpmで0.1〜60分間程度行うのが好ましく、500〜5000rpmで1〜30分間程度行うのがより好ましい。なお、回転遠心は、溶媒除去等と同時に行うことも可能である。
【0040】
溶媒除去は、加熱や抽出等の従来公知の方法により行うことができ、円筒状型を低速で回転させながら行うのが好ましい。また、溶媒除去と同時に脱水閉環の除去等を行ってもよく、溶媒除去を行いながら徐々に昇温してイミド転化を行ってもよい。
【0041】
イミド転化は、加熱等の従来公知の方法により行うことができ、一般的には100℃付近からイミド転化が開始し、250〜450℃での加熱によりイミド転化反応が完結する。
【0042】
本発明では、更に塗布層中の気泡を除去するための脱泡工程や、塗布前に円筒状型の内面の離型処理などを行ってもよい。また、脱型後に、離型層、弾性体層などを更に管状体に積層形成してもよい。
【0043】
本発明では、以上のような製造方法により、うねりやスジのない膜厚の均一な厚さ精度、表面精度を有する高精度管状体を容易に得ることができる。また、フィルムの厚膜化に際しても重ね塗りをすることなく所望の厚みに精度よく成形することができる。このようなベルトを電子写真用画像形成装置の定着ベルト、転写ベルト、中間転写ベルト、搬送ベルト、感光体ベルト等の機能性ベルト及びこれ等の基材として使用した場合、優れた寸法精度を有するため、定着性、転写性、搬送性等求められる機能を最大限満足した機能性ベルトとして有用である。
【0044】
【実施例】
以下、本発明の構成と効果を具体的に示す実施例等について説明する。
【0045】
[実施例]
酸成分として3,3’,4,4’−ビフェニルテトラカルボン酸二無水物を、アミン成分としてp−フェニレンジアミンの略当モルをN−メチル−2−ピロリドン(NMP)に溶解(モノマー濃度20重量%)し、窒素雰囲気中において室温で攪拌しながら反応させ、次いで70℃に加温しつつ攪拌して23℃におけるB型粘度計による粘度が2000ポアズのポリアミド酸溶液を作製した。次いで、長方形状のダイス型ディスペンサー(開口部:短辺1. 5mm、長辺15mm)を固定しつつ、長さ500mm、径70mmφの円筒状金型を回転させながら移動させ、上記ポリアミド酸溶液を円筒状金型内面の一方端から他方端まで供給して、円筒状金型内面にスパイラル状に塗布(ラップ量0.3mm、ギャップ量0.7mm)し、そのまま金型を1500rpmで10分間回転させながら塗膜面のラッピング部分の凹凸のレベリングを行い、均一な塗膜面を得た。次いで金型を300rpmで回転させながら、350℃まで段階的に加熱し、溶媒の除去、脱水閉環水の除去、及びイミド転化を行った。その後室温に戻し、金型から剥離し厚さ約75μmの管状体を得た。管状体の内周面、外周面とも優れた表面性を有しており、スジや模様などは見られず、厚みのバラツキは±1.5μmであった。
【0046】
[比較例]
円筒状金型を実施例と同一の回転機構で回転させながら(軸方向は固定)、ディスペンサーを実施例と同一の駆動機構で移動しつつ、塗布したこと以外は、実施例と同様に管状体を作製した。この管状体の表面性を観察したところ、微妙なうねりやスジが観察され、厚みバラツキは±4.0μmであった。
【図面の簡単な説明】
【図1】本発明の管状体の製造方法を説明するための模式図
【図2】本発明の管状体の製造方法の塗布部を説明するための模式図
【符号の説明】
1 ポリアミド酸溶液
2 円筒状型
3 ディスペンサー供給部
3a 吐出口
4 塗膜面
5 ラッピングによる凸部
6 ギャップ量
7 ラップ量
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a high-precision tubular body in which a polyamic acid solution is applied to the inner surface of a cylindrical mold with a dispenser, and then subjected to rotary centrifugation, solvent removal, and imide conversion.
[0002]
[Prior art]
Conventionally, polyimide resin materials have been put to practical use in a wide range of fields from aerospace to electrical and electronic materials because of their high mechanical strength and heat resistance. Among these, polyimide resin tubular bodies are functional belts such as fixing belts, transfer belts, intermediate transfer belts, transport belts, and photoreceptor belts of electrophotographic image forming apparatuses such as copying machines, laser beam printers, and facsimile machines, and their bases. Used as a material. These belts combine multiple functions as belts, such as conveying the transfer body while pressing and heating an unfixed toner image, or transferring the image developed by the developing unit to the transfer body while holding it as a toner image. It plays a function in the form of For this reason, there is an increasing demand not only for functions such as thermal conductivity, conductivity, and semiconductivity but also for dimensional accuracy such as surface accuracy and film thickness accuracy that affect such functions.
[0003]
As a manufacturing method of such a belt, there is a method in which a polyimide film is formed into a cylindrical shape and is formed into a joining belt by heating and melting, etc. However, since the unevenness of the joining portion affects the image, it is necessary to provide a detection mechanism. There is also a problem that it occurs or the strength of the joint is weak. For this reason, several methods for producing seamless tubular bodies that do not rely on joining have been proposed.
[0004]
As an example, a cylindrical mold (inner mold) is dip-coated in a polyamic acid solution, and then an outer mold having a predetermined inner diameter is dropped onto the cylindrical mold and applied, followed by heat curing. A method for manufacturing a tubular body is known (Japanese Patent Laid-Open No. 7-186162). However, in the case of this dip coating method, it is necessary to thoroughly control the concentration of the immersing solution, and in the case of a tubular body, since the coating is applied even to the portion that does not need to be coated, the loss of the solution increases, which is economically disadvantageous. There were problems such as becoming.
[0005]
On the other hand, when applying liquid heat-resistant resin to the inner surface of the cylindrical mold, the coating layer is formed by moving the dispenser supply section (discharge port) in the mold axial direction while rotating the cylindrical mold. Then, a method for producing a tubular body by curing is known (Japanese Patent Laid-Open Nos. 3-34817 and 9-85756).
[0006]
[Problems to be solved by the invention]
However, as disclosed in Japanese Patent Application Laid-Open No. 3-34817, the length of the solution supply pipe for discharging the polyamic acid solution is reduced in the method in which the application is performed in a streak form from the discharge port movable on the inner surface of the cylindrical mold. It must be at least the width of the tubular body, and the pipe will bend and vibrate due to high-speed movement of the supply pipe during application, resulting in variations in the distance between the discharge port and the mold inner surface. Uneven coating and deterioration of dimensional accuracy due to this are likely to occur. In addition, since the distance between the discharge port and the inner surface of the mold is relatively large, the influence of disturbance of the solution to be applied is likely to occur.
[0007]
On the other hand, in Japanese Patent Application Laid-Open No. 9-85756, the dispenser is in contact with the mold, although the problem caused by the bending is solved because the dispenser supply portion is brought into contact with the inner surface of the mold during application. For this reason, the coated surface of the mold is scratched, or wear debris enters the polyamic acid solution due to wear of the discharge part, which may cause contamination by foreign matter and deterioration of surface accuracy.
[0008]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-described problems, and to obtain a high-precision tubular body that can easily obtain a high-precision tubular body having uniform thickness accuracy and surface accuracy without waviness and streaks. It is in providing the manufacturing method of.
[0009]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present inventors have conducted intensive research on a cylindrical drive system when applying the polyamic acid solution and the arrangement of the discharge port of the dispenser. The discharge port of the dispenser is relatively fixed. The present invention has been completed by finding that uniform application can be performed from the discharge port arranged at a predetermined interval from the inner surface of the mold by a method of driving the cylindrical mold in a spiral shape by arranging in a state.
[0010]
That is, in the method for producing a high-precision tubular body of the present invention, after applying a polyamic acid solution to the inner surface of a cylindrical mold with a dispenser, at least rotational centrifugation, solvent removal, and imide conversion are sequentially or partially performed at the same time. In the method of manufacturing, the discharge port of the dispenser is moved in the direction of the rotation axis while rotating the cylindrical mold in the circumferential direction in a state where the discharge port of the dispenser is disposed in a relatively fixed state at a distance from the inner surface of the cylindrical mold. By doing so, the polyamic acid solution is applied in a spiral shape.
[0011]
In the above, it is preferable that the distance between the discharge port and the inner surface of the cylindrical mold is 0.01 to 5.0 mm.
[0012]
Moreover, it is preferable that the viscosity by the B-type viscometer of the said polyamic acid solution to apply | coat is 10-10000 poise (23 degreeC).
[0013]
Furthermore, it is preferable that the opening shape of the discharge port is rectangular and the length in the rotation axis direction is 5 to 100 mm.
[0014]
Moreover, it is preferable to perform coating by providing two or more discharge ports.
[0015]
[Function and effect]
According to the present invention, since the discharge port of the dispenser is fixed or moved at a low speed, the cylindrical mold is driven, so that there are less restrictions on the components and the like due to the high speed drive on the dispenser side, and the displacement, vibration, etc. of the discharge port It becomes easy to suppress. In particular, when the ejection port is fixed, only one of them is driven, so that the relative driving accuracy is improved as compared with the case where both are driven. Therefore, the positional relationship between the discharge port and the inner surface of the mold can be maintained with high accuracy, and uniform coating can be performed. In other words, in order to avoid problems caused by contact of the discharge port, the method of fixing the discharge port at a distance from the inner surface of the cylindrical mold can maintain the positional relationship between the discharge port and the inner surface of the mold with high accuracy. Importantly, in the present invention, this problem can be solved by the above driving method. As a result, as shown by the results of the examples, it is possible to easily obtain a high-precision tubular body having uniform thickness accuracy and surface accuracy free from waviness and streaks.
[0016]
In addition, when the distance between the discharge port and the inner surface of the cylindrical mold is 0.01 to 5.0 mm, the conventional driving method cannot perform uniform application due to vibration of the dispenser supply unit, etc. In the present invention, since the positional relationship between the discharge port and the inner surface of the mold is maintained with high accuracy, more uniform application can be performed without being substantially affected by the disturbance of the solution during application.
[0017]
When the viscosity of the applied polyamic acid solution measured by a B-type viscometer is 10 to 10,000 poise (23 ° C.), the solution viscosity is particularly preferable for the coating method as described above.
[0018]
When the opening shape of the discharge port is rectangular and the length in the rotation axis direction is 5 to 100 mm, since the opening shape of the discharge port is rectangular, the coating amount tends to be uniform in the rotation axis direction. Since the length in the direction of the rotation axis is 5 to 100 mm, the application width is appropriate for application in a spiral shape.
[0019]
When coating is performed with two or more discharge ports, the time required for coating can be shortened by performing a plurality of coatings simultaneously.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram for explaining a method for producing a tubular body of the present invention, and FIG. 2 is a schematic diagram for explaining an application part.
[0021]
As shown in FIG. 1, the manufacturing method of the high-precision tubular body of the present invention is such that when the polyamic acid solution 1 is applied to the inner surface of a cylindrical mold 2 by a dispenser, the dispenser outlet 3 a is connected to the inner surface of the cylindrical mold 2. The polyamic acid solution 1 is spirally moved by rotating the cylindrical mold 2 in the direction of the rotation axis (arrow A2) while rotating the cylindrical mold 2 in the circumferential direction (arrow A1) in a state of being relatively fixed at a distance from It is characterized in that it is applied in the form.
[0022]
The polyamic acid solution only needs to dissolve the polyamic acid in the solvent, and may contain a partially imidized one, a copolymer component, other components, a filler, and the like.
[0023]
A known polyamic acid solution can be used, and a polyamic acid solution obtained by polymerizing an acid dianhydride and a diamine in a solvent can be suitably used. In particular, when the aromatic polyimide resin is used, it is possible to obtain a tubular body having favorable mechanical strength and heat resistance.
[0024]
Examples of suitable acid dianhydrides include pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic acid dianhydride. Anhydride, 2,3,3 ′, 4-biphenyltetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride Products, 1,4,5,8-naphthalenetetracarboxylic dianhydride and the like.
[0025]
On the other hand, examples of the diamine include 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylmethane, 3,3′-dichlorobenzidine, 4,4′-diaminodiphenyl sulfide, 3 , 3′-diaminodiphenylsulfone, 1,5-diaminonaphthalene, m-phenylenediamine, p-phenylenediamine, 3,3′-dimethyl4,4′-biphenyldiamine, benzidine, 3,3′-dimethylbenzidine, 3 , 3′-dimethoxybenzidine, 4,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenyl sulfide, 4,4′-diaminodiphenylpropane, and the like.
[0026]
A suitable solvent can be used for the polymerization reaction of these acid anhydrides and diamines, but polar solvents are preferably used from the viewpoint of solubility and the like. Specifically, N, N-dimethylformamide, N , N-dimethylacetamide, N, N-diethylformamide, N, N-diethylacetamide, N, N-dimethylmethoxyacetamide, dimethyl sulfoxide, hexamethylphosphortriamide, N-methyl-2-pyrrolidone, pyridine, dimethyl sulfoxide, Examples include tetramethylene sulfone and dimethyltetramethylene sulfone. These may be used alone or in combination. Furthermore, phenols such as cresol, phenol and xylenol, benzonitrile, dioxane, butyrolactone, xylene, cyclohexane, hexane, benzene, toluene and the like can be mixed alone or in combination with the organic polar solvent. Since the polyamic acid is hydrolyzed by the presence of water to lower the molecular weight, the polyamic acid is preferably synthesized and stored in an anhydrous environment.
[0027]
A polyamic acid solution is obtained by reacting the acid anhydride (a) and the diamine (b) in an organic polar solvent. The monomer concentration (concentration of (a) + (b) in the solvent) at that time is set according to various conditions, but is preferably 5 to 30% by weight. The reaction temperature is preferably set to 80 ° C. or less, particularly preferably 5 to 50 ° C., and the reaction time is preferably 0.5 to 10 hours.
[0028]
In the present invention, inorganic particles, inorganic oxides, metal oxides, surfactants are suitably used to give the tubular body desired functions such as thermal conductivity, conductivity, antistatic properties, semiconductivity, and abrasion resistance. It is possible to mix the same filler. The mixing amount of the filler is set according to various conditions, but is 1 to 60% by weight, preferably 5 to 50% by weight. If the amount is less than the above-mentioned filling amount, it is difficult to exhibit the intended characteristics, while if it is more than the above-mentioned amount, mechanical strength tends to be insufficient as a tubular body due to brittleness.
[0029]
Polyamic acid can be obtained as described above, and the solution viscosity increases as the reaction proceeds. Thereby, the viscosity in a B-type viscometer can be adjusted, and the adjustment by the monomer concentration is also possible.
[0030]
The viscosity of the polyamic acid solution to be applied is about 10 to 10000 poise, preferably about 50 to 5000 poise (B-type viscometer, 23 ° C.). If the viscosity is less than 10 poise, so-called sagging or repellency of the coating layer is likely to occur, and the uniformity of the coating thickness tends to be difficult to obtain. Further, such a low-viscosity solution must be dried and solidified while continuously rotating at a high speed after coating, which tends to be disadvantageous in terms of economy and cost. On the other hand, when it exceeds 10,000 poise, it is necessary to apply a high pressure at the time of discharge, and there is a success that it becomes difficult to form at the time of leveling described later.
[0031]
The polyamic acid solution is applied in a spiral manner by driving the cylindrical die 2 in a spiral shape by moving the cylindrical die 2 in the circumferential direction (arrow A1) and moving it in the direction of the rotation axis (arrow A2). Is done.
[0032]
The cylindrical mold 2 may be driven by a driving method in which the rotation in the direction of the arrow A1 and the movement in the direction of the arrow A2 are synchronized. For example, while supporting the cylindrical mold 2 with a cantilevered rotation axis, A method of moving the cylindrical mold 2 together with the support / rotation mechanism at a constant speed while rotating at a constant speed can be adopted. In addition, the shaft that cantilever-supports the cylindrical mold 2 is externally threaded, and the cylindrical mold 2 is supported by a roller from the outer peripheral portion while the shaft is screwed and supported by a support base having a female screw portion. It is also possible to adopt a method of applying a rotational force in the direction or the spiral direction. Regardless of which drive method is used, the discharge port 3a of the dispenser is fixed, so that the relative drive accuracy is improved as compared with the case where both are driven. Can be maintained with high accuracy.
[0033]
As the dispenser and its supply unit, conventionally known ones can be used. However, since there is no need to drive the supply unit, there are few restrictions on its constituent members, and it is possible to adopt materials and structures that are less likely to cause displacement and vibration. The supply amount of the polyamic acid solution from the discharge port 3a is preferably such that the thickness of the coating film is 50 to 1000 μm. The thickness of the coating film can also be controlled by the driving speed of the cylindrical mold 2.
[0034]
It is preferable to apply the spirally applied coating layer so as to have a certain wrapping portion in an adjacent portion because the coating surface tends to be uniform. At this time, the wrap amount is preferably ± 5 mm, more preferably about ± 3 mm. The amount of wrap here refers to the overlap 7 between the coating surface 4 already applied to the cylindrical mold 2 and the polyamic acid solution 1 applied from the discharge port 3a as shown in FIG. In the specification, when the amount of wrap is 0, the dispenser discharge port 3a and the end of the coating film surface 4 coincide with each other, and in the case of a positive value, the degree when there is overlap is indicated by the length, In the case of minus, it indicates the degree when there is no overlap in length. Since the optimum amount of wrapping varies depending on the viscosity of the solution, the rotational speed of the cylindrical mold, the coating width, etc., it must be confirmed experimentally as appropriate. If the amount of wrapping is too small, a thin part of the film thickness is generated and unevenness of the coating film surface is generated. If the amount of wrapping is too large, leveling performed later takes time and tends to cause film thickness unevenness.
[0035]
The opening shape of the discharge port 3a of the dispenser is appropriately determined according to various conditions, but is preferably a rectangle having a long side in the rotation axis direction. The short side and the long side in the opening shape have a short side of 0.5 to 5 mm and a long side of 5 to 100 mm, preferably 10 to 50 mm, and are appropriately determined according to various conditions.
[0036]
In the present invention, it has been experimentally confirmed that the distance (gap amount) between the discharge port 3a and the inner surface of the cylindrical mold 2 greatly affects the uniformity of the coating film surface. The gap amount here indicates a distance 6 between the cylindrical mold 2 and the dispenser discharge port 3a as shown in FIG. A suitable gap amount is 0.01 to 5.0 mm, preferably 0.1 to 3.0 mm. Although there is a balance with the wrap amount, if the gap amount is too small, the coating surface and the discharge port come into contact with each other, streaks remain on the coating surface, and if the gap amount is too large, the solution is disturbed during coating, resulting in thickness There is a tendency to deteriorate the dimensional accuracy such as accuracy.
[0037]
When there are a plurality of dispenser discharge ports 3a, it is possible to quickly apply the entire inner surface of the cylindrical mold, which is preferable because the production can be speeded up. In the case of laminating layers of different materials, conventionally, after applying a low-viscosity polyamic acid solution, smoothing at high speed rotation, drying and solidifying, and then applying the low-viscosity polyamic acid solution again. However, according to the method of the present invention, after applying the polyamic acid solution, it is possible to apply the polyamic acid solution while rotating at a low speed and performing leveling. Can be obtained.
[0038]
In the present invention, after the polyamic acid solution is applied as described above, a tubular body is produced by performing at least rotational centrifugation, solvent removal, and imide conversion sequentially or partially at the same time as in the conventional method. By this rotation centrifugation (leveling), the film thickness of the convex part 5 (or the gap part of an application belt | band | zone) by the wrapping of an application layer can be equalize | homogenized.
[0039]
Accordingly, preferable conditions for the rotary centrifugation vary depending on the viscosity of the solution and the gap amount, but are preferably performed at 100 to 10000 rpm for about 0.1 to 60 minutes, more preferably at 500 to 5000 rpm for about 1 to 30 minutes. Note that the rotary centrifugation can be performed simultaneously with the solvent removal or the like.
[0040]
Solvent removal can be performed by a conventionally known method such as heating or extraction, and is preferably performed while rotating the cylindrical mold at a low speed. Moreover, removal of dehydration ring closure or the like may be performed simultaneously with solvent removal, or imide conversion may be performed by gradually raising the temperature while removing the solvent.
[0041]
The imide conversion can be performed by a conventionally known method such as heating. Generally, the imide conversion starts from around 100 ° C., and the imide conversion reaction is completed by heating at 250 to 450 ° C.
[0042]
In this invention, you may perform the defoaming process for removing the bubble in an application layer, the mold release process of the inner surface of a cylindrical type | mold before application | coating, etc. further. Further, after demolding, a release layer, an elastic body layer and the like may be further laminated on the tubular body.
[0043]
In the present invention, a high-precision tubular body having a uniform thickness accuracy and surface accuracy with a film thickness free from waviness and streaks can be easily obtained by the manufacturing method as described above. In addition, when the film is thickened, it can be accurately formed to a desired thickness without recoating. When such a belt is used as a functional belt such as a fixing belt, a transfer belt, an intermediate transfer belt, a conveyance belt, and a photosensitive belt of an electrophotographic image forming apparatus and a base material thereof, it has excellent dimensional accuracy. Therefore, it is useful as a functional belt that satisfies the required functions such as fixability, transferability, and transportability.
[0044]
【Example】
Examples and the like specifically showing the configuration and effects of the present invention will be described below.
[0045]
[Example]
3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride as an acid component and approximately equimolar amount of p-phenylenediamine as an amine component are dissolved in N-methyl-2-pyrrolidone (NMP) (monomer concentration 20 The mixture was reacted while stirring at room temperature in a nitrogen atmosphere, and then stirred while heating to 70 ° C. to prepare a polyamic acid solution having a viscosity of 2000 poise measured at 23 ° C. using a B-type viscometer. Next, while fixing a rectangular die-type dispenser (opening portion: short side 1.5 mm, long side 15 mm), a cylindrical mold having a length of 500 mm and a diameter of 70 mmφ is moved while rotating, and the polyamic acid solution is moved. Supply from one end of the inner surface of the cylindrical mold to the other end, apply spirally on the inner surface of the cylindrical mold (wrap amount 0.3 mm, gap amount 0.7 mm), and rotate the mold for 10 minutes at 1500 rpm. The unevenness of the wrapping part of the coating film surface was leveled, and a uniform coating film surface was obtained. Next, while rotating the mold at 300 rpm, it was heated stepwise up to 350 ° C. to remove the solvent, dehydrated ring-closing water, and imide conversion. Thereafter, the temperature was returned to room temperature, and it was peeled from the mold to obtain a tubular body having a thickness of about 75 μm. Both the inner peripheral surface and the outer peripheral surface of the tubular body had excellent surface properties, no streaks or patterns were seen, and the thickness variation was ± 1.5 μm.
[0046]
[Comparative example]
The tubular body is the same as in the example except that the cylindrical mold is rotated by the same rotation mechanism as in the example (the axial direction is fixed), and the dispenser is applied while being moved by the same drive mechanism as in the example. Was made. When the surface property of this tubular body was observed, subtle undulations and streaks were observed, and the thickness variation was ± 4.0 μm.
[Brief description of the drawings]
FIG. 1 is a schematic diagram for explaining a method for producing a tubular body according to the present invention. FIG. 2 is a schematic diagram for explaining an application part of the method for producing a tubular body according to the present invention.
DESCRIPTION OF SYMBOLS 1 Polyamic acid solution 2 Cylindrical type | mold 3 Dispenser supply part 3a Discharge port 4 Coating surface 5 Convex part 6 by lapping Gap amount 7 Lapping amount

Claims (5)

円筒状型の内面にポリアミド酸溶液をディスペンサーにより塗布した後、少なくとも回転遠心、溶媒除去、及びイミド転化を順次又は一部同時に行って管状体を製造する方法において、
前記ディスペンサーの吐出口を前記円筒状型の内面から距離を隔てて相対的に固定状態に配置した状態で、前記円筒状型を周方向に回転させつつ回転軸方向に移動させることにより、前記ポリアミド酸溶液をスパイラル状に塗布することを特徴とする高精度管状体の製造方法。
In a method for producing a tubular body by applying a polyamic acid solution to the inner surface of a cylindrical mold with a dispenser, and then performing at least rotational centrifugation, solvent removal, and imide conversion sequentially or partly simultaneously,
By moving the cylindrical mold in the direction of the rotation axis while rotating the cylindrical mold in the circumferential direction in a state where the discharge port of the dispenser is disposed relatively fixed at a distance from the inner surface of the cylindrical mold, the polyamide is obtained. A method for producing a high-precision tubular body, which comprises applying an acid solution in a spiral shape.
前記吐出口と前記円筒状型の内面との距離が、0.01〜5.0mmである請求項1記載の高精度管状体の製造方法。The method for producing a high-precision tubular body according to claim 1, wherein a distance between the discharge port and the inner surface of the cylindrical mold is 0.01 to 5.0 mm. 塗布される前記ポリアミド酸溶液のB型粘度計による粘度が、10〜10000ポアズ(23℃)である請求項1又は2記載の高精度管状体の製造方法。The method for producing a high-precision tubular body according to claim 1 or 2, wherein the polyamic acid solution to be applied has a viscosity measured by a B-type viscometer of 10 to 10,000 poise (23 ° C). 前記吐出口の開口形状が長方形であり、その回転軸方向の長さが5〜100mmである請求項1〜3いずれかに記載の高精度管状体の製造方法。The method for producing a high-precision tubular body according to any one of claims 1 to 3, wherein an opening shape of the discharge port is a rectangle, and a length in a rotation axis direction thereof is 5 to 100 mm. 前記吐出口を2箇所以上設けて塗布を行う請求項1〜4いずれかに記載の高精度管状体の製造方法。The manufacturing method of the high precision tubular body according to any one of claims 1 to 4, wherein the application is performed by providing two or more discharge ports.
JP2000203945A 2000-07-05 2000-07-05 Manufacturing method of high-precision tubular body Expired - Fee Related JP4305708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000203945A JP4305708B2 (en) 2000-07-05 2000-07-05 Manufacturing method of high-precision tubular body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000203945A JP4305708B2 (en) 2000-07-05 2000-07-05 Manufacturing method of high-precision tubular body

Publications (2)

Publication Number Publication Date
JP2002018872A JP2002018872A (en) 2002-01-22
JP4305708B2 true JP4305708B2 (en) 2009-07-29

Family

ID=18701280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000203945A Expired - Fee Related JP4305708B2 (en) 2000-07-05 2000-07-05 Manufacturing method of high-precision tubular body

Country Status (1)

Country Link
JP (1) JP4305708B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2847564B1 (en) * 2002-11-25 2005-06-03 Georges Dol MACHINES FOR MANUFACTURING COMPOSITE CYLINDRICAL PARTS BY CENTRIFUGING AND BY WRAPPING A CONTINUOUS PATCH OF REINFORCING WIRES
JP4486106B2 (en) * 2007-04-10 2010-06-23 日東電工株式会社 Manufacturing method of high-precision tubular body

Also Published As

Publication number Publication date
JP2002018872A (en) 2002-01-22

Similar Documents

Publication Publication Date Title
US8267242B2 (en) Seamless belt
JP4619208B2 (en) Polyimide resin belt with isotropic dielectric constant in the surface direction
JP4305708B2 (en) Manufacturing method of high-precision tubular body
JP4551576B2 (en) Seamless belt manufacturing method
JP4014153B2 (en) Seamless belt manufacturing method using induction heating
JP3979865B2 (en) Manufacturing method of high-precision tubular body
JP5911960B2 (en) Endless belt manufacturing method
JP4486106B2 (en) Manufacturing method of high-precision tubular body
JP2002264151A (en) Method for manufacturing tubular body with high precision and tubular body with high precision
JP4356508B2 (en) Polyamic acid composition, image forming apparatus, polyimide endless belt using the same, and method for producing the same
JP2004098608A (en) Manufacturing method of high-precision tubular body
JP5867809B2 (en) Intermediate transfer belt, intermediate transfer belt manufacturing method, and image forming apparatus
JP2004279458A (en) Fixing belt
JP2008095006A (en) Polyamic acid composition, polyimide molded article, method for preparation of the same, and image forming apparatus
JP2004009495A (en) Coating method and manufacturing method of seamless tubular body
JP5064615B2 (en) Method for producing semiconductive seamless belt
JP2005017720A (en) Heat conductive seamless belt
JP3673110B2 (en) Heat-resistant deformable tubular film and use thereof
JP2001131410A (en) Semiconductive polyamic acid composition and its use
JP2005219227A (en) Highly precise polyimide belt manufacturing method and seamless polyimide belt
JP5748092B2 (en) Toner carrier, developing device, and image forming apparatus
JP2003270967A (en) Transfer fixing belt
JP6075620B2 (en) Image forming apparatus
KR20140041997A (en) Seamless belt and preparation method thereof
JP6950283B2 (en) Manufacturing method of polyimide seamless belt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090422

R150 Certificate of patent or registration of utility model

Ref document number: 4305708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150515

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees