JP4619208B2 - Polyimide resin belt with isotropic dielectric constant in the surface direction - Google Patents

Polyimide resin belt with isotropic dielectric constant in the surface direction Download PDF

Info

Publication number
JP4619208B2
JP4619208B2 JP2005187061A JP2005187061A JP4619208B2 JP 4619208 B2 JP4619208 B2 JP 4619208B2 JP 2005187061 A JP2005187061 A JP 2005187061A JP 2005187061 A JP2005187061 A JP 2005187061A JP 4619208 B2 JP4619208 B2 JP 4619208B2
Authority
JP
Japan
Prior art keywords
polyimide resin
dielectric constant
belt
resin belt
cylindrical mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005187061A
Other languages
Japanese (ja)
Other versions
JP2007001262A (en
Inventor
直樹 西浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Original Assignee
Gunze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd filed Critical Gunze Ltd
Priority to JP2005187061A priority Critical patent/JP4619208B2/en
Publication of JP2007001262A publication Critical patent/JP2007001262A/en
Application granted granted Critical
Publication of JP4619208B2 publication Critical patent/JP4619208B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、カラー画像形成装置を備えた電子写真複写機、プリンタ、ファクシミリ、これらの複合機、さらにはデジタル印刷機などに用いられるポリイミド系樹脂ベルトとその製造方法に関する。さらに詳しくは、カラー画像形成装置の更なる高画質化・高速化、高信頼性化、さらには紙などの転写媒体の選択自由化に対応したシームレス形状のポリイミド系樹脂ベルトとその製造方法に関する。   The present invention relates to a polyimide resin belt used in an electrophotographic copying machine, a printer, a facsimile, a composite machine of these, a digital printing machine, and the like provided with a color image forming apparatus, and a method for manufacturing the same. More specifically, the present invention relates to a polyimide resin belt having a seamless shape and a method for manufacturing the same, which can further improve the image quality / speed and reliability of a color image forming apparatus, and can further freely select a transfer medium such as paper.

電子写真方式を応用したカラー画像形成装置は、無機又は有機感光体で形成されたトナー像を、一色ずつ転写部材上に一旦静電的に担持し重ね合わせ、4色の合成画像を形成した後、紙などの転写材に一括転写するという二度の転写工程を経る。そのため転写ベルトの表面抵抗率と体積抵抗率は、各種プロセスの要求を達成するための重要な制御因子であることが知られている。   In a color image forming apparatus using an electrophotographic method, a toner image formed of an inorganic or organic photoreceptor is electrostatically carried on a transfer member one color at a time and superimposed to form a four-color composite image. Then, the transfer process is performed twice, that is, batch transfer onto a transfer material such as paper. Therefore, it is known that the surface resistivity and volume resistivity of the transfer belt are important control factors for achieving various process requirements.

上記カラー画像形成装置においては、形成画像の品質を向上させるため、トナー像を正確に転写することを目的とし、転写ベルトの電気特性、特に体積抵抗率について種々の検討がなされている。例えば、特許文献1〜3には、厚み方向の体積抵抗率が10〜1017Ω・cmの範囲で制御するとともに、体積電気抵抗値の最大値が最小値の1〜100倍の範囲にある中間転写部材が開示されている。 In the color image forming apparatus described above, various studies have been made on the electrical characteristics of the transfer belt, particularly the volume resistivity, for the purpose of accurately transferring the toner image in order to improve the quality of the formed image. For example, in Patent Documents 1 to 3, the volume resistivity in the thickness direction is controlled in the range of 10 8 to 10 17 Ω · cm, and the maximum value of the volume electrical resistance value is in the range of 1 to 100 times the minimum value. An intermediate transfer member is disclosed.

また、耐熱性、機械的強度、耐環境特性に優れることから、ポリイミド系樹脂を使用したポリイミド系樹脂製中間転写部材が検討されている。特許文献4には、アセチレンブラック、ケッチェンブラック等の導電性カーボンブラックがポリイミド樹脂に分散された導電性ポリイミドシームレスベルトが、特許文献5には、シラン系カップリング剤で表面処理された導電性金属酸化物を分散させたポリアミド酸の原液を、金属シート上でキャスティング成形した後、得られたフィルムの両端部を接合した中間転写部材が開示されている。   Moreover, since it is excellent in heat resistance, mechanical strength, and environmental resistance characteristics, a polyimide resin intermediate transfer member using a polyimide resin has been studied. Patent Document 4 discloses a conductive polyimide seamless belt in which conductive carbon black such as acetylene black and ketjen black is dispersed in a polyimide resin. Patent Document 5 discloses a conductive material whose surface is treated with a silane coupling agent. An intermediate transfer member is disclosed in which a stock solution of polyamic acid in which a metal oxide is dispersed is cast-molded on a metal sheet and then both ends of the obtained film are joined.

しかし、このような従来の中間転写部材では、体積抵抗率の値を所定の範囲に設定したときであっても、形成画像にムラが発生するといった問題を除去することができない。これは、単に導電微粒子の1次粒子の分布状態でなく、マクロ的な分散状態やストラクチャーの方向性がもたらす、面方向の誘電率の異方性に起因するためである。従って、中間転写部材の体積抵抗率のばらつきが少なくても形成画像のムラを完全に除去することができない。   However, with such a conventional intermediate transfer member, even when the volume resistivity value is set within a predetermined range, the problem of unevenness in the formed image cannot be eliminated. This is because it is not simply the distribution state of the primary particles of the conductive fine particles, but is caused by the anisotropy of the dielectric constant in the plane direction caused by the macroscopic dispersion state and the structure directionality. Therefore, even if there is little variation in the volume resistivity of the intermediate transfer member, the unevenness of the formed image cannot be completely removed.

また、画像形成装置において使用される中間転写部材においては、使用中の伸びだけでなく、画像形成装置に組み込まれた初期状態で面方向のうねりのないものが望まれる。すなわち、中間転写部材の転写面が平坦であることが必要であり、中間転写部材にうねりがあると転写像を歪めたり、周速差による色ずれを発生させたり、用紙との密着性を弱めたりして画質にムラを発生させてしまう。   In addition, an intermediate transfer member used in the image forming apparatus is desired not only to be stretched during use but also to have no waviness in the surface direction in an initial state incorporated in the image forming apparatus. In other words, the transfer surface of the intermediate transfer member needs to be flat, and if the intermediate transfer member has waviness, the transfer image is distorted, color misregistration occurs due to a difference in peripheral speed, or the adhesion to the paper is weakened. Cause unevenness in image quality.

近年、画像形成装置の高速化に伴い、各色毎の現像器を備えた複数の感光体を備えたタンデム式カラー画像形成装置が多く開発されている。タンデム式カラー画像形成装置においては、中間転写方式あるいは転写搬送方式のどちらの方式を用いても、中間転写部材の周長は大きく(大口径化)する必要があり、周長を大きく(大口径化)しても面方向のうねりの出来る限り小さくすることが望まれている。   2. Description of the Related Art In recent years, with the speeding up of image forming apparatuses, many tandem color image forming apparatuses having a plurality of photoconductors each having a developing device for each color have been developed. In a tandem color image forming apparatus, regardless of whether the intermediate transfer method or the transfer conveyance method is used, the peripheral length of the intermediate transfer member needs to be large (large diameter), and the peripheral length must be large (large diameter). However, it is desired to reduce the surface undulation as much as possible.

一般的に、ポリイミド系樹脂の分子構造が比較的平面的に広がっているものが多く、液体原料の溶媒が揮発するとき、分子が層状になって膜形成がなされるため、導電微粒子の分散状態が面方向に異方性を発現しやすい。この結果、電気的特性として誘電率の異方性の発生と導電微粒子の配向などによる面方向のうねりとしてあらわれる。そして、面方向の異方性は中間転写部材の周長が大きく(大口径化)するほど発生しやすくなる傾向がある。   Generally, the molecular structure of polyimide-based resin is often relatively flat, and when the solvent of the liquid raw material is volatilized, the molecules are layered to form a film. However, it is easy to develop anisotropy in the plane direction. As a result, the electrical characteristics appear as undulation in the plane direction due to the occurrence of anisotropy of dielectric constant and the orientation of the conductive fine particles. The anisotropy in the surface direction tends to occur more easily as the peripheral length of the intermediate transfer member becomes larger (larger diameter).

また、特許文献6には、分子配向状態の指標としてMOR−cを用いて、フィルム面内の任意の点における物性のばらつきの少ないMOR−cの最大値が1.35以下のポリイミドフィルムを開示されている。しかし、このポリイミドフィルムは、カーボンブラックなどの導電性フィラーを含まないため、絶縁フィルムであり、中間転写部材として不可欠な電気特性、つまりフィルムの厚み方向に電気を流すという特性を持たないという問題を有している。   Patent Document 6 discloses a polyimide film having a maximum value of MOR-c of 1.35 or less with little variation in physical properties at any point in the film plane, using MOR-c as an index of the molecular orientation state. Has been. However, since this polyimide film does not contain conductive fillers such as carbon black, it is an insulating film and has the problem that it does not have the electrical characteristics that are indispensable as an intermediate transfer member, that is, it does not have the characteristic of flowing electricity in the thickness direction of the film. Have.

一方、ポリイミド系樹脂製中間転写部材の製造方法として回転成形法が検討されている。特許文献7では、円筒金型の中に液体原料を投入し、重力加速度の約112倍の遠心加速度、特許文献8では、重力加速度の約250倍の遠心加速度により液体原料を円筒金型の内周面に均一に流延させる製造方法が開示されている。   On the other hand, a rotational molding method has been studied as a method for producing an intermediate transfer member made of polyimide resin. In Patent Document 7, the liquid material is put into a cylindrical mold and the liquid material is placed in the cylindrical mold by centrifugal acceleration that is approximately 112 times the gravitational acceleration. A manufacturing method for uniformly casting on a peripheral surface is disclosed.

しかしながら、上記公報に開示された製造方法では、液体原料の投入や遠心力によって生じる流動でカーボンブラックのストラクチャーもその方向に配向するため、MOR−cが大きくなる傾向にあり、結果として、面方向の誘電率の異方性に起因して形成画像にムラが生じるという問題を除去することができない。   However, in the manufacturing method disclosed in the above publication, the structure of the carbon black is also oriented in the direction due to the flow caused by the input of the liquid raw material or centrifugal force, so that the MOR-c tends to increase. The problem of unevenness in the formed image due to the anisotropy of the dielectric constant cannot be eliminated.

また、特許文献9には、実質的に無遠心力の回転速度で、粉霧状の耐熱性樹脂液を成型ドラムに噴出して得られる耐熱変形性管状フィルムが開示されている。しかし、この管状フィルムは、回転成形法によって温度120℃の温度で加熱して円筒金型の内周面に皮膜を形成した後、円筒金型から剥離してベルトの内周面に新たな金型を挿入し、250℃以上で加熱する製造方法で作製される。このようにベルトの内周面に新たな金型を挿入して、ポリイミド前駆体をイミド転化反応するとポリイミド分子鎖が周方向に配向してしまい、カーボンブラックなどの導電微粒子もその配向方向に並んだ分散状態になってしまう。その結果、面方向の誘電率に異方性を持つため改善の余地がある。   Patent Document 9 discloses a heat-resistant deformable tubular film obtained by jetting a mist-like heat-resistant resin liquid onto a molding drum at a substantially non-centrifugal rotational speed. However, this tubular film is heated at a temperature of 120 ° C. by a rotational molding method to form a film on the inner peripheral surface of the cylindrical mold, and then peeled off from the cylindrical mold and a new metal is formed on the inner peripheral surface of the belt. It is manufactured by a manufacturing method in which a mold is inserted and heated at 250 ° C. or higher. Thus, when a new mold is inserted into the inner peripheral surface of the belt and the polyimide precursor is subjected to an imide conversion reaction, the polyimide molecular chains are oriented in the circumferential direction, and conductive fine particles such as carbon black are also aligned in the orientation direction. It becomes a distributed state. As a result, there is room for improvement because the dielectric constant in the plane direction has anisotropy.

そして、面方向の誘電率の異方性を持つ中間転写部材では、過大な電流を繰り返し流すことで誘電率が変化し、中間転写部材として必要な誘電率7〜12の範囲を外れるという問題がある。その結果、トナー飛散などの画像上の不具合を発生させ、中間転写部材の寿命の短命化につながり、交換等のメンテナンスの手間とランニングコストを押し上げ、画像形成装置としての信頼性が劣る結果につながる。
特開平3−100579号公報 特開平5−200904号公報 特開平5−345368号公報 特開平5−77252号公報 特開平10−63115号公報 特開2002−154168号公報 特開2001−38750号公報 特開2004−287005号公報 特開2000−263568号公報
Further, in an intermediate transfer member having an anisotropy of dielectric constant in the surface direction, the dielectric constant is changed by repeatedly passing an excessive current, and there is a problem that the range of the dielectric constant 7 to 12 required as the intermediate transfer member is not satisfied. is there. As a result, defects on the image such as toner scattering are generated, the life of the intermediate transfer member is shortened, maintenance work such as replacement is increased, and the running cost is increased, leading to inferior reliability as an image forming apparatus. .
Japanese Patent Laid-Open No. 3-100579 Japanese Patent Laid-Open No. 5-200904 JP-A-5-345368 JP-A-5-77252 Japanese Patent Laid-Open No. 10-63115 JP 2002-154168 A JP 2001-38750 A JP 2004-287005 A JP 2000-263568 A

本発明の目的は、従来技術における諸問題に鑑み、カラー画像形成装置において正確な転写を実現することができ、並びに長期間安定して高品質の転写画像を得ることができるポリイミド系樹脂ベルト及びその製造方法を提供することにある。   In view of various problems in the prior art, an object of the present invention is to provide a polyimide resin belt that can achieve accurate transfer in a color image forming apparatus and can stably obtain a high-quality transfer image for a long period of time. It is in providing the manufacturing method.

本発明者は、上記の課題を解決するために鋭意研究を行った結果、誘電率が7〜12の範囲であり、面方向の誘電率の異方性を表す指標:MOR−cの最大値が1.2以下である面方向に等方性の誘電率を持ったポリイミド系樹脂ベルトが、上記の目的を達成できることを見出した。かかる知見に基づき、さらに研究を重ねて本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventor has a dielectric constant in the range of 7 to 12, and an index representing the anisotropy of the dielectric constant in the plane direction: the maximum value of MOR-c It has been found that a polyimide resin belt having an isotropic dielectric constant in the plane direction with a surface roughness of 1.2 or less can achieve the above object. Based on this knowledge, further studies have been made and the present invention has been completed.

即ち、本発明は下記のポリイミド系樹脂ベルトを提供する。   That is, the present invention provides the following polyimide resin belt.

項1.誘電率が7〜12の範囲を有するポリイミド系樹脂ベルトであって、該ポリイミド系樹脂ベルトのいずれの箇所においても面方向の誘電率の異方性を表す指標:MOR−cの最大値が1.2以下である面方向に等方性の誘電率を持ったポリイミド系樹脂ベルト。   Item 1. A polyimide resin belt having a dielectric constant in the range of 7 to 12, and an index indicating the anisotropy of dielectric constant in the plane direction at any location of the polyimide resin belt: the maximum value of MOR-c is 1 .Polyimide resin belt having isotropic dielectric constant in the plane direction of 2 or less.

項2.前記ポリイミド系樹脂ベルトが、ポリイミド系樹脂を75〜87重量%及び導電性フィラーを13〜25重量%含む項1に記載のポリイミド系樹脂ベルト。   Item 2. Item 5. The polyimide resin belt according to Item 1, wherein the polyimide resin belt contains 75 to 87% by weight of polyimide resin and 13 to 25% by weight of conductive filler.

項3.前記ポリイミド系樹脂ベルトが、厚み80〜120μm程度、周長350〜3000mm程度のシームレスベルトである項1又は2に記載のポリイミド系樹脂ベルト。   Item 3. Item 3. The polyimide resin belt according to Item 1 or 2, wherein the polyimide resin belt is a seamless belt having a thickness of about 80 to 120 μm and a circumferential length of about 350 to 3000 mm.

項4.前記ポリイミド系樹脂が、ポリイミド樹脂又はポリアミドイミド樹脂である項1〜3のいずれかに記載のポリイミド系樹脂ベルト。   Item 4. Item 4. The polyimide resin belt according to any one of Items 1 to 3, wherein the polyimide resin is a polyimide resin or a polyamideimide resin.

項5.項1〜4のいずれかに記載のポリイミド系樹脂ベルトからなる中間転写部材。   Item 5. Item 5. An intermediate transfer member comprising the polyimide resin belt according to any one of Items 1 to 4.

項6.項1に記載の面方向に等方性の誘電率を持ったポリイミド系樹脂ベルトの製造方法であって、
(1)重力加速度の0.5〜5.0倍程度の遠心加速度で回転する円筒金型の内周面に導電性フィラーを均一に分散させた液体原料をスプレー法で均一な厚さで塗布する工程、
(2)該円筒金型を重力加速度の0.5〜5.0倍程度の遠心加速度で回転させたまま100〜140℃程度の温度で加熱して、不揮発分濃度が35重量%以上の皮膜を形成する工程、及び
(3)該皮膜を円筒金型の内周面に付着した状態のまま約250℃以上の温度で加熱する工程
を含むこと特徴とする製造方法。
Item 6. A method for producing a polyimide resin belt having an isotropic dielectric constant in a plane direction according to Item 1,
(1) A liquid material in which conductive filler is uniformly dispersed on the inner peripheral surface of a cylindrical mold rotating at a centrifugal acceleration of about 0.5 to 5.0 times the gravitational acceleration is applied with a uniform thickness by a spray method. The process of
(2) The cylindrical mold is heated at a temperature of about 100 to 140 ° C. while being rotated at a centrifugal acceleration of about 0.5 to 5.0 times the gravitational acceleration, and a coating having a nonvolatile content concentration of 35% by weight or more. And (3) a method of heating the coating film at a temperature of about 250 ° C. or higher while attached to the inner peripheral surface of the cylindrical mold.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のポリイミド系樹脂ベルトは、ポリイミド系樹脂ベルトのいずれの箇所においても、誘電率が7〜12、好ましくは7〜11の範囲を有し、面方向の誘電率の異方性を表す指標:MOR−cの最大値が1.2以下、好ましくは1.1以下、より好ましくは1.05以下である面方向に等方性の誘電率を持ったポリイミド系樹脂ベルトであることを特徴とする。   The polyimide resin belt of the present invention has a dielectric constant of 7 to 12, preferably 7 to 11, at any location of the polyimide resin belt, and represents an anisotropy of dielectric constant in the plane direction. : A polyimide resin belt having an isotropic dielectric constant in the plane direction, wherein the maximum value of MOR-c is 1.2 or less, preferably 1.1 or less, more preferably 1.05 or less. And

ここで、面方向の誘電率の測定は、試験片を透過したマイクロ波の強度から分子配向度を求める分子配向計(王子計測機器(株)製MOA−6020)を用いる。測定原理は、試料を一定の角度だけ回転させるごとにマイクロ波を照射し、該マイクロ波の透過強度を測定し、試料における面方向の誘電率の異方性を測定する方法である。   Here, the measurement of the dielectric constant in the plane direction uses a molecular orientation meter (MOA-6020 manufactured by Oji Scientific Instruments Co., Ltd.) that obtains the degree of molecular orientation from the intensity of the microwave transmitted through the test piece. The measurement principle is a method of irradiating a microwave every time the sample is rotated by a certain angle, measuring the transmission intensity of the microwave, and measuring the anisotropy of the dielectric constant in the plane direction of the sample.

例えば、図1のように、異方性の誘電率を有する試料では、極座標における透過強度の角度依存性(配向パターン)は楕円となり、配向パターンの短軸方向が誘電率最大の方向を、配向パターンの長軸方向が誘電率最小の方向を示す。誘電率(ε)は、測定された全ての誘電率の平均値で表され、具体的には、例えば図1の「ε’ave」の値を意味する。また、配向パターンの楕円の程度(長軸と短軸の比)が配向度、即ち誘電率の異方性を示すMOR(Microwave Orientation Ratio)を意味する。   For example, as shown in FIG. 1, in a sample having an anisotropic dielectric constant, the angle dependency (orientation pattern) of the transmission intensity in polar coordinates is an ellipse, and the minor axis direction of the orientation pattern is the direction with the maximum dielectric constant. The long axis direction of the pattern indicates the direction with the minimum dielectric constant. The dielectric constant (ε) is expressed as an average value of all measured dielectric constants, and specifically means, for example, the value of “ε′ave” in FIG. In addition, the degree of ellipse of the alignment pattern (ratio of major axis to minor axis) means the orientation degree, that is, MOR (Microwave Orientation Ratio) indicating the anisotropy of dielectric constant.

ここで、MORは試料の厚みに影響されるため、実用上は厚み補正を行ない、所望の厚み(本発明では90μm)に換算したMOR−cを用いる。MOR−cを用いれば、厚みが異なる試料でも誘電率の等方性を比較することが可能となる。具体的には、MOR−cは、下記式(I)から導かれる。   Here, since MOR is influenced by the thickness of the sample, in practice, thickness correction is performed, and MOR-c converted to a desired thickness (90 μm in the present invention) is used. If MOR-c is used, it is possible to compare the isotropy of dielectric constant even in samples having different thicknesses. Specifically, MOR-c is derived from the following formula (I).

MOR−c={t(MOR−1)/t}+1 (I)
ここで、tは試料の厚さ、tは補正したい厚さ(90μm)、MORは測定により得られた値、MOR−cは補正後のMOR値を示す。このMOR−c値を用いることにより、より簡便かつ短時間で試料面方向の誘電率の等方性を評価できる。なお、MOR−cの値が1.000に近いほど誘電率が等方性なベルトであることを表す。
MOR-c = {t c (MOR-1) / t s } +1 (I)
Here, t s is the thickness of the sample, t c is to be corrected thickness (90 [mu] m), MOR values obtained by the measurement, MOR-c show the MOR value after correction. By using this MOR-c value, the isotropy of the dielectric constant in the sample surface direction can be evaluated more easily and in a short time. Note that the closer the value of MOR-c is to 1.000, the more isotropic the belt is.

本発明で用いられるポリイミド系樹脂は、非熱可塑性又は熱可塑性のいずれでも良い。熱可塑性のポリイミド系樹脂は、溶融押出成型を用いて無端管状ベルトを成型できるという利点を有するが、耐熱性の点で非熱可塑性のポリイミド系樹脂に劣る。そのため、特に複写機用の機能性ベルト等に応用するに際しては、非熱可塑性のポリイミド系樹脂を選択することが好ましい。   The polyimide resin used in the present invention may be non-thermoplastic or thermoplastic. Thermoplastic polyimide resins have the advantage that endless tubular belts can be molded using melt extrusion, but are inferior to non-thermoplastic polyimide resins in terms of heat resistance. For this reason, it is preferable to select a non-thermoplastic polyimide resin particularly when applied to a functional belt for a copying machine.

ポリイミド系樹脂は、ポリイミド樹脂(特に、芳香族ポリイミド樹脂)、及びポリアミドイミド樹脂(特に、芳香族ポリアミドイミド樹脂)を包含し、本発明ではこれらを適宜選択して用いることができる。ポリイミド樹脂やポリアミドイミド樹脂の出発原料の種類や組み合わせ等には特に制限はない。   Polyimide resins include polyimide resins (especially aromatic polyimide resins) and polyamideimide resins (particularly aromatic polyamideimide resins), which can be appropriately selected and used in the present invention. There are no particular restrictions on the types and combinations of starting materials for the polyimide resin and polyamideimide resin.

ポリイミド樹脂の出発原料として、例えば、芳香族テトラカルボン酸二無水物を含む酸成分、及び芳香族ジアミンを含むアミン成分が挙げられる。   Examples of the starting material for the polyimide resin include an acid component containing an aromatic tetracarboxylic dianhydride and an amine component containing an aromatic diamine.

芳香族テトラカルボン酸二無水物としては、例えばビフェニルテトラカルボン酸二無水物等が挙げられ、具体的には、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a-BPDA)、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(s-BPDA)、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、さらには、前記を2種ブレンドしたビフェニルテトラカルボン酸二無水物などを挙げることができる。   Examples of the aromatic tetracarboxylic dianhydride include biphenyltetracarboxylic dianhydride and the like. Specifically, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (a-BPDA ) 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA), 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, and two of the above Examples thereof include blended biphenyltetracarboxylic dianhydride.

芳香族ジアミンとしては、例えばジアミノジフェニルエーテルが挙げられ、具体的には、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル等が挙げられる。   Examples of the aromatic diamine include diaminodiphenyl ether, specifically, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, and the like.

ポリアミドイミド樹脂の出発原料として、例えば、トリメリット酸又はその誘導体を含む酸成分、及び芳香族ジイソシアネートを含むアミン成分が挙げられる。   Examples of the starting material for the polyamide-imide resin include an acid component containing trimellitic acid or a derivative thereof, and an amine component containing aromatic diisocyanate.

ポリアミドイミド樹脂の酸成分は、トリメリット酸又はその無水物、酸塩化物等を含有するが、反応性、耐熱性、溶解性などの点からトリメリット酸無水物が好適である。トリメリット酸又はその誘導体の他に、他の酸性分を含有していても良い。例えば、ピロメリット酸、ビフェニルテトラカルボン酸、ビフェニルスルホンテトラカルボン酸、ベンゾフェノンテトラカルボン酸、ビフェニルエーテルテトラカルボン酸、エチレングリコールビストリメリテート、プロピレングリコールビストリメリテート等のテトラカルボン酸又はその無水物;シュウ酸、アジピン酸、マロン酸、セバチン酸、アゼライン酸、ドデカンジカルボン酸、ジカルボキシポリブタジエン、ジカルボキシポリ(アクリロニトリルーブタジエン)、1,4−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸等の脂肪族ジカルボン酸;テレフタル酸、イソフタル酸、ジフェニルスルホンジカルボン酸、ジフェニルエーテルジカルボン酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸などがあげられる。これらの酸性分のうち少なくとも1種を、トリメリット酸又はその誘導体に加えて用いることができる。特に、ベンゾフェノンテトラカルボン酸無水物、ビフェニルテトラカルボン酸無水物等が好ましい。   The acid component of the polyamide-imide resin contains trimellitic acid or its anhydride, acid chloride, etc., but trimellitic anhydride is preferred from the viewpoint of reactivity, heat resistance, solubility, and the like. In addition to trimellitic acid or a derivative thereof, other acid components may be contained. For example, tetracarboxylic acids such as pyromellitic acid, biphenyltetracarboxylic acid, biphenylsulfonetetracarboxylic acid, benzophenonetetracarboxylic acid, biphenylethertetracarboxylic acid, ethylene glycol bistrimellitate, propylene glycol bistrimellitate, or anhydrides thereof; Aliphatic acids such as acid, adipic acid, malonic acid, sebacic acid, azelaic acid, dodecanedicarboxylic acid, dicarboxypolybutadiene, dicarboxypoly (acrylonitrile-butadiene), 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid Dicarboxylic acid; terephthalic acid, isophthalic acid, diphenylsulfone dicarboxylic acid, diphenyl ether dicarboxylic acid, aromatic dicarboxylic acid such as naphthalenedicarboxylic acid, etc. It is. At least one of these acidic components can be used in addition to trimellitic acid or a derivative thereof. In particular, benzophenone tetracarboxylic acid anhydride, biphenyl tetracarboxylic acid anhydride, and the like are preferable.

全酸成分を100モル%としたときに、トリメリット酸又はその誘導体が50モル%以上であることが好ましく、特に、トリメリット酸無水物が50〜90モル%、かつ、ベンゾフェノンテトラカルボン酸無水物及び/又はビフェニルテトラカルボン酸無水物が10〜50モル%含むものが寸法安定性の点で好ましい。   When the total acid component is 100 mol%, trimellitic acid or a derivative thereof is preferably 50 mol% or more, particularly 50 to 90 mol% of trimellitic anhydride and benzophenonetetracarboxylic anhydride. The thing which 10-50 mol% of a product and / or biphenyltetracarboxylic anhydride contains is preferable at the point of dimensional stability.

芳香族イソシアネートとしては、例えば、4,4’−ジフェニルメタンジイソシアネートビトリレンジイソシアネート、3,3’−ジフェニルスルホンジイソシアネート、イソホロンジシソシアネート、4,4’−ジシクロヘキシルメタンジイソシアネート、m−キシレンジシソシアネート、p−キシレンジシソシアネート、1,4−シクロへキシレンジイソシアネートなどを挙げることができる。   Examples of the aromatic isocyanate include 4,4′-diphenylmethane diisocyanate bitolylene diisocyanate, 3,3′-diphenylsulfone diisocyanate, isophorone disissocyanate, 4,4′-dicyclohexylmethane diisocyanate, m-xylene disissocyanate, Examples thereof include p-xylene disissocyanate and 1,4-cyclohexylene diisocyanate.

本発明において誘電率7〜12の範囲を有するポリイミド系樹脂ベルトとするためには、導電性フィラーをポリイミド系樹脂に配合する。導電性フィラーとしては、例えば、カーボンブラック;酸化スズ、酸化チタン(表面が酸化スズで被覆されたものも含む)等の金属酸化物;銅、鉄、ニッケル、アルミニウム等の金属;チタン酸バリウム;チタン酸ジルコン酸鉛;導電性シリカ;あるいはポリアニリン、ポリアセチレン等の導電性ポリマーなどが挙げられる。これらの適宜なものの1種又は2種以上を、ポリイミド系樹脂に分散することで上記範囲の誘電率が達成できる。なかでも低い導電性を有するカーボンブラックが好適に選択される。カーボンブラック粒子表面にポリマーをグラフト化させたり、絶縁材を被覆したりすることで導電特性を制御してもよく、カーボンブラック粒子表面に酸化処理を施してもよい。特に、酸化処理したファーネスブラック、チャンネルブラックが好ましい。導電性フィラーは、球状(粒状)、針状、扁平状のものが好ましく、その平均粒子径は15〜200nm程度であればよい。   In order to obtain a polyimide resin belt having a dielectric constant of 7 to 12 in the present invention, a conductive filler is blended with the polyimide resin. Examples of the conductive filler include carbon black; metal oxides such as tin oxide and titanium oxide (including those whose surface is coated with tin oxide); metals such as copper, iron, nickel, and aluminum; barium titanate; Examples thereof include lead zirconate titanate; conductive silica; and conductive polymers such as polyaniline and polyacetylene. A dielectric constant in the above range can be achieved by dispersing one or more of these suitable ones in a polyimide resin. Among these, carbon black having low conductivity is preferably selected. The conductive properties may be controlled by grafting a polymer on the surface of the carbon black particles or coating an insulating material, and the surface of the carbon black particles may be oxidized. In particular, oxidized furnace black and channel black are preferable. The conductive filler is preferably spherical (granular), acicular, or flat, and the average particle diameter may be about 15 to 200 nm.

具体的には、デグサ社製の「スペシャルブラック4」、「スペシャルブラック5」、「スペシャルブラック250」、「プリンテックスV」、三菱化学社製の「MA100」、「MA100R」、「MA7」などが挙げられ、単独及び複数種類のカーボンブラックを併用してもよい。   Specifically, Degussa's “Special Black 4”, “Special Black 5”, “Special Black 250”, “Printex V”, Mitsubishi Chemical “MA100”, “MA100R”, “MA7”, etc. A single type or a plurality of types of carbon blacks may be used in combination.

導電性フィラーの配合量は、ポリイミド系樹脂ベルトの全重量に対し13〜25重量%程度、好ましくは13〜20重量%程度の範囲である。この配合量が13重量%未満の少量であるとストラクチャーを形成し易く、面方向の誘電率の異方性に起因して形成画像にムラが生じる場合がある。また、過大な電流を繰り返し流すことで誘電率が変化し易くなる。一方、この配合量が25重量%を超えると、ポリイミド系樹脂ベルトは中間転写部材としての強度を失ってしまい、長期間の使用で中間転写部材が破損するなど、実使用に耐えられないものとなってしまう。   The compounding amount of the conductive filler is about 13 to 25% by weight, preferably about 13 to 20% by weight, based on the total weight of the polyimide resin belt. When the amount is less than 13% by weight, a structure is easily formed, and the formed image may be uneven due to the anisotropy of the dielectric constant in the surface direction. Further, the dielectric constant is easily changed by repeatedly passing an excessive current. On the other hand, when the blending amount exceeds 25% by weight, the polyimide resin belt loses its strength as an intermediate transfer member, and the intermediate transfer member is damaged due to long-term use. turn into.

また、ポリイミド系樹脂は、ポリイミド系樹脂ベルトの全重量に対し75〜87重量%程度、好ましくは80〜85重量%程度の範囲である。   The polyimide resin is in the range of about 75 to 87% by weight, preferably about 80 to 85% by weight, based on the total weight of the polyimide resin belt.

本発明のポリイミド系樹脂ベルトは、中間転写部材として使用することができる。その厚みや周長は、その使用目的に応じて適宜決定し得るが、例えば、厚みは80〜120μm程度、好ましくは90〜100μm程度であり、周長は350〜3000mm程度である。近年、印刷スピードの向上を図るために周長の長いベルトの使用が望まれているが、一般に周長が大きくなると面方向の誘電率の異方性が顕著になり所望の転写ベルトが得られないという問題がある。しかし、本発明のポリイミド系樹脂ベルトは、周長の大きいベルトであって面方向に等方性の誘電率を有し高い品質が維持されている。例えば、ベルトの周長が1500〜3000mm程度の大きなものであっても、優れた等方性の誘電率を保持している。また、このポリイミド系樹脂ベルトは、継ぎ目のないシームレスベルト形状であり、フラットなフィルムを継ぎ合わせによりシームレス形状に加工した中間転写部材と比べ、高品質の画像形成が可能となる。   The polyimide resin belt of the present invention can be used as an intermediate transfer member. The thickness and circumference can be appropriately determined according to the purpose of use. For example, the thickness is about 80 to 120 μm, preferably about 90 to 100 μm, and the circumference is about 350 to 3000 mm. In recent years, it has been desired to use a belt having a long circumference in order to improve the printing speed, but in general, when the circumference becomes large, the anisotropy of the dielectric constant in the surface direction becomes remarkable and a desired transfer belt can be obtained. There is no problem. However, the polyimide resin belt of the present invention is a belt having a large circumferential length, has an isotropic dielectric constant in the surface direction, and maintains high quality. For example, even if the belt has a large circumference of about 1500 to 3000 mm, it retains an excellent isotropic dielectric constant. In addition, this polyimide resin belt has a seamless seamless belt shape, and enables high-quality image formation as compared with an intermediate transfer member obtained by processing a flat film into a seamless shape by seaming.

本発明のポリイミド系樹脂ベルトの製造方法は、好ましくはスプレー法を用いた回転成型法による。これは溶融押出法に比べてより寸法精度に優れたフィルムが得やすいためであり、また耐熱性の優れた非熱可塑性のポリイミド系樹脂を選択した場合は、溶融押出法による成型が不可能なためである。ポリイミド系樹脂ベルトのいずれの箇所においても、面方向の誘電率の異方性を表す指標:MOR−cの最大値が1.2以下にする手段としては、本発明のポリイミド系樹脂製中間転写部材の製造工程において、液体原料の流動を出来るだけ小さくするとともに、ポリイミド系樹脂の分子鎖を面方向に無配向化させることにより達成される。   The method for producing the polyimide resin belt of the present invention is preferably based on a rotational molding method using a spray method. This is because it is easier to obtain a film with better dimensional accuracy than the melt extrusion method, and when a non-thermoplastic polyimide resin with excellent heat resistance is selected, molding by the melt extrusion method is impossible. Because. In any part of the polyimide resin belt, an index representing the anisotropy of the dielectric constant in the plane direction: means for making the maximum value of MOR-c 1.2 or less is the polyimide resin intermediate transfer of the present invention. In the manufacturing process of the member, this is achieved by making the flow of the liquid raw material as small as possible and making the molecular chain of the polyimide resin non-oriented in the plane direction.

ポリイミド系樹脂ベルトの製造方法としては、(1)重力加速度の0.5〜5.0倍の遠心加速度で低速回転する円筒金型の内周面に、導電性フィラーを均一に分散させた液体原料をスプレー法で均一な厚さで塗布する工程、(2)該円筒金型を重力加速度の0.5〜5.0倍の遠心加速度で低速回転させたまま、100〜140℃の温度で加熱して溶媒を揮発させ不揮発分濃度が35重量%以上の皮膜を形成する工程、(3)該皮膜を円筒金型の内周面に付着した状態のまま、ポリイミド転化及び/又は溶媒を揮発させるのに十分な温度と時間で加熱する工程、を含むこと特徴とする。   As a method for producing a polyimide resin belt, (1) a liquid in which a conductive filler is uniformly dispersed on the inner peripheral surface of a cylindrical mold rotating at a low speed with a centrifugal acceleration of 0.5 to 5.0 times the gravitational acceleration. A step of applying the raw material in a uniform thickness by a spray method, (2) at a temperature of 100 to 140 ° C. while the cylindrical mold is rotated at a low speed with a centrifugal acceleration of 0.5 to 5.0 times the gravitational acceleration. A step of volatilizing the solvent by heating to form a film having a non-volatile content of 35% by weight or more; (3) converting the polyimide and / or volatilizing the solvent while the film is attached to the inner peripheral surface of the cylindrical mold. And a step of heating at a temperature and a time sufficient to cause the heat treatment to occur.

なお、本発明で使用する遠心加速度(G)は、式(II)から導かれる。   The centrifugal acceleration (G) used in the present invention is derived from the formula (II).

G(m/s2)=r・ω2 =r・(2・π・n)2 (II)
ここで、rは円筒金型の半径(m)、ωは角速度(rad/s)、nは1秒間での回転数(60s間の回転数がr.p.m)を示す。比較する重力加速度(g)は、9.8 (m/s2)である。
G (m / s 2 ) = r ・ ω 2 = r ・ (2 ・ π ・ n) 2 (II)
Here, r is the radius (m) of the cylindrical mold, ω is the angular velocity (rad / s), and n is the number of rotations per second (the number of rotations during 60 s is rpm). The gravitational acceleration (g) to be compared is 9.8 (m / s 2 ).

まず液体原料を調整する。液体原料としては、ポリイミド系樹脂ベルトの材質がポリイミド樹脂の場合、実質イミド化されていない前段階のポリアミド酸が溶媒に溶解したポリアミド酸溶液が挙げられる。また、ポリイミド系樹脂ベルトの材質がポリアミドイミド樹脂の場合は、酸クロリド法又はイソシアネート法などを用いた溶液中での重合法でイミド閉環されたポリアミドイミド樹脂が溶媒に溶解したポリアミドイミド樹脂溶液が挙げられる。   First, the liquid raw material is prepared. As a liquid raw material, when the material of the polyimide resin belt is a polyimide resin, a polyamic acid solution in which a previous polyamic acid that is not substantially imidized is dissolved in a solvent may be mentioned. Further, when the material of the polyimide resin belt is a polyamide-imide resin, a polyamide-imide resin solution in which a polyamide-imide resin that has been imide-closed by a polymerization method in a solution using an acid chloride method or an isocyanate method is dissolved in a solvent is used. Can be mentioned.

使用する溶媒としては、非プロトン系有機極性溶媒が好ましく、例えばN−メチル−2−ピロリドン(以下、「NMP」と呼ぶ。)、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホアミド、1,3−ジメチル−2−イミダゾリジノン等が使用される。これらのうちの1種又は2種以上の混合溶媒であってもよい。特に、NMPが好ましい。溶媒の使用量は、原料の酸成分とアミン成分の合計量100重量部に対し、200〜700重量部程度(好ましくは、250〜500重量部程度)になるように決めればよい。   The solvent to be used is preferably an aprotic organic polar solvent. For example, N-methyl-2-pyrrolidone (hereinafter referred to as “NMP”), N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, hexamethylphosphoamide, 1,3-dimethyl-2-imidazolidinone and the like are used. One or two or more of these solvents may be used. In particular, NMP is preferable. What is necessary is just to determine the usage-amount of a solvent so that it may become about 200-700 weight part (preferably about 250-500 weight part) with respect to 100 weight part of total amounts of the acid component and amine component of a raw material.

上記の液体原料に、カーボンブラックなどの導電性フィラーを添加すると、粘度が増加するため、ボールミルなどの分散機中で行われるボール間の衝撃力によっても導電性フィラーの粉砕が困難となる場合がある。導電性フィラーを添加して液体原料に均一に分散するには、分散機で行われる導電性フィラーの粉砕と、ほぐされていく導電性フィラーの溶媒液による「ぬれ」という界面現象が伴わなければならない。本発明者らの実験によれば、溶液の粘度を0.5〜10.0Pa・s、好ましくは1.0〜5.0Pa・sの範囲とすれば、導電性フィラーの分散悪化を最小限に抑制できる。また、分散の方法としては特に制限されることはなく、例えば、ボールミル法や超音波ミル法等で分散させる方法がある。また、本発明の効果に悪影響を与えない範囲で、イミダゾール系化合物(2-メチルイミダゾール、1,2−ジメチルイミダゾール、2-メチル-4-メチルイミダゾール、2-エチル-4-エチルイミダゾール、2-フェニルイミダゾール)、界面活性剤(フッ素系界面活性剤等)等の添加剤を加えてもよい。   When a conductive filler such as carbon black is added to the above liquid raw material, the viscosity increases, so it may be difficult to pulverize the conductive filler due to the impact force between balls performed in a dispersing machine such as a ball mill. is there. In order to add the conductive filler and uniformly disperse it in the liquid raw material, it must be accompanied by an interfacial phenomenon of pulverization of the conductive filler performed by a disperser and “wetting” by the solvent liquid of the conductive filler being loosened. Don't be. According to the experiments by the present inventors, when the viscosity of the solution is in the range of 0.5 to 10.0 Pa · s, preferably 1.0 to 5.0 Pa · s, the dispersion deterioration of the conductive filler is minimized. Can be suppressed. The dispersion method is not particularly limited, and examples thereof include a dispersion method using a ball mill method, an ultrasonic mill method, or the like. In addition, an imidazole compound (2-methylimidazole, 1,2-dimethylimidazole, 2-methyl-4-methylimidazole, 2-ethyl-4-ethylimidazole, 2- You may add additives, such as a phenyl imidazole) and surfactant (fluorine-type surfactant etc.).

前記の液体原料は、重力加速度の0.5〜5.0倍の遠心加速度で低速回転する円筒金型の内周面に、導電性フィラーを均一に分散させた液体原料をスプレー法で均一な厚さで塗布される(例えば、図2(A)を参照)。つまり、重力加速度の0.5〜5.0倍の遠心加速度という低速回転で液体原料がスプレー法によって供給されることで、回転方向に受けるせん断力が小さく、分子鎖の配向やカーボンブラックなどの導電性フィラーのストラクチャー配向を抑制できる。但し、前記の遠心加速度が重力加速度の0.5倍未満であると、供給された液体原料が円筒金型の内周面に密着せずに流れ落ちる(たれる)危険性がある。一方、重力加速度の5.0倍より大きくなると、供給時にうける回転方向へのせん断力による分子鎖の配向やカーボンブラックなどの導電性フィラーのストラクチャー配向が生じてしまう。また、遠心力による液体原料の流動が発生し、カーボンブラックなどの導電性フィラーも流れの方向に配向し、ストラクチャーを形成するため好ましくない。特に、重力加速度の0.8〜4.0の遠心加速度で回転するのがより好ましい。   The liquid raw material is made by spraying a liquid raw material in which a conductive filler is uniformly dispersed on the inner peripheral surface of a cylindrical mold rotating at a low speed with a centrifugal acceleration of 0.5 to 5.0 times the acceleration of gravity. It is applied in a thickness (see, for example, FIG. 2A). That is, the liquid raw material is supplied by the spray method at a low speed rotation of 0.5 to 5.0 times the acceleration of gravity, so that the shearing force applied in the rotation direction is small, and the orientation of molecular chains, carbon black, etc. The structure orientation of the conductive filler can be suppressed. However, if the centrifugal acceleration is less than 0.5 times the gravitational acceleration, there is a risk that the supplied liquid raw material may flow down (drink) without being in close contact with the inner peripheral surface of the cylindrical mold. On the other hand, if the acceleration is greater than 5.0 times the gravitational acceleration, orientation of molecular chains and structure orientation of conductive fillers such as carbon black will occur due to shear force in the rotational direction applied during supply. Moreover, the liquid raw material flows due to centrifugal force, and conductive fillers such as carbon black are also oriented in the flow direction to form a structure, which is not preferable. In particular, it is more preferable to rotate at a centrifugal acceleration of 0.8 to 4.0 of gravitational acceleration.

また、スプレー法で塗布する作用効果は、液体原料を霧化することにより供給時の流動を限りなく小さくして回転する円筒金型の内周面に瞬間的に密着できる。液体原料の粘度にもあまり影響されず、同一回転速度下で原料供給できる。そして、薄い厚みの塗膜を容易に得ることができ、液体原料の不揮発分濃度を高く設定することが可能となる。   Further, the effect of applying by the spray method can be instantaneously brought into close contact with the inner peripheral surface of the rotating cylindrical mold by atomizing the liquid raw material to minimize the flow during supply. The material can be supplied at the same rotational speed without being greatly affected by the viscosity of the liquid material. A thin coating film can be easily obtained, and the non-volatile concentration of the liquid raw material can be set high.

液体原料の供給手段は、スプレー法で吐出させながら回転する円筒金型の回転軸方向に移動させることによって、円筒金型の内周面に液体原料を塗布する。スプレーの形状は、特に制約はなく、円形や矩形など適時使用できる。また、その大きさも特に制約はなく、吐出される液体原料の粘度との組み合わせによって、適正な吐出圧力となるように設計することが可能である。スプレーヘッドと円筒金型の距離は任意でよく、5mm〜200mm程度が好ましい。吐出圧力の方式には特に制限はないが、圧縮空気や高粘度液対応のモーノポンプ、キヤポンプなどが用いられる。   The liquid source supply means applies the liquid source to the inner peripheral surface of the cylindrical mold by moving the liquid source in the direction of the axis of rotation of the cylindrical mold rotating while being discharged by the spray method. The shape of the spray is not particularly limited and can be used as appropriate, such as a circle or rectangle. Also, the size is not particularly limited, and it can be designed to have an appropriate discharge pressure depending on the combination with the viscosity of the liquid material to be discharged. The distance between the spray head and the cylindrical mold may be arbitrary, and is preferably about 5 mm to 200 mm. There is no particular limitation on the discharge pressure method, but a compressed air or a high viscosity liquid-compatible MONO pump, a carrier pump, or the like is used.

このように円筒金型の内周面に液体原料をスプレー法で塗布した場合は、円筒金型の高速回転によって液体原料を流動させ塗膜の膜厚を均一にさせる必要はない。また、原料の流動によって引き起こされるポリイミド系樹脂ベルトの電気特性への影響も回避できる。円筒金型の内周面には、ポリイミド系樹脂が密着しないように、離型剤を塗布することが好ましい。離型材の種類に制限はないが、液体原料の溶媒や加熱反応時に樹脂から発生する水の蒸気などに侵されないものであればよい。   As described above, when the liquid material is applied to the inner peripheral surface of the cylindrical mold by the spray method, it is not necessary to make the film thickness uniform by flowing the liquid material by high-speed rotation of the cylindrical mold. Moreover, the influence on the electrical characteristics of the polyimide resin belt caused by the flow of the raw material can be avoided. It is preferable to apply a mold release agent to the inner peripheral surface of the cylindrical mold so that the polyimide resin does not adhere. Although there is no restriction | limiting in the kind of mold release material, What is necessary is just what is not attacked by the vapor | steam of the water of the solvent of a liquid raw material, or the water generated from resin at the time of a heating reaction.

液体樹脂の皮膜形成工程においては、重量加速度の0.5〜5.0倍(好ましくは0.8〜4.5倍)の遠心加速度で低速回転させたまま、100〜140℃の温度で溶媒を揮発して不揮発分濃度を35重量%以上にすることで円筒金型の内周面に皮膜を形成する(例えば、図2(B)を参照)。一般に、ポリイミド樹脂の前駆体であるポリアミド酸では、70〜80℃加熱では熱イミド化反応がほとんど起こらず、最終的には不揮発分濃度26重量%程度で飽和することが知られている。そのため、100〜140℃の温度で加熱することでイミド化率10〜30%の範囲で進行させた後、溶媒を除去し、不揮発分濃度を35重量%以上にできる。140℃より高い温度で加熱すると急激な溶媒揮発が起こり、形成される皮膜表面状態の悪化だけでなく、中間転写部材として必要な誘電率7〜12の範囲を外れるという問題が発生する場合がある。   In the liquid resin film forming step, the solvent is used at a temperature of 100 to 140 ° C. while rotating at a low speed with a centrifugal acceleration of 0.5 to 5.0 times (preferably 0.8 to 4.5 times) the weight acceleration. Is volatilized to make the nonvolatile content concentration 35% by weight or more, thereby forming a film on the inner peripheral surface of the cylindrical mold (see, for example, FIG. 2B). In general, it is known that polyamic acid, which is a precursor of polyimide resin, hardly undergoes thermal imidization reaction when heated at 70 to 80 ° C., and eventually becomes saturated at a nonvolatile concentration of about 26% by weight. Therefore, after making it progress in the range of 10-30% of imidation by heating at the temperature of 100-140 degreeC, a solvent can be removed and a non volatile matter density | concentration can be 35 weight% or more. When heated at a temperature higher than 140 ° C., rapid solvent volatilization occurs, which may cause not only deterioration of the surface state of the formed film, but also a problem that the dielectric constant is outside the range of 7 to 12 required as an intermediate transfer member. .

ポリイミド系樹脂皮膜形成工程においては、ポリイミド系樹脂の種類によって異なるが円筒金型の内周面に付着した状態のまま80〜200分間かけて(好ましくは、100〜160分間かけて)昇温する。昇温速度は1.5〜0.8℃/min程度が好適である。次に、完全にポリイミド転化する温度、及び/又は溶媒を完全に揮発させるのに十分な温度と時間で加熱することで、ポリイミド系樹脂皮膜を形成することができる(例えば、図2(C)を参照)。通常、約250℃以上まで昇温して加熱すればよい。ポリイミド樹脂の場合は、例えば280〜350℃で30〜90分間、ポリアミドイミド樹脂の場合は、例えば250〜300℃で30〜90分間加熱処理して、ポリイミド系樹脂皮膜を形成することができる。皮膜形成を円筒金型の内周面に付着した状態で行うことで、イミド化反応や溶媒揮発で起こる収縮を抑えて、その応力でポリマー鎖を面方向に均一配向させることが可能となる。   In the polyimide resin film forming step, the temperature is increased over 80 to 200 minutes (preferably over 100 to 160 minutes) while adhering to the inner peripheral surface of the cylindrical mold, depending on the type of polyimide resin. . The heating rate is preferably about 1.5 to 0.8 ° C./min. Next, a polyimide resin film can be formed by heating at a temperature at which the polyimide is completely converted and / or at a temperature and time sufficient to completely volatilize the solvent (for example, FIG. 2C). See). Usually, the temperature may be increased to about 250 ° C. or higher. In the case of a polyimide resin, for example, heat treatment can be performed at 280 to 350 ° C. for 30 to 90 minutes, and in the case of a polyamideimide resin, for example, heat treatment can be performed at 250 to 300 ° C. for 30 to 90 minutes to form a polyimide resin film. By performing film formation while adhering to the inner peripheral surface of the cylindrical mold, shrinkage caused by imidization reaction or solvent volatilization can be suppressed, and the polymer chains can be uniformly oriented in the plane direction by the stress.

特に、ビフェニルテトラカルボン酸二無水物及びジアミノジフェニルエーテルを原料モノマーとしたポリイミド樹脂、トリメリット酸無水物とベンゾフェノンテトラカルボン酸無水物及び/又はビフェニルテトラカルボン酸無水物とからなる酸無水物及び芳香族イソシアネートを原料モノマーとしたポリアミドイミド樹脂では、約250℃以上の高温加熱時に面内配向の緩和が起こって無配向となり易い特徴を有している。   In particular, polyimide resins using biphenyltetracarboxylic dianhydride and diaminodiphenyl ether as raw materials monomers, acid anhydrides and aromatics composed of trimellitic anhydride and benzophenonetetracarboxylic anhydride and / or biphenyltetracarboxylic anhydride Polyamideimide resin using isocyanate as a raw material monomer has a characteristic that in-plane orientation is relaxed when heated at a high temperature of about 250 ° C. or higher, and it tends to be non-oriented.

このように製造したポリイミド系樹脂ベルトは、該ベルトのいずれの箇所においても、面方向の誘電率の異方性を表す指標:MOR−cの最大値が1.2以下、好ましくは1.1以下、より好ましくは1.05以下である面方向に等方性の誘電率を有し、平面性などの寸法安定性に優れた中間転写部材となる。   The polyimide resin belt produced in this way has a maximum value of an index indicating the anisotropy of the dielectric constant in the plane direction: MOR-c of 1.2 or less, preferably 1.1 at any part of the belt. Hereinafter, an intermediate transfer member having an isotropic dielectric constant in the plane direction, more preferably 1.05 or less, and excellent dimensional stability such as flatness is obtained.

本発明のポリイミド系樹脂ベルトは、面方向に等方性の誘電率を有し、過大な電流を繰り返し流しても誘電率が変化しにくいため、カラー画像形成装置の中間転写部材として用いると正確な転写を実現することができ、並びに長期間安定して高品質の転写画像を得ることができる。そして、中間転写部材の長寿命化につながり、メンテナンスフリー化を実現したものであるため、カラー画像形成装置としての信頼性が向上するメリットがある。さらに、中間転写部材の転写面にうねりがなく平坦であるため、良好な画像を得ることができる。   The polyimide resin belt of the present invention has an isotropic dielectric constant in the surface direction, and the dielectric constant hardly changes even when an excessive current is repeatedly applied. Therefore, the polyimide resin belt is accurate when used as an intermediate transfer member of a color image forming apparatus. Transfer can be realized, and a high-quality transfer image can be obtained stably for a long period of time. Further, since the life of the intermediate transfer member is extended and maintenance-free is realized, there is an advantage that the reliability as a color image forming apparatus is improved. Furthermore, since the transfer surface of the intermediate transfer member is flat without undulation, a good image can be obtained.

カラー画像形成装置は、本発明のポリイミド系樹脂ベルトを少なくとも1種類以上備えることを特徴とする電子写真方式の画像形成装置である。本発明のポリイミド系樹脂ベルトを中間転写ベルト、直接転写ベルトあるいは転写兼定着ベルトとして備えることで、高画質の転写画像を得ることができる。   The color image forming apparatus is an electrophotographic image forming apparatus including at least one polyimide resin belt according to the present invention. By providing the polyimide resin belt of the present invention as an intermediate transfer belt, a direct transfer belt or a transfer / fixing belt, a high-quality transfer image can be obtained.

転写兼定着ベルトとして使用する場合には、表面に付着するトナーの剥離性向上のため、表面に非粘着性の樹脂皮膜を形成することが有効である。その非粘着性の樹脂皮膜の材料としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系樹脂などが好ましい。また、弾性シリコーン樹脂、フッ素ゴム樹脂、弾性フロロシリコーン樹脂、弾性ポリシロキサンなどを用いてもよい。   When used as a transfer and fixing belt, it is effective to form a non-adhesive resin film on the surface in order to improve the releasability of the toner adhering to the surface. Examples of the non-adhesive resin film material include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene-hexafluoropropylene copolymer (FEP). A fluorine-based resin or the like is preferable. Further, an elastic silicone resin, a fluororubber resin, an elastic fluorosilicone resin, an elastic polysiloxane, or the like may be used.

本発明のポリイミド系樹脂ベルトによれば、形成画像にムラが生じず、正確な転写を実現することができ、良好な画質を得ることができる。すなわち、本発明のポリイミド系樹脂ベルトは、面方向に等方性の誘電率であるという優れた特性を備えている。そのため、例えばカラー画像形成装置の中間転写ベルトなどとして使用した場合、電荷の帯電安定性と徐電を適切に行うことができ、並びに長期間安定して高品質の転写画像を得ることが可能となる。   According to the polyimide resin belt of the present invention, the formed image is not uneven, accurate transfer can be realized, and good image quality can be obtained. That is, the polyimide resin belt of the present invention has an excellent characteristic that it has an isotropic dielectric constant in the surface direction. Therefore, for example, when used as an intermediate transfer belt of a color image forming apparatus, it is possible to appropriately perform charge charging stability and slow charging, and obtain a high-quality transfer image stably for a long period of time. Become.

以下に実施例に基づいて本発明の内容を具体的に説明するが、本発明はこれによって限定されるものではない。   The contents of the present invention will be specifically described below based on examples, but the present invention is not limited thereto.

実施例1
3,3’,4,4’−ビフェニルテトラカルボン酸二無水物と4,4’−ジアミノジフェニルエーテルとを、N−メチル−2−ピロリドン中で合成したポリイミド前駆体のポリアミド酸溶液を20kg用意した。この溶液は粘度3.0Pa・s、不揮発分濃度18.0重量%であった。この溶液にカーボンブラック(三菱化学社製「MA100」)0.55kgとN-メチル-2-ピロリドン2.0kgを加えて、ボールミルにてカーボンブラックの均一分散を行った。
Example 1
20 kg of a polyamic acid solution of a polyimide precursor prepared by synthesizing 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 4,4′-diaminodiphenyl ether in N-methyl-2-pyrrolidone was prepared. . This solution had a viscosity of 3.0 Pa · s and a nonvolatile content concentration of 18.0% by weight. To this solution, 0.55 kg of carbon black (“MA100” manufactured by Mitsubishi Chemical Corporation) and 2.0 kg of N-methyl-2-pyrrolidone were added, and the carbon black was uniformly dispersed by a ball mill.

このカーボンブラック分散ポリイミド前駆体溶液は、不揮発分濃度18.40重量%であった。不揮発分重量のうち、カーボンブラックの含有量は、13.25重量%であった。また、溶液中でのカーボンブラックの平均粒径は0.32μm、最大粒径は0.76μmであった。   This carbon black-dispersed polyimide precursor solution had a nonvolatile content concentration of 18.40% by weight. Of the nonvolatile matter weight, the carbon black content was 13.25% by weight. The average particle size of carbon black in the solution was 0.32 μm, and the maximum particle size was 0.76 μm.

なお、本明細書における「不揮発分濃度」とは次のように算出された値である。試料を金属カップ等の耐熱性容器で精秤しこの時の試料の重量をAgとする。試料を入れた耐熱性容器を電気オーブンに入れて、120℃×15分、180℃×15分、280℃×30分で順次昇温しながら加熱、乾燥し、得られる固形分の重量(不揮発分重量)をBgとする。同一試料について5個のサンプルのA及びBの値を測定し(n=5)、次式(III)にあてはめて不揮発分濃度を求めた。その5個のサンプルの平均値を、本発明における不揮発分濃度として採用した。   The “nonvolatile content concentration” in this specification is a value calculated as follows. The sample is precisely weighed in a heat-resistant container such as a metal cup, and the weight of the sample at this time is Ag. The heat-resistant container containing the sample is placed in an electric oven, heated and dried while sequentially heating at 120 ° C. × 15 minutes, 180 ° C. × 15 minutes, 280 ° C. × 30 minutes. (Weight) is Bg. The values of A and B of five samples of the same sample were measured (n = 5), and applied to the following formula (III) to determine the nonvolatile content concentration. The average value of the five samples was adopted as the nonvolatile content concentration in the present invention.

不揮発分濃度=B/A×100(%) (III)
外径324mm、内径300mm、長さ500mmの円筒金型を、重力加速度の4.0倍の遠心加速度(約154r.p.m.)で回転させながら、その円筒金型の内周面にカーボンブラック分散ポリイミド前駆体溶液を、スプレー法にて均一に480mmで塗布した。塗布厚さは、不揮発分濃度から算出し、ポリイミド樹脂ベルトの厚さが90μmになるよう決定した。その後も重力加速度の4.0倍の遠心加速度(約154r.p.m.)で回転させたまま、30分間かけて130℃に昇温し、その後130℃で90分間保持して溶媒揮発を行った。不揮発分濃度は約55重量%であった。
Nonvolatile content concentration = B / A x 100 (%) (III)
While rotating a cylindrical mold having an outer diameter of 324 mm, an inner diameter of 300 mm, and a length of 500 mm at a centrifugal acceleration (approximately 154 rpm) that is 4.0 times the gravitational acceleration, carbon black-dispersed polyimide is applied to the inner peripheral surface of the cylindrical mold. The precursor solution was uniformly applied at 480 mm by a spray method. The coating thickness was calculated from the nonvolatile content concentration, and was determined so that the thickness of the polyimide resin belt was 90 μm. Thereafter, while rotating at a centrifugal acceleration (about 154 rpm) of 4.0 times the gravitational acceleration, the temperature was raised to 130 ° C. over 30 minutes, and then kept at 130 ° C. for 90 minutes to evaporate the solvent. The nonvolatile content concentration was about 55% by weight.

次に、この管状物を円筒金型の内周面に付着したまま高温加熱炉に投入し、150分間かけて320℃に昇温し(昇温速度:約1.27℃/min)、320℃で60分間高温加熱することでポリイミド転化を完了した。その後、常温まで冷却して金型よりポリイミド樹脂ベルトを取り出し、幅350mmにカットし、カラー画像形成装置の中間転写ベルトとして用いた。その結果を表1に示す。   Next, this tubular product is put into a high-temperature heating furnace while adhering to the inner peripheral surface of the cylindrical mold, and the temperature is raised to 320 ° C. over 150 minutes (heating rate: about 1.27 ° C./min). Polyimide conversion was completed by heating at 60 ° C. for 60 minutes. Thereafter, the polyimide resin belt was taken out from the mold after being cooled to room temperature, cut into a width of 350 mm, and used as an intermediate transfer belt of a color image forming apparatus. The results are shown in Table 1.

次に、面方向の誘電率を測定して、MOR−cを求めた。ポリイミド樹脂ベルト試料に、マイクロ波を照射した場合、吸収されたマイクロ波の透過強度が試料の異方性より異なることから、透過強度の差を表した極座標(配向パターン)の長軸と短軸の比を求め、分子配向状態を示す指標MOR値とした。なお、上記配向パターンから、配向角および異方性の程度を知ることができる。ポリイミド樹脂ベルトの幅方向に対し2ヶ所、および周方向に2ヶ所の計4ヶ所の部位から、4cm×4cmのサンプル片合計4枚を切り出し、それぞれのサンプルを測定周波数19〜20GHzで直径15mmの部位を測定した。これを基準厚さ(90μm)で補正してMOR−cを測定した(前記式(I)参照)。測定結果を表2に示す。   Next, the dielectric constant in the plane direction was measured to obtain MOR-c. When a polyimide resin belt sample is irradiated with microwaves, the transmission intensity of the absorbed microwave differs from the anisotropy of the sample, so the major and minor axes of polar coordinates (orientation pattern) representing the difference in transmission intensity The ratio was determined as an index MOR value indicating the molecular orientation state. The orientation angle and the degree of anisotropy can be known from the orientation pattern. A total of 4 pieces of 4 cm × 4 cm sample pieces were cut out from a total of 4 places, 2 places in the width direction of the polyimide resin belt and 2 places in the circumferential direction, and each sample had a diameter of 15 mm at a measurement frequency of 19 to 20 GHz. The site was measured. This was corrected with the reference thickness (90 μm), and MOR-c was measured (see the above formula (I)). The measurement results are shown in Table 2.

実施例2
実施例1と同様のカーボンブラック分散ポリイミド前駆体溶液を用いて、外径740mm、内径700mm、長さ700mmの円筒金型を、重力加速度の0.8倍の遠心加速度(約45r.p.m.)で回転させながら、その円筒金型の内周面にカーボンブラック分散ポリイミド前駆体溶液をスプレー法にて均一に650mmで塗布した。塗布厚さは、不揮発分濃度から算出し、中間転写部材の厚さが90μmになるよう決定した。
Example 2
Using the same carbon black-dispersed polyimide precursor solution as in Example 1, a cylindrical mold having an outer diameter of 740 mm, an inner diameter of 700 mm, and a length of 700 mm was obtained at a centrifugal acceleration (about 45 rpm) of 0.8 times the gravitational acceleration. While rotating, a carbon black-dispersed polyimide precursor solution was uniformly applied at 650 mm by spraying on the inner peripheral surface of the cylindrical mold. The coating thickness was calculated from the nonvolatile content concentration, and was determined so that the thickness of the intermediate transfer member was 90 μm.

その後も重力加速度の0.8倍の遠心加速度(約45r.p.m.)で回転させたまま、60分間かけて110℃に昇温し、その後110℃で90分間保持して溶媒揮発を行った。不揮発分濃度は約42重量%であった。次に、この管状物を円筒金型の内周面に付着したまま高温加熱炉に投入し、150分間かけて320℃に昇温し(昇温速度:約1.40℃/min)、320℃で90分間高温加熱することでポリイミド転化を完了した。   After that, while rotating at a centrifugal acceleration (about 45 r.p.m.) which is 0.8 times the gravitational acceleration, the temperature was raised to 110 ° C. over 60 minutes, and then kept at 110 ° C. for 90 minutes to evaporate the solvent. The nonvolatile content concentration was about 42% by weight. Next, this tubular product is put into a high-temperature heating furnace while adhering to the inner peripheral surface of the cylindrical mold, and the temperature is raised to 320 ° C. over 150 minutes (temperature increase rate: about 1.40 ° C./min). Polyimide conversion was completed by heating at 90 ° C. for 90 minutes.

その後、常温まで冷却して金型よりポリイミド樹脂ベルトを取り出した。実施例1と同様に4点をサンプリングし、このサンプルのMOR−c値を測定した。その結果を表3に示す。   Then, it cooled to normal temperature and took out the polyimide resin belt from the metal mold | die. Four points were sampled in the same manner as in Example 1, and the MOR-c value of this sample was measured. The results are shown in Table 3.

実施例3
トリメリット酸無水物90モル%、ベンゾフェノンテトラカルボン酸無水物5モル%、ビフェニルテトラカルボン酸無水物5モル%からなる酸無水物と、芳香族ジイソシアネート100モル%からなるポリアミドイミド溶液を20kg用意した。この溶液は、粘度50.0Pa・s、不揮発分濃度14.0重量%であった。この溶液にカーボンブラック(デグサ社製の「スペシャルブラック4」)0.50kgとN-メチル-2-ピロリドン6.0kgを加えて、ボールミルにてカーボンブラックの均一分散を行った。このカーボンブラック分散ポリアミドイミド溶液は、不揮発分濃度12.45重量%であった。不揮発分重量のうち、カーボンブラックの含有量は、15.15重量%であった。また、溶液中でのカーボンブラックの平均粒径は0.28μm、最大粒径は0.58μmであった。
Example 3
20 kg of polyamideimide solution consisting of 90 mol% trimellitic anhydride, 5 mol% benzophenone tetracarboxylic anhydride, 5 mol% biphenyltetracarboxylic anhydride and 100 mol% aromatic diisocyanate was prepared. . This solution had a viscosity of 50.0 Pa · s and a nonvolatile content concentration of 14.0% by weight. To this solution, 0.50 kg of carbon black (“Special Black 4” manufactured by Degussa) and 6.0 kg of N-methyl-2-pyrrolidone were added, and the carbon black was uniformly dispersed by a ball mill. This carbon black-dispersed polyamideimide solution had a nonvolatile content concentration of 12.45% by weight. Of the nonvolatile matter weight, the carbon black content was 15.15% by weight. The average particle size of carbon black in the solution was 0.28 μm, and the maximum particle size was 0.58 μm.

外径324mm、内径300mm、長さ500mmの円筒金型を、重力加速度の4.5倍の遠心加速度(約163r.p.m.)で回転させながら、その円筒金型の内周面にカーボンブラック分散ポリアミドイミド溶液を、スプレー法にて均一に450mmで塗布した。塗布厚さは、不揮発分濃度から算出し、ポリアミドイミド樹脂ベルトの厚さが90μmになるよう決定した。その後、重力加速度の2.0倍の遠心加速度(約109r.p.m.)で回転させながら、30分間かけて140℃に昇温し、その後140℃で90分間保持して溶媒揮発を行った。不揮発分濃度は約60重量%であった。次に、この管状物を円筒金型の内周面に付着したまま高温加熱炉に投入し、120分間かけて260℃(昇温速度:約1.00℃/min)に昇温し、260℃で90分間高温加熱することで溶媒を揮発させた。   While rotating a cylindrical mold with an outer diameter of 324 mm, an inner diameter of 300 mm, and a length of 500 mm at a centrifugal acceleration (approximately 163 rpm) 4.5 times the gravitational acceleration, a carbon black-dispersed polyamide is applied to the inner peripheral surface of the cylindrical mold. The imide solution was uniformly applied at 450 mm by a spray method. The coating thickness was calculated from the nonvolatile content concentration, and was determined such that the thickness of the polyamideimide resin belt was 90 μm. Then, while rotating at a centrifugal acceleration (about 109 r.p.m.) 2.0 times the gravitational acceleration, the temperature was raised to 140 ° C. over 30 minutes, and then kept at 140 ° C. for 90 minutes to evaporate the solvent. The nonvolatile content concentration was about 60% by weight. Next, this tubular product is put into a high-temperature heating furnace while adhering to the inner peripheral surface of the cylindrical mold, and heated to 260 ° C. (temperature increase rate: about 1.00 ° C./min) over 120 minutes. The solvent was volatilized by heating at 90 ° C. for 90 minutes.

その後、常温まで冷却して金型よりポリアミドイミド樹脂ベルトを取り出し、幅350mmにカットし、カラー画像形成装置の中間転写ベルトとして用いた。その結果を表1に示す。また、実施例1と同様に、4点をサンプリングし、MOR−c値を測定した。その結果を表4に示す。   Thereafter, the polyamide-imide resin belt was taken out from the mold after cooling to room temperature, cut into a width of 350 mm, and used as an intermediate transfer belt of a color image forming apparatus. The results are shown in Table 1. Further, as in Example 1, four points were sampled and MOR-c values were measured. The results are shown in Table 4.

比較例1
実施例1で得られたカーボンブラック分散ポリイミド前駆体溶液を、外径324mm、内径300mm、長さ500mmの円筒金型の内周面にノズル式の吐出装置にて指定量を投入した。ここで、ノズル式とは、微小開口部から該溶液を吐出し、スプレー法のように霧化せずに筋状で金型内に原料を供給するものである(以下同じ)。次に、重力加速度の100倍の遠心加速度(約772r.p.m.)で、カーボンブラック分散ポリイミド前駆体溶液を内周面に均一な塗膜厚みに流延させた。遠心加速度が小さいと前駆体溶液の流動が十分に行われず、円筒金型への投入した部位の塗膜厚みが大きいままで成形されてしまう。そのため、遠心力を利用した回転成形法では、大きな遠心加速度で前駆体溶液を円筒金型の内周面に均一に流延させることが最小限必要となる。
Comparative Example 1
A specified amount of the carbon black-dispersed polyimide precursor solution obtained in Example 1 was introduced into the inner peripheral surface of a cylindrical mold having an outer diameter of 324 mm, an inner diameter of 300 mm, and a length of 500 mm using a nozzle-type discharge device. Here, the nozzle type means that the solution is discharged from a minute opening and the raw material is supplied into the mold in a streak form without being atomized as in the spray method (the same applies hereinafter). Next, the carbon black-dispersed polyimide precursor solution was cast to a uniform coating thickness on the inner peripheral surface at a centrifugal acceleration (about 772 rpm) 100 times the gravitational acceleration. When the centrifugal acceleration is small, the precursor solution is not sufficiently flowed, and the film is formed while the coating film thickness at the portion charged into the cylindrical mold is large. For this reason, in the rotational molding method using centrifugal force, it is necessary to uniformly cast the precursor solution on the inner peripheral surface of the cylindrical mold with a large centrifugal acceleration.

その後、重力加速度の5.0倍の遠心加速度(約172r.p.m.)の回転に変更し、30分間かけて130℃に昇温し、その後130℃で90分間保持して溶媒揮発を行った。不揮発分濃度は約52重量%であった。次に、この管状物を円筒金型の内周面に付着したまま高温加熱炉に投入し、150分間かけて320℃に昇温し(昇温速度:約1.27℃/min)、320℃で60分間高温加熱することでポリイミド転化を完了した。   Thereafter, the rotation was changed to a centrifugal acceleration (about 172 r.p.m.) which was 5.0 times the gravitational acceleration, the temperature was raised to 130 ° C. over 30 minutes, and then kept at 130 ° C. for 90 minutes to volatilize the solvent. The nonvolatile content concentration was about 52% by weight. Next, this tubular product is put into a high-temperature heating furnace while adhering to the inner peripheral surface of the cylindrical mold, and the temperature is raised to 320 ° C. over 150 minutes (heating rate: about 1.27 ° C./min). Polyimide conversion was completed by heating at 60 ° C. for 60 minutes.

その後、常温まで冷却して金型よりポリイミド樹脂ベルトを取り出し、幅350mmにカットし、カラー画像形成装置の中間転写ベルトとして用いた。その結果を表1に示す。その後、実施例1と同様に、4点をサンプリングし、MOR−c値を測定した。その結果を表5に示す。   Thereafter, the polyimide resin belt was taken out from the mold after being cooled to room temperature, cut into a width of 350 mm, and used as an intermediate transfer belt of a color image forming apparatus. The results are shown in Table 1. Thereafter, in the same manner as in Example 1, four points were sampled and MOR-c values were measured. The results are shown in Table 5.

比較例2
外径324mm、内径300mm、長さ500mmの円筒金型を重力加速度の4.5倍の遠心加速度(約163r.p.m.)で回転させながら、その円筒金型の内周面に、実施例3で得られたカーボンブラック分散ポリアミドイミド溶液を、ノズル式の吐出装置よって吐出させた。回転する円筒金型の回転軸方向にノズルを移動させて、らせん状の吐出をおこなった。
Comparative Example 2
In Example 3, while rotating a cylindrical mold having an outer diameter of 324 mm, an inner diameter of 300 mm, and a length of 500 mm at a centrifugal acceleration (about 163 rpm) of 4.5 times the gravitational acceleration, The obtained carbon black-dispersed polyamideimide solution was discharged with a nozzle-type discharge device. Spiral discharge was performed by moving the nozzle in the direction of the axis of rotation of the rotating cylindrical mold.

その後、重力加速度の100倍の遠心加速度(約772r.p.m.)に変更し、円筒金型を回転させ続けることで、溶液の流動性により、らせん状の筋は約10分間で消滅した。そして、重力加速度の100倍の遠心加速度(約772r.p.m.)で回転させながら、90分間かけて130℃に昇温し、その後130℃で60分間保持して溶媒揮発を行った。次に、この管状物を円筒金型の内周面に付着したまま高温加熱炉に投入し、120分間かけて260℃に昇温し(昇温速度:約1.08℃/min)、260℃で90分間高温加熱することで溶媒を揮発させた。   Thereafter, the centrifugal acceleration (about 772 r.p.m.) which is 100 times the gravitational acceleration was changed, and by continuing to rotate the cylindrical mold, the spiral streaks disappeared in about 10 minutes due to the fluidity of the solution. Then, while rotating at a centrifugal acceleration (about 772 r.p.m.) 100 times the gravitational acceleration, the temperature was raised to 130 ° C. over 90 minutes, and then kept at 130 ° C. for 60 minutes for solvent volatilization. Next, this tubular product is put into a high-temperature heating furnace while adhering to the inner peripheral surface of the cylindrical mold, and the temperature is raised to 260 ° C. over 120 minutes (heating rate: about 1.08 ° C./min). The solvent was volatilized by heating at 90 ° C. for 90 minutes.

その後、常温まで冷却して金型よりポリアミドイミド樹脂ベルトを取り出し、幅350mmにカットし、カラー画像形成装置の中間転写ベルトとして用いた。その結果を表1に示す。その後、実施例1と同様に、4点をサンプリングし、MOR−c値を測定した。その結果を表6に示す。   Thereafter, the polyamide-imide resin belt was taken out from the mold after cooling to room temperature, cut into a width of 350 mm, and used as an intermediate transfer belt of a color image forming apparatus. The results are shown in Table 1. Thereafter, in the same manner as in Example 1, four points were sampled and MOR-c values were measured. The results are shown in Table 6.

比較例3
3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とp−フェニレンジアミンとを、N−メチル−2−ピロリドン中で合成したポリイミド前駆体のポリアミド酸溶液を20kg用意した。この溶液は粘度5.0Pa・s、不揮発分濃度18.0重量%であった。この溶液にカーボンブラック(電気化学工業社製「デンカブラック」):0.28kgとN-メチル-2-ピロリドン:3.0kgを加えて、ボールミルにてカーボンブラックの均一分散を行った。このカーボンブラック分散ポリイミド前駆体溶液は、不揮発分濃度16.67重量%であった。不揮発分重量のうち、カーボンブラックの含有量は、7.22重量%であった。また、溶液中でのカーボンブラックの平均粒径は0.87μm、最大粒径は5.86μmであった。
Comparative Example 3
20 kg of a polyamic acid solution of a polyimide precursor prepared by synthesizing 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and p-phenylenediamine in N-methyl-2-pyrrolidone was prepared. This solution had a viscosity of 5.0 Pa · s and a nonvolatile content concentration of 18.0% by weight. Carbon black (“DENKA BLACK” manufactured by Denki Kagaku Kogyo Co., Ltd.): 0.28 kg and N-methyl-2-pyrrolidone: 3.0 kg were added to this solution, and the carbon black was uniformly dispersed with a ball mill. This carbon black-dispersed polyimide precursor solution had a nonvolatile content concentration of 16.67% by weight. Of the nonvolatile matter weight, the carbon black content was 7.22% by weight. The average particle size of carbon black in the solution was 0.87 μm, and the maximum particle size was 5.86 μm.

外径326mm、内径312mm、長さ500mmの円筒金型を、重力加速度の4.0倍の遠心加速度(約151r.p.m.)で回転させながら、その円筒金型の内周面にカーボンブラック分散ポリイミド前駆体溶液をスプレー法にて均一に480mmで塗布した。塗布厚さは、不揮発分濃度から算出し、ポリイミド樹脂ベルトの厚さが90μmになるよう決定した。その後も重力加速度の4.0倍の遠心加速度(約151r.p.m.)で回転させたまま、30分間で120℃に昇温し、その後120℃で90分間保持して溶媒揮発を行った。そして該円筒金型の内周面から管状物を取り出した。この管状物の不揮発分濃度は約40重量%であった。   While rotating a cylindrical mold having an outer diameter of 326 mm, an inner diameter of 312 mm, and a length of 500 mm at a centrifugal acceleration (about 151 rpm) that is 4.0 times the gravitational acceleration, carbon black-dispersed polyimide is applied to the inner peripheral surface of the cylindrical mold. The precursor solution was uniformly applied at 480 mm by a spray method. The coating thickness was calculated from the nonvolatile content concentration, and was determined so that the thickness of the polyimide resin belt was 90 μm. Thereafter, while rotating at a centrifugal acceleration (about 151 r.p.m.) which is 4.0 times the gravitational acceleration, the temperature was raised to 120 ° C. for 30 minutes, and then kept at 120 ° C. for 90 minutes to volatilize the solvent. And the tubular thing was taken out from the internal peripheral surface of this cylindrical metal mold | die. The non-volatile content concentration of this tubular product was about 40% by weight.

次に前記管状物をイミド化と共に残存する溶媒を除去するために、これを表面粗さR=2.0μm、外径300mm、長さ380mmのアルミニウム製の円筒金型に嵌挿し、熱風乾燥機内に投入した。180分間で450℃に到達させ、その450℃で30分間加熱した。最後に常温に冷却し金型から取り出し、幅350mmにカットし、カラー画像形成装置の中間転写ベルトとして用いた。その結果を表1に示す。その後、実施例1と同様に、4点をサンプリングし、MOR−c値を測定した。その結果を表7に示す。 Next, in order to remove the remaining solvent along with imidation of the tubular product, this was inserted into an aluminum cylindrical mold having a surface roughness R Z = 2.0 μm, an outer diameter of 300 mm, and a length of 380 mm, and dried with hot air I put it in the plane. It was made to reach 450 degreeC in 180 minutes, and it heated at the 450 degreeC for 30 minutes. Finally, it was cooled to room temperature, taken out from the mold, cut into a width of 350 mm, and used as an intermediate transfer belt of a color image forming apparatus. The results are shown in Table 1. Thereafter, in the same manner as in Example 1, four points were sampled and MOR-c values were measured. The results are shown in Table 7.

Figure 0004619208
Figure 0004619208

Figure 0004619208
Figure 0004619208

Figure 0004619208
Figure 0004619208

Figure 0004619208
Figure 0004619208

Figure 0004619208
Figure 0004619208

Figure 0004619208
Figure 0004619208

Figure 0004619208
Figure 0004619208

表1の画像評価の結果と表2〜表7のMOR−cの値から分かるように、実施例1及び3のポリイミド系樹脂ベルト(ポリイミド樹脂ベルト又はポリアミドイミド樹脂ベルト)は、誘電率が7〜12の範囲であって、MOR−cの最大値が本発明の範囲(1.2以下)内に設定されており、いずれも良好な画像が得られることが示唆された。   As can be seen from the image evaluation results in Table 1 and the MOR-c values in Tables 2 to 7, the polyimide resin belts (polyimide resin belts or polyamideimide resin belts) of Examples 1 and 3 have a dielectric constant of 7. The maximum value of MOR-c was set within the range of the present invention (1.2 or less), and it was suggested that a good image can be obtained in any case.

一方、比較例1〜3のポリイミド系樹脂ベルト(ポリイミド樹脂ベルト又はポリアミドイミド樹脂ベルト)は、誘電率が7〜12の範囲であっても、MOR−cの最大値が本発明の範囲から外れており、正確な転写を実現することが出来ず、画像不良が生じていた。なお、特許文献6のように誘電率が7〜12の範囲を外れているフィルムは、MOR−cの最大値に関係なく中間転写部材に不可欠な帯電と除電という性能を両立させることができないため、画像を形成することは困難である。   On the other hand, the polyimide resin belts of Comparative Examples 1 to 3 (polyimide resin belt or polyamideimide resin belt) have a maximum value of MOR-c that is out of the scope of the present invention even if the dielectric constant is in the range of 7 to 12. As a result, accurate transfer could not be realized and image defects occurred. Note that a film having a dielectric constant outside the range of 7 to 12 as in Patent Document 6 cannot achieve both the charging and discharging performance essential for the intermediate transfer member regardless of the maximum value of MOR-c. It is difficult to form an image.

実施例1〜3(表2〜4)の結果より、重力加速度の0.5〜5.0倍の遠心加速度で低速回転する円筒金型の内周面に、導電性フィラーを均一に分散させた液体原料をスプレー法で均一な厚さで塗布する工程、重力加速度の0.5〜5.0倍の遠心加速度で低速回転させたまま100〜140℃の温度で溶媒を揮発して不揮発分濃度を35重量%以上の皮膜を形成する工程と、該皮膜を円筒金型の内周面に付着した状態で完全にポリイミド転化、または、溶媒を完全に揮発させるのに十分な温度と時間で加熱する工程とからなる製造方法により、MOR−cの最大値が1.2以下の面方向に等方性の誘電率を持ったポリイミド系樹脂ベルトが得られることがわかる。   From the results of Examples 1 to 3 (Tables 2 to 4), the conductive filler is uniformly dispersed on the inner peripheral surface of the cylindrical mold rotating at a low speed with a centrifugal acceleration of 0.5 to 5.0 times the gravitational acceleration. The liquid material is applied at a uniform thickness by a spray method, and the solvent is volatilized at a temperature of 100 to 140 ° C. while rotating at a low speed with a centrifugal acceleration of 0.5 to 5.0 times the gravitational acceleration. A step of forming a film with a concentration of 35% by weight or more, and a temperature and time sufficient to completely convert the polyimide while the film is attached to the inner peripheral surface of the cylindrical mold or to completely evaporate the solvent. It can be seen that a polyimide resin belt having an isotropic dielectric constant in the plane direction where the maximum value of MOR-c is 1.2 or less can be obtained by a manufacturing method comprising a heating step.

分子配向計(王子計測機器(株)製MOA−6020)を用いたMOR評価の模式図である。It is a schematic diagram of MOR evaluation using the molecular orientation meter (Oji Scientific Instruments Co., Ltd. MOA-6020). 本発明のポリイミド系樹脂ベルトの製造工程の模式図である。It is a schematic diagram of the manufacturing process of the polyimide resin belt of this invention.

Claims (6)

誘電率が7〜12の範囲を有するポリイミド系樹脂ベルトであって、該ポリイミド系樹脂ベルトのいずれの箇所においても面方向の誘電率の異方性を表す指標:MOR−cの最大値が1.2以下である面方向に等方性の誘電率を持ったポリイミド系樹脂ベルトであって、
(1)重力加速度の0.5〜5.0倍程度の遠心加速度で回転する円筒金型の内周面に導電性フィラーを均一に分散させた液体原料をスプレー法で均一な厚さで塗布する工程、
(2)該円筒金型を重力加速度の0.5〜5.0倍程度の遠心加速度で回転させたまま100〜140℃程度の温度で加熱して、不揮発分濃度が35重量%以上の皮膜を形成する工程、及び
(3)該皮膜を円筒金型の内周面に付着した状態のまま約250℃以上の温度で加熱する工程
を含む製造方法で製造されるポリイミド系樹脂ベルト。
A polyimide resin belt having a dielectric constant in the range of 7 to 12, and an index indicating the anisotropy of dielectric constant in the plane direction at any location of the polyimide resin belt: the maximum value of MOR-c is 1 A polyimide resin belt having an isotropic dielectric constant in the plane direction of 2 or less ,
(1) A liquid material in which conductive filler is uniformly dispersed on the inner peripheral surface of a cylindrical mold rotating at a centrifugal acceleration of about 0.5 to 5.0 times the gravitational acceleration is applied with a uniform thickness by a spray method. The process of
(2) The cylindrical mold is heated at a temperature of about 100 to 140 ° C. while being rotated at a centrifugal acceleration of about 0.5 to 5.0 times the gravitational acceleration, and a coating having a nonvolatile content concentration of 35% by weight or more. Forming, and
(3) A step of heating the coating film at a temperature of about 250 ° C. or higher with the film attached to the inner peripheral surface of the cylindrical mold.
A polyimide resin belt manufactured by a manufacturing method including:
前記ポリイミド系樹脂ベルトが、ポリイミド系樹脂を75〜87重量%及び導電性フィラーを13〜25重量%含む請求項1に記載のポリイミド系樹脂ベルト。 The polyimide resin belt according to claim 1, wherein the polyimide resin belt contains 75 to 87% by weight of a polyimide resin and 13 to 25% by weight of a conductive filler. 前記ポリイミド系樹脂ベルトが、厚み80〜120μm程度、周長350〜3000mm程度のシームレスベルトである請求項1又は2に記載のポリイミド系樹脂ベルト。 The polyimide resin belt according to claim 1, wherein the polyimide resin belt is a seamless belt having a thickness of about 80 to 120 μm and a circumferential length of about 350 to 3000 mm. 前記ポリイミド系樹脂が、ポリイミド樹脂又はポリアミドイミド樹脂である請求項1〜3のいずれかに記載のポリイミド系樹脂ベルト。 The polyimide resin belt according to claim 1, wherein the polyimide resin is a polyimide resin or a polyamideimide resin. 請求項1〜4のいずれかに記載のポリイミド系樹脂ベルトからなる中間転写部材。 An intermediate transfer member comprising the polyimide resin belt according to claim 1. 誘電率が7〜12の範囲を有し、ベルトのいずれの箇所においても面方向の誘電率の異方性を表す指標:MOR−cの最大値が1.2以下である面方向に等方性の誘電率を持ったポリイミド系樹脂ベルトの製造方法であって、
(1)重力加速度の0.5〜5.0倍程度の遠心加速度で回転する円筒金型の内周面に導電性フィラーを均一に分散させた液体原料をスプレー法で均一な厚さで塗布する工程、
(2)該円筒金型を重力加速度の0.5〜5.0倍程度の遠心加速度で回転させたまま100〜140℃程度の温度で加熱して、不揮発分濃度が35重量%以上の皮膜を形成する工程、及び
(3)該皮膜を円筒金型の内周面に付着した状態のまま約250℃以上の温度で加熱する工程
を含むこと特徴とする製造方法。
Index indicating dielectric anisotropy in the plane direction at any part of the belt having a dielectric constant of 7 to 12: isotropic in the plane direction where the maximum value of MOR-c is 1.2 or less A method for producing a polyimide resin belt having a dielectric constant,
(1) A liquid material in which conductive filler is uniformly dispersed on the inner peripheral surface of a cylindrical mold rotating at a centrifugal acceleration of about 0.5 to 5.0 times the gravitational acceleration is applied with a uniform thickness by a spray method. The process of
(2) The cylindrical mold is heated at a temperature of about 100 to 140 ° C. while being rotated at a centrifugal acceleration of about 0.5 to 5.0 times the gravitational acceleration, and a coating having a nonvolatile content concentration of 35% by weight or more. And (3) a method of heating the coating film at a temperature of about 250 ° C. or higher while attached to the inner peripheral surface of the cylindrical mold.
JP2005187061A 2005-06-27 2005-06-27 Polyimide resin belt with isotropic dielectric constant in the surface direction Active JP4619208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005187061A JP4619208B2 (en) 2005-06-27 2005-06-27 Polyimide resin belt with isotropic dielectric constant in the surface direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005187061A JP4619208B2 (en) 2005-06-27 2005-06-27 Polyimide resin belt with isotropic dielectric constant in the surface direction

Publications (2)

Publication Number Publication Date
JP2007001262A JP2007001262A (en) 2007-01-11
JP4619208B2 true JP4619208B2 (en) 2011-01-26

Family

ID=37687275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005187061A Active JP4619208B2 (en) 2005-06-27 2005-06-27 Polyimide resin belt with isotropic dielectric constant in the surface direction

Country Status (1)

Country Link
JP (1) JP4619208B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8303852B2 (en) 2006-09-19 2012-11-06 Gunze Limited Carbon black-dispersed polyamic acid solution composition, and process for producing semiconductive polyimide resin belt therewith
JP5079354B2 (en) * 2007-02-26 2012-11-21 株式会社リコー Polyimide endless seamless belt, method for producing the same, and image forming apparatus
KR101480800B1 (en) * 2007-12-06 2015-01-09 군제 가부시키가이샤 Polyamic acid solution composition having carbon black dispersed therein, process for production of semiconductive polyimide resin belt using the composition, and semiconductive polyimide resin belt
JP2010105258A (en) * 2008-10-30 2010-05-13 Unimatec Co Ltd Method of manufacturing tubular polyimide belt
JP5281932B2 (en) * 2009-03-12 2013-09-04 東洋ゴム工業株式会社 Semiconductive rubber belt and method for manufacturing the same
JP5822064B2 (en) * 2010-12-15 2015-11-24 宇部興産株式会社 Method for producing aromatic polyimide seamless belt
JP6816535B2 (en) * 2017-01-27 2021-01-20 富士ゼロックス株式会社 Semi-conductive members, intermediate transfer members, image forming devices and transfer units

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002154168A (en) * 2000-11-17 2002-05-28 Kanegafuchi Chem Ind Co Ltd Polyimide film, method for manufacturing the same and method for adjusting isotropy of polyimide film
JP2003165850A (en) * 2001-11-30 2003-06-10 Kanegafuchi Chem Ind Co Ltd Polyimide film and method for producing the same
JP2003255726A (en) * 2002-03-06 2003-09-10 Nitto Denko Corp Semiconductor belt and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002154168A (en) * 2000-11-17 2002-05-28 Kanegafuchi Chem Ind Co Ltd Polyimide film, method for manufacturing the same and method for adjusting isotropy of polyimide film
JP2003165850A (en) * 2001-11-30 2003-06-10 Kanegafuchi Chem Ind Co Ltd Polyimide film and method for producing the same
JP2003255726A (en) * 2002-03-06 2003-09-10 Nitto Denko Corp Semiconductor belt and its manufacturing method

Also Published As

Publication number Publication date
JP2007001262A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
JP4619208B2 (en) Polyimide resin belt with isotropic dielectric constant in the surface direction
JPWO2008044643A1 (en) Polyimide tube, method for producing the same, method for producing polyimide varnish, and fixing belt
JP2001047451A (en) Endless tubular semiconductive aromatic polyimide film and its manufacture
JP5784104B2 (en) Semiconductive polyimide resin belt and method of manufacturing semiconductive polyimide resin belt
JP4874834B2 (en) Seamless belt manufacturing method
JP2007072197A (en) Endless tubular belt and method for producing the same
JP2006259248A (en) Transfer fixing belt
JP5916433B2 (en) Belt for image forming apparatus
JP4551576B2 (en) Seamless belt manufacturing method
JP2002162836A (en) Electrically semiconductive seamless belt
JP5062802B2 (en) Endless belt, manufacturing method thereof, and electrophotographic apparatus provided with the same
WO2002022740A1 (en) Polyimide resin composition and, polyimide product formed into film and intermediate transfer belt comprising the same
JP5209685B2 (en) Seamless belt and manufacturing method thereof
JP5121426B2 (en) Semiconductive copolymer polyimide belt, method for producing the same, and intermediate transfer belt
JP5171000B2 (en) Semiconductive polyimide resin belt and method for manufacturing the same
JP2004302094A (en) Semiconductive belt and its manufacturing method
JP2001215821A (en) Fixing belt and method of producing the same
JP2010139925A (en) Polyimide resin belt, and method for producing the same
JP2005264047A (en) Sheet-like film and method for manufacturing the same
US20170050348A1 (en) Method for producing polyimide tubular member
JP2001131410A (en) Semiconductive polyamic acid composition and its use
JP2003280406A (en) Transferring fixing belt
JP2011164272A (en) Polyimide annular belt and method of manufacturing the same
JP5121422B2 (en) Semiconductive polyimide resin belt and method of manufacturing semiconductive polyimide resin belt
JP2002284898A (en) Semiconductive seamless belt and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4619208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250