JP2007144817A - Method for producing endless belt - Google Patents

Method for producing endless belt Download PDF

Info

Publication number
JP2007144817A
JP2007144817A JP2005342737A JP2005342737A JP2007144817A JP 2007144817 A JP2007144817 A JP 2007144817A JP 2005342737 A JP2005342737 A JP 2005342737A JP 2005342737 A JP2005342737 A JP 2005342737A JP 2007144817 A JP2007144817 A JP 2007144817A
Authority
JP
Japan
Prior art keywords
resin
film
cylindrical core
core body
endless belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005342737A
Other languages
Japanese (ja)
Inventor
Yoshitake Ogura
佳剛 小倉
Atsushi Mihara
淳 三原
Yuichi Yashiki
雄一 矢敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2005342737A priority Critical patent/JP2007144817A/en
Publication of JP2007144817A publication Critical patent/JP2007144817A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixing For Electrophotography (AREA)
  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Electrophotography Configuration And Component (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an endless belt which is easily extracted from a core body and the endless belt produced by the method. <P>SOLUTION: The method for producing the endless belt includes: a first paint film forming process in which the cylindrical core body is rotated in the peripheral direction around its axis, and a first membrane forming resin solution is dropped on the peripheral surface of the core body and smoothed by a smoothing member to form the first paint film; a second paint film forming process in which a second membrane forming resin solution is dropped on the outside in the axial direction of the cylindrical core body of the first paint film on the peripheral surface of the rotating core body and smoothed by the smoothing member to form the second paint film adjoining the first paint film; a resin membrane forming process in which the first and second paint films are heated to form a first resin membrane and a second resin membrane with a thermal expansion coefficient smaller than that of the first resin membrane; and an extraction process for extracting the first and second resin membranes from the cylindrical core body, and the endless belt produced by the method is provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、芯体上に皮膜形成樹脂の溶液を塗布して、形成された樹脂皮膜を芯体から抜き取りが容易にできる無端ベルトの製造方法、及び該製造方法により製造される無端ベルトに関する。該無端ベルトは、特に複写機やプリンター等、電子写真方式の画像形成装置に好ましく用いられる。   The present invention relates to an endless belt manufacturing method in which a solution of a film-forming resin is applied onto a core body, and the formed resin film can be easily extracted from the core body, and to an endless belt manufactured by the manufacturing method. The endless belt is particularly preferably used for an electrophotographic image forming apparatus such as a copying machine or a printer.

前記画像形成装置において、感光体、帯電体、転写体、及び定着体等の小型/高性能化のために、肉厚が薄いプラスチック製フィルムからなるベルトが用いられる場合がある。そのベルトに継ぎ目(シーム)があると、出力画像に継ぎ目の跡が生じるので、継ぎ目がない無端ベルトが好ましい。材料としては、強度や寸法安定性、耐熱性等の面でポリイミド樹脂やポリアミドイミド樹脂が好ましい。(適宜、ポリイミドはPI、ポリアミドイミドはPAIと略す)   In the image forming apparatus, a belt made of a thin plastic film may be used to reduce the size / performance of the photosensitive member, the charging member, the transfer member, and the fixing member. If there is a seam in the belt, a trace of the seam is generated in the output image. Therefore, an endless belt without a seam is preferable. The material is preferably a polyimide resin or a polyamideimide resin in terms of strength, dimensional stability, heat resistance, and the like. (Appropriately, polyimide is abbreviated as PI and polyamideimide is abbreviated as PAI)

PI樹脂無端ベルトの製造方法としては、従来公知技術として、回転させた円筒芯体の表面に、ディスペンサー先端を接触させ、ディスペンサーから樹脂溶液を供給して塗布する方法がある。この方法では、25℃での粘度が1〜1500Pa・sの高粘度の溶液を吐出すると、溶液が充分に平滑化されず、らせん状の筋が残る場合があって好ましくなかった(例えば、特許文献1参照)。   As a method for producing a PI resin endless belt, there is a conventionally known technique in which a tip of a dispenser is brought into contact with the surface of a rotated cylindrical core, and a resin solution is supplied from the dispenser and applied. In this method, when a high viscosity solution having a viscosity of 1 to 1500 Pa · s at 25 ° C. is discharged, the solution is not sufficiently smoothed, and spiral streaks may remain, which is not preferable (for example, patents). Reference 1).

そこで、吐出された溶液をブレードによって平滑にする方法もある。この方法では、吐出された溶液はブレードで平滑化されるので、溶液がらせん状の筋になることはないものの、芯体両端の塗布部分では、塗膜が芯体に密着して剥離しにくい、すなわち、できたベルトを芯体から抜き取るのがむずかしくなることがあった(例えば、特許文献2参照)。   Therefore, there is a method of smoothing the discharged solution with a blade. In this method, since the discharged solution is smoothed with a blade, the solution does not become a spiral streak, but the coating film is in close contact with the core body and difficult to peel off at the application portions at both ends of the core body. In other words, it may be difficult to remove the completed belt from the core (see, for example, Patent Document 2).

その場合、樹脂皮膜の熱膨張率として、芯体の熱膨張率より小さいものを用いると、芯体からの抜き取りを容易にすることもできる(例えば、特許文献3参照)。しかし、特性上から常にそういった樹脂材料を選択することができない場合もあり、芯体からの抜き取りは困難であった(例えば、特許文献4参照)。
特開平9−85756号公報 特開平10−69183号公報 特開2004−255708号公報 特開2005−122093号公報
In that case, if the thermal expansion coefficient of the resin film is smaller than the thermal expansion coefficient of the core body, extraction from the core body can be facilitated (see, for example, Patent Document 3). However, there are cases in which such a resin material cannot always be selected because of its characteristics, and it has been difficult to remove the resin material from the core (see, for example, Patent Document 4).
JP-A-9-85756 Japanese Patent Laid-Open No. 10-69183 Japanese Patent Laid-Open No. 2004-255708 JP 2005-122093 A

本発明は、芯体からの抜き取りが容易な無端ベルトの製造方法、及び該製造方法により得られる無端ベルトを提供することを目的とする。   An object of the present invention is to provide a method for producing an endless belt that can be easily extracted from a core body, and an endless belt obtained by the production method.

前記課題は、以下の本発明により達成された。
即ち、本発明は、
<1> 円筒状芯体を該円筒状芯体の軸を中心に周方向に回転させ、該回転している円筒状芯体の外周面に第一の皮膜形成樹脂溶液を流下して、平滑化部材により平滑化し第一塗膜を形成する第一塗膜形成工程と、該回転している円筒状芯体の外周面の、第一塗膜の該円筒状芯体の軸方向外側に、第二の皮膜形成樹脂溶液を流下して、平滑化部材により平滑化し第一塗膜と隣接する第二塗膜を形成する第二塗膜形成工程と、前記第一塗膜及び第二塗膜を加熱して、第一樹脂皮膜及び熱膨張率が前記第一樹脂皮膜の熱膨張率より小さい第二樹脂皮膜を形成する樹脂皮膜形成工程と、該第一樹脂皮膜及び第二樹脂皮膜を円筒状芯体から抜き取る抜き取り工程と、を有することを特徴とする無端ベルトの製造方法である。
The object has been achieved by the present invention described below.
That is, the present invention
<1> The cylindrical core body is rotated in the circumferential direction around the axis of the cylindrical core body, and the first film-forming resin solution is allowed to flow down to the outer peripheral surface of the rotating cylindrical core body so as to be smooth. The first coating film forming step of smoothing by the forming member to form the first coating film, and the outer peripheral surface of the rotating cylindrical core body, on the outer side in the axial direction of the cylindrical core body of the first coating film, A second coating film forming step of forming a second coating film adjacent to the first coating film by flowing down the second film forming resin solution and smoothing by the smoothing member; and the first coating film and the second coating film A resin film forming step of forming a second resin film having a thermal expansion coefficient smaller than that of the first resin film, and the first resin film and the second resin film are cylindrical. A method for producing an endless belt, comprising: a step of extracting from the core.

<2> 更に、前記円筒状芯体から抜き取った第一樹脂皮膜から、第二樹脂皮膜を除去する第二樹脂皮膜除去工程を有する<1>に記載の無端ベルトの製造方法である。
<3> 軸方向の両端部が、軸方向の中央部と異なる樹脂で形成されている無端ベルトであって、前記軸方向の両端部の樹脂の熱膨張率が、前記軸方向の中央部の樹脂熱膨張率より小さいことを特徴とする無端ベルトである。
<2> The method for producing an endless belt according to <1>, further including a second resin film removal step of removing the second resin film from the first resin film extracted from the cylindrical core.
<3> Both end portions in the axial direction are endless belts formed of a resin different from the central portion in the axial direction, and the thermal expansion coefficient of the resin in the both end portions in the axial direction is that of the central portion in the axial direction. An endless belt having a thermal expansion coefficient smaller than that of the resin.

本発明は、芯体からの抜き取りが容易な無端ベルトの製造方法、及び該製造方法により得られる無端ベルトを提供することができる。   The present invention can provide a method for producing an endless belt that can be easily extracted from the core, and an endless belt obtained by the production method.

以下、本発明の無端ベルトの製造方法を説明する。
本発明の無端ベルトの製造方法は、 円筒状芯体を該円筒状芯体の軸を中心に周方向に回転させ、該回転している円筒状芯体の外周面に第一の皮膜形成樹脂溶液を流下して、平滑化部材により平滑化し第一塗膜を形成する第一塗膜形成工程と、該回転している円筒状芯体の外周面の、第一塗膜の該円筒状芯体の軸方向外側に、第二の皮膜形成樹脂溶液を流下して、平滑化部材により平滑化し第一塗膜と隣接する第二塗膜を形成する第二塗膜形成工程と、前記第一塗膜及び第二塗膜を加熱して、第一樹脂皮膜及び熱膨張率が前記第一樹脂皮膜の熱膨張率より小さい第二樹脂皮膜を形成する樹脂皮膜形成工程と、該第一樹脂皮膜及び第二樹脂皮膜を円筒状芯体から抜き取る抜き取り工程と、を有することを特徴とする。
Hereinafter, the manufacturing method of the endless belt of the present invention will be described.
The process for producing an endless belt according to the present invention comprises rotating a cylindrical core body in the circumferential direction around the axis of the cylindrical core body, and forming a first film-forming resin on the outer peripheral surface of the rotating cylindrical core body. A first coating film forming step of forming a first coating film by flowing down the solution and smoothing with a smoothing member; and the cylindrical core of the first coating film on the outer peripheral surface of the rotating cylindrical core body A second coating film forming step of forming a second coating film adjacent to the first coating film by flowing down the second film forming resin solution on the outer side in the axial direction of the body and smoothing by the smoothing member; A resin film forming step of heating the coating film and the second coating film to form a first resin film and a second resin film having a thermal expansion coefficient smaller than that of the first resin film, and the first resin film And a extracting step of extracting the second resin film from the cylindrical core.

本発明の無端ベルトの製造方法の一例を図を用いて説明する。
図1は、本発明の無端ベルトの製造方法に用いる装置の概略図を示したもので、(A)は側面図、(B)は正面図である。図1中、容器4内に樹脂溶液6を保持し、ポンプ1で吐出口5に送り出す。また、容器4に加圧エアを注入して樹脂溶液6を押し出してもよく、その場合はポンプが不要なこともある。樹脂溶液6は吐出口5から図中の矢印方向に回転している円筒状芯体3の外周面に吐出(流下)される。このとき樹脂溶液6は筋状に流下し、筋状の塗膜が形成されるが、すぐに下流に押し当てられている平滑化部材2によって平滑化され、らせん状の筋が残ることなく、塗膜7が形成される。吐出口5は塗布と共に、図1(B)のように(図では左から右へ)、芯体の一端から他端へ水平方向に移動させると、芯体の全面にわたって塗布することができる。塗布中は、円筒状芯体3と平滑化部材2の間には樹脂溶液が存在するので、両者が直に接触することはない。
An example of the manufacturing method of the endless belt of the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic view of an apparatus used in the method for producing an endless belt according to the present invention, wherein (A) is a side view and (B) is a front view. In FIG. 1, a resin solution 6 is held in a container 4 and sent out to a discharge port 5 by a pump 1. Further, pressurized air may be injected into the container 4 to extrude the resin solution 6, in which case a pump may not be necessary. The resin solution 6 is discharged (flowed down) from the discharge port 5 to the outer peripheral surface of the cylindrical core body 3 rotating in the direction of the arrow in the figure. At this time, the resin solution 6 flows down in a streak shape, and a streak-like coating film is formed, but is immediately smoothed by the smoothing member 2 pressed downstream, without leaving a spiral streak, A coating film 7 is formed. When the discharge port 5 is moved in the horizontal direction from one end of the core body to the other end as shown in FIG. 1B (from left to right in the figure) along with the application, it can be applied over the entire surface of the core body. During application, since the resin solution exists between the cylindrical core 3 and the smoothing member 2, they are not in direct contact with each other.

円筒状芯体3の素材としては、特に限定されないが、鋼、ステンレス鋼等の鉄系合金や、アルミニウム、アルミニウム合金、チタニウム、チタニウム合金等の非鉄合金などの金属材料が挙げられ、線膨張係数が大きい点で、アルミニウムおよびその合金が好ましい。また、傷防止の観点で表面処理(鍍金、イオンプレーティング等)を施してもよい。   The material of the cylindrical core 3 is not particularly limited, and examples thereof include metal materials such as iron-based alloys such as steel and stainless steel, and non-ferrous alloys such as aluminum, aluminum alloy, titanium, and titanium alloy. Of these, aluminum and its alloys are preferable. Further, surface treatment (plating, ion plating, etc.) may be performed from the viewpoint of preventing scratches.

本発明の無端ベルトの製造方法は、円筒状芯体3の外周面に第一の皮膜形成樹脂溶液を流下して、平滑化部材により平滑化し第一塗膜を形成する第一塗膜形成工程を有する。ここで第一の皮膜形成樹脂溶液を流下は、円筒状芯体3の回転速度は20〜300rpm(より好ましくは20〜150rpm)が好ましい。
また、吐出口5が円筒状芯体3に対して移動することにより、円筒状芯体3の外周面に第一の皮膜形成樹脂溶液である樹脂溶液6の塗膜が形成される。このときの円筒状芯体3に対する吐出口5の水平移動速度は0.1〜2.0m/分が好ましい(より好ましくは0.5〜1.5m/分)。
The process for producing an endless belt according to the present invention includes a first coating film forming step of forming a first coating film by flowing a first film forming resin solution on the outer peripheral surface of the cylindrical core 3 and smoothing it with a smoothing member. Have Here, when the first film-forming resin solution is flowed down, the rotational speed of the cylindrical core 3 is preferably 20 to 300 rpm (more preferably 20 to 150 rpm).
Further, when the discharge port 5 moves with respect to the cylindrical core body 3, a coating film of the resin solution 6 that is the first film-forming resin solution is formed on the outer peripheral surface of the cylindrical core body 3. The horizontal moving speed of the discharge port 5 with respect to the cylindrical core 3 at this time is preferably 0.1 to 2.0 m / min (more preferably 0.5 to 1.5 m / min).

一方、吐出口5から吐出される第一の皮膜形成樹脂溶液である樹脂溶液6の吐出(流下)量は、得られる無端ベルトが所望の膜厚となるように調整することが好ましい。好ましい無端ベルトの膜厚は25〜150μmである(より好ましくは50〜100μm)。また、ポンプ1としては、途切れなく一定量を吐出することが可能なモーノポンプが好ましい。このポンプは回転容積型の1軸偏心ネジポンプであり、ポンプ内部では弾性材料の雌ネジ部と金属性の雄ネジ部と高精度で勘合しており、一定体積移動を可能にしている。このポンプの利点は、広範囲の溶液粘度に対応でき、雄ネジ軸回転数を制御することにより、流量制御が自由に可能である点にあり、塗膜の膜厚tを25〜150μmの範囲で容易に制御することが可能である。
更に、容器4から上記ディスペンス用モーノポンプ1まで溶液を供給するために、別のモーノポンプを設置してもよい。そのポンプはディスペンス用モーノポンプより供給能力の高いポンプを採用し、ディスペンス用モーノポンプでの吐出量より多めに供給する。
On the other hand, the discharge (downflow) amount of the resin solution 6 that is the first film-forming resin solution discharged from the discharge port 5 is preferably adjusted so that the obtained endless belt has a desired film thickness. The film thickness of a preferable endless belt is 25 to 150 μm (more preferably 50 to 100 μm). The pump 1 is preferably a Mono pump capable of discharging a constant amount without interruption. This pump is a rotary displacement type single-shaft eccentric screw pump, and the internal thread portion of the elastic material and the metallic external thread portion are fitted with high precision inside the pump to enable a constant volume movement. The advantage of this pump is that it can cope with a wide range of solution viscosities, and the flow rate can be freely controlled by controlling the male screw shaft rotation speed. The film thickness t of the coating film is in the range of 25 to 150 μm. It can be easily controlled.
Furthermore, in order to supply the solution from the container 4 to the dispensing mono pump 1, another mono pump may be installed. The pump adopts a pump with higher supply capacity than the dispensing mono pump, and supplies a larger amount than the dispensing mono pump.

本発明の無端ベルトの製造方法は、上述のように円筒状芯体3の外周面に第一の皮膜形成樹脂溶液を吐出することにより、第一塗膜を形成するが、第一塗膜の円筒状芯体3の軸方向の幅は、目的とする無端ベルトの幅より0.5〜10cm長いことが好ましい(より好ましくは1〜5cm)。   The endless belt manufacturing method of the present invention forms the first coating film by discharging the first film-forming resin solution onto the outer peripheral surface of the cylindrical core 3 as described above. The axial width of the cylindrical core 3 is preferably 0.5 to 10 cm longer than the intended endless belt (more preferably 1 to 5 cm).

前記第二塗膜形成工程では、円筒状芯体3の外周面の、第一塗膜の該円筒状芯体の軸方向外側に、樹脂溶液6として第二の皮膜形成樹脂溶液を吐出する。ここで前記第二塗膜形成工程における円筒状芯体3の回転速度、吐出口5の水平移動速度、第二の皮膜形成樹脂溶液である樹脂溶液6の吐出(流下)量は、前記第一塗膜形成工程における円筒状芯体3の回転速度、吐出口5の水平移動速度、第一の皮膜形成樹脂溶液である樹脂溶液6の吐出(流下)量と同様である。   In the second coating film forming step, a second film forming resin solution is discharged as the resin solution 6 on the outer peripheral surface of the cylindrical core body 3 on the outer side in the axial direction of the cylindrical core body of the first coating film. Here, in the second coating film forming step, the rotational speed of the cylindrical core body 3, the horizontal movement speed of the discharge port 5, and the discharge (downflow) amount of the resin solution 6 as the second film forming resin solution are as described above. This is the same as the rotational speed of the cylindrical core 3 in the coating film forming step, the horizontal movement speed of the discharge port 5, and the discharge (downflow) amount of the resin solution 6 that is the first film-forming resin solution.

前記第二塗膜形成工程により、第二の皮膜形成樹脂溶液を第一塗膜の円筒状芯体3の軸方向外側に吐出するが、該吐出する領域は、円筒状芯体3の外周面の、第一塗膜の該円筒状芯体の軸方向外側で、第一塗膜と隣接する位置であることが必要である。また、流下する領域の円筒状芯体3の軸方向の幅は、1〜5cmであることが好ましい(より好ましくは2〜4cm)。
一方、第一塗膜と第二塗膜との隣接部は、お互いに相溶し、一部他方の領域に入り込んでいてもよい。
In the second coating film forming step, the second film forming resin solution is discharged to the outer side in the axial direction of the cylindrical core body 3 of the first coating film. It is necessary that the first coating film be adjacent to the first coating film on the outer side in the axial direction of the cylindrical core. Moreover, it is preferable that the axial width of the cylindrical core 3 in the flowing area is 1 to 5 cm (more preferably 2 to 4 cm).
On the other hand, the adjacent portions of the first coating film and the second coating film may be compatible with each other and partially enter the other region.

本発明の無端ベルトの製造方法は、前記第二樹脂皮膜の熱膨張率が前記第一樹脂皮膜の熱膨張率より小さいことを特徴とする。尚、前記第一及び第二の樹脂皮膜の熱膨張率は、JIS K7197:1991に規定の方法により測定したものである。
前記第二樹脂皮膜の熱膨張率と前記第一樹脂皮膜の熱膨張率との差は、5ppm以上であることが好ましい(より好ましくは5〜20ppm、更に好ましくは5〜10ppm)。
The endless belt manufacturing method of the present invention is characterized in that the thermal expansion coefficient of the second resin film is smaller than the thermal expansion coefficient of the first resin film. In addition, the thermal expansion coefficient of said 1st and 2nd resin film is measured by the method prescribed | regulated to JISK7197: 1991.
The difference between the thermal expansion coefficient of the second resin film and the thermal expansion coefficient of the first resin film is preferably 5 ppm or more (more preferably 5 to 20 ppm, still more preferably 5 to 10 ppm).

前記第一の皮膜形成樹脂溶液及び前記第二の皮膜形成樹脂溶液は、上述の第一及び第二の樹脂皮膜の熱膨張率の関係を満たす熱硬化性樹脂となるものであれば特に限定されず、ポリイミド前駆体溶液、ポリアミドイミド樹脂溶液、エポキシ樹脂溶液、トリアジン系樹脂溶液が挙げられ、この中でもポリイミド前駆体溶液、ポリアミドイミド樹脂溶液が好ましく、ポリイミド前駆体溶液がより好ましい。また、前記第一の皮膜形成樹脂溶液及び前記第二の皮膜形成樹脂溶液は、相溶することが好ましく、この点から第一の皮膜形成樹脂溶液及び前記第二の皮膜形成樹脂溶液が同じ樹脂であることが好ましい。   The first film-forming resin solution and the second film-forming resin solution are not particularly limited as long as they are thermosetting resins that satisfy the relationship between the thermal expansion coefficients of the first and second resin films. First, a polyimide precursor solution, a polyamide-imide resin solution, an epoxy resin solution, and a triazine-based resin solution are exemplified. Among these, a polyimide precursor solution and a polyamide-imide resin solution are preferable, and a polyimide precursor solution is more preferable. The first film-forming resin solution and the second film-forming resin solution are preferably compatible with each other. From this point, the first film-forming resin solution and the second film-forming resin solution are the same resin. It is preferable that

前記第一及び第二の皮膜形成樹脂溶液としては、前記第一の皮膜形成樹脂溶液が、例えば、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(以下、適宜「BPDA」と称する)と4,4’−ジアミノジフェニルエーテルからなるポリイミド(以下、適宜「A型PI」と称する)の前駆体の溶液の場合、熱膨張率は28ppmであるが、前記第二の皮膜形成樹脂として、これより熱膨張率が小さいものは、BPDAとp−フェニレンジアミンとからなるPI(熱膨張率12ppm。以下、適宜「S型」と称する)やピロメリット酸二無水物(以下、適宜「PMDA」と称する)と4,4’−ジアミノジフェニルエーテルからなるPI(熱膨張率20ppm)前駆体の溶液がある。前記S型PIは、熱膨張率が非常に小さいので、端部に形成する樹脂として非常に好ましい。   As the first and second film-forming resin solutions, the first film-forming resin solution is, for example, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (hereinafter referred to as “BPDA” as appropriate). In the case of a precursor solution of polyimide (hereinafter referred to as “A-type PI” as appropriate) consisting of 4,4′-diaminodiphenyl ether, the coefficient of thermal expansion is 28 ppm. As for those having a smaller coefficient of thermal expansion than this, PI composed of BPDA and p-phenylenediamine (thermal expansion coefficient 12 ppm, hereinafter referred to as “S-type” as appropriate) and pyromellitic dianhydride (hereinafter referred to as “ And a solution of PI (thermal expansion coefficient 20 ppm) precursor consisting of 4,4′-diaminodiphenyl ether. Since the S-type PI has a very low coefficient of thermal expansion, it is very preferable as a resin formed at the end.

また、得られた無端ベルトを転写部材として使用する場合には、半導電性を付与するため、第一の皮膜形成樹脂溶液の中に導電性物質を分散させる。導電性物質としては、例えば、カーボンブラック、カーボンファイバー、カーボンナノチューブ、グラファイト等の炭素系物質、銅、銀、アルミニウム等の金属又は合金、酸化錫、酸化インジウム、酸化アンチモン、SnO−In複合酸化物等の導電性金属酸化物、等が挙げられる。前述したように皮膜が収縮すると抵抗値にむらを生じるが、収縮を防止することにより、抵抗値も均一にすることができる。 When the obtained endless belt is used as a transfer member, a conductive substance is dispersed in the first film-forming resin solution in order to impart semiconductivity. Examples of the conductive material include carbon-based materials such as carbon black, carbon fiber, carbon nanotube, and graphite, metals or alloys such as copper, silver, and aluminum, tin oxide, indium oxide, antimony oxide, SnO 2 —In 2 O. 3 Conductive metal oxides such as complex oxides. As described above, when the film contracts, the resistance value becomes uneven, but by preventing the contraction, the resistance value can be made uniform.

前記第一塗膜の円筒状芯体3の軸方向外側に、第二の皮膜形成樹脂溶液を吐出するには、第一塗膜が乾燥する前に、別の吐出口から溶液を流下させて塗布すればよい(順序は逆でもよい)。第一の皮膜形成樹脂が他のポリイミドやポリアミドイミドであっても、端部にS型PIを塗布した場合、継ぎ目は混ざり合って両者一体となり、簡単に裂けるようなことはない。   In order to discharge the second film-forming resin solution to the axially outer side of the cylindrical core 3 of the first coating film, the solution is allowed to flow down from another discharge port before the first coating film is dried. It may be applied (the order may be reversed). Even if the first film-forming resin is other polyimide or polyamideimide, when S-type PI is applied to the end portion, the seam is mixed and united with each other, so that it is not easily broken.

円筒状芯体3の軸方向両端には非塗布部分3’を設けるのがよいが、そこには樹脂溶液が存在しないので、平滑化部材2が直に芯体に接触して、芯体表面に傷が付くか、平滑化部材2の先端が磨耗する等の損傷が起こりやすい。そこで、塗布時のみ平滑化部材2をつき出すようにしてもよい。その方法としては、芯体に対する平滑化部材2の距離が変化するように、平滑化部材2を前後または上下に移動する方法や、平滑化部材2の固定端を回転させる方法等がある。また、それらを組み合わせてもよい。   It is preferable to provide non-coated portions 3 ′ at both ends in the axial direction of the cylindrical core 3, but since there is no resin solution there, the smoothing member 2 comes into direct contact with the core and the core surface Damage to the surface of the smoothing member 2 is likely to occur, or the tip of the smoothing member 2 is worn. Therefore, the smoothing member 2 may be applied only at the time of application. As the method, there are a method of moving the smoothing member 2 back and forth or up and down, a method of rotating the fixed end of the smoothing member 2 and the like so that the distance of the smoothing member 2 to the core changes. Moreover, you may combine them.

なお、平滑化部材2は、ステンレスや真鍮などの金属や、フッ素樹脂やポリエチレン等の弾力性ある材料で、厚さ0.1〜1mm程度の板から作製されるブレードが好ましく用いられる。平滑化部材の幅は、少なくとも塗布のピッチ(水平移動速度/芯体回転速度)より広い必要があるが、広すぎても筋が形成される場合があるので、上記ピッチの2倍以下が好ましい。また、平滑化部材2は吐出口5と同じ速度で移動することが好ましい。   The smoothing member 2 is preferably a blade made of a metal having a thickness of about 0.1 to 1 mm made of a metal such as stainless steel or brass, or an elastic material such as fluororesin or polyethylene. The width of the smoothing member needs to be at least wider than the coating pitch (horizontal movement speed / core rotation speed), but streaks may be formed even if it is too wide. . The smoothing member 2 is preferably moved at the same speed as the discharge port 5.

また、本発明の無端ベルトの製造方法では、円筒状芯体3を図2に示すように、芯体両側にフランジ等を取り付け、軸20を通して、この軸を保持して回転させる、或いは、図3に示すように、傾斜面のみを有するチャック21で円筒状芯体3の両側を挟んで保持してもよい。しかし、円筒状芯体3を変形させることがなく保持して回転できる点で、図4及び図5に示すように、傾斜面の途中に円筒状芯体3の内径に嵌合する段差23を有するチャック22、又は傾斜面を持たないで段差を有するチャック24によって保持される(チャック22又は24における段差23と円筒状芯体3の内周面とを嵌合させる。)ことが好ましい。図4及び図5に示す段差23を有するチャック22又はチャック24により円筒状芯体3を保持することにより、円筒状芯体3が膨張しても変形することがない。更に、円筒状芯体3の内周面にチャック24を嵌合させる際の位置合わせに精度と時間を要さない点で、図4のように、傾斜面を有するチャック22の方が好ましい。   Moreover, in the manufacturing method of the endless belt of the present invention, as shown in FIG. 2, the cylindrical core body 3 is attached with flanges or the like on both sides of the core body and is rotated while holding the shaft through the shaft 20, or As shown in FIG. 3, the cylindrical core body 3 may be held with both sides of the cylindrical core 3 sandwiched between chucks 21 having only inclined surfaces. However, as shown in FIGS. 4 and 5, a step 23 fitted to the inner diameter of the cylindrical core 3 is provided in the middle of the inclined surface in that the cylindrical core 3 can be held and rotated without being deformed. The chuck 22 is preferably held by the chuck 22 having a step without having an inclined surface (the step 23 in the chuck 22 or 24 and the inner peripheral surface of the cylindrical core body 3 are fitted). By holding the cylindrical core body 3 by the chuck 22 or the chuck 24 having the step 23 shown in FIGS. 4 and 5, the cylindrical core body 3 is not deformed even if it expands. Further, the chuck 22 having an inclined surface is preferable as shown in FIG. 4 in that accuracy and time are not required for alignment when the chuck 24 is fitted to the inner peripheral surface of the cylindrical core 3.

チャック22は、段差23より根元の位置の傾斜が円筒状芯体3の軸方向に対して、40〜85°の角度を有していることが好ましい(より好ましくは55〜70°)。また、チャック22の段差23より先端に位置する傾斜が円筒状芯体3の軸方向に対して、30〜75°の角度を有していることが好ましい(より好ましくは45〜60°)。
一方、チャック24は、段差23より根元の位置の傾斜が円筒状芯体3の軸方向に対して、40〜85°の角度を有していることが好ましい(より好ましくは55〜70°)。
It is preferable that the chuck 22 has an angle of 40 to 85 ° with respect to the axial direction of the cylindrical core body 3 (more preferably 55 to 70 °) with respect to the axial direction of the cylindrical core body 3. Moreover, it is preferable that the inclination located in the front-end | tip from the level | step difference 23 of the chuck | zipper 22 has an angle of 30-75 degrees with respect to the axial direction of the cylindrical core 3 (more preferably 45-60 degrees).
On the other hand, it is preferable that the chuck 24 has an angle of 40 to 85 ° with respect to the axial direction of the cylindrical core body 3 (more preferably 55 to 70 °). .

チャック22及び24における段差23の寸法としては、段差を形成する円筒形状部分の幅が、10mm以下であることが好ましく、より好ましくは3mm以下である。
チャック22又は24における段差23と円筒状芯体3の内周面を嵌合させた際の、円筒状芯体3の内周面と、段差23とのクリアランスは、0.05〜0.2mmであることが好ましい(より好ましくは0.05〜0.1mm)。
As the dimension of the step 23 in the chucks 22 and 24, the width of the cylindrical portion forming the step is preferably 10 mm or less, more preferably 3 mm or less.
The clearance between the inner peripheral surface of the cylindrical core 3 and the step 23 when the step 23 in the chuck 22 or 24 is fitted to the inner peripheral surface of the cylindrical core 3 is 0.05 to 0.2 mm. Is preferable (more preferably 0.05 to 0.1 mm).

円筒状芯体3を図4又は図5に示すように、円筒状芯体3の内径に嵌合する段差23を有するチャック22又は24によって保持した場合、円筒状芯体3の外周面に第一及び第二塗膜形成後、後述する円筒状芯体3を乾燥装置に移動させて加熱乾燥を行う際、塗膜が下方に垂れないよう、芯体を水平にして回転させながら行うのが好ましく、塗膜形成後からチャックを嵌めたまま乾燥機に入れることが好ましい。   When the cylindrical core 3 is held by a chuck 22 or 24 having a step 23 fitted to the inner diameter of the cylindrical core 3 as shown in FIG. 4 or FIG. After the first and second coating films are formed, when the cylindrical core body 3 described later is moved to a drying apparatus and heat drying is performed, the core body is rotated horizontally so that the coating film does not hang downward. Preferably, after forming the coating film, it is preferable to put in the dryer with the chuck fitted.

少なくとも第一塗膜を平滑化部材2により平滑化させた後、円筒状芯体3を乾燥装置に移動させて加熱乾燥を行う。その際、塗膜が下方に垂れないよう、芯体を水平にして回転させながら行うのが好ましい。回転速度は1〜60rpm程度、加熱条件は90〜170℃の温度で20〜60分間が好ましい(第一及び第二の皮膜形成樹脂溶液がポリイミド前駆体の溶液の場合)。その際、温度が高いほど加熱時間は短くてよく、温度は、段階的または一定速度で上昇させてもよい。   After at least the first coating film is smoothed by the smoothing member 2, the cylindrical core body 3 is moved to a drying device and dried by heating. At that time, it is preferable to carry out the process while rotating the core body horizontally so that the coating film does not hang downward. The rotation speed is preferably about 1 to 60 rpm, and the heating condition is preferably 90 to 170 ° C. for 20 to 60 minutes (when the first and second film-forming resin solutions are polyimide precursor solutions). At that time, the higher the temperature, the shorter the heating time, and the temperature may be raised stepwise or at a constant rate.

その後、第一及び第二の皮膜形成樹脂溶液がポリイミド(PI)前駆体の溶液の場合、第一及び第二皮膜を250〜450℃、好ましくは300〜350℃で、20〜60分間、PI前駆体皮膜を加熱して縮合反応させることで、PI樹脂が形成される(樹脂皮膜形成工程)。その際、温度を段階的に上昇させてもよい。この工程では、皮膜は固定されているので、芯体の向きはどちらでもよいし、加熱中の回転もしなくてよい。
一方、第一及び第二の皮膜形成樹脂溶液がPAI樹脂溶液である場合には、溶剤の乾燥だけで皮膜を得ることができる。
Thereafter, when the first and second film-forming resin solutions are polyimide (PI) precursor solutions, the first and second films are 250 to 450 ° C., preferably 300 to 350 ° C., and 20 to 60 minutes. A PI resin is formed by heating the precursor film to cause a condensation reaction (resin film forming step). At that time, the temperature may be increased stepwise. In this step, since the film is fixed, the core body may be oriented in any direction, and may not be rotated during heating.
On the other hand, when the first and second film-forming resin solutions are PAI resin solutions, films can be obtained only by drying the solvent.

前記樹脂皮膜形成工程により形成された第一及び第二の樹脂皮膜を円筒状芯体から抜き取ることにより、軸方向の両端部が、軸方向の中央部と異なる樹脂で形成され、前記軸方向の両端部の樹脂の熱膨張率が、前記軸方向の中央部の樹脂熱膨張率より小さいことを特徴とする本発明の無端ベルトが得られる。   By extracting the first and second resin films formed by the resin film forming step from the cylindrical core body, both axial end portions are formed of a resin different from the axial central portion, and the axial direction The endless belt of the present invention is obtained in which the thermal expansion coefficient of the resin at both ends is smaller than the thermal expansion coefficient of the resin at the center in the axial direction.

円筒状芯体から皮膜を抜き取る際、皮膜の熱膨張率が円筒状芯体のそれより小さい場合には、抜き取りが容易になるが、本発明は、円筒状芯体の軸方向端部に熱膨張率が中央部の熱膨張率より小さい皮膜を形成するのである。端部に熱膨張率が中央のものより小さい皮膜があると、ベルトを形成した時、中央部と端部に皮膜のずれを生じて、端部に円筒状芯体との隙間がわずかに形成される。もちろん、端部の樹脂皮膜の熱膨張率が円筒状芯体のそれより小さい方が、円筒状芯体との隙間がより大きく形成される。
そのわずかに形成される円筒状芯体との隙間から、例えば加圧空気を吹き込む等により、中央部の皮膜にも円筒状芯体との間に隙間を形成でき、第一及び第二の樹脂皮膜を円筒状芯体から抜き取る(抜き取り工程)。該抜き取りは、容易に行える。
また、加圧空気の吹き込みは、直径2〜6mmの開口径のノズルもしくは同等の開口面積の平型ノズルを用い、室温にて0.2〜0.4MPaの圧力が好ましい。
When the film is extracted from the cylindrical core, if the coefficient of thermal expansion of the film is smaller than that of the cylindrical core, it is easy to extract the film. A film having an expansion coefficient smaller than that of the central portion is formed. If there is a coating with a smaller coefficient of thermal expansion at the end than the center, when the belt is formed, the coating will shift between the center and the end, and a slight gap will be formed between the cylindrical core at the end. Is done. Of course, when the coefficient of thermal expansion of the resin film at the end is smaller than that of the cylindrical core body, the gap between the cylindrical core body is formed larger.
From the gap between the slightly formed cylindrical core body, for example, by blowing pressurized air, a gap can be formed between the central core film and the cylindrical core body. The film is extracted from the cylindrical core (extraction process). The extraction can be easily performed.
The pressurized air is preferably blown using a nozzle having an opening diameter of 2 to 6 mm or a flat nozzle having an equivalent opening area and a pressure of 0.2 to 0.4 MPa at room temperature.

第二樹脂皮膜は、無端ベルトを定着部材として使う場合には残存してもかまわないほか、転写部材であっても、端部に非画像部が広くある場合には、やはり残存してもかまわないが、電気特性の均一性を要求される転写部材の場合には、第二樹脂皮膜を第一樹脂皮膜から切断して除去する(第二樹脂皮膜除去工程)。なお、ベルト端部に蛇行防止リブを取り付ける場合、熱膨張率が小さい端部皮膜を切断せず、その部分にリブを取り付けてもよい。   The second resin film may remain if an endless belt is used as a fixing member, or may remain if a non-image area is wide at the end even if it is a transfer member. However, in the case of a transfer member that requires uniformity in electrical characteristics, the second resin film is cut off from the first resin film and removed (second resin film removal step). In addition, when attaching a meandering prevention rib to a belt edge part, you may attach a rib to that part, without cutting | disconnecting an edge part film | membrane with a small thermal expansion coefficient.

無端ベルトを定着ベルトとするには、PI樹脂等の樹脂皮膜の表面に、トナーに対して非粘着性のフッ素樹脂層を形成する。その材料としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)等のフッ素系樹脂が好ましい。また、非粘着性の樹脂層には、耐久性や静電オフセットの向上のためにカーボン粉末が分散されていてもよい。   In order to use the endless belt as a fixing belt, a fluororesin layer that is non-adhesive to toner is formed on the surface of a resin film such as a PI resin. The material is preferably a fluorine-based resin such as polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP). In addition, carbon powder may be dispersed in the non-adhesive resin layer in order to improve durability and electrostatic offset.

フッ素系樹脂層を形成するには、その水分散液をPI樹脂等の樹脂皮膜の表面に塗布して焼き付け処理する方法が好ましい。また、フッ素系樹脂層の密着性が不足する場合には、必要に応じて、PI樹脂等の樹脂皮膜の表面にプライマー層をあらかじめ塗布形成する方法がある。   In order to form the fluorine-based resin layer, a method in which the aqueous dispersion is applied to the surface of a resin film such as a PI resin and baked is preferable. Moreover, when the adhesiveness of a fluorine-type resin layer is insufficient, there exists a method of apply | coating and forming a primer layer beforehand on the surface of resin films, such as PI resin, as needed.

PI樹脂等の樹脂皮膜の表面にフッ素系樹脂層を形成するには、加熱された樹脂皮膜(ベルト)を芯体の表面に形成してから、これらを塗布してもよいが、樹脂皮膜形成用の溶液を塗布して溶剤を乾燥させてから、又は、溶剤を完全に乾燥させないまま、フッ素系樹脂分散液を塗布し、その後に加熱してイミド転化完結反応とフッ素系樹脂層の焼成処理を同時に行ってもよい。この場合、プライマー層がなくてもフッ素系樹脂層の密着性が強固になることがある。   In order to form a fluororesin layer on the surface of a resin film such as a PI resin, a heated resin film (belt) may be formed on the surface of the core and then applied. After applying the solution for drying and drying the solvent, or without completely drying the solvent, apply the fluororesin dispersion, and then heat to imide conversion completion reaction and firing treatment of the fluororesin layer May be performed simultaneously. In this case, the adhesiveness of the fluororesin layer may be strengthened even without the primer layer.

本発明の無端ベルトを定着ベルトに用いる場合、樹脂層の厚さは25〜150μm、また、フッ素樹脂層の厚さは10〜40μmの範囲が好ましい。   When the endless belt of the present invention is used as a fixing belt, the thickness of the resin layer is preferably 25 to 150 μm, and the thickness of the fluororesin layer is preferably 10 to 40 μm.

(実施例1)
図1に示す塗布装置を用い、25℃での粘度が約100Pa・sのA型PI前駆体溶液(商品名:Uイミド、ユニチカ製、固形分濃度18質量%、熱膨張率28ppm)を直径180mm、長さ600mmの円筒状芯体3に回転塗布した。詳しくは、A型PI前駆体溶液にカーボンブラック(商品名:スペシャルブラック4、デグザヒュルス社製)を固形分質量比で30.5%混合し、次いで対向衝突型分散機(株式会社ジーナス製「Geanus PY」)により分散し、これに界面活性剤(商品名:LS009、楠本化成)を5000ppm加えて塗布溶液とした。その800mlを容器4に入れ、モーノポンプ1を連結し、軸回転数15rpmで50g/分の吐出量に調整した。
Example 1
Using the coating apparatus shown in FIG. 1, the diameter of a type A PI precursor solution (trade name: Uimide, manufactured by Unitika, solid content concentration 18% by mass, coefficient of thermal expansion 28 ppm) having a viscosity of about 100 Pa · s at 25 ° C. It spin-coated on the cylindrical core 3 of 180 mm and length 600 mm. Specifically, carbon black (trade name: Special Black 4, manufactured by Degussa Huls) is mixed with the A-type PI precursor solution at a solid content mass ratio of 30.5%, and then an opposed collision type disperser (“Geanus” manufactured by Genus Corporation). PY "), and 5000 ppm of a surfactant (trade name: LS009, Enomoto Kasei) was added to form a coating solution. 800 ml thereof was put into the container 4, the MONO pump 1 was connected, and the discharge rate was adjusted to 50 g / min at a shaft rotation speed of 15 rpm.

円筒状芯体3のチャックは図4に示すように、段差部分が芯体内径に嵌合するよう外径が169.8mm、嵌合長さ10mmで、頂点から底辺まで120mmの円錐形の形状のものを使用した。
また、平滑化部材2(以下「ブレード」という。)は、厚さ0.4mmのステンレス板を幅20mm、長さ70mmに加工してディスペンサーの直下に取り付けた。他の塗布条件を下記表1のようにして塗布を行った。
As shown in FIG. 4, the chuck of the cylindrical core 3 has a conical shape with an outer diameter of 169.8 mm, a fitting length of 10 mm, and a height of 120 mm from the top to the bottom so that the stepped portion can be fitted to the inner diameter of the core. I used one.
Further, the smoothing member 2 (hereinafter referred to as “blade”) was formed by processing a stainless steel plate having a thickness of 0.4 mm into a width of 20 mm and a length of 70 mm and directly below the dispenser. Other coating conditions were applied as shown in Table 1 below.

Figure 2007144817
Figure 2007144817

A型PI前駆体溶液(樹脂溶液6)を円筒状芯体に向け吐出し、A型PI前駆体溶液が芯体に0.5〜2周した後、ブレードが前進してA型PI前駆体溶液に接触し、吐出終了と同時にブレードは50mm後退することによって、塗布時にはPI前駆体溶液が芯体とブレードの間に存在するために芯体とブレードにキズなどを付けずにA型PI前駆体溶液を平滑にした。   The A-type PI precursor solution (resin solution 6) is discharged toward the cylindrical core body, and after the A-type PI precursor solution makes 0.5 to 2 turns around the core body, the blade advances to make the A-type PI precursor. By contacting the solution and retreating the blade 50 mm at the same time as the discharge is completed, the PI precursor solution exists between the core and the blade during coating, so that the A-type PI precursor does not scratch the core and the blade. The body solution was smoothed.

この方法で、A型PI前駆体溶液を円筒状芯体の中央部分400mmに塗布した後、両端部40mmずつの幅で、S型PI前駆体溶液(商品名:UワニスS、宇部興産製、固形分濃度18質量%、熱膨張率12ppm)を、A型PI前駆体溶液と同様に円筒状芯体に向け吐出し、ブレードを接触させた。その後、円筒状芯体を10rpmで回転させながら、120℃の加熱装置に入れ、45分間乾燥させた。次いで、円筒状芯体を垂直にして、190℃で10分間、250℃で30分間、320℃で30分間加熱してPI樹脂皮膜を形成した。   In this method, after applying the A-type PI precursor solution to the central portion 400 mm of the cylindrical core body, the S-type PI precursor solution (trade name: U varnish S, manufactured by Ube Industries, A solid content concentration of 18% by mass and a coefficient of thermal expansion of 12 ppm were discharged toward the cylindrical core in the same manner as the A-type PI precursor solution, and the blade was brought into contact therewith. Thereafter, while rotating the cylindrical core body at 10 rpm, the cylindrical core body was placed in a heating device at 120 ° C. and dried for 45 minutes. Next, the cylindrical core was made vertical and heated at 190 ° C. for 10 minutes, 250 ° C. for 30 minutes, and 320 ° C. for 30 minutes to form a PI resin film.

芯体が室温に冷えた後、皮膜端部には隙間が形成されていたので、加圧空気(室温下、0.2MPa)を吹き込むことで容易に芯体からベルトを引き抜くことが出来た。
得られた無端ベルトは、平均膜厚が80μm、膨れ、凹みなどの欠陥のない良好な品質であった。
After the core had cooled to room temperature, a gap was formed at the end of the film, so that the belt could be easily pulled out from the core by blowing in pressurized air (room temperature, 0.2 MPa).
The obtained endless belt had an average film thickness of 80 μm and good quality without defects such as swelling and dents.

(実施例2)
図6に示す塗布装置を用い、25℃での粘度が約100Pa・sのA型PI前駆体溶液(商品名:Uイミド、ユニチカ製、固形分濃度18質量%、熱膨張率28ppm)を直径180mm、長さ600mmの円筒状芯体3に回転塗布する。すなわち、PI前駆体溶液にカーボンブラック(商品名:スペシャルブラック4、デグザヒュルス社製)を固形分質量比で30.5質量%混合し、次いで対向衝突型分散機により分散し、これに界面活性剤(商品名:LS009、楠本化成)を5000ppm加えて塗布溶液とした。その800mlを容器4に入れ、切替弁9を介してモーノポンプ1を連結し、軸回転数15rpmで50 g/分の吐出量に調整した。なお、図6に示す塗布装置は、図1に示す塗布装置に、樹脂溶液10がはいっている容器11を更に設け、容器11から流入する樹脂溶液10と、容器4から流入する樹脂溶液6とを、切替弁9で切り替えている。
(Example 2)
Using a coating apparatus shown in FIG. 6, a type A PI precursor solution having a viscosity of about 100 Pa · s at 25 ° C. (trade name: Uimide, manufactured by Unitika, solid content concentration 18% by mass, coefficient of thermal expansion 28 ppm) has a diameter. It spin-coats to the cylindrical core 3 of 180 mm and length 600mm. That is, carbon black (trade name: Special Black 4, manufactured by Degussa Huls Co., Ltd.) was mixed with PI precursor solution at a solid content mass ratio of 30.5% by mass, and then dispersed by a counter collision type disperser, and a surfactant was added thereto. (Product name: LS009, Enomoto Kasei) was added at 5000 ppm to form a coating solution. 800 ml thereof was put into the container 4 and the Mono pump 1 was connected via the switching valve 9 to adjust the discharge rate to 50 g / min at a shaft rotation speed of 15 rpm. 6 further includes a container 11 in which the resin solution 10 is placed in the coating apparatus shown in FIG. 1, and the resin solution 10 flowing from the container 11 and the resin solution 6 flowing from the container 4 Is switched by the switching valve 9.

円筒状芯体3のチャックは図4に示すように、段差部分が芯体内径に嵌合するよう外径が169.8mm、嵌合長さ10mmで、頂点から底辺まで120mmの円錐形の形状のものを使用した。
また、S型PI前駆体溶液(商品名:UワニスS、宇部興産製、固形分濃度18質量%、熱膨張率12ppm)200mlを容器11に入れ、切替弁9を介してモーノポンプ1と連結した。
As shown in FIG. 4, the chuck of the cylindrical core 3 has a conical shape with an outer diameter of 169.8 mm, a fitting length of 10 mm, and a height of 120 mm from the top to the bottom so that the stepped portion can be fitted to the inner diameter of the core. I used one.
Further, 200 ml of S-type PI precursor solution (trade name: U varnish S, manufactured by Ube Industries, solid content concentration 18% by mass, coefficient of thermal expansion 12 ppm) was placed in the container 11 and connected to the MONO pump 1 via the switching valve 9. .

一方、ブレードは、厚さ0.4mmのステンレス板を幅20mm、長さ70mmに加工してディスペンサーの直下に取り付けた。他の塗布条件を上記表1のようにして塗布を行った。   On the other hand, the blade was processed by a stainless steel plate having a thickness of 0.4 mm to a width of 20 mm and a length of 70 mm, and was attached directly below the dispenser. Other coating conditions were applied as shown in Table 1 above.

容器11のS型PI前駆体溶液を開始端部40mmの幅で塗布した後、容器4のA型PI前駆体溶液を円筒状芯体3に向け吐出し、円筒状芯体3の中央部分400mmに塗布し、A型PI前駆体溶液が芯体に0.5〜2周した後、ブレードが前進してA型PI前駆体溶液に接触し、吐出終了と同時にブレードは50mm後退することによって、塗布時にはA型PI前駆体溶液が円筒状芯体3とブレードの間に存在するために円筒状芯体3とブレードにキズなどを付けずにPI前駆体溶液を平滑にした。更に切替弁9に切替て、容器11のS型PI前駆体溶液を連続的に終了端部40mmの幅で塗布し、中央部の塗膜7及び端部の塗膜8を形成した。
塗布後、芯体を10rpmで回転させながら、120℃の加熱装置に入れ、45分間 乾燥させた。次いで、円筒状芯体3を垂直にして、190℃で10分間、250℃で30分間、320℃で30分間加熱してPI樹脂皮膜を形成した。
After the S-type PI precursor solution in the container 11 is applied with a width of 40 mm at the start end, the A-type PI precursor solution in the container 4 is discharged toward the cylindrical core body 3 and the central portion of the cylindrical core body 400 mm After the A-type PI precursor solution makes 0.5 to 2 turns around the core body, the blade advances and comes into contact with the A-type PI precursor solution. Since the A-type PI precursor solution was present between the cylindrical core 3 and the blade at the time of coating, the PI precursor solution was smoothed without scratching the cylindrical core 3 and the blade. Furthermore, it switched to the switching valve 9, and apply | coated the S type PI precursor solution of the container 11 continuously by the width | variety of the end edge part 40mm, and formed the coating film 7 of the center part, and the coating film 8 of the edge part.
After coating, the core was rotated at 10 rpm and placed in a heating device at 120 ° C. and dried for 45 minutes. Next, the cylindrical core body 3 was placed vertically and heated at 190 ° C. for 10 minutes, 250 ° C. for 30 minutes, and 320 ° C. for 30 minutes to form a PI resin film.

円筒状芯体3が室温に冷えた後、皮膜端部には隙間が形成されていたので、加圧空気(室温下、0.2MPa)を吹き込むことで容易に芯体からベルトを引き抜くことが出来た。
得られた無端ベルトは、平均膜厚が80μm、膨れ、凹みなどの欠陥のない良好な品質であった。
After the cylindrical core 3 was cooled to room temperature, a gap was formed at the end of the film, so that the belt can be easily pulled out from the core by blowing in pressurized air (room temperature, 0.2 MPa). done.
The obtained endless belt had an average film thickness of 80 μm and good quality without defects such as swelling and dents.

(比較例1)
実施例1において、両端部40mmずつの幅で塗布したS型PI前駆体溶液を塗布しなかったこと以外、実施例1と同様にして、PI樹脂皮膜を形成した。その結果、円筒状芯体3が室温に冷えた後、皮膜端部には隙間が形成されておらず、かつ、貼り付きが強いために、加圧空気(室温下、0.2〜0.4MPa)を吹き込むことが出来ず、厚さ100μm程度のPET樹脂などで機械的に隙間を広げ、そこをきっかけにして加圧空気を吹き込むなどの手間と工夫が必要であった。また、隙間を広げる際にPI樹脂皮膜を傷つけ、あるいは破ってしまい、望む品質の無端ベルトは得られなかった。
(Comparative Example 1)
In Example 1, a PI resin film was formed in the same manner as in Example 1 except that the S-type PI precursor solution applied at a width of 40 mm at both ends was not applied. As a result, after the cylindrical core 3 is cooled to room temperature, no gap is formed at the end of the film and the sticking is strong, so that the pressurized air (at room temperature, 0.2-0. 4 MPa) could not be blown, and it was necessary to work and devise such as expanding the gap mechanically with PET resin having a thickness of about 100 μm and blowing pressurized air as a trigger. Further, when the gap was widened, the PI resin film was damaged or broken, and an endless belt having the desired quality could not be obtained.

(比較例2)
実施例1において、中央部分400mmに塗布したA型PI前駆体溶液をS型PI前駆体溶液に代え、両端部40mmずつの幅で塗布したS型PI前駆体溶液を塗布しなかったこと以外、実施例1と同様にして、PI樹脂皮膜を形成した。その結果、芯体が室温に冷えた後、皮膜端部には隙間が大きく形成され、加圧空気(室温下、0.2〜0.4MPa)を吹き込むことで容易に芯体からベルトを引き抜くことが出来た。しかし、芯体に対して隙間が大きいため得られた無端ベルトの幾何形状は不安定で望む品質は得られなかった。
(Comparative Example 2)
In Example 1, the A-type PI precursor solution applied to the central portion 400 mm was replaced with the S-type PI precursor solution, and the S-type PI precursor solution applied with a width of 40 mm at both ends was not applied. In the same manner as in Example 1, a PI resin film was formed. As a result, after the core has cooled to room temperature, a large gap is formed at the end of the coating, and the belt is easily pulled out by blowing pressurized air (room temperature, 0.2 to 0.4 MPa). I was able to. However, since the gap between the core and the core is large, the geometric shape of the obtained endless belt is unstable and the desired quality cannot be obtained.

本発明の無端ベルトの製造方法に使用する装置の一例の概略図であり、(A)は側面図であり(B)は正面図である。It is the schematic of an example of the apparatus used for the manufacturing method of the endless belt of this invention, (A) is a side view, (B) is a front view. チャックを使用しない従来の芯体の説明図である。It is explanatory drawing of the conventional core which does not use a chuck | zipper. 傾斜面のみを有するチャックの説明図である。It is explanatory drawing of the chuck | zipper which has only an inclined surface. 傾斜面の途中に段差を有するチャックの説明図である。It is explanatory drawing of the chuck | zipper which has a level | step difference in the middle of an inclined surface. 傾斜面を持たないで段差を有するチャックの説明図である。It is explanatory drawing of the chuck | zipper which does not have an inclined surface but has a level | step difference. 実施例2で用いた無端ベルトの製造方法に使用する装置の概略図であり、(A)は側面図であり(B)は正面図である。It is the schematic of the apparatus used for the manufacturing method of the endless belt used in Example 2, (A) is a side view, (B) is a front view.

符号の説明Explanation of symbols

1・・・・ポンプ、2・・・・平滑化部材、3・・・・芯体、3’・・・・非塗布部、4・・・・容器、5・・・・吐出口、6・・・・樹脂溶液、7・・・・中央部の塗膜、8・・・・端部の塗膜、9・・・・切替弁、10・・・・端部塗布用樹脂溶液、11・・・・端部塗布用樹脂溶液の容器、20・・・・軸、21・・・・傾斜面のみを有するチャック、22・・・・傾斜面の途中に段差を有するチャック、23・・・・円筒状芯体の内径に嵌合する段差、24・・・・傾斜面を持たないで段差を有するチャック DESCRIPTION OF SYMBOLS 1 ... Pump, 2 ... Smoothing member, 3 ... Core body, 3 '... Non-application part, 4 ... Container, 5 ... Discharge port, 6 ... Resin solution, 7... Central coating film, 8... End coating film, 9... Switching valve, 10. ... Container of resin solution for end application, 20... Axis, 21... Chuck having only inclined surface, 22... Chuck having a step in the middle of inclined surface, 23. ..Steps that fit into the inner diameter of the cylindrical core, 24... Chuck that has a step without an inclined surface

Claims (3)

円筒状芯体を該円筒状芯体の軸を中心に周方向に回転させ、該回転している円筒状芯体の外周面に第一の皮膜形成樹脂溶液を流下して、平滑化部材により平滑化し第一塗膜を形成する第一塗膜形成工程と、該回転している円筒状芯体の外周面の、第一塗膜の該円筒状芯体の軸方向外側に、第二の皮膜形成樹脂溶液を流下して、平滑化部材により平滑化し第一塗膜と隣接する第二塗膜を形成する第二塗膜形成工程と、前記第一塗膜及び第二塗膜を加熱して、第一樹脂皮膜及び熱膨張率が前記第一樹脂皮膜の熱膨張率より小さい第二樹脂皮膜を形成する樹脂皮膜形成工程と、該第一樹脂皮膜及び第二樹脂皮膜を円筒状芯体から抜き取る抜き取り工程と、を有することを特徴とする無端ベルトの製造方法。   The cylindrical core body is rotated in the circumferential direction around the axis of the cylindrical core body, and the first film-forming resin solution is caused to flow down to the outer peripheral surface of the rotating cylindrical core body. The first coating film forming step for smoothing and forming the first coating film, and the outer peripheral surface of the rotating cylindrical core body, on the outer side in the axial direction of the cylindrical core body of the first coating film, Flowing down the film-forming resin solution, smoothing by the smoothing member, forming a second coating film adjacent to the first coating film, heating the first coating film and the second coating film A resin film forming step of forming a first resin film and a second resin film having a thermal expansion coefficient smaller than that of the first resin film, and the first resin film and the second resin film are formed into a cylindrical core. A method for producing an endless belt. 更に、前記円筒状芯体から抜き取った第一樹脂皮膜から、第二樹脂皮膜を除去する第二樹脂皮膜除去工程を有する請求項1に記載の無端ベルトの製造方法。   Furthermore, the manufacturing method of the endless belt of Claim 1 which has a 2nd resin film removal process of removing a 2nd resin film from the 1st resin film extracted from the said cylindrical core. 軸方向の両端部が、軸方向の中央部と異なる樹脂で形成されている無端ベルトであって、
前記軸方向の両端部の樹脂の熱膨張率が、前記軸方向の中央部の樹脂熱膨張率より小さいことを特徴とする無端ベルト。
Both end portions in the axial direction are endless belts formed of a resin different from the central portion in the axial direction,
An endless belt, wherein the thermal expansion coefficient of the resin at both ends in the axial direction is smaller than the thermal expansion coefficient of the resin at the central part in the axial direction.
JP2005342737A 2005-11-28 2005-11-28 Method for producing endless belt Pending JP2007144817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005342737A JP2007144817A (en) 2005-11-28 2005-11-28 Method for producing endless belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005342737A JP2007144817A (en) 2005-11-28 2005-11-28 Method for producing endless belt

Publications (1)

Publication Number Publication Date
JP2007144817A true JP2007144817A (en) 2007-06-14

Family

ID=38206798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005342737A Pending JP2007144817A (en) 2005-11-28 2005-11-28 Method for producing endless belt

Country Status (1)

Country Link
JP (1) JP2007144817A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052617A (en) * 2007-08-24 2009-03-12 Fuji Xerox Co Ltd Endless belt, its manufacturing method, and image forming apparatus
JP2009287685A (en) * 2008-05-29 2009-12-10 Tokyo Gas Co Ltd Branching joint
JP2010240872A (en) * 2009-04-01 2010-10-28 Hirano Giken Kogyo Kk Apparatus for producing endless belt
JP2012040729A (en) * 2010-08-17 2012-03-01 Nitto Denko Corp Apparatus and method for manufacturing seamless belt

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052617A (en) * 2007-08-24 2009-03-12 Fuji Xerox Co Ltd Endless belt, its manufacturing method, and image forming apparatus
JP2009287685A (en) * 2008-05-29 2009-12-10 Tokyo Gas Co Ltd Branching joint
JP4708454B2 (en) * 2008-05-29 2011-06-22 東京瓦斯株式会社 Joint for branch
JP2010240872A (en) * 2009-04-01 2010-10-28 Hirano Giken Kogyo Kk Apparatus for producing endless belt
JP2012040729A (en) * 2010-08-17 2012-03-01 Nitto Denko Corp Apparatus and method for manufacturing seamless belt

Similar Documents

Publication Publication Date Title
JP2007144292A (en) Coating formation method and manufacturing method of seamless belt
JP4702019B2 (en) Coating apparatus and method for manufacturing tubular article
JP2007144817A (en) Method for producing endless belt
CN108027580B (en) Method for manufacturing sliding member for fixing device
JP5076284B2 (en) Endless belt manufacturing method
JP4252328B2 (en) Rotating body, fixing device, fixing method, and image forming apparatus
JP4706432B2 (en) Core mold for seamless tubular body, method for producing core mold for seamless tubular body, and method for producing seamless tubular body using core mold
JP5386930B2 (en) Coating apparatus and coating method
JP2008112097A (en) Endless belt, manufacturing method of the same, fixing device, and image forming apparatus
JP2008020627A (en) Method for manufacturing endless belt
JP4735133B2 (en) A method for applying a resin dispersion and a method for producing an endless belt.
JP2009045577A (en) Method for forming fluorocarbon resin coating film and object having coating film formed thereby
JP2004094042A (en) Endless belt made of polyimide resin and its manufacture method
JP5002901B2 (en) Immersion coating method and fixing belt manufacturing method
JP2007145507A (en) Method of manufacturing endless belt having rib and cylindrical core body used therefor
JP2002160239A (en) Method for forming film, jointless belt, and manufacturing method for jointless belt
JP2006240099A (en) Endless belt made of thermosetting resin and its production method
JP5453997B2 (en) Substrate, substrate manufacturing method, and tubular body manufacturing method
JP2007296838A (en) Cylindrical core body and method for producing endless belt using the core body
JP2005172885A (en) Coating device, coating method, and fixing belt manufacturing method
JP4806903B2 (en) Cylindrical core, coating device, and method for producing polyimide resin endless belt
CN108027579A (en) Peeling member and its manufacture method
JP2005091921A (en) Fixing member, fixing device, fixing method and image forming apparatus
JP4544104B2 (en) Cylindrical core, method for manufacturing the same, and method for manufacturing an endless belt
JP4609254B2 (en) Recycling method of cylindrical core and manufacturing method of endless belt