JP2003255726A - Semiconductor belt and its manufacturing method - Google Patents

Semiconductor belt and its manufacturing method

Info

Publication number
JP2003255726A
JP2003255726A JP2002060336A JP2002060336A JP2003255726A JP 2003255726 A JP2003255726 A JP 2003255726A JP 2002060336 A JP2002060336 A JP 2002060336A JP 2002060336 A JP2002060336 A JP 2002060336A JP 2003255726 A JP2003255726 A JP 2003255726A
Authority
JP
Japan
Prior art keywords
belt
conductive filler
polyamic acid
conductive
acid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002060336A
Other languages
Japanese (ja)
Inventor
Hiroshi Ukai
浩史 鵜飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2002060336A priority Critical patent/JP2003255726A/en
Publication of JP2003255726A publication Critical patent/JP2003255726A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductive belt in which surface resistivity of an outer surface can be easily adjusted while maintaining volume resistivity of the whole and the problem hardly occurs and to provide a method for manufacturing the semiconductive belt. <P>SOLUTION: In the semiconductor belt which is made of a polyimide resin containing a conductive filler and has seamless structure, an outer surface part has a region of 1 to 10 μm thickness in which concentration of the conductive filler is discontinuously different from the concentration in other parts and difference between surface resistivity of the outer surface and surface resistivity of the inner surface is ≥1.5 based on common logarithms. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子写真記録装置
等における像の中間転写ベルトや、その中間転写と兼用
の印刷シート搬送用ベルト(転写搬送ベルト)などに好
適に使用できる半導電性ベルト、並びにその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductive belt which can be suitably used as an intermediate transfer belt for an image in an electrophotographic recording apparatus or the like, or a print sheet transfer belt (transfer transfer belt) also used for the intermediate transfer. And a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来より、電子写真方式で像を形成記録
する電子写真記録装置としては、複写機やレーザープリ
ンタ、ビデオプリンタやファクシミリ、それらの複合機
等が知られている。この種の装置では、装置寿命の向上
などを目的として、感光ドラム等の像担持体にトナー等
の記録剤により形成された像を印刷シート上に直接定着
させる方式を回避すべく、像担持体上の像を中間転写ベ
ルトに一旦転写し、それを印刷シート上に定着させる方
式が検討されている。また装置の小型化等を目的に、前
記の中間転写ベルトに印刷シートの搬送も兼ねさせる方
式も検討されている。
2. Description of the Related Art Conventionally, a copying machine, a laser printer, a video printer, a facsimile machine, a composite machine thereof, and the like have been known as an electrophotographic recording apparatus for forming and recording an image by an electrophotographic system. In this type of device, in order to avoid the system in which an image formed by a recording material such as toner is directly fixed on an image carrier such as a photosensitive drum on a print sheet for the purpose of improving the life of the device, the image carrier is avoided. A method in which the above image is once transferred to an intermediate transfer belt and then fixed on a printing sheet is under study. In addition, for the purpose of downsizing of the apparatus, a system in which the above-mentioned intermediate transfer belt also serves as conveyance of a printing sheet is being studied.

【0003】前記の中間転写ベルトに用いうる半導電性
ベルトとしては、ポリイミド系樹脂フィルムに導電性フ
ィラーを配合して、体積抵抗率を1〜1013Ω・cmと
したものが知られていた(特開平5−77252号公報
参照)。これはポリイミド系樹脂フィルムを用いること
により、それまでのフッ化ビニリデンやエチレン・テト
ラフルオロエチレン共重合体、ポリカーボネート等から
なるフィルムを用いた半導電性ベルト(特開平5−20
0904号公報、特開平5−345368号公報、特開
平6−95521号公報)による問題、すなわち強度や
耐摩擦・摩耗性の機械特性が不足してベルト端部等にク
ラックが発生したり、駆動時の負荷で変形して転写画像
が変形するなどの問題を克服したものである。
As a semi-conductive belt which can be used as the above-mentioned intermediate transfer belt, it has been known that a polyimide resin film is mixed with a conductive filler to have a volume resistivity of 1 to 10 13 Ω · cm. (See JP-A-5-77252). This is because a polyimide resin film is used, so that a semiconductive belt using a film made of vinylidene fluoride, an ethylene / tetrafluoroethylene copolymer, a polycarbonate, etc., which has been used up to then (Japanese Patent Laid-Open No. 5-20.
0904, JP-A-5-345368, and JP-A-6-95521), that is, the mechanical properties such as strength and friction / abrasion resistance are insufficient, and cracks occur at the belt end or the like. This overcomes the problem that the transferred image is deformed due to time load.

【0004】一方、半導電性ベルトの外表面のみの表面
抵抗率を低下させる方法として、特開昭61−2028
11号公報に記載のように、遠心成形法において原料の
比重差により導電性フィラーを外表面に沈降・濃縮させ
る技術が知られている。
On the other hand, as a method for lowering the surface resistivity of only the outer surface of the semiconductive belt, there is disclosed in JP-A-61-2028.
As described in Japanese Patent Laid-Open No. 11, a technique is known in which a conductive filler is settled and concentrated on the outer surface by a difference in specific gravity of raw materials in a centrifugal molding method.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うにして製造した半導電性ベルトでは、表面抵抗率が温
度や湿度等の外部環境で大きく変動したり、長期使用で
電気特性が大きく変動したりして、例えば上記した中間
転写ベルトや兼用の搬送ベルトとして用いた場合、印刷
シートをベルトより分離する際に分離不良等を生じるな
どの問題点があった。
However, in the semi-conductive belt manufactured in this manner, the surface resistivity varies greatly in the external environment such as temperature and humidity, and the electrical characteristics vary greatly in long-term use. Then, for example, when it is used as the above-mentioned intermediate transfer belt or a conveyor belt which is also used, there is a problem that a separation failure occurs when the printing sheet is separated from the belt.

【0006】また、特開平7−156287号公報に記
載のように、半導電性ベルトを2層以上で形成して、各
層の導電性物質の含有量を変えることにより、外表面と
内表面との表面抵抗率を異ならせる技術も知られてい
る。しかし、各層の厚みにあまり差がない(外層の厚み
は20μm以上)ため、全体の体積抵抗率を維持しなが
ら、外表面の表面抵抗率を調整するのが困難になるとい
う問題があった。また、導電性物質の含有量の違いによ
って各層の熱膨張率が異なり、しかも各層の厚みにあま
り差がないため、イミド転化時の高温から冷却した際に
残留応力により歪みや反りが発生しやすいという問題も
ある。
Further, as described in JP-A-7-156287, by forming a semi-conductive belt with two or more layers and changing the content of the conductive substance in each layer, the outer surface and the inner surface can be changed. There is also known a technique for varying the surface resistivity of the. However, since there is not much difference in the thickness of each layer (the thickness of the outer layer is 20 μm or more), it is difficult to adjust the surface resistivity of the outer surface while maintaining the volume resistivity of the entire layer. Further, the coefficient of thermal expansion of each layer differs depending on the content of the conductive material, and since there is not much difference in the thickness of each layer, distortion and warpage are likely to occur due to residual stress when cooled from the high temperature during imide conversion. There is also a problem.

【0007】そこで、本発明の目的は、全体の体積抵抗
率を維持しながら、外表面の表面抵抗率を容易に調整す
ることができ、しかも上記問題が生じにくい半導電性ベ
ルト及びその製造方法を提供することにある。
Therefore, an object of the present invention is to provide a semi-conductive belt which can easily adjust the surface resistivity of the outer surface while maintaining the overall volume resistivity, and which is less likely to cause the above problems, and a method for producing the same. To provide.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく、半導電性ベルトの製造方法や得られる半
導電性ベルトの断面構造等について鋭意研究したとこ
ろ、特定の製造方法により得られる特定の断面構造の半
導電性ベルトにより、上記目的が達成できることを見出
し、本発明を完成するに至った。
[Means for Solving the Problems] In order to achieve the above object, the inventors of the present invention have earnestly studied a method for producing a semiconductive belt, a sectional structure of the obtained semiconductive belt, etc. It was found that the above-mentioned object can be achieved by the semiconductive belt having a specific cross-sectional structure obtained by the above, and the present invention has been completed.

【0009】即ち、本発明の半導電性ベルトは、導電性
フィラーを含有するポリイミド系樹脂からなるシームレ
ス構造の半導電性ベルトにおいて、外表面部分に前記導
電性フィラーの濃度が他の部分と不連続的に異なる厚み
1〜10μmの領域を有して、常用対数に基づく外表面
と内表面との表面抵抗率の差が1.5以上であることを
特徴とする。ここで、半導電性ベルトとは、体積抵抗率
が1〜1016Ω・cmのものを指す。
That is, the semiconductive belt of the present invention is a semiconductive belt having a seamless structure made of a polyimide resin containing a conductive filler, and the outer surface portion of the semiconductive belt has a concentration of the conductive filler different from that of other portions. It is characterized by having continuously different regions having a thickness of 1 to 10 μm and having a difference in surface resistivity between the outer surface and the inner surface of 1.5 or more based on the common logarithm. Here, the semi-conductive belt has a volume resistivity of 1 to 10 16 Ω · cm.

【0010】一方、本発明の製造方法は、導電性フィラ
ーを含有するポリイミド系樹脂の原料液を用いて回転遠
心成型とイミド転化を行うことでシームレス構造の半導
電性ベルトを得る半導電性ベルトの製造方法において、
予め、導電性フィラーを含有しB型粘度計による25℃
の溶液粘度が0.01〜1Pa・sのポリアミド酸溶液
を用いて成形型の内周面に固化した厚み1〜10μmの
外層を形成した後、導電性フィラーの含有率が異なりB
型粘度計による25℃の溶液粘度が1〜1000Pa・
sのポリアミド酸溶液を用いて回転遠心成型で内層を成
形することを特徴とする。
On the other hand, according to the manufacturing method of the present invention, a semiconductive belt having a seamless structure is obtained by performing rotary centrifugal molding and imide conversion using a raw material liquid of a polyimide resin containing a conductive filler. In the manufacturing method of
25 ° C with a B-type viscometer containing a conductive filler in advance
After forming a solidified outer layer having a thickness of 1 to 10 μm on the inner peripheral surface of the mold using a polyamic acid solution having a solution viscosity of 0.01 to 1 Pa · s, the content ratio of the conductive filler is different.
Solution viscosity at 25 ° C measured by a viscometer is 1-1000Pa
The inner layer is formed by rotary centrifugal molding using the polyamic acid solution of s.

【0011】上記において、前記外層を形成する際に、
前記成形型の内周面に前記ポリアミド酸溶液をスプレー
塗布し、成形型を回転させながら乾燥・固化させること
が好ましい。
In the above, when forming the outer layer,
It is preferable that the polyamic acid solution is spray-coated on the inner peripheral surface of the molding die and dried and solidified while rotating the molding die.

【0012】[作用効果]本発明の半導電性ベルトによ
ると、外表面部分に前記導電性フィラーの濃度が他の部
分と不連続的に異なる厚み1〜10μmの領域(以下、
外層と略す場合がある)を有し、その厚みが薄いため、
全体の体積抵抗率や機械強度等の物性に影響を与えにく
く、しかも、各層の熱膨張率の差による残留応力も小さ
くなる。その結果、全体の体積抵抗率を維持しながら、
外表面の表面抵抗率を容易に調整することができ、しか
も残留応力による問題が生じにくい半導電性ベルトを提
供することができる。
[Operation and Effect] According to the semiconductive belt of the present invention, a region having a thickness of 1 to 10 μm (hereinafter referred to as “concentration of the conductive filler” discontinuously differs from the other part on the outer surface part).
(It may be abbreviated as the outer layer), and because its thickness is thin,
Physical properties such as the volume resistivity and mechanical strength of the whole are less likely to be affected, and the residual stress due to the difference in the coefficient of thermal expansion of each layer is also small. As a result, while maintaining the overall volume resistivity,
It is possible to provide a semiconductive belt in which the surface resistivity of the outer surface can be easily adjusted and the problem due to residual stress does not easily occur.

【0013】一方、本発明の製造方法によると、予め、
導電性フィラーを含有しB型粘度計による25℃の溶液
粘度が0.01〜1Pa・sのポリアミド酸溶液を用い
て成形型の内周面に固化した厚み1〜10μmの外層を
形成した後、内層を形成するため、外表面部分に前記導
電性フィラーの濃度が他の部分と不連続的に異なる厚み
1〜10μmの領域を好適に形成することができ、全体
の体積抵抗率を維持しながら、外表面の表面抵抗率を容
易に調整することができ、しかも残留応力による問題が
生じにくい半導電性ベルトを製造することができる。
On the other hand, according to the manufacturing method of the present invention,
After forming a solidified outer layer having a thickness of 1 to 10 μm on the inner peripheral surface of the mold using a polyamic acid solution containing a conductive filler and having a solution viscosity of 0.01 to 1 Pa · s at 25 ° C. measured by a B type viscometer In order to form the inner layer, a region having a thickness of 1 to 10 μm in which the concentration of the conductive filler is discontinuously different from that of the other part can be suitably formed on the outer surface part, and the overall volume resistivity is maintained. However, the surface resistivity of the outer surface can be easily adjusted, and a semiconductive belt in which problems due to residual stress hardly occur can be manufactured.

【0014】前記外層を形成する際に、前記成形型の内
周面に前記ポリアミド酸溶液をスプレー塗布し、成形型
を回転させながら乾燥・固化させる場合、薄い外層を均
一な厚みで好適に形成することができる。
When the outer layer is formed, when the polyamic acid solution is spray-coated on the inner peripheral surface of the mold and dried and solidified while rotating the mold, a thin outer layer is preferably formed with a uniform thickness. can do.

【0015】[0015]

【発明の実施の形態】本発明の半導電性ベルトは、導電
性フィラーを含有するポリイミド系樹脂からなるシーム
レス構造の半導電性ベルトである。このような半導電性
ベルトは、例えば導電性フィラーを含有するポリイミド
系樹脂の原料液を用いて回転遠心成型とイミド転化を行
うことで得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The semi-conductive belt of the present invention is a seamless semi-conductive belt made of a polyimide resin containing a conductive filler. Such a semi-conductive belt can be obtained, for example, by performing rotational centrifugal molding and imide conversion using a raw material liquid of a polyimide resin containing a conductive filler.

【0016】ポリイミド系樹脂の原料液としては、例え
ばテトラカルボン酸二無水物やその誘動体とジアミンを
溶媒中で重合反応させてなるポリアミド酸の溶液が使用
可能である。前記ポリアミド酸はテトラカルボン酸二無
水物あるいはその誘導体とジアミンの略等モルを有機溶
媒中で反応させることにより得られるもので、通常、溶
液状で用いられる。このようなテトラカルボン酸二無水
物は、例えば下記の一般的(1)で示される。
As the raw material liquid of the polyimide resin, for example, a solution of a polyamic acid obtained by polymerizing a tetracarboxylic dianhydride or its derivative and a diamine in a solvent can be used. The polyamic acid is obtained by reacting tetracarboxylic dianhydride or its derivative with approximately equimolar amounts of diamine in an organic solvent, and is usually used in the form of a solution. Such a tetracarboxylic dianhydride is represented by, for example, the following general formula (1).

【0017】[0017]

【化1】 (式中、Rは4価の有機基であり、芳香族、脂肪族、環
状脂肪族、芳香族と脂肪族とを組み合わせたもの、また
はそれらの置換された基である。) 前記したテトラカルボン酸二無水物の具体例としては、
ピロメリット酸二無水物(PMDA)、3,3’,4,
4’−ベンゾフェノンテトラカルボン酸二無水物(BP
DA)、3,3’,4,4’−ビフェニルテトラカルボ
ン酸二無水物、2,3,3’,4−ビフェニルテトラカ
ルボン酸二無水物、2,3,6,7−ナフタレンテトラ
カルボン酸二無水物、1,2,5,6−ナフタレンテト
ラカルボン酸二無水物、1,4,5,8−ナフタレンテ
トラカルボン酸二無水物、2,2’−ビス(3,4−ジ
カルボキシフェニル)プロパン二無水物、ビス(3,4
−ジカルボキシフェニル)スルホン二無水物、ペリレン
−3,4,9,10−テトラカルボン酸二無水物、ビス
(3,4−ジカルボキシフェニル)エーテル二無水物、
エチレンテトラカルボン酸二無水物等が挙げられる。
[Chemical 1] (In the formula, R is a tetravalent organic group, which is an aromatic group, an aliphatic group, a cycloaliphatic group, a combination of an aromatic group and an aliphatic group, or a substituted group thereof.) Specific examples of the acid dianhydride include:
Pyromellitic dianhydride (PMDA), 3,3 ', 4
4'-benzophenone tetracarboxylic dianhydride (BP
DA), 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 2,3,3', 4-biphenyltetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic acid Dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,2'-bis (3,4-dicarboxyphenyl) ) Propane dianhydride, bis (3,4)
-Dicarboxyphenyl) sulfone dianhydride, perylene-3,4,9,10-tetracarboxylic acid dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride,
Examples thereof include ethylene tetracarboxylic dianhydride.

【0018】一方ジアミンの例としては、4,4’−ジ
アミノジフェニルエーテル(DDE)、4,4’−ジア
ミノジフェニルメタン、3,3’−ジアミノジフェニル
メタン、3,3’−ジクロロベンジジン、4,4−ジア
ミノジフェニルスルフィド−3,3’−ジアミノジフェ
ニルスルホン、1,5−ジアミノナフタレン、m−フェ
ニレンジアミン、p−フェニレンジアミン(PDA)、
3,3’−ジメチル−4,4’−ビフェニルジアミン、
ベンジジン、3,3’−ジメチルベンジジン、3,3’
−ジメトキシベンジジン、4,4’−ジアミノフェニル
スルホン、4,4’−ジアミノフェニルスルホン、4,
4’−ジアミノジフェニルスルフィド、4,4’−ジア
ミノジフェニルプロパン、2,4−ビス(β−アミノ−
第三ブチル)トルエン、ビス(p−β−アミノ−第三ブ
チルフェニル)エーテル、ビス(p−β−メチル−δ−
アミノフェニル)ベンゼン、ビス−p−(1,1−ジメ
チル−5−アミノ−ペンチル)ベンゼン、1−イソプロ
ピル−2,4−m−フェニレンジアミン、m−キシリレ
ンジアミン、p−キシリレンジアミン、ジ(p−アミノ
シクロヘキシル)メタン、ヘキサメチレンジアミン、ヘ
プタメチレンジアミン、オクタメチレンジアミン、ノナ
メチレンジアミン、デカメチレンジアミン、ジアミノプ
ロピルテトラメチレン、3−メチルヘプタメチレンジア
ミン、4,4−ジメチルヘプタメチレンジアミン、2,
11−ジアミノドデカン、1,2−ビス−3−アミノプ
ロポキシエタン、2,2−ジメチルプロピレンジアミ
ン、3−メトキシヘキサメチレンジアミン、2,5−ジ
メチルヘキサメチレンジアミン、2,5−ジメチルヘプ
タメチレンジアミン、2,5−ジメチルヘプタメチレン
ジアミン、3−メチルヘプタメチレンジアミン、5−メ
チルノナメチレンジアミン、2,11−ジアミノドデカ
ン、2,17−ジアミノエイコサデカン、1,4−ジア
ミノシクロヘキサン、1,10−ジアミノ−1,10−
ジメチルデカン、1,12−ジアミノオクタデカン、
2,2−ビス〔4−(4−アミノフェノキシ)フェニ
ル〕プロパン、ピペラジン H2 N(CH23 O(CH22 O(CH2 )NH
2 、 H2 N(CH23 S(CH23 NH2 、 H2 N(CH23 N(CH32 (CH23 NH
2 、 等が挙げられる。
On the other hand, examples of the diamine include 4,4'-diaminodiphenyl ether (DDE), 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,3'-dichlorobenzidine and 4,4-diamino. Diphenyl sulfide-3,3'-diaminodiphenyl sulfone, 1,5-diaminonaphthalene, m-phenylenediamine, p-phenylenediamine (PDA),
3,3'-dimethyl-4,4'-biphenyldiamine,
Benzidine, 3,3'-dimethylbenzidine, 3,3 '
-Dimethoxybenzidine, 4,4'-diaminophenyl sulfone, 4,4'-diaminophenyl sulfone, 4,
4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenylpropane, 2,4-bis (β-amino-
Tert-butyl) toluene, bis (p-β-amino-tert-butylphenyl) ether, bis (p-β-methyl-δ-
Aminophenyl) benzene, bis-p- (1,1-dimethyl-5-amino-pentyl) benzene, 1-isopropyl-2,4-m-phenylenediamine, m-xylylenediamine, p-xylylenediamine, di (P-aminocyclohexyl) methane, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, decamethylenediamine, diaminopropyltetramethylene, 3-methylheptamethylenediamine, 4,4-dimethylheptamethylenediamine, 2 ,
11-diaminododecane, 1,2-bis-3-aminopropoxyethane, 2,2-dimethylpropylenediamine, 3-methoxyhexamethylenediamine, 2,5-dimethylhexamethylenediamine, 2,5-dimethylheptamethylenediamine, 2,5-Dimethylheptamethylenediamine, 3-methylheptamethylenediamine, 5-methylnonamethylenediamine, 2,11-diaminododecane, 2,17-diaminoeicosadecane, 1,4-diaminocyclohexane, 1,10- Diamino-1,10-
Dimethyldecane, 1,12-diaminooctadecane,
2,2-bis [4- (4-aminophenoxy) phenyl] propane, piperazine H 2 N (CH 2) 3 O (CH 2) 2 O (CH 2) NH
2 , H 2 N (CH 2 ) 3 S (CH 2 ) 3 NH 2 , H 2 N (CH 2 ) 3 N (CH 3 ) 2 (CH 2 ) 3 NH
2 , etc.

【0019】上記したテトラカルボン酸二無水物とジア
ミンを重合反応させる際の溶媒としては適宜なものを用
いうるが、溶解性などの点により極性溶媒が好ましく用
いうる。ちなみにその極性溶媒の例としては、N,N−
ジアルキルアミド類が有用で有り、例えばこれの低分子
量のものであるN,N−ジメチルホルムアミド、N,N
−ジメチルアセトアミド等があげられる。これらは、蒸
発、置換または拡散によりポリアミド酸およびポリアミ
ド酸成形品から容易に除去することができる。また、上
記以外の有機極性溶媒として、N,N−ジエチルホルム
アミド、N,N−ジエチルアセトアミド、N,N−ジメ
チルメトキシアセトアミド、ジメチルスルホキシド、ヘ
キサメチルホスホルトリアミド、N−メチル−2−ピロ
リドン、ピリジン、ジメチルスルホキシド、テトラメチ
レンスルホン、ジメチルテトラメチレンスルホン等があ
げられる。これらは単独で使用してもよいし、併せて用
いても差し支えない。さらに、上記有機極性溶媒にクレ
ゾール、フェノール、キシレノール等のフェノール類、
ベンゾニトリル、ジオキサン、ブチロラクトン、キシレ
ン、シクロヘキサン、ヘキサン、ベンゼン、トルエン等
を単独でもしくは併せて混合することもできる。なお、
水の存在によってポリイミド酸が加水分解して低分子量
化するため、ポリアミド酸の合成は実質上無水条件下で
行うことが好ましい。
An appropriate solvent can be used for the polymerization reaction of the above tetracarboxylic dianhydride and diamine, but a polar solvent is preferably used in view of solubility and the like. By the way, examples of the polar solvent include N, N-
Dialkylamides are useful, such as N, N-dimethylformamide, N, N, which are of low molecular weight.
-Examples include dimethylacetamide. These can be easily removed from the polyamic acid and polyamic acid moldings by evaporation, displacement or diffusion. In addition, as organic polar solvents other than the above, N, N-diethylformamide, N, N-diethylacetamide, N, N-dimethylmethoxyacetamide, dimethylsulfoxide, hexamethylphosphortriamide, N-methyl-2-pyrrolidone, pyridine , Dimethyl sulfoxide, tetramethylene sulfone, dimethyl tetramethylene sulfone and the like. These may be used alone or in combination. Furthermore, the organic polar solvent cresol, phenol, phenols such as xylenol,
Benzonitrile, dioxane, butyrolactone, xylene, cyclohexane, hexane, benzene, toluene and the like may be used alone or in combination. In addition,
Polyamic acid is preferably hydrolyzed in the presence of water, so that the polyamic acid is hydrolyzed to have a low molecular weight.

【0020】上記のテトラカルボン酸二無水物(a)と
ジアミン(b)とを有機極性溶媒中で反応させることに
よりポリアミド酸が得られる。その際のモノマー濃度
(溶媒中における(a)+(b)の濃度)は、種々の条
件に応じて設定されるが、5〜30重量%が好ましい。
また、反応温度は80℃以下に設定することが好まし
く、特に好ましくは5〜50℃であり、反応時間は約
0.5〜10時間である。
A polyamic acid is obtained by reacting the above-mentioned tetracarboxylic dianhydride (a) and diamine (b) in an organic polar solvent. The monomer concentration (concentration of (a) + (b) in the solvent) at that time is set according to various conditions, but is preferably 5 to 30% by weight.
The reaction temperature is preferably set to 80 ° C. or lower, particularly preferably 5 to 50 ° C., and the reaction time is about 0.5 to 10 hours.

【0021】このようにして酸二無水物成分とジアミン
成分とを有機極性溶媒中で反応させることによりポリア
ミド酸が生成し、その反応の進行に伴い溶液粘度が上昇
する。本発明ではこの現象を利用して、導電性フィラー
を含有するポリアミド酸溶液のB型粘度計における25
℃の粘度を調整することができる。また、前記モノマー
濃度による調整も可能である。
Thus, the polyamic acid is produced by reacting the acid dianhydride component and the diamine component in the organic polar solvent, and the solution viscosity increases with the progress of the reaction. In the present invention, this phenomenon is utilized to obtain a polyamic acid solution containing a conductive filler in a B-type viscometer of 25
The viscosity at ° C can be adjusted. Further, adjustment by the monomer concentration is also possible.

【0022】この発明においては外層を形成する導電性
フィラ−を含有するポリアミド酸溶液のB型粘度計にお
ける25℃の粘度は0.01〜1Pa・sに調整して用
いるのが好ましい。また、内層を形成する導電性フィラ
ーを含有するポリアミド酸溶液のB型粘度計における2
5℃の粘度は1〜1000Pa・sに調整して用いるの
が好ましい。
In the present invention, the viscosity of the polyamic acid solution containing the conductive filler forming the outer layer at 25 ° C. in a B type viscometer is preferably adjusted to 0.01 to 1 Pa · s before use. Further, in the B-type viscometer of the polyamic acid solution containing the conductive filler forming the inner layer, 2
The viscosity at 5 ° C. is preferably adjusted to 1 to 1000 Pa · s before use.

【0023】外層を形成するポリアミド酸溶液の粘度が
高いと、導電性フィラーの含有量の異なる層を表面だけ
に形成することが難しく、一方、内層はポリアミド酸の
粘度が低いと導電性フィラ−の比重差により回転遠心成
型時に導電性フィラーが厚み方向に偏り偏在し、表面抵
抗率のバラツキが大きくなる傾向がある。また溶液粘度
が高すぎると脱泡が困難になり製膜不良等で外観が損な
われる傾向がある。
When the viscosity of the polyamic acid solution forming the outer layer is high, it is difficult to form a layer having a different content of the conductive filler only on the surface. On the other hand, when the viscosity of the polyamic acid is low, the inner layer has a conductive filler. Due to the difference in specific gravity, the conductive filler tends to be unevenly distributed in the thickness direction during rotational centrifugal molding, and the variation in the surface resistivity tends to increase. Further, if the solution viscosity is too high, defoaming becomes difficult and the appearance tends to be impaired due to poor film formation.

【0024】前記導電性フィラーとしては、例えばケッ
チンブラックやアセチレンブラックの如きカーボンブラ
ック、アルミニウムやニッケルの如き金属、酸化錫の如
き酸化金属化合物やチタン酸カリウム等の導電性ないし
半導電性粉末、あるいはポリアニリンやポリアセチレン
の如き導電ポリマーなどの適宜なものの1種又は2種以
上を用いることができ、その種類について特に限定はな
い。
Examples of the conductive filler include carbon black such as Ketchin black and acetylene black, metals such as aluminum and nickel, metal oxide compounds such as tin oxide and conductive or semi-conductive powders such as potassium titanate, or One or more suitable materials such as conductive polymers such as polyaniline and polyacetylene can be used, and the kind is not particularly limited.

【0025】用いる導電性フィラーの平均粒径について
は、偏在による電気特性のバラツキを制御する点などに
より粒径の小さいものが好ましく用いうる。かかる点に
より一般には、一次粒子に基づく平均粒径が5μm以
下、就中3μm以下、特に0.01μm〜1μmの平均
粒径のものが好ましく用いうる。
With respect to the average particle diameter of the conductive filler to be used, one having a small particle diameter can be preferably used in view of controlling variations in electric characteristics due to uneven distribution. From this point, in general, those having an average particle diameter based on primary particles of 5 μm or less, especially 3 μm or less, particularly 0.01 μm to 1 μm can be preferably used.

【0026】本発明では、外層形成用のポリアミド酸溶
液の導電性フィラーの含有率と、内層形成用のポリアミ
ド酸溶液の導電性フィラーの含有率とが異なるように両
者の含有率を調整する。その際、何れの層が含有率が高
くなってもよいが、外表面の導電性を特に高める場合に
は、外層の含有率を内層より高くする。
In the present invention, the content of the conductive filler in the polyamic acid solution for forming the outer layer is adjusted so that the content of the conductive filler in the polyamic acid solution for forming the inner layer is different. At that time, the content of any of the layers may be higher. However, when the conductivity of the outer surface is particularly enhanced, the content of the outer layer is higher than that of the inner layer.

【0027】具体的な導電性フィラーの使用量は、前記
した電気特性の達成性などの点により、その種類や粒径
や分散性などに応じて適宜決定しうる。一般には、ポリ
イミド系樹脂フィルムにおける強度等の機械特性の低下
防止などの点により、ポリイミド系樹脂(固形分)10
0重量部あたり、30重量部、特に3〜l5重量部の使
用量が好ましい。
The specific amount of the conductive filler to be used can be appropriately determined according to the type, particle size, dispersibility, etc., from the standpoint of attaining the above-mentioned electric characteristics. Generally, in order to prevent deterioration of mechanical properties such as strength in the polyimide resin film, the polyimide resin (solid content) 10
An amount of 30 parts by weight, particularly 3 to 15 parts by weight, is preferable per 0 part by weight.

【0028】なお、前記の強度等の機械特性維持などの
点により、導電性フィラーの使用量は少ないほど好まし
く、その少ない使用量で前記した電気特性を達成する点
により、ケッチンブラック等のカーボンブラックなどが
好適に用いうる。この場合には、ポリイミド系樹脂(固
形分)100重量部に対して、5重量部未満、就中1〜
4重量部の使用量にても前記した電気特性の達成が可能
である。
From the standpoint of maintaining mechanical properties such as the strength described above, the smaller the amount of the conductive filler used, the more preferable. The carbon black such as Ketchin black is used because the electrical properties described above are achieved with the small amount. And the like can be preferably used. In this case, less than 5 parts by weight, especially 1 to 100 parts by weight of the polyimide resin (solid content)
Even with the use amount of 4 parts by weight, the above-mentioned electric characteristics can be achieved.

【0029】ポリイミド系樹脂フィルム中への導電性フ
ィラーの配合は、例えば上記したポリアミド酸を調製す
る際に、その溶液にプラネタリミキサーやビーズミルや
3本ロール等の適宜な分散機にて導電性フィラーを混合
分散して配合し、それをフィルム成形に供する方式など
の適宜な方式にて行うことができる。
The conductive filler is blended in the polyimide resin film by, for example, preparing the above-mentioned polyamic acid by adding a conductive filler to the solution using a suitable dispersing machine such as a planetary mixer, a bead mill or a three-roll mill. Can be mixed and dispersed, blended, and then subjected to an appropriate method such as a method of subjecting it to film formation.

【0030】なお前記のポリアミド酸溶液を調製するた
めに導電性フィラーを配合する場合には、均一分散によ
る電気特性のバラツキ防止などの点により、先ず溶媒に
ボールミルや超音波等の適宜な方式で導電性フィラーを
分散させた後、その分散液にテトラカルボン酸二無水物
やその誘導体とジアミンを溶解させて重合処理に供する
方式が好ましく適用することができる。
When a conductive filler is mixed to prepare the above-mentioned polyamic acid solution, the solvent is first dispersed in an appropriate method such as a ball mill or ultrasonic waves in order to prevent the dispersion of electric characteristics due to uniform dispersion. A method in which a conductive filler is dispersed and then tetracarboxylic dianhydride or its derivative and a diamine are dissolved in the dispersion to be subjected to a polymerization treatment can be preferably applied.

【0031】本発明においては、ポリイミド系樹脂から
なる半導電性ベルトに配合され得るシリコーン系又はフ
ッ素系の各有機化合物、カップリング剤等の添加剤を、
本発明の効果を損なわない範囲で適宜添加することがで
きる。
In the present invention, silicone-based or fluorine-based organic compounds that can be blended with the semiconductive belt made of a polyimide resin, additives such as coupling agents,
It can be appropriately added within a range that does not impair the effects of the present invention.

【0032】本発明の半導電性ベルトは、以上のような
材料で構成されるシームレス構造の半導電性ベルトにお
いて、外表面部分に導電性フィラーの濃度が他の部分と
不連続的に異なる厚み1〜10μmの領域を有して、常
用対数に基づく外表面と内表面との表面抵抗率の差が
1.5以上であることを特徴とする。但し、本発明の前
述の作用効果を得る上で、上記領域(外層)の厚みは1
〜5μmが好ましい。
The semiconducting belt of the present invention is a seamless semiconducting belt made of the above-mentioned materials, and has a thickness in which the concentration of the conductive filler on the outer surface portion is discontinuously different from the other portions. It has a region of 1 to 10 μm and is characterized in that the difference in surface resistivity between the outer surface and the inner surface based on the common logarithm is 1.5 or more. However, in order to obtain the above-described effects of the present invention, the thickness of the above region (outer layer) is 1
˜5 μm is preferred.

【0033】外表面の表面抵抗率は、常用対数に基づく
値(logR:Rの単位はΩ/□)で1〜16が好まし
く、5〜16がより好ましい。また、内表面の表面抵抗
率は、常用対数に基づく値で外表面の値と1.5以上、
好ましくは、2.0以上異なる。
The surface resistivity of the outer surface is a value based on a common logarithm (logR: R is in units of Ω / □), preferably 1 to 16, and more preferably 5 to 16. Further, the surface resistivity of the inner surface is a value based on the common logarithm and is 1.5 or more than the value of the outer surface,
Preferably, the difference is 2.0 or more.

【0034】本発明の半導電性ベルトの全体の厚さは、
その使用目的などに応じて適宜決定しうるが、一般には
強度や柔軟性等の機械特性などの点により、5〜500
μm、就中10〜300μm、特に20〜200μmの
厚さが好ましい。
The total thickness of the semiconductive belt of the present invention is
Although it can be appropriately determined depending on the purpose of use, it is generally 5 to 500 in view of mechanical properties such as strength and flexibility.
The thickness is preferably 10 to 300 μm, especially 20 to 200 μm.

【0035】半導電性ベルトの形成は、上記した電気特
性を示すポリイミドフィルムを目的とするべルト形に成
形することにより行うことができる。その場合、同種又
は異種の層からなる3 層以上よりなるポリイミドフィル
ムを用いることもできる。なお、シームレス構造のベル
トは、重畳による厚さ変化がなく、任意な部分をベルト
回転の開始位置とすることができ、回転開始位置の制御
機構を省略できる利点などを有している。
The semiconductive belt can be formed by molding the polyimide film having the above-mentioned electrical characteristics into a desired belt shape. In that case, a polyimide film composed of three or more layers of the same or different layers can be used. The belt having a seamless structure has the advantage that the thickness does not change due to superposition, an arbitrary portion can be set as the belt rotation start position, and the rotation start position control mechanism can be omitted.

【0036】一方、本発明の製造方法は、導電性フィラ
ーを含有するポリイミド系樹脂の原料液を用いて回転遠
心成型とイミド転化を行うことでシームレス構造の半導
電性ベルトを得るものである。
On the other hand, in the production method of the present invention, a semiconductive belt having a seamless structure is obtained by performing rotational centrifugal molding and imide conversion using a raw material liquid of a polyimide resin containing a conductive filler.

【0037】ポリイミド系樹脂の原料液を用いて回転遠
心成型とイミド転化によるシームレス構造の半導電性ベ
ルトの製造方法は公知であり、例えば前記のポリアミド
酸溶液を金型の内周面に各種の塗布方式等にてリング状
に展開し、回転遠心により厚みを均一に維持しつつ、そ
の展開層を乾燥製膜してベルト形に成形し、その成形物
を加熱処理してポリアミド酸をイミド転化して、型より
回収する方法などの従来に準じた適宜な方法により行う
ことができる(特開昭61−95361号公報、特開昭
64−22514号公報、特開平3−180309号公
報等)。シームレスベルトの形成に際しては、更に型の
離型処理や脱泡処理などの適宜な処理を施すことができ
る。
A method for producing a semi-conductive belt having a seamless structure by rotational centrifugal molding and imide conversion using a raw material liquid of a polyimide resin is known, and for example, the above-mentioned polyamic acid solution is applied to various inner surfaces of a mold. It is developed into a ring shape by a coating method, etc., and while maintaining a uniform thickness by rotary centrifugation, the developed layer is dried and formed into a belt shape, and the formed product is heat-treated to convert the polyamic acid into an imide. Then, it can be carried out by an appropriate method according to the conventional method such as a method of recovering from the mold (JP-A 61-95361, JP-A 64-22514, JP-A 3-180309, etc.). . When forming the seamless belt, appropriate processing such as mold releasing treatment and defoaming treatment can be performed.

【0038】本発明では、このような製造方法におい
て、予め、導電性フィラーを含有しB型粘度計による2
5℃の溶液粘度が0.01〜1Pa・sのポリアミド酸
溶液を用いて成形型の内周面に固化した厚み1〜10μ
mの外層を形成した後、導電性フィラーの含有率が異な
りB型粘度計による25℃の溶液粘度が1〜1000P
a・sのポリアミド酸溶液を用いて回転遠心成型で内層
を成形することを特徴とする。その際、内層は、従来公
知の方法と同様にして形成することができるが、外層は
厚みが薄いため、ポリアミド酸溶液を塗布する際に、ス
プレー塗布等を行うのが好ましい。また、スプレー塗布
後に厚みを均一化するのが好ましく、その場合、成形型
の内周面にポリアミド酸溶液をスプレー塗布し、成形型
を回転させながら乾燥・固化させるのが好ましい。ま
た、スプレー塗布時に成形型を回転させてもよい。
According to the present invention, in such a manufacturing method, a conductive filler is contained in advance and it is measured by a B-type viscometer.
1-10 μm thickness solidified on the inner peripheral surface of the molding die using a polyamic acid solution having a solution viscosity of 0.01 to 1 Pa · s at 5 ° C.
After forming the outer layer of m, the content of the conductive filler is different and the solution viscosity at 25 ° C. by the B-type viscometer is 1 to 1000 P.
It is characterized in that the inner layer is molded by rotary centrifugal molding using the polyamic acid solution of a · s. At this time, the inner layer can be formed in the same manner as a conventionally known method, but since the outer layer is thin, it is preferable to perform spray coating or the like when applying the polyamic acid solution. Further, it is preferable to make the thickness uniform after spray coating, and in that case, it is preferable to spray-coat the inner peripheral surface of the molding die with a polyamic acid solution and dry and solidify while rotating the molding die. Further, the mold may be rotated during spray application.

【0039】乾燥・固化の程度は、内層形成のためのポ
リアミド酸溶液の塗布により、外層の表面が変形しない
程度であればよいが、溶剤の残存率で6重量%未満まで
乾燥するのが好ましい。なお、部分的にイミド転化が生
じるまで、外層の加熱処理を行ってもよい。
The degree of drying and solidification may be such that the surface of the outer layer is not deformed by the application of the polyamic acid solution for forming the inner layer, but it is preferably dried to less than 6% by weight as the residual ratio of the solvent. . The outer layer may be heat-treated until partial imide conversion occurs.

【0040】その後、この外層に対して、内層形成のた
めのポリアミド酸溶液が塗布され、回転遠心成型された
後、イミド転化が行われる。イミド転化は、両層を同時
に行うのが好ましく、従来公知の条件、例えば370〜
390℃で0.5〜2時間加熱処理が行われる。その
際、ベルトの寸法精度を高めるために、前記成形型から
前駆体ベルトを離型した後、その内径より若干外径の小
さい別の内型に外嵌してから、イミド転化を行ってもよ
い。
Thereafter, the polyamic acid solution for forming the inner layer is applied to the outer layer, and the mixture is subjected to rotational centrifugal molding, followed by imide conversion. The imide conversion is preferably carried out in both layers at the same time under conventionally known conditions such as 370 to 370.
Heat treatment is performed at 390 ° C. for 0.5 to 2 hours. At that time, in order to improve the dimensional accuracy of the belt, even after the precursor belt is released from the mold, the precursor belt is externally fitted to another inner mold having a slightly smaller outer diameter than its inner diameter, and then imide conversion is performed. Good.

【0041】本発明の半導電性ベルトは、従来の半導電
性ベルトに準じた各種の用途に用いうる。就中、機械特
性や電気特性に優れることにより、電子写真記録装置に
おける像の中間転写用のベルトやその中間転写を兼ねた
印刷シートの搬送用ベルトなどとして好ましく用いう
る。その場合、印刷シートに像を形成する記録剤として
も静電気を介し付着できる適宜なものを用いうる。
The semiconductive belt of the present invention can be used in various applications according to the conventional semiconductive belt. In particular, due to its excellent mechanical properties and electrical properties, it can be preferably used as a belt for intermediate transfer of an image in an electrophotographic recording device, a belt for transporting a printing sheet that also serves as the intermediate transfer. In that case, as the recording agent for forming an image on the print sheet, an appropriate agent that can be attached via static electricity can be used.

【0042】[0042]

【実施例】以下、本発明の構成と効果を具体的に示す実
施例等について説明する。
EXAMPLES Examples and the like specifically showing the constitution and effects of the present invention will be described below.

【0043】実施例1 1674g のN−メチル−2−ピロリドン(NMP)中
に乾燥したバルカンXC(キャボット社製、粒子径0.
3μm、比重1.8g/cm3 )16.1g(ポリイミ
ド固形分に対し4重量%)をボールミルで6時間(室
温)混合した。このNMPに4,4’−ベンゾフェノン
テトラカルボン酸二無水物(BPDA)294.2gと
p−フェニレンジアミン(PDA)108.2gを溶解
し、窒素雰囲気中において、室温で3 時間攪拌しながら
反応させて、300Pa・sポイズの内層用ポリアミド
酸溶液を得た。
Example 1 Vulcan XC (manufactured by Cabot Co., particle size 0. 6) in 1674 g of N-methyl-2-pyrrolidone (NMP).
16.1 g (4% by weight with respect to the polyimide solid content) of 3 μm and a specific gravity of 1.8 g / cm 3 ) were mixed for 6 hours (room temperature) with a ball mill. 294.2 g of 4,4′-benzophenonetetracarboxylic dianhydride (BPDA) and 108.2 g of p-phenylenediamine (PDA) were dissolved in this NMP, and the mixture was reacted in a nitrogen atmosphere at room temperature for 3 hours with stirring. Thus, an inner layer polyamic acid solution having a pressure of 300 Pa · s was obtained.

【0044】一方、16740gのN−メチル−2−ピ
ロリドン(NMP)中に乾燥したバルカンXC(キャボ
ット社製、粒子径0.3μm、比重1.8g/cm3
24.16g(ポリイミド固形分に対し6重量%)をボ
ールミルで6時間(室温)混合した。このNMPにBP
DA294.2gとPDA108.2gを溶解し、窒素
雰囲気中において、室温で4時間攪拌しながら反応させ
て、0.15Pa・sの外層用ポリアミド酸溶液を得
た。
On the other hand, Vulcan XC dried in 16740 g of N-methyl-2-pyrrolidone (NMP) (manufactured by Cabot Co., particle size 0.3 μm, specific gravity 1.8 g / cm 3 ).
24.16 g (6% by weight with respect to the polyimide solid content) was mixed with a ball mill for 6 hours (room temperature). BP to this NMP
DA294.2g and PDA108.2g were melt | dissolved, it was made to react, stirring in nitrogen atmosphere for 4 hours at room temperature, and the polyamic-acid solution for outer layers of 0.15 Pa.s was obtained.

【0045】内径330mm、長さ500mmの成形型
の内面に上記外層用ポリアミド酸溶液をスプレーで厚み
3μmに塗布後1500rpmで10分間回転させ均一
な塗布面を得た。次に、250rpmで回転させなが
ら、金型の外側より60℃の熱風を30分間あてた後
(その時の厚みは1μm)、さらに、ディスペンサーで
内層用ポリアミド酸溶液を厚さ400μmに塗布後、1
500rpmで10分間回転させ均一な塗布面を得た。
次に、250rpmで回転させながら、金型の外側より
60℃の熱風を30分間あてた後、150℃で60分間
加熱、その後300℃まで2℃/分の昇温速度で昇温
し、更に300℃で30分間加熱し、溶媒の除去、脱水
閉環水の除去、及びイミド転化を行った。その後、室温
に戻し、金型から剥離し、73〜78μmのシームレス
の半導電性ベルトを得た。このベルトの断面を走査型電
子顕微鏡で観察すると、導電性フィラーの濃度が他の部
分と不連続的に異なる領域(外層:厚み0.7μm)が
観察された。
The above polyamic acid solution for outer layer was sprayed onto the inner surface of a molding die having an inner diameter of 330 mm and a length of 500 mm to a thickness of 3 μm and then rotated at 1500 rpm for 10 minutes to obtain a uniform coated surface. Next, while rotating at 250 rpm, hot air of 60 ° C. was applied from the outside of the mold for 30 minutes (at that time, the thickness was 1 μm), and then a polyamic acid solution for the inner layer was applied to a thickness of 400 μm with a dispenser, and then 1
It was rotated at 500 rpm for 10 minutes to obtain a uniform coated surface.
Next, while rotating at 250 rpm, hot air of 60 ° C. is applied from the outside of the mold for 30 minutes, heated at 150 ° C. for 60 minutes, and then heated to 300 ° C. at a temperature increase rate of 2 ° C./min. The mixture was heated at 300 ° C. for 30 minutes to remove the solvent, remove the dehydrated ring-closing water, and convert the imide. Then, the temperature was returned to room temperature, and the mold was peeled off to obtain a seamless semiconductive belt of 73 to 78 μm. When the cross section of this belt was observed with a scanning electron microscope, a region (outer layer: thickness 0.7 μm) in which the concentration of the conductive filler was discontinuously different from the other part was observed.

【0046】実施例2 実施例1において、外層用ポリアミド酸溶液として、1
6740gのN−メチル−2−ピロリドン(NMP)中
に乾燥したバルカンXC(キャボット社製、粒子径0.
3μm、比重1.8g/cm3 )4.03g(ポリイミ
ド固形分に対し1重量%)をボールミルで6時間(室
温)混合し、このNMPにBPDA294.2gとPD
A108.2gを溶解し、窒素雰囲気中において、室温
で4時間攪拌しながら反応させて得られた、0.15P
a・sのポリアミド酸溶液を使用すること以外、実施例
1と同じ操作を行い厚さ72〜78μmのシームレスの
半導電性ベルトを得た。このベルトの断面を走査型電子
顕微鏡で観察すると、導電性フィラーの濃度が他の部分
と不連続的に異なる領域(外層:厚み0.8μm)が観
察された。
Example 2 In Example 1, as the polyamic acid solution for the outer layer, 1
Vulcan XC dried by 6740 g of N-methyl-2-pyrrolidone (NMP) (manufactured by Cabot Co., particle size 0.
3 μm, specific gravity 1.8 g / cm 3 ) 4.03 g (1% by weight relative to polyimide solid content) were mixed in a ball mill for 6 hours (room temperature), and this NMP was mixed with BPDA 294.2 g and PD.
0.15P obtained by dissolving 108.2 g of A and reacting in a nitrogen atmosphere at room temperature for 4 hours with stirring.
The same operation as in Example 1 was carried out except that the polyamic acid solution of a · s was used to obtain a seamless semiconductive belt having a thickness of 72 to 78 μm. When the cross section of this belt was observed with a scanning electron microscope, a region (outer layer: thickness 0.8 μm) in which the concentration of the conductive filler was discontinuously different from the other part was observed.

【0047】比較例1 実施例1において外層用ポリアミド酸溶液を使用して外
層を形成する工程を除いた以外、実施例1と同じ操作を
行い厚さ72〜78μmのシームレスの半導電性ベルト
を得た。
Comparative Example 1 A seamless semiconductive belt having a thickness of 72 to 78 μm was obtained by performing the same operation as in Example 1 except that the step of forming the outer layer using the polyamic acid solution for the outer layer was omitted. Obtained.

【0048】比較例2 実施例1において外層用ポリアミド酸溶液の粘度を10
0Pa・sに変更する以外、実施例1と同じ操作を行っ
たが、最外層の形成がおこなえず、シームレスの半導電
性ベルトを得られなかった。
Comparative Example 2 In Example 1, the viscosity of the polyamic acid solution for the outer layer was adjusted to 10
The same operation as in Example 1 was carried out except that the pressure was changed to 0 Pa · s, but the outermost layer could not be formed, and a seamless semiconductive belt could not be obtained.

【0049】以上の実施例、比較例で得た半導電性ベル
トについて下記の特性を調べた。
The following characteristics of the semiconductive belts obtained in the above Examples and Comparative Examples were examined.

【0050】(表面抵抗率)ハイレスタIP、MCP−
HT260(三菱油化社製、プローブ:HR−100)
にて印加電圧100V、1分後、測定条件25℃、60
%RHでの表面抵抗率を調べた。測定は外表面と内表面
について行い(n=10)、その差についても求めた。
(Surface resistivity) Hiresta IP, MCP-
HT260 (manufactured by Mitsubishi Petrochemical, probe: HR-100)
Applied voltage 100V, after 1 minute, measurement conditions 25 ° C, 60
The surface resistivity at% RH was investigated. The measurement was performed on the outer surface and the inner surface (n = 10), and the difference between them was also obtained.

【0051】(体積抵抗率)ハイレスタIP、MCP−
HT260(三菱油化社製、プローブ:HR−100)
にて印加電圧100V、1分後、測定条件25℃、60
%RHでの体積抵抗率を調べた。
(Volume Resistivity) Hiresta IP, MCP-
HT260 (manufactured by Mitsubishi Petrochemical, probe: HR-100)
Applied voltage 100V, after 1 minute, measurement conditions 25 ° C, 60
The volume resistivity at% RH was investigated.

【0052】(画像転写性、紙分離性)実施例、比較例
で得た半導電性ベルトを市販の複写機に、中間転写兼用
の記録シート搬送ベルトとして組み込み、1万枚のテス
ト中で全て良好な転写による鮮明で正確な画像が得られ
た場合、及び紙の分離不良を生じなかった場合を良好、
転写不良や不鮮明な面像、不正確な面像が得られた場
合、及び紙の分離不良を生じた場合を不良とした。
(Image Transferability and Paper Separation) The semiconductive belts obtained in Examples and Comparative Examples were incorporated into a commercially available copying machine as a recording sheet conveying belt which also serves as an intermediate transfer. Good when a clear and accurate image is obtained by good transfer, and when no paper separation failure occurs.
The case where the transfer failure, the unclear surface image, the inaccurate surface image were obtained, and the case where the paper separation failure occurred were regarded as failures.

【0053】その結果を表1に示した。The results are shown in Table 1.

【0054】[0054]

【表1】 表1の結果が示すように、実施例の半導電性ベルトで
は、全体の体積抵抗率を維持しながら、外表面の表面抵
抗率を容易に調整することができ、しかも残留応力によ
る問題が生じにくいものとなる。
[Table 1] As shown in the results of Table 1, in the semiconductive belts of the examples, the surface resistivity of the outer surface can be easily adjusted while maintaining the overall volume resistivity, and a problem due to residual stress occurs. It becomes difficult.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B29K 105:16 B29K 105:16 B29L 29:00 B29L 29:00 Fターム(参考) 2H200 FA13 FA18 JB07 JB45 JB46 JB47 JC04 JC15 JC16 JC17 LC03 LC04 MA04 MA11 MA12 MA13 MA14 MA17 MA20 MB02 MB04 MB05 MC10 MC15 4F100 AK49A AK49B BA02 BA26 CA21A CA21B EH612 EH812 GB41 JA06A JA06B JG01 JG04 YY00A 4F205 AA40 AB11 AC04 AE03 AG16 AH33 AR17 GA02 GB01 GC01 GD02 GE24 GF01 GF25 GN01─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B29K 105: 16 B29K 105: 16 B29L 29:00 B29L 29:00 F term (reference) 2H200 FA13 FA18 JB07 JB45 JB46 JB47 JC04 JC15 JC16 JC17 LC03 LC04 MA04 MA11 MA12 MA13 MA14 MA17 MA20 MB02 MB04 MB05 MC10 MC15 4F100 AK49A AK49B BA02 BA26 CA21A CA21B EH612 EH812 GB41 JA06A JA06B J010102A01 AR01 AG02 A0140A02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 導電性フィラーを含有するポリイミド系
樹脂からなるシームレス構造の半導電性ベルトにおい
て、 外表面部分に前記導電性フィラーの濃度が他の部分と不
連続的に異なる厚み1〜10μmの領域を有して、常用
対数に基づく外表面と内表面との表面抵抗率の差が1.
5以上であることを特徴とする半導電性ベルト。
1. A semi-conductive belt having a seamless structure made of a polyimide resin containing a conductive filler, wherein a concentration of the conductive filler on an outer surface portion is discontinuously different from other portions and has a thickness of 1 to 10 μm. With a region, the difference in surface resistivity between the outer surface and the inner surface based on the common logarithm is 1.
A semi-conductive belt characterized by being 5 or more.
【請求項2】 導電性フィラーを含有するポリイミド系
樹脂の原料液を用いて回転遠心成型とイミド転化を行う
ことでシームレス構造の半導電性ベルトを得る半導電性
ベルトの製造方法において、 予め、導電性フィラーを含有しB型粘度計による25℃
の溶液粘度が0.01〜1Pa・sのポリアミド酸溶液
を用いて成形型の内周面に固化した厚み1〜10μmの
外層を形成した後、導電性フィラーの含有率が異なりB
型粘度計による25℃の溶液粘度が1〜1000Pa・
sのポリアミド酸溶液を用いて回転遠心成型で内層を成
形することを特徴とする半導電性ベルトの製造方法。
2. A method for producing a semi-conductive belt, wherein a semi-conductive belt having a seamless structure is obtained by performing rotational centrifugal molding and imide conversion using a raw material liquid of a polyimide resin containing a conductive filler. 25 ℃ by B type viscometer containing conductive filler
After forming a solidified outer layer having a thickness of 1 to 10 μm on the inner peripheral surface of the mold using a polyamic acid solution having a solution viscosity of 0.01 to 1 Pa · s, the content ratio of the conductive filler is different.
Solution viscosity at 25 ° C measured by a viscometer is 1-1000 Pa
A method for producing a semiconductive belt, which comprises forming the inner layer by rotational centrifugal molding using the polyamic acid solution of s.
【請求項3】 前記外層を形成する際に、前記成形型の
内周面に前記ポリアミド酸溶液をスプレー塗布し、成形
型を回転させながら乾燥・固化させる請求項2に記載の
半導電性ベルトの製造方法。
3. The semi-conductive belt according to claim 2, wherein, when the outer layer is formed, the polyamic acid solution is spray-coated on the inner peripheral surface of the mold and dried and solidified while rotating the mold. Manufacturing method.
JP2002060336A 2002-03-06 2002-03-06 Semiconductor belt and its manufacturing method Pending JP2003255726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002060336A JP2003255726A (en) 2002-03-06 2002-03-06 Semiconductor belt and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002060336A JP2003255726A (en) 2002-03-06 2002-03-06 Semiconductor belt and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003255726A true JP2003255726A (en) 2003-09-10

Family

ID=28669735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002060336A Pending JP2003255726A (en) 2002-03-06 2002-03-06 Semiconductor belt and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003255726A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001262A (en) * 2005-06-27 2007-01-11 Gunze Ltd Polyimide-based resin belt having isotropic dielectric constant in direction of plane
WO2008075857A1 (en) * 2006-12-18 2008-06-26 Kolon Industries, Inc. Intermediate transfer belt and method of manufacturing the same
CN100461026C (en) * 2005-04-26 2009-02-11 佳能株式会社 Electrophotographic belt, electrophotographic apparatus, process for producing the electrophotographic belt, and intermediate transfer belt
JP2010256390A (en) * 2009-04-21 2010-11-11 Ricoh Co Ltd Electrophotographic intermediate transfer belt and electrophotographic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100461026C (en) * 2005-04-26 2009-02-11 佳能株式会社 Electrophotographic belt, electrophotographic apparatus, process for producing the electrophotographic belt, and intermediate transfer belt
JP2007001262A (en) * 2005-06-27 2007-01-11 Gunze Ltd Polyimide-based resin belt having isotropic dielectric constant in direction of plane
JP4619208B2 (en) * 2005-06-27 2011-01-26 グンゼ株式会社 Polyimide resin belt with isotropic dielectric constant in the surface direction
WO2008075857A1 (en) * 2006-12-18 2008-06-26 Kolon Industries, Inc. Intermediate transfer belt and method of manufacturing the same
JP2010256390A (en) * 2009-04-21 2010-11-11 Ricoh Co Ltd Electrophotographic intermediate transfer belt and electrophotographic device

Similar Documents

Publication Publication Date Title
JP2006259248A (en) Transfer fixing belt
JP2000187403A (en) Electrically semiconductive belt
JP2003277502A (en) Process for preparing polyamic acid solution having carbon black dispersed therein and electrically semiconductor polyimide belt using it
JP4551576B2 (en) Seamless belt manufacturing method
JP4551583B2 (en) Method for producing semiconductive polyimide belt
JP2002162836A (en) Electrically semiconductive seamless belt
JP2003255726A (en) Semiconductor belt and its manufacturing method
JP5220576B2 (en) Polyimide resin belt and manufacturing method thereof
JP4570269B2 (en) Semiconductive belt and method of manufacturing the same
JP2003131463A (en) Electrically semiconductive belt
JP5064615B2 (en) Method for producing semiconductive seamless belt
JP2001022189A (en) Electrically semiconductive belt
JP2005246793A (en) Method for producing shaped polyimide film
JP2009115965A (en) Semiconductive seamless belt
JP2000305377A (en) Electrically semiconductive belt and its production
JP4222909B2 (en) Composite tubular body
JP2001215821A (en) Fixing belt and method of producing the same
JP2003345084A (en) Polyimide resin belt
JP3908346B2 (en) Production method of polyimide resin tubular body
JP4132419B2 (en) Semi-conductive belt
JP2004012951A (en) Seamless belt
JP2003280406A (en) Transferring fixing belt
JP2003177630A (en) Transferring and fixing belt
JP2004037616A (en) Semiconductive belt covered with fluorinated carbon resin and method for producing the belt
JP2004004393A (en) Seamless belt and method for manufacturing the same