JP5062802B2 - Endless belt, manufacturing method thereof, and electrophotographic apparatus provided with the same - Google Patents

Endless belt, manufacturing method thereof, and electrophotographic apparatus provided with the same Download PDF

Info

Publication number
JP5062802B2
JP5062802B2 JP2005357465A JP2005357465A JP5062802B2 JP 5062802 B2 JP5062802 B2 JP 5062802B2 JP 2005357465 A JP2005357465 A JP 2005357465A JP 2005357465 A JP2005357465 A JP 2005357465A JP 5062802 B2 JP5062802 B2 JP 5062802B2
Authority
JP
Japan
Prior art keywords
endless belt
surface resistivity
resin
methyl
electrophotographic apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005357465A
Other languages
Japanese (ja)
Other versions
JP2007163639A (en
Inventor
寛之 高梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2005357465A priority Critical patent/JP5062802B2/en
Publication of JP2007163639A publication Critical patent/JP2007163639A/en
Application granted granted Critical
Publication of JP5062802B2 publication Critical patent/JP5062802B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は無端ベルトとその製造方法、およびこれを備えた電子写真装置、詳しくは電子写真装置中で使用中に表面抵抗率が変化せず、印字特性の優れた転写ベルト用の無端ベルトとその製造方法、およびこれを備えた電子写真装置に関する。   The present invention relates to an endless belt, a method for manufacturing the same, and an electrophotographic apparatus including the endless belt. The present invention relates to a manufacturing method and an electrophotographic apparatus including the same.

レーザプリンタ、複写機、ファクシミリ装置などには、電子写真方式を利用した各種の画像形成装置(電子写真装置と略称する。)が採用されている。通常の電子写真装置は、感光ドラムに記憶された潜像に現像ローラからトナーを供給して現像し、このトナー像を感光ドラム下部で接する転写ベルトに転写し、さらに転写ベルトから印刷用紙などの記録体に転写し、記録体上に転写されたトナーを定着ローラによって圧着固定して完全な画像や文字として印刷する構造となっている。
ここで用いられる転写ベルトは無端ベルトとなっており、駆動ローラ等により高速で無限走行して、静電力を利用してトナーを連続的に感光ドラムから記録体に移動させる。そして、通常のレーザプリンタ等では10万枚近い印刷用紙等の記録体に印刷する期間中、弛みやずれがないように応力をかけたまま使用できなければならない。そのため、転写ベルトは引張り強度、ヤング率、可撓性、耐折強さ、導電特性などをバランスよく備えていないといけない。そこで、無端ベルトは素材や製造工程などに各種の検討がなされている。例えば、特許文献1では、熱可塑性樹脂組成物を成形して得た表面抵抗率、体積抵抗率の均一性に優れ、耐折性、ヤング率など総合的な物性バランスのよいシームレスベルトを、特許文献2では、導電性フィラーとポリイミド樹脂組成物を成形して得た可撓性と剛性のバランスのよいベルトを、特許文献3では、トナー転写濃度を正確に測定できる無端ベルトを、また特許文献4では、クラックやわれの発生し難いポリイミド製無端ベルトを提案している。
Various image forming apparatuses using electrophotographic methods (abbreviated as electrophotographic apparatuses) are employed in laser printers, copying machines, facsimile machines, and the like. In a typical electrophotographic apparatus, a latent image stored on a photosensitive drum is supplied with toner from a developing roller and developed, and the toner image is transferred to a transfer belt that contacts the lower part of the photosensitive drum. The toner is transferred to a recording medium, and the toner transferred onto the recording medium is pressed and fixed by a fixing roller to be printed as a complete image or character.
The transfer belt used here is an endless belt, and travels infinitely at high speed with a driving roller or the like, and continuously moves toner from the photosensitive drum to the recording body using electrostatic force. An ordinary laser printer or the like must be able to be used with stress applied so as not to loosen or shift during printing on a recording medium such as nearly 100,000 sheets of printing paper. Therefore, the transfer belt must have a good balance of tensile strength, Young's modulus, flexibility, bending strength, conductive properties, and the like. Therefore, various studies have been made on endless belts in terms of materials and manufacturing processes. For example, Patent Document 1 discloses a seamless belt having excellent uniformity of surface resistivity and volume resistivity obtained by molding a thermoplastic resin composition and having a good balance of physical properties such as folding resistance and Young's modulus. In Document 2, a belt having a good balance between flexibility and rigidity obtained by molding a conductive filler and a polyimide resin composition is disclosed. In Patent Document 3, an endless belt capable of accurately measuring toner transfer density is disclosed. No. 4 proposes an endless belt made of polyimide that is less prone to cracking and cracking.

特開平10−6411号公報Japanese Patent Laid-Open No. 10-6411 特開2004−99709号公報JP 2004-99709 A 特開2005−10220号公報JP 2005-10220 A 特開2005−31301号公報JP 2005-31301 A

上述のように転写ベルト用の無端ベルトは、引張り強度やヤング率、耐折強さなどの機械的特性は当然重要であるが、表面抵抗率の安定性も重要である。表面抵抗率が変化するとトナー転写の際に静電力のバランスが乱れ、印字むらが発生する。長期間の使用中における表面抵抗率の安定性は特に重要である。
本発明では、長期間使用しても表面抵抗率の変化率が一定範囲内であり転写ベルトに起因する印字むらが発生し難い無端ベルトとその製造方法、およびこれを備えた電子写真装置の提供を目的としている。
As described above, an endless belt for a transfer belt is naturally important in terms of mechanical properties such as tensile strength, Young's modulus, and bending strength, but stability of surface resistivity is also important. When the surface resistivity changes, the balance of electrostatic force is disturbed at the time of toner transfer, resulting in uneven printing. The stability of the surface resistivity during long-term use is particularly important.
The present invention provides an endless belt in which the rate of change in surface resistivity is within a certain range even when used for a long period of time and hardly causes printing unevenness due to the transfer belt, a method for manufacturing the same, and an electrophotographic apparatus including the endless belt It is an object.

上述の課題を解決するため、本発明者らは簡便な加速試験により確実に長期間の使用に耐えて表面抵抗率の変化率が一定範囲内である無端ベルトを見出した。また、無端ベルトの樹脂組成物中の残留溶媒に着目し、この残留溶媒の変化が表面抵抗率の変化に大きく寄与することを見出した。さらに、この結果をもとにして、上記課題を解決するための手段を発明し以下に記した。
(1)酸化防止剤及び3−メチル−4−ピロールカルボン酸エチルと3−メチル−4−ピロールカルボン酸ブチルとの共重合体を無含有で、ポリアミドイミド系樹脂カーボンブラック及び残留量が0.05〜0.29質量%の範囲にあるN−メチル−2−ピロリドンを含有する、加速試験前後における下式で表される表面抵抗率の比aが1.1〜1.4の範囲である電子写真装置用の無端ベルト。
a=R/R
但し、Rは無端ベルトの加速試験前における表面抵抗率〔単位:Ω/□〕,Rは無端ベルトを10万回回転させる加速試験後における表面抵抗率〔単位:Ω/□〕を表す。
(2)前記(1)に記載の電子写真装置用無端ベルトを製造する方法であって、ポリアミドイミド系樹脂、カーボンブラック及び溶媒としてN−メチル−2−ピロリドンを含有し、酸化防止剤及び3−メチル−4−ピロールカルボン酸エチルと3−メチル−4−ピロールカルボン酸ブチルとの共重合体を無含有の導電性付与材含有樹脂組成物を遠心成形した後、過熱水蒸気処理をする電子写真装置用無端ベルトの製造方法
(3)前記(1)に記載の無端ベルトを転写ベルトとして備えた電子写真装置

In order to solve the above-described problems, the present inventors have found an endless belt that can withstand long-term use and has a surface resistivity change rate within a certain range by a simple acceleration test. Moreover, paying attention to the residual solvent in the resin composition of the endless belt, it was found that the change of the residual solvent greatly contributes to the change of the surface resistivity. Furthermore, based on this result, a means for solving the above-mentioned problems was invented and described below.
(1) An antioxidant and a copolymer of ethyl 3-methyl-4-pyrrolecarboxylate and butyl 3-methyl-4-pyrrolecarboxylate are not contained, and the polyamideimide resin , carbon black, and residual amount are 0 The ratio a of the surface resistivity represented by the following formula before and after the acceleration test containing N-methyl-2-pyrrolidone in the range of 0.05 to 0.29% by mass is in the range of 1.1 to 1.4 . An endless belt for an electrophotographic apparatus.
a = R 2 / R 1
However, R 1 represents the surface resistivity [unit: Ω / □] of the endless belt before the acceleration test, and R 2 represents the surface resistivity [unit: Ω / □] after the acceleration test of rotating the endless belt 100,000 times. .
(2) A method for producing an endless belt for an electrophotographic apparatus as described in (1 ) above, comprising polyamideimide resin, carbon black and N-methyl-2-pyrrolidone as a solvent, an antioxidant and 3 An electrophotographic film which is subjected to superheated steam treatment after centrifugally molding a conductive resin-containing resin composition containing no copolymer of ethyl -methyl-4-pyrrolecarboxylate and butyl 3-methyl-4-pyrrolecarboxylate A method of manufacturing an endless belt for a device .
(3) An electrophotographic apparatus comprising the endless belt according to (1) as a transfer belt .

本発明の無端ベルトは、長期間の使用中、表面抵抗率の変化率が一定範囲内であり転写ベルトに起因する印字むらが発生し難い。そして、この無端ベルトの製造においては、従来の製造装置を使用する事ができる為、製造費用の増加を招かないので、容易に本発明の無端ベルトを製造できる。また、この無端ベルトを転写ベルトとして備えた電子写真装置は長期間にわたって、無端ベルトの表面抵抗率の変化に起因する印字むらを起こすことなく使用することができる。   The endless belt of the present invention has a surface resistivity change rate within a certain range during long-term use, and print unevenness due to the transfer belt hardly occurs. In manufacturing the endless belt, since a conventional manufacturing apparatus can be used, the manufacturing cost is not increased, and therefore the endless belt of the present invention can be easily manufactured. An electrophotographic apparatus provided with this endless belt as a transfer belt can be used for a long period of time without causing uneven printing due to a change in the surface resistivity of the endless belt.

通常、無端ベルトは図1に示すような形状をしており、本発明の無端ベルトは、導電性付与材含有樹脂組成物からなり、加速試験前後における下式(A)で表される表面抵抗率の比aが0.4〜2.5の範囲である電子写真装置の転写ベルトとして使用される。
式(A) a=R/R
但し、Rは無端ベルトの加速試験前における表面抵抗率〔単位:Ω/□〕,Rは無端ベルトの加速試験後における表面抵抗率〔単位:Ω/□〕を表す。
ここで、無端ベルトの加速試験は、無端ベルトの内側に2本の直径30mmのローラを配置し、このローラにより無端ベルトを緊張させて張り、さらにローラに6kgの重りをつけて、無端ベルトには常に引張り応力が掛かるようにする。そして、ローラを300回/分(周速約28m/分)の速度で回転させ、2本のローラ間で無端ベルトを回転させる。無端ベルトの回転が10万回転となったところで加速試験終了とする。この無端ベルトの加速試験前後の表面抵抗率から、上述の表面抵抗率の比aを求める。なお、表面抵抗率は通常の測定法による、例えば市販の表面抵抗率測定機で印加電圧500V、印加時間10秒で測定すればよい。この加速試験は、例えば一周60cm程度の無端ベルトなら35時間弱で終了する。
一般に、無端ベルトの表面抵抗率は10Ω/□〜1015Ω/□、好ましくは10Ω/□〜1014Ω/□とする。表面抵抗率が小さいとトナーの吸着脱離がスムーズに行えなく、大きいと無端ベルトが絶縁体となり、記録体との剥離の際剥離放電を起こすことがある。また、無端ベルトの表面抵抗率は長期使用により増加する傾向にあり、この傾向が強いと使用中に印字むらが起こりやすい。
加速試験前後における無端ベルトの表面抵抗率の比aは、実際の電子写真装置において使用される転写ベルトの使用前後における表面抵抗率の比と相関が強いので、実機でテストをしなくとも無端ベルトの表面抵抗率の変化を想定できる。そして、この加速試験前後の表面抵抗率の比aを0.4〜2.5、好ましくは0.5〜2.0、さらに好ましくは0.7〜1.5に制御すれば、実機での使用中にも転写ベルトに表面抵抗率の問題となるような変化がなく、印字むらなどの印刷不良が起こることがない。なお、この表面抵抗率の比aは、無端ベルトを同じ原料を用いて同じ製法で製造している限り同じ値となるので、大量生産においては抜き取り検査を行う事で十分である。
Usually, the endless belt has a shape as shown in FIG. 1, and the endless belt of the present invention is made of a resin composition containing a conductivity-imparting material and is represented by the surface resistance represented by the following formula (A) before and after the acceleration test. It is used as a transfer belt for an electrophotographic apparatus having a ratio a of 0.4 to 2.5.
Formula (A) a = R 2 / R 1
R 1 represents the surface resistivity [unit: Ω / □] before the endless belt acceleration test, and R 2 represents the surface resistivity [unit: Ω / □] after the endless belt acceleration test.
Here, in the acceleration test of the endless belt, two rollers with a diameter of 30 mm are arranged inside the endless belt, the endless belt is tensioned and tensioned by this roller, and a weight of 6 kg is attached to the endless belt. Always apply tensile stress. Then, the roller is rotated at a speed of 300 times / min (circumferential speed of about 28 m / min), and the endless belt is rotated between the two rollers. The acceleration test ends when the rotation of the endless belt reaches 100,000. From the surface resistivity before and after the acceleration test of the endless belt, the above-mentioned surface resistivity ratio a is obtained. The surface resistivity may be measured by an ordinary measurement method, for example, with a commercially available surface resistivity measuring machine with an applied voltage of 500 V and an applied time of 10 seconds. This acceleration test is completed in less than 35 hours for an endless belt having a circumference of about 60 cm, for example.
Generally, the surface resistivity of the endless belt is 10 8 Ω / □ to 10 15 Ω / □, preferably 10 9 Ω / □ to 10 14 Ω / □. If the surface resistivity is low, the toner cannot be adsorbed / desorbed smoothly. If the surface resistivity is high, the endless belt becomes an insulator, and peeling discharge may occur when peeling from the recording medium. Further, the surface resistivity of the endless belt tends to increase with long-term use, and if this tendency is strong, uneven printing tends to occur during use.
The ratio a of the surface resistivity of the endless belt before and after the acceleration test is strongly correlated with the ratio of the surface resistivity before and after the use of the transfer belt used in an actual electrophotographic apparatus. The change in surface resistivity can be assumed. And if the ratio a of the surface resistivity before and after this acceleration test is controlled to 0.4 to 2.5, preferably 0.5 to 2.0, more preferably 0.7 to 1.5, Even during use, the transfer belt does not change so as to cause a problem of surface resistivity, and printing defects such as uneven printing do not occur. The surface resistivity ratio a has the same value as long as the endless belt is manufactured using the same raw material by the same manufacturing method, and therefore it is sufficient to perform a sampling inspection in mass production.

また、本発明の無端ベルトに使用される導電性付与材含有樹脂組成物中の残留溶媒は0〜0.5質量%とする。残留溶媒の多い無端ベルトは、転写ベルトとして使用中に樹脂組成物中の残留溶媒が蒸散して樹脂組成物の組成が変化しやすい。これにより、無端ベルトの表面抵抗率が増加し、印字不良の原因となる。溶媒は樹脂組成物を溶解するため極性溶媒を使用することが多いが、ポリアミドイミド樹脂の溶媒として好適なジメチルアセトアミドやN−メチル−ピロリドンのような揮発性があって、極性の高い溶媒を使用した場合はその傾向が強い。このため、無端ベルトの樹脂組成物中の残留溶媒を0〜0.5質量%、好ましくは0〜0.3質量%、さらに好ましくは0〜0.1質量%とすることが望ましい。
なお、無端ベルトの機械的強度と可撓性を考慮すると、その厚さは0.03〜1.0mm、好ましくは0.05〜0.2mm、さらに好ましくは0.07〜0.14mm程度が望ましい。薄すぎれば機械的強度が損なわれ、厚すぎれば可撓性が損なわれる。
Moreover, the residual solvent in the electroconductivity imparting material containing resin composition used for the endless belt of this invention shall be 0-0.5 mass%. When the endless belt with a large amount of residual solvent is used as a transfer belt, the residual solvent in the resin composition evaporates and the composition of the resin composition tends to change. As a result, the surface resistivity of the endless belt increases, which causes printing defects. As the solvent, a polar solvent is often used to dissolve the resin composition, but a volatile solvent such as dimethylacetamide or N-methyl-pyrrolidone that is suitable as a solvent for polyamide-imide resin is used. If so, the tendency is strong. For this reason, it is desirable that the residual solvent in the resin composition of the endless belt is 0 to 0.5% by mass, preferably 0 to 0.3% by mass, and more preferably 0 to 0.1% by mass.
In consideration of the mechanical strength and flexibility of the endless belt, the thickness is about 0.03 to 1.0 mm, preferably about 0.05 to 0.2 mm, and more preferably about 0.07 to 0.14 mm. desirable. If it is too thin, the mechanical strength is impaired, and if it is too thick, the flexibility is impaired.

次に、本発明の無端ベルトの主な素材である樹脂組成物、および導電性付与材について説明する。樹脂組成物は、強度があり繰返し変形に耐える可撓性に富んだものがよく、具体的な樹脂としては、ポリアミドイミド系樹脂、ポリイミド系樹脂、ポリアミド系樹脂、アラミド樹脂、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、架橋型ポリエステル樹脂等のポリエステル系樹脂、フッ素樹脂、ポリサルフォン、ポリエーテルサルフォン、ポリカーボネート、ポリエーテルエーテルケトン(PEEK)、エポキシ樹脂、メラミン樹脂等が挙げられる。その中でも、ポリアミドイミド系樹脂、ポリイミド系樹脂、ポリアミド系樹脂が好ましく、特にポリアミドイミド系樹脂、さらには芳香族ポリアミドイミド系樹脂が最も好ましい。   Next, the resin composition, which is the main material of the endless belt of the present invention, and the conductivity imparting material will be described. The resin composition should be strong and flexible enough to withstand repeated deformation. Specific resins include polyamideimide resins, polyimide resins, polyamide resins, aramid resins, polyethylene terephthalate (PET). , Polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polyester resins such as cross-linked polyester resin, fluororesin, polysulfone, polyethersulfone, polycarbonate, polyetheretherketone (PEEK), epoxy resin, melamine resin Etc. Of these, polyamideimide resins, polyimide resins, and polyamide resins are preferable, and polyamideimide resins and aromatic polyamideimide resins are most preferable.

無端ベルトは、ある程度の導電性が要求され、上記樹脂組成物には導電性付与材が含まれる。このような導電性付与材としては、ファーネスブラック、アセチレンブラック、ケッチェンブラック等の各種カーボンブラック、天然黒鉛、人造黒鉛、膨張黒鉛等の黒鉛粉末、金属や合金からなる針状、球状、板状、不定形等の粉末、セラミックス粉末、表面が金属メッキされた各種粒子等が挙げられる。この中でもカーボンブラックが、粒径、導電性、樹脂材料との親和性等のバランスが取れた材料であり使用し易い。また、カーボンブラックは樹脂との親和性を増すため、酸化処理してカルボキシル基、ヒドロキシル基などを付加した酸化処理カーボンブラックとして用いることもできる。なお、市販のpH5以下の酸化処理カーボンブラックは好適な導電性付与材である。この導電性付与材の形状は球状あるいは不定形のものが、サイズは0.01〜10μm程度が好ましい。
導電性付与材の添加量は、導電性付与材の導電性や粒径、および無端ベルトの要求する導電性の程度により適宜調整すればよいが、一般には1〜25質量%、好ましくは5〜20質量%の範囲が望ましい。添加量が上記範囲より少ない場合には、導電性物質同士の距離が大きくなり導電性の発現が悪くなる。逆に、添加量が上記範囲より多い場合には、無端ベルトの機械的強度が低下するおそれがある。
その他の添加剤として、必要に応じ、可塑剤、着色剤、帯電防止剤、老化防止剤、酸化防止剤、補強性フィラー、反応助剤、反応抑制剤等の各種添加剤を樹脂組成物中に添加してもよい。
The endless belt is required to have a certain degree of conductivity, and the resin composition includes a conductivity imparting material. Examples of such conductivity-imparting materials include various types of carbon black such as furnace black, acetylene black, and ketjen black, graphite powder such as natural graphite, artificial graphite, and expanded graphite, and needles, spheres, and plates made of metals and alloys. And powders of irregular shapes, ceramic powders, and various particles whose surfaces are metal-plated. Among these, carbon black is a material that has a good balance of particle size, conductivity, affinity with resin material, and the like, and is easy to use. Moreover, since carbon black increases the affinity with the resin, it can also be used as an oxidized carbon black that has been oxidized and added with carboxyl groups, hydroxyl groups, and the like. Commercially available oxidized carbon black having a pH of 5 or less is a suitable conductivity imparting material. The conductivity imparting material has a spherical or indefinite shape, and the size is preferably about 0.01 to 10 μm.
The addition amount of the conductivity-imparting material may be appropriately adjusted according to the conductivity and particle size of the conductivity-imparting material and the degree of conductivity required by the endless belt, but generally 1 to 25% by mass, preferably 5 to 5% by mass. The range of 20% by mass is desirable. When the addition amount is less than the above range, the distance between the conductive substances is increased, and the expression of conductivity is deteriorated. On the contrary, when the addition amount is larger than the above range, the mechanical strength of the endless belt may be lowered.
As other additives, various additives such as a plasticizer, a colorant, an antistatic agent, an anti-aging agent, an antioxidant, a reinforcing filler, a reaction aid, and a reaction inhibitor are added to the resin composition as necessary. It may be added.

本発明の好適な無端ベルトの製造方法を説明する。まず、好ましい樹脂組成物の製造方法について説明する。上述のようにポリアミドイミド系樹脂、特に芳香族ポリアミドイミド系樹脂は、耐摩耗性、耐薬品性、機械的強度、高温クリープ特性、後述の遠心成形との適合性などから最も好ましい原料樹脂である。そこで、芳香族ポリアミドイミド樹脂の製造方法について詳しく説明する。芳香族ポリアミドイミド樹脂は、トリカルボン酸無水物にジイソシアネート化合物を反応させるジイソシアネート法が、原料の入手、反応性、副生成物の少なさ等の面から優れている。重合反応を好適に進められれば、ジイソシアネート化合物に替えてジアミン化合物を用いた芳香族ポリアミドイミド樹脂は、ヤング率が高く好適な無端ベルト材料となる。また、トリカルボン酸無水物の一部をテトラカルボン酸二無水物に替えて、芳香族ポリアミドイミド樹脂のイミド結合を増加させ耐湿製を向上することもできる。これらの反応は、適当な溶媒中で、常圧、常温または加熱下で容易に進行する。そして、得られた芳香族ポリアミドイミド樹脂に導電性付与材等を添加して、そのまま遠心成形することができる。
トリカルボン酸無水物としては、芳香族トリカルボン酸無水物が好ましく、トリメリット酸無水物およびその誘導体、3,4,4’−ジフェニルエーテルトリカルボン酸無水物、3,4,4’−ベンゾフェノントリカルボン酸無水物、2,3,5−ピリジントリカルボン酸無水物、ナフタレントリカルボン酸無水物類などが挙げられる。これらの酸無水物は単独でも混合してでも用いることができる。
テトラカルボン酸二無水物としては、ピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,2’−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、ビス(3,4−ジカルボキシフェニル)スルホン酸二無水物、ペリレン−3,4,9,10−テトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、エチレンテトラカルボン酸二無水物等が挙げられる。
A preferred endless belt manufacturing method of the present invention will be described. First, a preferable method for producing a resin composition will be described. As described above, polyamide imide resins, particularly aromatic polyamide imide resins, are the most preferred raw material resins because of their abrasion resistance, chemical resistance, mechanical strength, high temperature creep characteristics, compatibility with centrifugal molding described later, and the like. . Then, the manufacturing method of aromatic polyamideimide resin is demonstrated in detail. As the aromatic polyamideimide resin, a diisocyanate method in which a diisocyanate compound is reacted with a tricarboxylic acid anhydride is superior in terms of availability of raw materials, reactivity, and a small amount of by-products. If the polymerization reaction is suitably advanced, an aromatic polyamideimide resin using a diamine compound instead of the diisocyanate compound becomes a suitable endless belt material having a high Young's modulus. Moreover, a part of tricarboxylic acid anhydride can be changed to tetracarboxylic dianhydride to increase the imide bond of the aromatic polyamideimide resin, thereby improving moisture resistance. These reactions proceed easily in a suitable solvent at normal pressure, normal temperature or under heating. And the electroconductivity imparting material etc. can be added to the obtained aromatic polyamide-imide resin, and it can centrifuge as it is.
As the tricarboxylic acid anhydride, an aromatic tricarboxylic acid anhydride is preferable, trimellitic acid anhydride and derivatives thereof, 3,4,4′-diphenyl ether tricarboxylic acid anhydride, 3,4,4′-benzophenone tricarboxylic acid anhydride. 2,3,5-pyridinetricarboxylic acid anhydride, naphthalenetricarboxylic acid anhydrides and the like. These acid anhydrides can be used alone or in combination.
Examples of tetracarboxylic dianhydride include pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,2′-bis (3,4-dicarboxyphenyl) propane Dianhydride, bis (3,4-dicarboxyphenyl) sulfonic dianhydride, perylene-3,4,9,10-tetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride Products, ethylenetetracarboxylic dianhydride and the like.

ジイソシアネート化合物としては、芳香族ジイソシアネート化合物が好ましく、脂肪族ジイソシアネート化合物や脂環式ジイソシアネート化合物を、またはこられの誘導体であるアミン類を併用してもよい。芳香族ジイソシアネート化合物として、m−フェニレンジイソシアネート、p−フェニレンジイソシアネート、ジフェニルメタン−4,4’−ジイソシアネート、4,4’−ジイソシアネートジフェニルエーテル、4,4’−ジイソシアネートジフェニルスルホン、4,4’−ジイソシアネートビフェニル、3,3’−ジメチル−4,4’−ジイソシアネートビフェニル、2,4−トルエンジイソシアネート、キシリレンジイソシアネートなどが挙げられる。また、これらの化合物の誘導体であるジアミン類も原料として利用できる。脂肪族ジイソシアネートとしては、エチレンジイソシアネート、プロピレンジイソシアネート、ヘキサメチレンジイソシアネートなどが挙げられる。脂環式としては、1,4−シクロヘキサンジイソシアネート、1,3−シクロヘキサンジイソシアネート、イソホロンジイソシアネート、4,4’−ジシクロヘキシルメタンジイソシアネートなどが挙げられる。これらのジイソシアネート化合物の中でも、無端ベルトの耐熱性、機械的特性、溶解性などを考慮すると、全ジイソシアネート成分中の60%以上、好ましくは70%以上が、ジフェニルメタン−4,4’−ジイソシアネート、2,4−トルエンジイソシアネート、3,3’−ジメチル−4,4’−ジイソシアネートビフェニル、イソホロンジイソシアネート、またはこれらのアミン誘導体とすることが好ましい。さらに、無端ベルトの寸法安定性を考慮するとジフェニルメタン−4,4’−ジイソシアネート70%以上とすることが好ましい。
これらの重合反応の溶媒としては、溶解性の点からは極性溶媒が好ましく、重合反応性の点からは非プロトン性極性溶媒が好ましい。具体的には、N,N−ジアルキルアミド類、例えばN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルホルムアミド、N,N−ジエチルアセトアミド、N,N−ジメチルメトキシアセトアミドなどが挙げられる。また、N−メチル−2−ピロリドン、ピリジン、ジメチルスルホキシド、テトラメチレンスルホン、ジメチルテトラメチレンスルホン等も好ましい溶媒となる。これらの溶媒は単独でも混合してでも使用できる。
As the diisocyanate compound, an aromatic diisocyanate compound is preferable, and an aliphatic diisocyanate compound or an alicyclic diisocyanate compound, or amines that are derivatives thereof may be used in combination. As aromatic diisocyanate compounds, m-phenylene diisocyanate, p-phenylene diisocyanate, diphenylmethane-4,4′-diisocyanate, 4,4′-diisocyanate diphenyl ether, 4,4′-diisocyanate diphenyl sulfone, 4,4′-diisocyanate biphenyl, 3,3′-dimethyl-4,4′-diisocyanate biphenyl, 2,4-toluene diisocyanate, xylylene diisocyanate and the like can be mentioned. Diamines that are derivatives of these compounds can also be used as raw materials. Examples of the aliphatic diisocyanate include ethylene diisocyanate, propylene diisocyanate, and hexamethylene diisocyanate. Examples of the alicyclic include 1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate, isophorone diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, and the like. Among these diisocyanate compounds, considering the heat resistance, mechanical properties, solubility, etc. of the endless belt, 60% or more, preferably 70% or more of all diisocyanate components are diphenylmethane-4,4′-diisocyanate, 2 , 4-toluene diisocyanate, 3,3′-dimethyl-4,4′-diisocyanate biphenyl, isophorone diisocyanate, or amine derivatives thereof are preferable. Furthermore, considering the dimensional stability of the endless belt, it is preferable that the amount be 70% or more of diphenylmethane-4,4′-diisocyanate.
As a solvent for these polymerization reactions, a polar solvent is preferable from the viewpoint of solubility, and an aprotic polar solvent is preferable from the viewpoint of polymerization reactivity. Specifically, N, N-dialkylamides such as N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylformamide, N, N-diethylacetamide, N, N-dimethylmethoxyacetamide and the like Is mentioned. N-methyl-2-pyrrolidone, pyridine, dimethyl sulfoxide, tetramethylene sulfone, dimethyltetramethylene sulfone, and the like are also preferable solvents. These solvents can be used alone or in combination.

導電性付与材を樹脂材料に分散させる方法としては、樹脂材料の性状に適する公知の分散方法が用いられる。例えば、ミキシングロール、加圧式ニーダ、押出機、三本ロール、ホモジナイザー、ボールミル、ピースミル等が用いられる。遠心成形法を利用する場合は、溶媒中に溶解している、または分散している樹脂成分に、直接導電性付与材を添加して撹拌混合して分散してやればよい。   As a method for dispersing the conductivity imparting material in the resin material, a known dispersion method suitable for the properties of the resin material is used. For example, a mixing roll, a pressure kneader, an extruder, a three roll, a homogenizer, a ball mill, a piece mill, and the like are used. When the centrifugal molding method is used, the conductivity imparting material may be directly added to the resin component dissolved or dispersed in the solvent and mixed by stirring and dispersed.

次に、本発明の無端ベルトの成形方法を説明する。無端ベルトの樹脂材料として熱可塑性樹脂を選択した場合、遠心成形、押出成形、射出成形等によればよい。また、熱硬化性樹脂を選択した場合、遠心成形やRIM成形等を採用すればよい。これらの方法の中でも、材料を問わずに適用可能であること、厚さ精度に優れていること、そして電気抵抗値のばら付きが小さいこと等から遠心成形法が好適である。
遠心成形で成形する際、準備する流動性の原料溶液は、成形時の粘度が50,000mPa・s以下となるように調整することが好ましい。粘度が50,000mPa・sを超えると、厚さの均一な無端ベルトが作り難くなる。粘度の下限については、特に限定されるものではないが、原料の取り扱い上、10mPa・s以上が好ましい。材料の粘度が上記範囲を外れる場合は、材料に溶媒を加えて溶解、希釈して、粘度を調整して使用すればよい。溶媒としては、上述したポリアミドイミド樹脂の重合溶媒がそのまま好適に用いられる。例えば、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ピリジンなどが挙げられる。
遠心成形法は、例えば、円筒の金型に流動性の材料溶液を少量注入し、金型を回転させて遠心力でその内周面に材料溶液の層を均一に成形し、溶媒を乾燥除去して無端ベルトを形成する。金型は各種金属管を用いることができ、内周面は鏡面研磨し、フッ素樹脂やシリコーン樹脂等の離型剤により離型処理し、形成した無端ベルトが容易に脱型できるようにするとよい。材料の量と無端ベルトの厚さには相関関係があるので、同じ金型であれば材料の量により厚さを制御できる。
Next, the endless belt molding method of the present invention will be described. When a thermoplastic resin is selected as the resin material for the endless belt, centrifugal molding, extrusion molding, injection molding, or the like may be used. Further, when a thermosetting resin is selected, centrifugal molding, RIM molding, or the like may be employed. Among these methods, the centrifugal molding method is preferable because it can be applied regardless of the material, has excellent thickness accuracy, and has a small variation in electric resistance value.
When forming by centrifugal molding, the fluid raw material solution to be prepared is preferably adjusted so that the viscosity at the time of molding is 50,000 mPa · s or less. When the viscosity exceeds 50,000 mPa · s, it becomes difficult to produce an endless belt having a uniform thickness. The lower limit of the viscosity is not particularly limited, but is preferably 10 mPa · s or more for handling the raw material. When the viscosity of the material is out of the above range, the material may be dissolved and diluted by adding a solvent to adjust the viscosity before use. As the solvent, the above-mentioned polymerization solvent for polyamideimide resin is preferably used as it is. For example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, pyridine and the like can be mentioned.
Centrifugal molding is, for example, injecting a small amount of a fluid material solution into a cylindrical mold, rotating the mold to form a uniform layer of the material solution on the inner peripheral surface by centrifugal force, and removing the solvent by drying. Thus, an endless belt is formed. Various metal pipes can be used for the mold, and the inner peripheral surface should be mirror-polished and treated with a release agent such as fluorine resin or silicone resin so that the formed endless belt can be easily removed. . Since there is a correlation between the amount of material and the thickness of the endless belt, the thickness can be controlled by the amount of material in the same mold.

樹脂組成物溶液には溶媒を含むので、成形された樹脂組成物溶液を乾燥あるいは加熱して溶媒を除去し円筒状の成形品を金型から脱型すればよい。本発明の無端ベルトはこの溶媒除去工程において、過熱水蒸気処理を行うことが好ましい。金型を回転して遠心成形された樹脂組成物のフィルムは、金型を回転したまま5〜60分間、40〜150℃の熱風を吹き付けて溶媒を除去する。この一次溶媒除去工程をあまり高温で長時間実施すると、樹脂成分の酸化劣化等が起こり出来上がった無端ベルトの性状が劣化することがある。一次溶媒除去工程が終了したら、樹脂フィルムを金型ごと遠心成形機から取り出し、過熱水蒸気炉で110〜350℃の過熱水蒸気で10〜120分間処理し、二次溶媒除去工程とする。この二次溶媒除去工程で樹脂組成物の劣化を抑えながら溶媒除去を完全にする。その後、金型ごと樹脂フィルムを取り出し放冷する。金型と樹脂組成物の熱膨張率の差を利用して樹脂組成物でできたフィルムを脱型し、脱型した円筒状のフィルムの両側端部を除去し、所定幅毎に裁断すれば本発明の無端ベルトが出来上がる。
本発明において、無端ベルト中の残留溶媒は、試料からエタノール等で残留溶媒を抽出し、GC−MSにより測定すればよい。
Since the resin composition solution contains a solvent, the molded resin composition solution may be dried or heated to remove the solvent and remove the cylindrical molded product from the mold. The endless belt of the present invention is preferably subjected to superheated steam treatment in this solvent removal step. The resin composition film that has been centrifugally molded by rotating the mold is blown with hot air at 40 to 150 ° C. for 5 to 60 minutes while the mold is rotated to remove the solvent. If this primary solvent removal step is carried out at a very high temperature for a long time, the properties of the endless belt, which is caused by oxidative deterioration of the resin component, may be deteriorated. When the primary solvent removal step is completed, the resin film is taken out from the centrifugal molding machine together with the mold and treated with superheated steam at 110 to 350 ° C. for 10 to 120 minutes in a superheated steam furnace to obtain a secondary solvent removal step. In this secondary solvent removal step, the solvent removal is completed while suppressing deterioration of the resin composition. Thereafter, the resin film is taken out together with the mold and allowed to cool. If the film made of the resin composition is removed using the difference in coefficient of thermal expansion between the mold and the resin composition, both end portions of the removed cylindrical film are removed and cut into predetermined widths. The endless belt of the present invention is completed.
In the present invention, the residual solvent in the endless belt may be measured by GC-MS after extracting the residual solvent from the sample with ethanol or the like.

上述の本発明の無端ベルトは、各種画像形成装置の感光体基体用、現像用、定着用等の用途で使用可能であるが、転写ベルトとして利用すれば、表面抵抗率の変動による印字むらなどの印刷不良のない電子写真方式の画像形成装置とすることができる。   The above-mentioned endless belt of the present invention can be used for applications such as a photoreceptor substrate, development, and fixing in various image forming apparatuses. Thus, an electrophotographic image forming apparatus free from printing defects can be obtained.

(実施例1)
反応器中で当量のトリメリット酸無水物とジフェニルメタン−4,4’−ジイソシアネートとからなる反応原料をN−メチル−2−ピロリドン溶媒に溶解し、30分間かけて20℃から150℃に昇温後、150℃にて5時間反応を継続し、固形分濃度(溶液中の実質的に全閉環のポリアミドイミド樹脂の濃度、以下同じ)28質量%の芳香族ポリアミドイミド溶液を得た。これにN−メチル−2−ピロリドンを加え、固形分濃度15質量%のポリアミドイミド溶液を調製した。これに導電性付与材として酸化処理カーボンブラック(プリンテックス150T,Degussa社製,pH5.8、揮発分10.0%)をポリアミドイミド樹脂固形分に対して10質量%となるように配合し、ポットミルで24時間混合分散し樹脂組成物混合液を得た。この樹脂組成物混合液を1000rpmの速度で回転する温度125℃の金型内周に190g注入した。金型は、内径226mm、外径246mm、長さ400mmの大きさとし、金型内面はポリッシングにより鏡面研磨されている。そして金型両端の開口部にはリング状の蓋(内径170mm、外径250mm)をそれぞれ嵌合して材料漏れを防止する。こうして金型に樹脂組成物溶液を注入したら、1000rpmの速度でレベリングして遠心成形しフィルム状にした。その後30分間回転したまま80℃の熱風をフィルムに吹き付け溶媒を除去した。溶媒除去が終了したら、樹脂フィルムを金型ごと遠心成形機から取り出し、290℃の過熱水蒸気炉で50分間過熱水蒸気処理したのち、室温で放冷した。金型と樹脂組成物の熱膨張率の差によりフィルムが剥離してくる。この樹脂組成物でできたフィルムをとりだし、その両端部をそれぞれカットして周長約71cm、幅24cm、厚さ100μmの無端ベルト1を作成した。
(実施例2)
実施例1において、樹脂フィルムを290℃の過熱水蒸気炉で50分間過熱水蒸気処理した代わりに、樹脂フィルムを290℃の過熱水蒸気炉で40分間過熱水蒸気処理した以外は、実施例1と同様にして無端ベルト2を作成した。
(実施例3)
実施例1において、樹脂フィルムを290℃の過熱水蒸気炉で50分間過熱水蒸気処理した代わりに、樹脂フィルムを290℃の過熱水蒸気炉で30分間過熱水蒸気処理した以外は、実施例1と同様にして無端ベルト3を作成した。
(実施例4)
実施例1において、樹脂フィルムを290℃の過熱水蒸気炉で50分間過熱水蒸気処理した代わりに、樹脂フィルムを260℃の過熱水蒸気炉で70分間過熱水蒸気処理した以外は、実施例1と同様にして無端ベルト4を作成した。
(実施例5)
実施例1において、樹脂フィルムを290℃の過熱水蒸気炉で50分間過熱水蒸気処理した代わりに、樹脂フィルムを260℃の過熱水蒸気炉で50分間過熱水蒸気処理した以外は、実施例1と同様にして無端ベルト5を作成した。
(参考例1)
実施例1において、樹脂を金型に投入するときの金型温度125℃のかわりに110℃とし、60分間回転したまま80℃の熱風をフィルムに吹き付け溶媒を除去した。また実施例1において、樹脂フィルムを290℃の過熱水蒸気炉で50分間過熱水蒸気処理した代わりに、樹脂フィルムを220℃の過熱水蒸気炉で50分間過熱水蒸気処理をした以外は、実施例1と同様にして無端ベルト6を作成した。
(参考例2)
実施例1において、樹脂フィルムを290℃の過熱水蒸気炉で50分間過熱水蒸気処理した代わりに、樹脂フィルムを220℃の過熱水蒸気炉で50分間過熱水蒸気処理をした以外は、実施例1と同様にして無端ベルト7を作成した。
(比較例1)
実施例1において、樹脂フィルムを290℃の過熱水蒸気炉で50分間過熱水蒸気処理した代わりに、樹脂フィルムを熱風乾燥炉で260℃の70分間加熱処理した以外は、実施例1と同様にして無端ベルト8を作成した。
Example 1
In a reactor, a reaction raw material consisting of an equivalent trimellitic anhydride and diphenylmethane-4,4′-diisocyanate is dissolved in N-methyl-2-pyrrolidone solvent, and the temperature is raised from 20 ° C. to 150 ° C. over 30 minutes. Thereafter, the reaction was continued at 150 ° C. for 5 hours to obtain an aromatic polyamideimide solution having a solid content concentration of 28% by mass (concentration of substantially fully ring-closed polyamideimide resin, the same applies hereinafter). N-methyl-2-pyrrolidone was added thereto to prepare a polyamideimide solution having a solid content concentration of 15% by mass. Oxidized carbon black (printex 150T, manufactured by Degussa, pH 5.8, volatile content 10.0%) as a conductivity-imparting material was blended so as to be 10% by mass with respect to the solid content of the polyamideimide resin. The mixture was mixed and dispersed in a pot mill for 24 hours to obtain a resin composition mixed solution. 190 g of this resin composition mixed solution was injected into the inner periphery of a mold having a temperature of 125 ° C. rotating at a speed of 1000 rpm. The mold has an inner diameter of 226 mm, an outer diameter of 246 mm, and a length of 400 mm, and the inner surface of the mold is mirror-polished by polishing. Then, ring-shaped lids (inner diameter: 170 mm, outer diameter: 250 mm) are fitted into the openings at both ends of the mold to prevent material leakage. When the resin composition solution was poured into the mold in this way, it was leveled at a speed of 1000 rpm and centrifuged to form a film. Thereafter, while rotating for 30 minutes, hot air at 80 ° C. was blown onto the film to remove the solvent. When the solvent removal was completed, the resin film was taken out from the centrifugal molding machine together with the mold, subjected to superheated steam treatment in a superheated steam furnace at 290 ° C. for 50 minutes, and then allowed to cool at room temperature. The film peels off due to the difference in coefficient of thermal expansion between the mold and the resin composition. A film made of the resin composition was taken out, and both end portions thereof were cut to prepare an endless belt 1 having a circumference of about 71 cm, a width of 24 cm, and a thickness of 100 μm.
(Example 2)
In Example 1, instead of subjecting the resin film to superheated steam treatment at 290 ° C. in a superheated steam furnace for 50 minutes, the resin film was treated in the same manner as Example 1 except that the resin film was treated in a superheated steam furnace at 290 ° C. for 40 minutes. An endless belt 2 was prepared.
(Example 3)
In Example 1, instead of subjecting the resin film to superheated steam treatment in a 290 ° C. superheated steam furnace for 50 minutes, the resin film was treated in the same manner as in Example 1 except that the resin film was treated in a 290 ° C. superheated steam furnace for 30 minutes. An endless belt 3 was prepared.
Example 4
In Example 1, the resin film was subjected to superheated steam treatment at 290 ° C. in a superheated steam furnace for 50 minutes, but the resin film was treated in superheated steam furnace at 260 ° C. for 70 minutes in the same manner as in Example 1. An endless belt 4 was prepared.
(Example 5)
In Example 1, instead of subjecting the resin film to superheated steam treatment at 290 ° C. in a superheated steam furnace for 50 minutes, the resin film was treated in the same manner as in Example 1 except that the resin film was treated in a 260 ° C. superheated steam furnace for 50 minutes. An endless belt 5 was prepared.
(Reference Example 1)
In Example 1, instead of the mold temperature 125 ° C. when the resin was put into the mold, the temperature was 110 ° C., and the solvent was removed by blowing hot air at 80 ° C. on the film while rotating for 60 minutes. Moreover, in Example 1, it replaced with the superheated steam furnace for 50 minutes with a 290 degreeC superheated steam furnace, and it was the same as Example 1 except having performed the superheated steam process for 50 minutes with a 220 degreeC superheated steam furnace. Thus, an endless belt 6 was prepared.
(Reference Example 2)
In Example 1, the resin film was subjected to superheated steam treatment in a 290 ° C. superheated steam furnace for 50 minutes instead of being subjected to superheated steam treatment in a 220 ° C. superheated steam furnace for 50 minutes. Thus, an endless belt 7 was prepared.
(Comparative Example 1)
In Example 1, the resin film was endless in the same manner as in Example 1 except that the resin film was heated in a hot air drying furnace at 260 ° C. for 70 minutes instead of being heated in a 290 ° C. superheated steam furnace for 50 minutes. A belt 8 was prepared.

(無端ベルトの残留溶媒測定)
試料の無端ベルトを50mg切り出して、内部標準として1000ppmのジメチルアセトアミドを含むエタノール20ml中に加え、60℃で24時間抽出する。抽出したエタノール溶液中のN−メチル−2−ピロリドン量をGC−MSにより測定した。無端ベルト1〜6についての残留溶媒濃度を表1に示した。
(無端ベルトの表面抵抗率の比aの算出)
無端ベルトの加速試験は、測定用ベルトの内側に2本の直径30mmのローラを配置し、このローラ間にベルトを緊張させて張り、さらにローラに6kgの重りを付けて、ベルトには常に引張り応力が掛かるようにする。そして、ローラを300回/分の速度で回転させ、2本のローラ上でベルトを回転させる。ベルトの回転が10万回転となったところで加速試験終了とする。このベルトの加速試験前後の表面抵抗率を測定し、表面抵抗率の比a(=R/R)を算出する。但し、Rは無端ベルトの加速試験前における表面抵抗率〔単位:Ω/□〕,Rは無端ベルトの加速試験後における表面抵抗率〔単位:Ω/□〕を表す。なお、表面抵抗率の測定はハイレスタUP、プローブはUR−100(三菱化学株式会社製)を用い、印加電圧500V、印加時間10秒で実施した。無端ベルト1〜8についての表面抵抗率の比aを表1に示した。
(無端ベルトの実用性評価)
実施例、参考例および比較例で作成した無端ベルト1〜8を、それぞれタンデム方式のカラープリンタ(MicroLine9055c 株式会社沖データ製)に装着して実機テストをした。プリント速度は、上記のプリンタの仕様に合わせ、A4用紙を横21枚/分で10万枚以上印刷を目標に無端ベルトの寿命テストを15万枚まで実施した。その印刷状態を観察した結果を表1に示した。
(Measurement of residual solvent of endless belt)
50 mg of an endless belt of the sample is cut out, added to 20 ml of ethanol containing 1000 ppm of dimethylacetamide as an internal standard, and extracted at 60 ° C. for 24 hours. The amount of N-methyl-2-pyrrolidone in the extracted ethanol solution was measured by GC-MS. The residual solvent concentrations for the endless belts 1 to 6 are shown in Table 1.
(Calculation of the surface resistivity ratio a of the endless belt)
In the endless belt acceleration test, two rollers with a diameter of 30 mm are placed inside the measuring belt, the belt is tensioned between these rollers, and a 6 kg weight is attached to the roller, and the belt is always pulled. Try to apply stress. Then, the roller is rotated at a speed of 300 times / minute, and the belt is rotated on the two rollers. The acceleration test ends when the belt rotation reaches 100,000. The surface resistivity before and after the acceleration test of this belt is measured, and the surface resistivity ratio a (= R 2 / R 1 ) is calculated. R 1 represents the surface resistivity [unit: Ω / □] before the endless belt acceleration test, and R 2 represents the surface resistivity [unit: Ω / □] after the endless belt acceleration test. The surface resistivity was measured using Hiresta UP, and the probe was UR-100 (manufactured by Mitsubishi Chemical Corporation) with an applied voltage of 500 V and an applied time of 10 seconds. Table 1 shows the surface resistivity ratio a for the endless belts 1 to 8.
(Evaluation of practicality of endless belt)
Endless belts 1 to 8 created in the examples, reference examples and comparative examples were each mounted on a tandem color printer (MicroLine 9055c, manufactured by Oki Data Co., Ltd.) and tested on actual machines. In accordance with the printer specifications described above, the endless belt life test was conducted up to 150,000 sheets with the goal of printing 100,000 sheets of A4 paper at a width of 21 sheets / min. The results of observing the printing state are shown in Table 1.

Figure 0005062802
注)実用性評価基準
◎:15万枚印刷しても印字むら等の印刷不良全くなし。
○:10万枚印刷後は問題にならない程度であるが印字むらがある。
△:10万枚印刷前に問題にならない程度であるが印字むらがある。
×:10万枚印刷前に印字むらが見られ、印刷不良で10万枚印刷不能。
Figure 0005062802
Note) Practicality evaluation criteria A: No printing defects such as uneven printing even after printing 150,000 sheets.
◯: After printing 100,000 sheets, there is no problem even though there is no problem.
Δ: Although there is no problem before printing 100,000 sheets, there is uneven printing.
X: Uneven printing was seen before printing 100,000 sheets, and 100,000 sheets could not be printed due to poor printing.

表1の結果から、表面抵抗率の比aおよび残留溶媒量が本発明の範囲内にある無端ベルト(実施例1〜)は、比較例1に較べて印刷不良が起こりにくいことが分かる。


From the results of Table 1, it can be seen that the endless belts (Examples 1 to 5 ) in which the ratio a of the surface resistivity and the amount of residual solvent are within the scope of the present invention are less likely to cause printing defects compared to Comparative Example 1.


本発明の無端ベルトを転写ベルトとして備えた電子写真装置は、印字むら等の印刷不良のない長寿命の画像形成装置として利用される。   The electrophotographic apparatus provided with the endless belt of the present invention as a transfer belt is used as an image forming apparatus having a long life without printing defects such as uneven printing.

図1は本発明の無端ベルトの斜視図である。FIG. 1 is a perspective view of an endless belt according to the present invention.

符号の説明Explanation of symbols

1:無端ベルト 1: Endless belt

Claims (3)

酸化防止剤及び3−メチル−4−ピロールカルボン酸エチルと3−メチル−4−ピロールカルボン酸ブチルとの共重合体を無含有で、ポリアミドイミド系樹脂カーボンブラック及び残留量が0.05〜0.29質量%の範囲にあるN−メチル−2−ピロリドンを含有する、加速試験前後における下式で表される表面抵抗率の比aが1.1〜1.4の範囲である電子写真装置用の無端ベルト。
a=R/R
但し、Rは無端ベルトの加速試験前における表面抵抗率〔単位:Ω/□〕,Rは無端ベルトを10万回回転させる加速試験後における表面抵抗率〔単位:Ω/□〕を表す。
It contains no antioxidant and a copolymer of ethyl 3-methyl-4-pyrrolecarboxylate and butyl 3-methyl-4-pyrrolecarboxylate, and has a polyamideimide resin , carbon black, and a residual amount of 0.05 to An electrophotography containing N-methyl-2-pyrrolidone in the range of 0.29% by mass and having a surface resistivity ratio a before and after the acceleration test of 1.1 to 1.4. Endless belt for equipment.
a = R 2 / R 1
However, R 1 represents the surface resistivity [unit: Ω / □] of the endless belt before the acceleration test, and R 2 represents the surface resistivity [unit: Ω / □] after the acceleration test of rotating the endless belt 100,000 times. .
請求項1に記載の電子写真装置用無端ベルトを製造する方法であって、ポリアミドイミド系樹脂、カーボンブラック及び溶媒としてN−メチル−2−ピロリドンを含有し、酸化防止剤及び3−メチル−4−ピロールカルボン酸エチルと3−メチル−4−ピロールカルボン酸ブチルとの共重合体を無含有の導電性付与材含有樹脂組成物を遠心成形した後、過熱水蒸気処理をする電子写真装置用無端ベルトの製造方法 A method for producing an endless belt for an electrophotographic apparatus according to claim 1, comprising a polyamide-imide resin, carbon black and N-methyl-2-pyrrolidone as a solvent, an antioxidant and 3-methyl-4 An endless belt for an electrophotographic apparatus that is subjected to superheated steam treatment after centrifugally molding a resin composition containing a conductivity-imparting material that does not contain a copolymer of ethyl pyrrole carboxylate and butyl 3-methyl-4-pyrrolecarboxylate Manufacturing method . 請求項1に記載の無端ベルトを転写ベルトとして備えた電子写真装置 An electrophotographic apparatus comprising the endless belt according to claim 1 as a transfer belt .
JP2005357465A 2005-12-12 2005-12-12 Endless belt, manufacturing method thereof, and electrophotographic apparatus provided with the same Expired - Fee Related JP5062802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005357465A JP5062802B2 (en) 2005-12-12 2005-12-12 Endless belt, manufacturing method thereof, and electrophotographic apparatus provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005357465A JP5062802B2 (en) 2005-12-12 2005-12-12 Endless belt, manufacturing method thereof, and electrophotographic apparatus provided with the same

Publications (2)

Publication Number Publication Date
JP2007163639A JP2007163639A (en) 2007-06-28
JP5062802B2 true JP5062802B2 (en) 2012-10-31

Family

ID=38246624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005357465A Expired - Fee Related JP5062802B2 (en) 2005-12-12 2005-12-12 Endless belt, manufacturing method thereof, and electrophotographic apparatus provided with the same

Country Status (1)

Country Link
JP (1) JP5062802B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10539909B2 (en) 2016-06-15 2020-01-21 Fuji Xerox Co., Ltd. Endless belt, image forming apparatus, and endless belt unit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004026A (en) 2007-06-21 2009-01-08 Elpida Memory Inc Memory cell array and method for controlling memory cell array
JP5447365B2 (en) * 2008-02-28 2014-03-19 東洋紡株式会社 Manufacturing method of laminate
JP6966368B2 (en) * 2018-03-26 2021-11-17 住友理工株式会社 Endless belt

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1124427A (en) * 1997-07-03 1999-01-29 Fuji Xerox Co Ltd Image forming device
JP4454115B2 (en) * 2000-07-10 2010-04-21 信越ポリマー株式会社 Seamless belt
JP3683830B2 (en) * 2001-05-25 2005-08-17 株式会社沖データ Image forming apparatus and belt
JP2004292793A (en) * 2003-03-13 2004-10-21 Jsr Corp Treatment process of film or sheet
JP2005017629A (en) * 2003-06-25 2005-01-20 Ricoh Co Ltd Image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10539909B2 (en) 2016-06-15 2020-01-21 Fuji Xerox Co., Ltd. Endless belt, image forming apparatus, and endless belt unit

Also Published As

Publication number Publication date
JP2007163639A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
JP2007058154A (en) Intermediate transfer belt, production method thereof and image-forming device
JP6798154B2 (en) Endless belt, image forming device, and endless belt unit
JP5062802B2 (en) Endless belt, manufacturing method thereof, and electrophotographic apparatus provided with the same
JP2007072197A (en) Endless tubular belt and method for producing the same
JP2007001262A (en) Polyimide-based resin belt having isotropic dielectric constant in direction of plane
JP2006330539A (en) Endless belt for electrophotographic apparatus
JP4840913B2 (en) Endless belt and image forming apparatus
JP2016071100A (en) Conductive composition of electrophotographic member, and electrophotographic member
JP4889009B2 (en) Endless belt manufacturing method and image forming apparatus
JP2004287005A (en) Semiconductive seamless belt and its manufacturing method
JP2004284164A (en) Method for manufacturing semiconductive seamless belt
JP2008151873A (en) Endless belt and image forming apparatus
JP2011070199A (en) Seamless belt and method of manufacturing the same
JP2004302094A (en) Semiconductive belt and its manufacturing method
JP5044944B2 (en) Semiconductive polyamideimide belt, method of manufacturing semiconductive polyamideimide belt, and image forming apparatus
JP5217420B2 (en) Intermediate transfer belt and image forming apparatus
JP6515629B2 (en) Conductive roll, charging device, process cartridge, image forming apparatus, and method of manufacturing conductive roll
JP2005249952A (en) Semiconductive film and method for manufacturing the same
JP4854011B2 (en) Semiconductive belt and image forming apparatus
JP5246828B2 (en) Endless belt manufacturing method
EP3279743A1 (en) Fuser members
JP6950283B2 (en) Manufacturing method of polyimide seamless belt
JP2018146635A (en) Endless belt for electrophotographic device, image forming apparatus, and endless belt unit
JP2004284166A (en) Method for manufacturing semiconductive seamless belt
JP2003280406A (en) Transferring fixing belt

Legal Events

Date Code Title Description
RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20080303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110125

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110519

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120403

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120703

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120803

R150 Certificate of patent or registration of utility model

Ref document number: 5062802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees