JP5002901B2 - Immersion coating method and fixing belt manufacturing method - Google Patents

Immersion coating method and fixing belt manufacturing method Download PDF

Info

Publication number
JP5002901B2
JP5002901B2 JP2005078143A JP2005078143A JP5002901B2 JP 5002901 B2 JP5002901 B2 JP 5002901B2 JP 2005078143 A JP2005078143 A JP 2005078143A JP 2005078143 A JP2005078143 A JP 2005078143A JP 5002901 B2 JP5002901 B2 JP 5002901B2
Authority
JP
Japan
Prior art keywords
coating
cylindrical substrate
film
cylindrical
fluororesin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005078143A
Other languages
Japanese (ja)
Other versions
JP2006255615A (en
Inventor
博 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2005078143A priority Critical patent/JP5002901B2/en
Publication of JP2006255615A publication Critical patent/JP2006255615A/en
Application granted granted Critical
Publication of JP5002901B2 publication Critical patent/JP5002901B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Fixing For Electrophotography (AREA)

Description

本発明は、円筒状基体の表面に浸漬塗布によって塗膜を形成する浸漬塗布方法、及び、その浸漬塗布方法を用いてフッ素樹脂層を形成した定着ベルトの製造方法に関する。該定着ベルトは、複写機やレーザープリンタ等の電子写真装置の加熱定着装置に使用される。   The present invention relates to a dip coating method for forming a coating film on a surface of a cylindrical substrate by dip coating, and a method for manufacturing a fixing belt having a fluororesin layer formed by using the dip coating method. The fixing belt is used in a heat fixing device of an electrophotographic apparatus such as a copying machine or a laser printer.

電子写真装置においては、トナー像を記録用紙上に加熱定着するための定着体として、金属やプラスチック、又はゴム製の回転体が使用されるが、装置の小型化や省電力化のために、特許文献1や特許文献2に記載のように、回転体には、変形可能な薄肉の樹脂製ベルトが用いられる。この場合、ベルトに継ぎ目(シーム)があると、出力画像に継ぎ目に起因する欠陥が生じるので、継ぎ目がない無端ベルトが好ましい。その材料としては、強度や寸法安定性、耐熱性等の面でポリイミド樹脂が特に好ましい。   In an electrophotographic apparatus, a rotating body made of metal, plastic, or rubber is used as a fixing body for heat-fixing a toner image on a recording sheet, but in order to reduce the size and power consumption of the apparatus, As described in Patent Document 1 and Patent Document 2, a deformable thin resin belt is used for the rotating body. In this case, if there is a seam in the belt, a defect due to the seam occurs in the output image. Therefore, an endless belt without a seam is preferable. As the material, polyimide resin is particularly preferable in terms of strength, dimensional stability, heat resistance, and the like.

ポリイミド樹脂ベルトは、その前駆体を基体に塗布し、乾燥し、加熱焼成して作製される。該前駆体は、非プロトン系極性溶剤に酸無水物とジアミンを溶解して合成される。非プロトン系極性溶剤としては、N−メチルピロリドン、N,N−ジメチルアセトアミド、アセトアミド、N,N−ジメチルホルムアミド等が挙げられる。溶液の濃度、粘度等は、適宜選択される。   The polyimide resin belt is produced by applying the precursor to a substrate, drying, and heating and baking. The precursor is synthesized by dissolving an acid anhydride and a diamine in an aprotic polar solvent. Examples of the aprotic polar solvent include N-methylpyrrolidone, N, N-dimethylacetamide, acetamide, N, N-dimethylformamide and the like. The concentration, viscosity, etc. of the solution are appropriately selected.

ポリイミド樹脂ベルトを定着体として使用するには、表面に付着するトナーの剥離性のため、ベルト表面に非粘着性の層を設けるのが好ましい。その層の材料としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)等のフッ素樹脂が好ましい。非粘着層には、耐摩耗性や静電オフセットの向上、トナーの付着防止用オイルとの親和性等のために、カーボン粉体や、酸化チタン、硫酸バリウム等の無機化合物粉体等、フッ素樹脂以外の材料を含んでもよい。定着ベルトとして、ポリイミド樹脂層の厚さは25〜200μmの範囲が好ましく、非粘着層の厚さは5〜50μmの範囲が好ましい。   In order to use a polyimide resin belt as a fixing member, it is preferable to provide a non-adhesive layer on the surface of the belt for the releasability of the toner adhering to the surface. As the material of the layer, fluororesins such as polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP) and the like are preferable. For non-adhesive layers, carbon powder, inorganic compound powders such as titanium oxide and barium sulfate, etc. are used to improve wear resistance, electrostatic offset, and compatibility with toner adhesion prevention oil. Materials other than resin may be included. As the fixing belt, the thickness of the polyimide resin layer is preferably in the range of 25 to 200 μm, and the thickness of the non-adhesive layer is preferably in the range of 5 to 50 μm.

ポリイミド樹脂で無端ベルトを作製するには、特許文献3記載の、円筒状基体の内面にポリイミド前駆体溶液を塗布し、回転しながら乾燥させる遠心成形法や、特許文献4記載の、円筒状基体内面にポリイミド前駆体溶液を展開する内面塗布法がある。但し、これら内面に成膜する方法では、ポリイミド前駆体皮膜が、管状体として強度を保持できる状態になるまで熱処理した後、円筒状基体から抜いて外型に載せ換える必要があり、工数が増える問題があった。また、表面にフッ素樹脂を塗布する場合も、外型に載せ換えた後で塗布する必要があった。   In order to produce an endless belt with a polyimide resin, a centrifugal molding method described in Patent Document 3 is that a polyimide precursor solution is applied to the inner surface of a cylindrical substrate and dried while rotating, or a cylindrical substrate described in Patent Document 4. There is an inner surface coating method in which a polyimide precursor solution is spread on the inner surface. However, in the method of forming a film on the inner surface, it is necessary to heat-treat the polyimide precursor film until it can maintain strength as a tubular body, and then remove it from the cylindrical substrate and mount it on the outer mold, which increases the number of steps. There was a problem. In addition, when a fluororesin is applied to the surface, it is necessary to apply the fluororesin after it is mounted on the outer mold.

ポリイミド樹脂無端ベルトの他の製造方法として、基体の表面に、浸漬塗布法によってポリイミド前駆体溶液を塗布して乾燥し、加熱することにより、基体外面上にポリイミド樹脂皮膜を形成する方法もある。ポリイミド前駆体溶液が高粘度のために、膜厚が厚くなりすぎる場合には、特許文献5開示の如く、基体の外径よりも大きな孔を設けた環状体をポリイミド前駆体溶液に浮かべて、ポリイミド前駆体溶液の膜厚を制御する方法があり、この方法では、外型に載せ換える工数が不要である。   As another method for producing a polyimide resin endless belt, there is a method of forming a polyimide resin film on the outer surface of the substrate by applying a polyimide precursor solution to the surface of the substrate by a dip coating method, drying, and heating. If the film thickness becomes too thick due to the high viscosity of the polyimide precursor solution, as disclosed in Patent Document 5, an annular body having holes larger than the outer diameter of the substrate is floated on the polyimide precursor solution, There is a method of controlling the film thickness of the polyimide precursor solution, and this method does not require the man-hours for mounting on the outer mold.

更に、基体の表面にポリイミド樹脂皮膜を形成する他の方法として、特許文献6に記載のように、基体を回転させながら、高粘度の樹脂溶液をディスペンサーにより供給し、かつディスペンサーを基体の軸方向に移動し、らせん状に巻回して塗布する方法もある。この方法では、高粘度のポリイミド前駆体溶液でも所望の膜厚に塗布は可能であるものの、条件次第では、らせん状の縞模様が発生する事があり、特に膜厚が50μm以上と厚い場合や、ディスペンサーの移動速度を速くした場合には発生しやすかった。   Furthermore, as another method for forming a polyimide resin film on the surface of the substrate, as described in Patent Document 6, a highly viscous resin solution is supplied by a dispenser while rotating the substrate, and the dispenser is moved in the axial direction of the substrate. There is also a method in which the coating is wound and spirally wound. Although this method can be applied to a desired film thickness even with a high-viscosity polyimide precursor solution, depending on the conditions, a spiral striped pattern may occur, especially when the film thickness is as thick as 50 μm or more. It was easy to occur when the movement speed of the dispenser was increased.

一方、フッ素樹脂層を形成するには、フッ素樹脂が溶剤に不溶性であるため、フッ素樹脂の粉体を水等の溶媒に分散した塗料を塗布した後、溶媒を乾燥し、焼成して加熱溶融する方法がとられる。   On the other hand, in order to form a fluororesin layer, since the fluororesin is insoluble in a solvent, after applying a paint in which a fluororesin powder is dispersed in a solvent such as water, the solvent is dried, baked and heated to melt The way to do is taken.

ところが、フッ素樹脂層は、記録用紙の表面、及び/又は裏面と接触するので、その表面が荒れていると、記録用紙上のトナー層に荒れた面が転写されて、像が乱れるので、フッ素樹脂層の表面は平滑な方が好ましい。   However, since the fluororesin layer is in contact with the front surface and / or back surface of the recording paper, if the surface is rough, the rough surface is transferred to the toner layer on the recording paper and the image is disturbed. The surface of the resin layer is preferably smooth.

フッ素樹脂分散液の塗布方法として、スプレー塗布法は、表面の平滑性が劣るほか、高価なフッ素樹脂分散液の塗着効率が悪いために、高コストになる問題があって好ましくない。   As a coating method of the fluororesin dispersion, the spray coating method is not preferable because of poor surface smoothness and poor coating efficiency of the expensive fluororesin dispersion.

また、特許文献7に記載のように、基体を回転させながら、フッ素樹脂分散液をやはりディスペンサーにより供給し、かつディスペンサーを基体の回転軸方向に移動させることにより、らせん状に巻回して塗布する方法もあるが、フッ素樹脂分散液が流延性に乏しいために、らせん状の筋が消えにくく、特に膜厚が25μm以上と厚い場合や、ディスペンサーの移動速度を速くした場合には、らせん筋が発生しやすい問題があった。
特開平8−262903号公報 特開平11−133776号公報 特開昭57−74131号公報 特開昭62−19437号公報 特開2002−91027公報 特開平9−85756号公報 特開平9−297482号公報
Further, as described in Patent Document 7, while rotating the substrate, the fluororesin dispersion is also supplied by the dispenser, and the dispenser is moved in the direction of the rotation axis of the substrate to be spirally wound and applied. There is also a method, but because the fluororesin dispersion is poor in castability, the spiral streaks are difficult to disappear, especially when the film thickness is as thick as 25 μm or when the movement speed of the dispenser is increased. There was a problem that occurred easily.
JP-A-8-262903 Japanese Patent Application Laid-Open No. 11-133776 JP-A-57-74131 Japanese Patent Laid-Open No. 62-19437 JP 2002-91027 A JP-A-9-85756 JP-A-9-297482

また、他のフッ素樹脂分散液の塗布方法として、円筒状基体をその軸方向を垂直にしてフッ素樹脂分散液に浸漬し、次いで引き上げることにより塗布する浸漬塗布方法もあり、平滑な被膜を形成する場合に好ましい。   As another method of applying the fluororesin dispersion, there is also a dip coating method in which the cylindrical substrate is immersed in the fluororesin dispersion with its axial direction vertical, and then pulled up to form a smooth coating. Preferred in some cases.

円筒状基体の表面に浸漬塗布方法によって塗膜を形成することは、従来から知られている。その場合、円筒状基体の内部に塗料が浸入すると、円筒状基体の内面に塗料が付着して、塗料が無駄になるばかりか、内面を汚してしまうため好ましくない。   It is conventionally known to form a coating film on the surface of a cylindrical substrate by a dip coating method. In this case, if the paint enters the inside of the cylindrical substrate, the paint adheres to the inner surface of the cylindrical substrate, which is not preferable because the paint is wasted and the inner surface is soiled.

円筒状基体の底部の開口面を蓋で密閉し、粘着テープで固定し、結合部を被覆することは従来から知られている。その場合、塗布又は乾燥後に粘着テープを剥離して蓋を外す必要があるが、粘着テープを剥離する作業に時間がかかっていた。   It has been conventionally known that the opening surface of the bottom of the cylindrical base is sealed with a lid, fixed with an adhesive tape, and covered with a joint. In that case, it is necessary to peel off the adhesive tape and remove the lid after coating or drying, but it took time to remove the adhesive tape.

フッ素樹脂分散液の浸漬塗布時には、円筒状基体の底部に被覆体を取り付け、フッ素樹脂分散液を浸入させないのが好ましい。ところが、フッ素樹脂分散液は、混入されている界面活性剤のために、液が泡立ちやすいという問題がある。そのため、フッ素樹脂分散液の浸漬塗布時には、気泡の発生に十分に注意する必要があり、円筒状基体と被覆体の隙間から空気が漏れるもしくは両者の段差の衝撃から気泡が発生することは避けなければならないことである。   At the time of dip coating of the fluororesin dispersion, it is preferable that a covering is attached to the bottom of the cylindrical substrate so that the fluororesin dispersion does not enter. However, the fluororesin dispersion has a problem that the liquid tends to foam due to the mixed surfactant. Therefore, it is necessary to pay sufficient attention to the generation of bubbles during immersion coating of the fluororesin dispersion, and it is unavoidable that air leaks from the gap between the cylindrical substrate and the cover, or that bubbles are generated from the impact of the step between the two. It must be done.

ところが、基体の下端部に被覆体を取り付け、その軸方向を垂直にしてフッ素樹脂分散液に浸漬塗布する際に、被覆体がフッ素樹脂分散液に浸漬される時に気泡が発生し、塗布膜表面に泡が付着した状態で引き上げられて平滑な被膜が形成できない問題があった。   However, when a covering is attached to the lower end of the substrate and its axial direction is vertical and dip-coated in the fluororesin dispersion, bubbles are generated when the covering is immersed in the fluororesin dispersion, and the coating film surface There was a problem that a smooth film could not be formed by being pulled up with bubbles adhering to it.

また、基体の下端部に被覆体を取り付けることにより、基体内の空気が圧縮され、この状態で浸漬塗布した場合に液中で基体内部に溜まった空気が漏れることにより被覆体の淵から気泡が発生して、均一な被膜を形成できないこともあった。   In addition, by attaching a covering to the lower end of the base, the air in the base is compressed, and when it is dip coated in this state, air accumulated in the base in the liquid leaks, causing bubbles from the ridges of the covering. Occurred and a uniform film could not be formed.

本発明は、上記従来技術の問題点を解決することを目的とする。すなわち本発明は、下端部に塗液の浸入を防止するための被覆体が設けらた円筒状基体を用いる浸漬塗布方法であって、塗料の気泡発生を抑制し、円筒状基体表面に平滑な被膜を形成することができる浸漬塗布方法を提供することを目的とする。また、当該浸漬塗布方法を利用した定着ベルトの製造方法を提供することを目的する。   The object of the present invention is to solve the above-mentioned problems of the prior art. That is, the present invention is a dip coating method using a cylindrical substrate provided with a coating for preventing the coating liquid from entering the lower end portion, which suppresses the generation of bubbles in the paint and smoothes the surface of the cylindrical substrate. It is an object of the present invention to provide a dip coating method capable of forming a film. It is another object of the present invention to provide a method for manufacturing a fixing belt using the dip coating method.

上記課題は、以下の手段により解決される。即ち、
本発明の浸漬塗布方法は、円筒状基体を、その軸方向が垂直となるように保持しながら塗料に浸漬し、次いで引き上げることにより、該塗料を前記円筒状基体の表面に塗布をする浸漬塗布方法であり、
前記円筒状基体は、その下端の開口を密閉すると共に下端部外周面を覆って被覆体が保持されてなり、
且つ前記被覆体と前記円筒状基体との境界部であって、前記被覆体の最大外径と前記円筒状基体の最大外径との差が0.5mm以下で、その差により形成される段差部からなる境界部が前記塗液の液面を通過する間の浸漬速度Tが下記式(1)及び下記式(2)を満たすことを特徴としている。
式(1):T≦−ρ+1000
式(2):T≦−0.4ρ+460
(ここで、式(1)及び(2)中、Tは浸漬速度(mm/分)、ρは塗液の粘度(mPa・s)を示す。)
The above problem is solved by the following means. That is,
The dip coating method of the present invention is a dip coating method in which a cylindrical substrate is immersed in a paint while maintaining its axial direction perpendicular, and then pulled up to apply the paint to the surface of the cylindrical substrate. Is the way
The cylindrical substrate is formed by sealing a lower end opening and covering a lower end outer peripheral surface, and a covering is held.
And a step formed by the difference between the maximum outer diameter of the covering body and the maximum outer diameter of the cylindrical base body, which is a boundary portion between the covering body and the cylindrical base body and is 0.5 mm or less. It is characterized in that the immersion speed T during the passage of the boundary portion formed by the portion passes the liquid surface of the coating liquid satisfies the following formula (1) and the following formula (2).
Formula (1): T ≦ −ρ + 1000
Formula (2): T ≦ −0.4ρ + 460
(Here, in formulas (1) and (2), T represents the dipping rate (mm / min), and ρ represents the viscosity of the coating liquid (mPa · s).)

本発明の浸漬塗布方法において、前記被覆体の最大外径と前記円筒状基体の最大外径との差は、0.5mm以下であることが好適である。   In the dip coating method of the present invention, the difference between the maximum outer diameter of the covering and the maximum outer diameter of the cylindrical substrate is preferably 0.5 mm or less.

本発明の浸漬塗布方法において、前記被覆体は、摩擦力のみにより円筒状基体に保持されていることが好適である。   In the dip coating method of the present invention, it is preferable that the covering is held on the cylindrical substrate only by frictional force.

一方、本発明の定着ベルトの製造方法は、上記本発明の浸漬塗布方法を利用した方法であり、
ポリイミド樹脂皮膜又はポリイミド前駆体皮膜を円筒状基体の表面に形成する工程と、
前記皮膜が表面に形成された円筒状基体を、その軸方向が垂直となるように保持しながら、フッ素樹脂塗料中に浸漬し、引き上げることにより、前記円筒状基体における前記皮膜の表面にフッ素樹脂塗料を塗布する工程と、
塗布された前記フッ素樹脂塗料を加熱焼成して、フッ素樹脂層を形成する工程と、
フッ素樹脂層が形成された前記皮膜を円筒状基体から抜き取る工程と、
を有し、
前記フッ素樹脂層を形成する工程において、
前記円筒状基体は、その下端の開口を密閉すると共に下端部外周面を覆って被覆体が保持されてなり、
且つ前記被覆体と前記円筒状基体との境界部であって、前記被覆体の最大外径と前記円筒状基体の最大外径との差が0.5mm以下で、その差により形成される段差部からなる境界部が前記塗液の液面を通過する間の浸漬速度Tが下記式(1)及び下記式(2)を満たすことを特徴としている。
式(1):T≦−ρ+1000
式(2):T≦−0.4ρ+460
(ここで、式(1)及び(2)中、Tは浸漬速度(mm/分)、ρは塗液の粘度(mPa・s)を示す。)
On the other hand, the manufacturing method of the fixing belt of the present invention is a method using the dip coating method of the present invention,
Forming a polyimide resin film or a polyimide precursor film on the surface of the cylindrical substrate;
The cylindrical substrate with the coating formed on the surface is immersed in a fluororesin paint while being held so that its axial direction is vertical, and then pulled up, so that the fluororesin is applied to the surface of the coating on the cylindrical substrate. Applying a paint; and
Heating and firing the applied fluororesin paint to form a fluororesin layer;
Extracting the film on which the fluororesin layer is formed from a cylindrical substrate;
Have
In the step of forming the fluororesin layer,
The cylindrical substrate is formed by sealing a lower end opening and covering a lower end outer peripheral surface, and a covering is held.
And a step formed by the difference between the maximum outer diameter of the covering body and the maximum outer diameter of the cylindrical base body, which is a boundary portion between the covering body and the cylindrical base body and is 0.5 mm or less. It is characterized in that the immersion speed T during the passage of the boundary portion formed by the portion passes the liquid surface of the coating liquid satisfies the following formula (1) and the following formula (2).
Formula (1): T ≦ −ρ + 1000
Formula (2): T ≦ −0.4ρ + 460
(Here, in formulas (1) and (2), T represents the dipping rate (mm / min), and ρ represents the viscosity of the coating liquid (mPa · s).)

本発明の定着ベルトの製造方法においても、前記被覆体の最大外径と前記円筒状基体の最大外径との差は、0.5mm以下であることが好適である。   Also in the fixing belt manufacturing method of the present invention, it is preferable that the difference between the maximum outer diameter of the covering and the maximum outer diameter of the cylindrical substrate is 0.5 mm or less.

本発明の定着ベルトの製造方法においても、前記被覆体は、摩擦力のみにより円筒状基体に保持されていることが好適である。   Also in the fixing belt manufacturing method of the present invention, it is preferable that the covering is held on the cylindrical base body only by frictional force.

本発明によれば、下端部に塗液の浸入を防止するための被覆体が設けらた円筒状基体を用いる浸漬塗布方法であって、塗料の気泡発生を抑制し、円筒状基体表面に平滑な被膜を形成することができる浸漬塗布方法を提供することができる。また、当該浸漬塗布方法を利用した定着ベルトの製造方法を提供することができる。   According to the present invention, there is provided a dip coating method using a cylindrical base body provided with a coating for preventing the ingress of coating liquid at the lower end, which suppresses the generation of bubbles in the paint and smoothes the surface of the cylindrical base body. It is possible to provide a dip coating method capable of forming a thick film. In addition, a fixing belt manufacturing method using the dip coating method can be provided.

以下、本発明の定着ベルトの製造方法を、本発明の浸漬塗布方法と共に説明する。   Hereinafter, the manufacturing method of the fixing belt of the present invention will be described together with the dip coating method of the present invention.

本発明の定着ベルトの製造方法は、ポリイミド樹脂皮膜又はポリイミド前駆体皮膜を円筒状基体の表面に形成する工程(皮膜形成工程)と、前記皮膜が表面に形成された円筒状基体を、その軸方向が垂直となるように保持しながら、フッ素樹脂塗料中に浸漬し、引き上げることにより、前記円筒状基体における前記皮膜の表面にフッ素樹脂塗料を塗布する工程(フッ素樹脂塗膜形成工程)と、塗布された前記フッ素樹脂塗料を加熱焼成して、フッ素樹脂層を形成する工程(加熱焼成工程)と、フッ素樹脂層が形成された前記皮膜を円筒状基体から抜き取る工程(抜き取り工程)と、を有ししている。以下、各工程について説明する。   The method for producing a fixing belt of the present invention comprises a step of forming a polyimide resin film or a polyimide precursor film on the surface of a cylindrical substrate (film forming step), and a cylindrical substrate on which the film is formed on its surface. A process of applying a fluororesin paint to the surface of the coating on the cylindrical substrate (fluorine resin coating film forming process) by immersing and pulling up in the fluororesin paint while holding the direction to be vertical, A step of heating and baking the applied fluororesin coating material to form a fluororesin layer (heating and baking step), and a step of extracting the film on which the fluororesin layer has been formed from a cylindrical substrate (extraction step). Have. Hereinafter, each step will be described.

−皮膜形成工程− -Film formation process-

皮膜形成工程では、まず、円筒状基体の表面にポリイミド前駆体皮膜を形成する。このポリイミド前駆体皮膜は、円筒状基体にポリイミド前駆体を塗布するポリイミド前駆体塗布工程と、その後乾燥してポリイミド前駆体皮膜を形成するポリイミド前駆体乾燥工程とから形成される。   In the film forming step, first, a polyimide precursor film is formed on the surface of the cylindrical substrate. This polyimide precursor film is formed from a polyimide precursor coating process in which a polyimide precursor is applied to a cylindrical substrate, and then a polyimide precursor drying process in which the polyimide precursor film is dried to form a polyimide precursor film.

・ポリイミド前駆体塗布工程
ポリイミド前駆体塗布工程では、まず、ポリイミド前駆体が非プロトン系極性溶剤に溶解したポリイミド前駆体溶液を調製する。ポリイミド前駆体としては、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(以下、適宜「BPDA」と略す)とp−フェニレンジアミン(以下、適宜「PDA」と略す)とからなるポリイミド前駆体を用いたもの、BPDAと4,4’ −ジアミノジフェニルエーテルとからなるポリイミド前駆体を用いたもの、ピロメリット酸二無水物(PMDA)と4,4’−ジアミノジフェニルエーテルとからなるポリイミド前駆体を用いたもの、3,3’,4,4’ −ベンゾフェノンテトラカルボン酸二無水物と4,4’−ジアミノジフェニルメタンとからなるポリイミド前駆体を用いたもの、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物と4,4’−ジアミノベンゾフェノンとからなるポリイミド前駆体を用いたものなど、種々の組み合せからなるものを用いることができる。また、ポリイミド前駆体は、2種以上を混合して用いてもよいし、酸又はアミンのモノマーを混合して共重合されたものを用いてもよい。
-Polyimide precursor coating process In a polyimide precursor coating process, first, a polyimide precursor solution in which a polyimide precursor is dissolved in an aprotic polar solvent is prepared. As a polyimide precursor, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (hereinafter abbreviated as “BPDA” where appropriate) and p-phenylenediamine (hereinafter abbreviated as “PDA” where appropriate). Using polyimide precursor, using polyimide precursor consisting of BPDA and 4,4'-diaminodiphenyl ether, polyimide consisting of pyromellitic dianhydride (PMDA) and 4,4'-diaminodiphenyl ether Those using a precursor, those using a polyimide precursor composed of 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride and 4,4′-diaminodiphenylmethane, 3,3 ′, 4, Various using a polyimide precursor composed of 4′-benzophenone tetracarboxylic dianhydride and 4,4′-diaminobenzophenone It can be used consisting of a combination. Further, the polyimide precursor may be used by mixing two or more kinds, or may be a copolymer obtained by mixing acid or amine monomers.

ポリイミド前駆体は、N−メチルピロリドン、N,N−ジメチルアセトアミド、アセトアミド、N,N−ジメチルホルムアミド等の非プロトン系極性溶剤に溶解することで、ポリイミド前駆体溶液として調製される。なお、この調製の際におけるポリイミド前駆体の混合比、濃度、粘度等の選択は、適宜調整して行われる。   A polyimide precursor is prepared as a polyimide precursor solution by dissolving in an aprotic polar solvent such as N-methylpyrrolidone, N, N-dimethylacetamide, acetamide, N, N-dimethylformamide. In addition, selection of the mixing ratio, concentration, viscosity, and the like of the polyimide precursor in the preparation is performed by appropriately adjusting.

ポリイミド前駆体塗布工程において、塗布方法の一つとして、ポリイミド前駆体溶液をノズルから円筒状基体表面に流下させつつ、へらでポリイミド前駆体溶液を平坦化し、ノズルとへらを円筒状基体の一端から他の一端へ水平方向に移動させることにより、基体表面にポリイミド前駆体溶液を塗布する方法がある(螺旋塗布法)。   In the polyimide precursor coating process, as one of the coating methods, the polyimide precursor solution is flattened with a spatula while the polyimide precursor solution is allowed to flow from the nozzle to the surface of the cylindrical substrate, and the nozzle and spatula are removed from one end of the cylindrical substrate. There is a method of applying a polyimide precursor solution to the surface of a substrate by moving it horizontally to the other end (spiral application method).

具体的には、図1に示す塗布装置を用いて塗布することができる。図1に示す塗布装置では、図示しないが、円筒状基体10は、その両端を保持部材で保持されて、水平に回転可能(矢印A)に支持するアームを有する台座に保持体を介して配設されている。また、図示しないが、円筒状基体10は、円筒状基体10を軸回転させるための駆動手段(回転手段)と保持部材を介して連結されている。   Specifically, it can apply | coat using the coating device shown in FIG. In the coating apparatus shown in FIG. 1, although not shown, the cylindrical substrate 10 is disposed on a pedestal having an arm that is supported by holding members at both ends and is horizontally rotatable (arrow A) via a holding body. It is installed. Although not shown, the cylindrical base 10 is connected to a driving means (rotating means) for rotating the cylindrical base 10 through a holding member.

そして、円筒状基体10の周辺には、ポリイミド前駆体溶液12を流下して円筒状基体10にポリイミド前駆体溶液12を付着させる流下装置14(流下手段)が配置されている。流下装置14は、例えば、ポリイミド前駆体溶液12を流下させるノズル16と、ノズル16へポリイミド前駆体溶液12を供給する容器18とから構成されている。容器18としては、例えば、メニカスシリンダー、スクリューなどを利用した装置が適用される。流下装置14は、ノズル16と容器18とが連結管により連結してノズル16と容器18とが分離して別置している形態でもよいし、ノズル16と容器18とが一体的に構成された形態でもよい。   In the vicinity of the cylindrical substrate 10, a flow-down device 14 (flowing means) for flowing the polyimide precursor solution 12 and attaching the polyimide precursor solution 12 to the cylindrical substrate 10 is disposed. The flow down device 14 includes, for example, a nozzle 16 for flowing down the polyimide precursor solution 12 and a container 18 for supplying the polyimide precursor solution 12 to the nozzle 16. As the container 18, for example, an apparatus using a meniscus cylinder, a screw, or the like is applied. The flow-down device 14 may be configured such that the nozzle 16 and the container 18 are connected by a connecting pipe, and the nozzle 16 and the container 18 are separated and arranged separately, or the nozzle 16 and the container 18 are integrally configured. The form may be sufficient.

ノズル16からは、粘度が高いポリイミド前駆体溶液12であると、重力だけでは自然に流下しにくいので、容器18からエア圧やポンプで押し出すことも有効である。ノズル16と円筒状基体10の距離は任意でよいが、流下液が途切れることがないよう、10〜100mm程度が好ましい。液の途切れが生じると、泡を巻き込むことがある。   Since the polyimide precursor solution 12 having a high viscosity from the nozzle 16 is unlikely to flow down naturally by gravity alone, it is also effective to push out from the container 18 with air pressure or a pump. The distance between the nozzle 16 and the cylindrical substrate 10 may be arbitrary, but is preferably about 10 to 100 mm so that the falling liquid is not interrupted. If the liquid breaks off, bubbles may be involved.

また、円筒状基体10の周辺には、円筒状基体10へ付着したポリイミド前駆体溶液12を平滑化するへら20が設けられている。   A spatula 20 for smoothing the polyimide precursor solution 12 adhering to the cylindrical substrate 10 is provided around the cylindrical substrate 10.

へら20は、ポリイミド前駆体溶液12に侵されない材料、例えば、ポリエチレンやフッ素樹脂等のプラスチック、又は、真鍮やステンレス等の金属の薄い板から構成することができる。   The spatula 20 can be comprised from the material which is not attacked by the polyimide precursor solution 12, for example, plastics, such as polyethylene and a fluororesin, or a thin board of metals, such as a brass and stainless steel.

そして、流下装置14(ノズル16)及びへら20は、ポリイミド前駆体溶液12の円筒状基体10への付着及び平滑化に伴い、円筒状基体10の回転毎に付着部及び平滑化部が相対的に円筒状基体10の一端から他の一端へ水平方向(矢印B)に移動させる。この構成は、図示しないが、流下装置14(ノズル16)及びへら20を移動させる構成としてもよいし、円筒状基体10が移動する構成としてもよく、周知の技術により構成することができる。   The flow-down device 14 (nozzle 16) and spatula 20 have relative attachment and smoothing portions for each rotation of the cylindrical substrate 10 as the polyimide precursor solution 12 adheres to and smoothes the cylindrical substrate 10. The cylindrical substrate 10 is moved in the horizontal direction (arrow B) from one end of the cylindrical substrate 10 to the other end. Although not shown, this configuration may be configured to move the flow-down device 14 (nozzle 16) and spatula 20, or may be configured to move the cylindrical substrate 10, and may be configured by a known technique.

流下装置14(ノズル16)及びへら20とを連動させ、円筒状基体10の一端から他の一端へ水平方向に移動させることにより、円筒状基体10の表面に塗布することができる。その移動速度が塗布速度と言える。   By applying the flow-down device 14 (nozzle 16) and the spatula 20 in conjunction with each other and moving in a horizontal direction from one end of the cylindrical substrate 10 to the other end, it can be applied to the surface of the cylindrical substrate 10. The moving speed can be said to be the coating speed.

塗布時の条件は、円筒状基体10の回転速度が20〜200rpmであり、塗布速度Vは、基体の外径k、ポリイミド前駆体溶液の流下量f、所望の濡れ膜厚tと関係があり、V=f/(t・k・π)の式で表わされる。πは円周率を示す。   The coating condition is that the rotational speed of the cylindrical substrate 10 is 20 to 200 rpm, and the coating speed V is related to the outer diameter k of the substrate, the flow amount f of the polyimide precursor solution, and the desired wet film thickness t. , V = f / (t · k · π). π represents the circumference.

以上の構成の塗布装置では、まず、円筒状基体10を矢印A方向に回転させながら、流下装置14のノズル16から、ポリイミド前駆体溶液12を流下させて円筒状基体10にポリイミド前駆体溶液12を付着する。これと共に、へら20により円筒状基体10に付着したポリイミド前駆体溶液12を平滑化する。そして、円筒状基体10の回転毎に付着点及び平滑化点を、円筒状基体10の一端から他の一端へ水平方向(矢印B)に移動させる。このようにして、ポリイミド前駆体溶液12が円筒状基体10外周面に塗布され、塗膜が形成される。   In the coating apparatus having the above configuration, first, while rotating the cylindrical substrate 10 in the direction of arrow A, the polyimide precursor solution 12 is caused to flow down from the nozzle 16 of the flow-down device 14, and the polyimide precursor solution 12 is transferred to the cylindrical substrate 10. Adhere. At the same time, the spatula 20 smoothes the polyimide precursor solution 12 attached to the cylindrical substrate 10. Then, the attachment point and the smoothing point are moved in the horizontal direction (arrow B) from one end of the cylindrical substrate 10 to the other end each time the cylindrical substrate 10 rotates. In this way, the polyimide precursor solution 12 is applied to the outer peripheral surface of the cylindrical substrate 10 to form a coating film.

なお、ポリイミド前駆体溶液の塗布方法としては、これに限られず、他の塗布方法も適用することができる。他の塗布方法としては、図示しないが、円筒状基体をポリイミド前駆体溶液に浸漬して上昇させる(引き上げる)浸漬塗布法がある。但し、ポリイミド前駆体溶液が高粘度のために、膜厚が厚くなりすぎる場合には、円筒状基体の外径よりも大きな孔を設けた環状体により、ポリイミド前駆体溶液の膜厚を制御する浸漬塗布方法が適用できる。   In addition, the application method of the polyimide precursor solution is not limited to this, and other application methods can also be applied. As another coating method, although not shown, there is a dip coating method in which a cylindrical substrate is dipped in a polyimide precursor solution and raised (pulled up). However, when the film thickness becomes too thick due to the high viscosity of the polyimide precursor solution, the film thickness of the polyimide precursor solution is controlled by an annular body having holes larger than the outer diameter of the cylindrical substrate. A dip coating method can be applied.

ここで、「円筒状基体表面に塗布する」とは、円柱も含まれる円筒状基体の側面の表面、及び該表面に層を有する場合は、その層の表面に塗布することをいう。また、「円筒状基体を上昇」とは、塗布時の液面との相対関係であり、「円筒状基体を停止し、塗布液面を下降」させる場合を含む。   Here, “applying to the surface of the cylindrical substrate” means applying to the surface of the side surface of the cylindrical substrate including the column and, if the surface has a layer, to the surface of the layer. Further, “rising the cylindrical substrate” is a relative relationship with the liquid level during coating, and includes the case of “stopping the cylindrical substrate and lowering the coating liquid level”.

・ポリイミド前駆体乾燥工程
円筒状基体表面にポリイミド前駆体溶液を塗布後、乾燥をすると、ポリイミド前駆体からなる皮膜が形成される。乾燥温度は50〜200℃の範囲、乾燥時間は30〜200分間の範囲とするのが好ましい。乾燥時の温度により、乾燥前の塗膜は粘度が低下し、重力の影響を受けて、垂れが生じやすいが、その場合には、円筒状基体の軸方向を水平にして、10〜60rpmの範囲程度で回転させるのがよい。
-Polyimide precursor drying process When the polyimide precursor solution is applied to the surface of the cylindrical substrate and then dried, a film made of the polyimide precursor is formed. The drying temperature is preferably in the range of 50 to 200 ° C., and the drying time is preferably in the range of 30 to 200 minutes. Depending on the temperature at the time of drying, the coating film before drying has a reduced viscosity and is susceptible to sag due to the influence of gravity. In this case, the axial direction of the cylindrical substrate is horizontal and 10-60 rpm. It is better to rotate around the range.

ポリイミド前駆体の塗布時、円筒状基体の端部に皮膜がない不塗布部を設けた場合はもちろんであるが、円筒状基体の全面にわたって塗布した場合でも、乾燥によりポリイミド前駆体皮膜が収縮するので、円筒状基体の端部に露出部が生じることとなる。   Of course, when the polyimide precursor is applied, the end portion of the cylindrical substrate is provided with an uncoated portion, but even when applied over the entire surface of the cylindrical substrate, the polyimide precursor coating shrinks due to drying. Therefore, an exposed portion is generated at the end of the cylindrical base.

こうして得られたポリイミド前駆体からなる皮膜が形成された円筒状基体を、次のフッ素樹脂塗膜形成工程に付してもよいが、この段階でポリイミド前駆体からなる皮膜を加熱反応させ、ポリイミド樹脂皮膜とし、その後フッ素樹脂塗膜形成工程に付してもよい。   The cylindrical substrate on which the coating made of the polyimide precursor thus obtained is formed may be subjected to the next fluororesin coating film forming step, but at this stage, the coating made of the polyimide precursor is heated and reacted, A resin film may be formed and then subjected to a fluororesin coating film forming step.

好ましくは300〜450℃の範囲、より好ましくは350℃前後で、20〜60分間、ポリイミド前駆体からなる皮膜を加熱反応させることで、ポリイミド樹脂皮膜を形成することができる。   A polyimide resin film can be formed by heat-reacting a film made of a polyimide precursor preferably in the range of 300 to 450 ° C., more preferably around 350 ° C. for 20 to 60 minutes.

ここで、円筒状基体の材質としては、金属(例えばアルミニウム、ステンレス鋼等)等が挙げられるが、金属表面をフッ素樹脂、シリコーン樹脂、或いはこれらの混合樹脂で表面を被覆したり、ニッケルやクロムでメッキしたり、離型剤を塗布したものも、皮膜形成後の皮膜の剥離を容易にする観点から有効である。   Here, examples of the material of the cylindrical substrate include metals (for example, aluminum, stainless steel, etc.). The metal surface is coated with a fluororesin, a silicone resin, or a mixed resin thereof, or nickel or chromium is used. Those plated with or coated with a release agent are also effective from the viewpoint of facilitating peeling of the film after film formation.

ポリイミド樹脂皮膜等を形成してこれを乾燥する際に、残留している溶剤、あるいは加熱反応時に樹脂から生成する水が除去しきれないことがある。この場合、ポリイミド樹脂皮膜に膨れが生じることがあり、特にポリイミド樹脂皮膜の膜厚が50μmを越えるような厚い場合に顕著である。その場合、円筒状基体表面の粗面化が有効である。   When a polyimide resin film or the like is formed and dried, the remaining solvent or water generated from the resin during the heating reaction may not be completely removed. In this case, the polyimide resin film may be swollen, particularly when the film thickness of the polyimide resin film exceeds 50 μm. In that case, roughening the surface of the cylindrical substrate is effective.

粗面化の粗さは、算術粗さRaで0.2〜2μmの範囲程度が好ましい。粗面化方法には、ブラスト、切削、サンドペーパーがけ等の方法があるが、ポリイミド樹脂ベルト内面を摺動性のよい球形面状で凸形状とするために、円筒状基体の表面は、球状の粒子を用いてブラスト処理を施すことが好ましい。   The roughness of roughening is preferably about 0.2 to 2 μm in terms of arithmetic roughness Ra. Roughening methods include blasting, cutting, sandpaper peeling, etc. In order to make the polyimide resin belt inner surface into a spherical surface with good slidability and a convex shape, the surface of the cylindrical substrate is spherical. It is preferable to perform blasting using the particles.

上記粗面化により、ポリイミド樹脂皮膜から生じる残留溶剤又は水の蒸気は、円筒状基体とポリイミド樹脂皮膜との間にできるわずかな隙間を通って外部に出ることができ、膨れが生じなくなる。   By the roughening, the residual solvent or water vapor generated from the polyimide resin film can be discharged to the outside through a slight gap formed between the cylindrical substrate and the polyimide resin film, and no swelling occurs.

円筒状基体の表面には、ポリイミド樹脂が接着しないよう、離型性を付与するのが好ましい。離型性を付与するためには、円筒状基体表面をクロムやニッケルでメッキしたり、フッ素系樹脂やシリコーン樹脂で表面を被覆したり、あるいは表面にポリイミド樹脂が接着しないよう、表面に離型剤を塗布することが有効である。   The surface of the cylindrical substrate is preferably given releasability so that the polyimide resin does not adhere. In order to provide releasability, the surface of the cylindrical substrate is releasable so that the surface of the cylindrical substrate is plated with chromium or nickel, or the surface is covered with fluorine resin or silicone resin, or polyimide resin is not adhered to the surface. It is effective to apply an agent.

このようにして、円筒状基体の表面へ、ポリイミド樹脂皮膜又はポリイミド前駆体皮膜を形成することができる。   In this way, a polyimide resin film or a polyimide precursor film can be formed on the surface of the cylindrical substrate.

−フッ素樹脂塗膜形成工程−
フッ素樹脂塗膜形成工程では、ポリイミド樹脂皮膜又はポリイミド前駆体皮膜のいずれかが形成された円筒状基体を、その軸方向を垂直にした際に、下端側となる部分(底部)に被覆体を嵌め、被覆体と共に円筒状基体をフッ素樹脂分散液(フッ素樹脂塗料)に浸漬して塗布する。
-Fluororesin coating film formation process-
In the fluororesin coating film forming step, when the cylindrical substrate on which either the polyimide resin film or the polyimide precursor film is formed is perpendicular to the axial direction, the covering is applied to the lower part (bottom part). The cylindrical substrate together with the covering is immersed and applied in a fluororesin dispersion (fluororesin paint).

具体的には、図2に示す塗布装置を用いて塗布することができる。図2に示す塗布装置では、まず、図3に示すように、円筒状基体10の上端部(図3中における上側:下端部と対向する側)に、円筒状基体保持部材22が取り付けられ、下端部(図3における下側)に被覆体24が取り付けられる。なお、図3中、ポリイミド樹脂皮膜又はポリイミド前駆体皮膜は省略してある。   Specifically, it can apply | coat using the coating device shown in FIG. In the coating apparatus shown in FIG. 2, first, as shown in FIG. 3, a cylindrical substrate holding member 22 is attached to the upper end portion (upper side in FIG. 3: the side facing the lower end portion) of the cylindrical substrate 10, The covering 24 is attached to the lower end (lower side in FIG. 3). In FIG. 3, the polyimide resin film or the polyimide precursor film is omitted.

円筒状基体保持部材22は、弾性膜26(密閉部材)と連結されており、保持部材外面が円筒状基体10の内面と当接するように、円筒状基体10の上開口(上端面)に嵌合され、当該弾性膜26を膨張させてチャック(密閉)しつつ、保持されている。   The cylindrical substrate holding member 22 is connected to an elastic film 26 (sealing member), and is fitted into the upper opening (upper end surface) of the cylindrical substrate 10 so that the outer surface of the holding member is in contact with the inner surface of the cylindrical substrate 10. The elastic film 26 is expanded and held while being chucked (sealed).

被覆体24は、図4に示すように、円筒状基体10の下端面(下開口)を塞ぐための底部28と、円筒状基体10の下端部外周面を覆うための筒状部30と、から構成されている。そして、被覆体24は、底部28により円筒状基体10下端の開口面を密閉すると共に筒状部30により円筒状基体10の下端部外周面を覆うように、円筒状基体10の下開口(下端面)に嵌合して、保持されている。このように、被覆体24は、粘着テープで固定する必要がなく、円筒状基体10に摩擦力のみで保持させることで、作業効率を向上させることができる。   As shown in FIG. 4, the covering body 24 includes a bottom portion 28 for closing the lower end surface (lower opening) of the cylindrical base body 10, a cylindrical portion 30 for covering the outer peripheral surface of the lower end portion of the cylindrical base body 10, It is composed of The covering 24 seals the opening surface of the lower end of the cylindrical substrate 10 with the bottom portion 28, and covers the lower opening (lower surface) of the cylindrical substrate 10 with the cylindrical portion 30 covering the outer peripheral surface of the lower end portion of the cylindrical substrate 10. (End face) and is held. Thus, it is not necessary to fix the covering body 24 with the adhesive tape, and the working efficiency can be improved by holding the cylindrical base body 10 only with the frictional force.

被覆体24の材質としては、塗料によって侵されない樹脂や金属が用いられる。   As the material of the covering 24, a resin or metal that is not affected by the paint is used.

被覆体24の筒状部30上端面は、内側の縁部(角)が取られて、例えばすり鉢状にしている。このように、当該上端面を筒状体中心軸に対して内側に向かって傾斜するようにすることで、円筒状基体10と被覆体24との嵌め合いが容易となり、作業性が容易となる。また、被覆体24の筒状部30内壁には、円筒状基体10が嵌合したときの突き当て部にリブ34を設けるある。これにより、円筒状基体10の下端部外周面への被覆体24の筒状部30の被覆領域が一定となり、円筒状基体10へ塗料が塗布される範囲が繰り返し再現できるという利点がある。   The upper end surface of the cylindrical portion 30 of the covering 24 has an inner edge portion (corner) taken, for example, in a mortar shape. In this way, by making the upper end surface tilt inward with respect to the central axis of the cylindrical body, the fitting between the cylindrical base body 10 and the covering body 24 becomes easy, and the workability becomes easy. . Further, the inner wall of the cylindrical portion 30 of the covering 24 is provided with a rib 34 at the abutting portion when the cylindrical base body 10 is fitted. Thereby, there is an advantage that the covering region of the cylindrical portion 30 of the covering 24 on the outer peripheral surface of the lower end portion of the cylindrical base body 10 becomes constant, and the range in which the paint is applied to the cylindrical base body 10 can be repeatedly reproduced.

被覆体24の底部28外面は非角面で構成されている。また、底部28と筒状部30との境目32も、非角面で構成されている。このように、被覆体24の外面を非各面で構成することで、気泡発生を極力防止することができる。ここで、非角面とは、角がなく、例えば、曲率を有する円弧状であるような形状面をいう。   The outer surface of the bottom portion 28 of the covering 24 is a non-square surface. Further, the boundary 32 between the bottom portion 28 and the cylindrical portion 30 is also formed of a non-square surface. In this way, by forming the outer surface of the covering 24 with non-each surface, it is possible to prevent the generation of bubbles as much as possible. Here, the non-corner surface refers to a shape surface having no corners, for example, an arc shape having a curvature.

被覆体24の最大外径と円筒状基体10の最大外径との差は、0.5mm以下であり、より好ましくは0.4mm以下であり、さらに好ましくは0.3mm以下である。この差が小さければ小さいほど、浸漬塗布の際の塗液の気泡発生がより抑制される。なお、この差は、被覆体24の筒状部30肉厚Fに相当する。 The difference between the maximum outer diameter of the covering 24 and the maximum outer diameter of the cylindrical substrate 10 is 0.5 mm or less , more preferably 0.4 mm or less, and further preferably 0.3 mm or less. The smaller this difference is, the more the generation of bubbles in the coating liquid during dip coating is further suppressed. This difference corresponds to the cylindrical portion 30 thickness F of the covering 24.

次に、図2に示すように、皮膜36が表面に形成された円筒状基体10を、被覆体24が取り付けられた側を下に向け、その軸方向が垂直となるように保持部材22により保持する。そして、円筒状基体10を塗布槽38内のフッ素樹脂分散液40(フッ素樹脂塗料)に浸漬し、引き上げることにより、フッ素樹脂分散液40の塗膜48が形成される。   Next, as shown in FIG. 2, the cylindrical substrate 10 having the coating 36 formed on the surface thereof is directed by the holding member 22 so that the side to which the covering 24 is attached faces downward and the axial direction is vertical. Hold. And the coating 48 of the fluororesin dispersion 40 is formed by immersing the cylindrical base | substrate 10 in the fluororesin dispersion 40 (fluororesin coating material) in the coating tank 38, and pulling up.

フッ素樹脂分散液40を塗布する際、円筒状基体10の浸漬速度は、50〜1000mm/分で行われるが、被覆体24と円筒状基体10との境界部(境目32:図4参照)がフッ素樹脂分散液(塗液)の液面を通過する間の浸漬速度Tは下記式(1)を満たすことが必要である。但し、本発明では、下記式(2)も満たす。
式(1):T≦−ρ+1000
(ここで、式(1)中、Tは浸漬速度(mm/分)、ρは塗液の粘度(mPa・s)を示す。)
When the fluororesin dispersion 40 is applied, the cylindrical substrate 10 is dipped at a rate of 50 to 1000 mm / min. The boundary between the covering 24 and the cylindrical substrate 10 (boundary 32: see FIG. 4). The immersion speed T while passing through the liquid surface of the fluororesin dispersion (coating liquid) needs to satisfy the following formula (1). However, in the present invention, the following formula (2) is also satisfied.
Formula (1): T ≦ −ρ + 1000
(Here, in formula (1), T represents the immersion rate (mm / min), and ρ represents the viscosity (mPa · s) of the coating liquid.)

これにより、被覆体24と円筒状基体10との境界部による気泡発生が防止される。一方、気泡発生防止の観点からは、浸漬速度Tは上記式を満たせばよいが、作業効率の観点から、当該浸漬速度Tは200mm/分以上であることがよい。また、より効果的に気泡発生防止の観点から、上記浸漬速度Tは下記式(2)を満たすことが好ましい。
式(2):T≦−0.4ρ+460
(ここで、式(2)中、Tは浸漬速度(mm/分)、ρは塗液の粘度(mPa・s)を示す。)
Thereby, generation | occurrence | production of the bubble by the boundary part of the coating body 24 and the cylindrical base | substrate 10 is prevented. On the other hand, from the viewpoint of preventing generation of bubbles, the immersion speed T may satisfy the above formula, but from the viewpoint of work efficiency, the immersion speed T is preferably 200 mm / min or more. Moreover, it is preferable that the said immersion speed T satisfy | fills following formula (2) from a viewpoint of bubble generation | occurrence | production prevention more effectively.
Formula (2): T ≦ −0.4ρ + 460
(Here, in formula (2), T represents the immersion speed (mm / min), and ρ represents the viscosity (mPa · s) of the coating liquid.)

一方、円筒状基体10の引き上げ速度は、所望の膜厚にもよるが、50〜500mm/分程度の範囲であることが好ましい。   On the other hand, the pulling speed of the cylindrical substrate 10 is preferably in the range of about 50 to 500 mm / min, although it depends on the desired film thickness.

フッ素樹脂分散液40は、塗布槽38に溜め置きすることもできるが、図2に示すように、塗布槽38の外側に、円筒状基体10の体積以上の容量を有する外部槽42を設けた塗布装置を用い、ポンプ44により、図2における塗布槽38の下部からフッ素樹脂分散液40を供給し、上部から溢流させて、循環させることがよい。ポンプ44としては、フッ素樹脂分散液に機械的応力が加わりにくい方式のものが好ましく、具体的には、ローラーチューブポンプ、サインポンプ、モーノポンプ、ギヤポンプ等が挙げられる。   Although the fluororesin dispersion 40 can be stored in the coating tank 38, as shown in FIG. 2, an external tank 42 having a capacity equal to or larger than the volume of the cylindrical substrate 10 is provided outside the coating tank 38. It is preferable that the fluororesin dispersion liquid 40 is supplied from the lower part of the application tank 38 in FIG. The pump 44 is preferably of a type in which mechanical stress is not easily applied to the fluororesin dispersion, and specific examples include a roller tube pump, a sine pump, a mono pump, and a gear pump.

このようにして循環をさせると、フッ素樹脂分散液40の沈降や凝集を防止でき、液の表面を常に新鮮な状態に確保することができるため好ましい。外部槽42との間で循環させることは、外部に別の塗料タンクを設けて循環するよりも、使用する高価なフッ素樹脂分散液40の総量を少なくできるほか、塗布槽38上部から溢流するフッ素樹脂分散液40が、外部塗料タンクに落流することによる泡立ちが起きにくいという利点もある。循環経路にはフィルター46が設けられている。また、図示しないが粘度計、希釈液追加装置等を付加することも好ましい。   Circulation in this way is preferable because sedimentation and aggregation of the fluororesin dispersion 40 can be prevented and the surface of the liquid can be always kept fresh. Circulation with the external tank 42 can reduce the total amount of the expensive fluororesin dispersion 40 to be used and spill over from the upper part of the coating tank 38, compared with the circulation with another paint tank provided outside. There is also an advantage that foaming due to the fluororesin dispersion 40 falling to the external paint tank hardly occurs. A filter 46 is provided in the circulation path. Although not shown, it is also preferable to add a viscometer, a diluting liquid adding device and the like.

また、フッ素樹脂分散液40は、主溶媒が水であるために乾燥が比較的遅く、浸漬塗布方法で塗布すると、円筒状基体10の引き上げ最中に、塗膜48に不規則な垂れが発生したり、軸方向上下で膜厚のむらを生じることもある。これらの問題は、膜厚が25μm以上の場合に特に発生しやすい。そこで、塗布後の被膜の溶媒を速やかに乾燥させるために、塗膜48に風を吹き付ける方法もあるが、円筒状基体10に温度変化を生じ、気泡の原因となることがあった。   Further, the fluororesin dispersion 40 is relatively slow to dry because the main solvent is water, and when applied by a dip coating method, irregular sagging occurs in the coating film 48 while the cylindrical substrate 10 is being pulled up. In some cases, the film thickness may be uneven in the axial direction. These problems are particularly likely to occur when the film thickness is 25 μm or more. In order to quickly dry the solvent of the coated film after coating, there is a method of blowing air to the coated film 48, but the temperature of the cylindrical substrate 10 is changed, which may cause bubbles.

そこで、引き上げの際、フッ素樹脂分散液40の塗膜48に垂れが生じる場合、図2に示すように、塗布槽38の図2における上部に送風装置50を設けて、塗膜48に気流を当て、溶媒の乾燥を促進している。塗膜48に当てる気流は、一方向からよりは、周方向で均一になるよう、周回又は環状に当てるのが好ましい。   Therefore, when dripping occurs in the coating film 48 of the fluororesin dispersion 40 during the pulling up, as shown in FIG. 2, an air blower 50 is provided on the upper part of the coating tank 38 in FIG. Better, drying of the solvent is promoted. The air flow applied to the coating film 48 is preferably applied in a circular or annular manner so as to be uniform in the circumferential direction rather than from one direction.

この気流の風速は、1〜10m/分程度の範囲が好ましい。これが弱いと乾燥促進の効果が小さく、強すぎると塗膜48に筋やむら等の欠陥を生じるおそれがある。また、塗膜48に当たった気流が塗布槽38に流れると、液面がゆれたり、液面で溶媒の乾燥が生じるので、気流が塗布槽38に流れないよう、図2における上向きに当てるのが好ましい。気流としては空気流を使用することができる。   The wind speed of this airflow is preferably in the range of about 1 to 10 m / min. If this is weak, the effect of promoting drying is small, and if it is too strong, defects such as streaks and unevenness may occur in the coating film 48. Further, when the airflow hitting the coating film 48 flows into the coating tank 38, the liquid surface is shaken or the solvent is dried on the liquid surface, so that the airflow is applied upward in FIG. Is preferred. An air flow can be used as the air flow.

フッ素樹脂分散液40の塗膜48に気流を当てることにより、水を主体とする溶媒の乾燥が促進されるので、塗膜48は垂れを生じる間もなく、乾燥される。   By applying an air flow to the coating film 48 of the fluororesin dispersion 40, drying of the solvent mainly composed of water is promoted, so that the coating film 48 is dried soon without causing dripping.

ここで、フッ素樹脂分散液40には、粒径が0.1〜20μmの範囲のフッ素樹脂粉体が分散されている。その材料としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)等のフッ素樹脂が挙げられる。また、耐摩耗性や静電オフセットの向上、トナーの付着防止用オイルとの親和性等のために、カーボン粉体や、酸化チタン、硫酸バリウム等の無機化合物粉体等、フッ素樹脂以外の材料を含んでもよい。   Here, in the fluororesin dispersion 40, fluororesin powder having a particle size in the range of 0.1 to 20 μm is dispersed. Examples of the material include fluorine resins such as polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), and tetrafluoroethylene-hexafluoropropylene copolymer (FEP). In addition, materials other than fluororesins such as carbon powder, inorganic compound powder such as titanium oxide and barium sulfate are used to improve wear resistance, electrostatic offset, and compatibility with toner adhesion prevention oil. May be included.

フッ素樹脂分散液40の溶媒は、水のほか、エタノールやブタノール等のアルコールや、エチレングリコール等のグリコール、またそのエステル類を併用してもよい。また、界面活性剤や粘度調整剤等も添加してもよい。カーボン粉体や、酸化チタン、硫酸バリウム等のフッ素樹脂以外の材料を含ませる場合には、上記フッ素樹脂分散液40の中にこれらを混ぜて分散すればよい。界面活性剤を添加したものは非常に泡立ちやすく、また一旦、泡が形成された場合は、泡が消えにくいので、本発明には好適に用いることができる。   As the solvent of the fluororesin dispersion 40, water, alcohols such as ethanol and butanol, glycols such as ethylene glycol, and esters thereof may be used in combination. Moreover, you may add surfactant, a viscosity modifier, etc. When materials other than fluororesins such as carbon powder, titanium oxide, and barium sulfate are included, these may be mixed and dispersed in the fluororesin dispersion 40. Those added with a surfactant are very easy to foam, and once the foam is formed, the foam is difficult to disappear, so that it can be suitably used in the present invention.

フッ素樹脂分散液40の固形分濃度は、塗布する膜厚にもよるが、10〜70質量%の範囲であることが好ましく、粘度は0.1〜1Pa・s程度の範囲であることが好ましい。溶媒の蒸発により、フッ素樹脂分散液40の濃度が変化した場合には、アルコール等を加えて調整すればよい。   The solid content concentration of the fluororesin dispersion 40 is preferably in the range of 10 to 70% by mass, and the viscosity is preferably in the range of about 0.1 to 1 Pa · s, although it depends on the applied film thickness. . When the concentration of the fluororesin dispersion 40 changes due to evaporation of the solvent, adjustment may be made by adding alcohol or the like.

フッ素樹脂分散液40を塗布槽38に入れる前には、脱泡処理により、液中から泡を除去しておくのが好ましい。脱泡の方法には、時間をかけて静置する方法のほか、減圧や遠心分離、ろ過、超音波印加、等による方法がある。   Before putting the fluororesin dispersion 40 into the coating tank 38, it is preferable to remove bubbles from the liquid by defoaming treatment. As a method for defoaming, there are a method of standing by taking time, and a method of reducing pressure, centrifuging, filtration, applying ultrasonic waves, and the like.

なお、水は20℃で窒素が約1.19体積%、酸素が約0.64体積%の溶解度を有しており、フッ素樹脂分散液中にはこれらの気体が溶存するが、溶存気体も減圧によって除いておくことが好ましい。   Note that water has a solubility of about 1.19% by volume of nitrogen and about 0.64% by volume of oxygen at 20 ° C., and these gases are dissolved in the fluororesin dispersion. It is preferable to remove by decompression.

このようにして、ポリイミド樹脂又はポリイミド前駆体からなる皮膜36が表面に形成された円筒状基体10にフッ素樹脂の塗膜48が形成される。   In this manner, a fluororesin coating film 48 is formed on the cylindrical substrate 10 on the surface of which the coating 36 made of polyimide resin or polyimide precursor is formed.

−加熱焼成工程−
加熱焼成工程では、まず、フッ素樹脂分散液の塗布後、室温から150℃の温度に5〜20分間置いて、溶媒を乾燥させる。乾燥を促進するために、熱風を吹き付けることも有効であるが、熱風が当たった部分と当たらなかった部分とで、筋目を生じたり、粗さ等がむらになることがある。これを防止するためには、塗膜に熱風が直に当たらないように、円筒状基体の軸方向を垂直に立てた状態で、その上方から熱風を下降させる方法を採ることが好ましい。
-Heating and baking process-
In the heating and baking step, first, after applying the fluororesin dispersion, the solvent is dried by placing it at room temperature to 150 ° C. for 5 to 20 minutes. In order to promote drying, it is also effective to blow hot air, but there are cases where streaks or roughness are uneven between the portion where the hot air hits and the portion where the hot air does not hit. In order to prevent this, it is preferable to adopt a method in which the hot air is lowered from above in a state where the axial direction of the cylindrical substrate is set up vertically so that the hot air does not directly hit the coating film.

又は、円筒状基体の軸方向を垂直に立てた状態で、円筒状体を回転させて、その横方向から熱風を吹き付けて、塗膜に熱風が直に当たっても、一様になるようにすることが好ましい。上記いずれかの方法を採ることにより、筋目やむらを生じることなく、溶媒の乾燥が促進される。   Or, with the axial direction of the cylindrical substrate standing vertically, rotate the cylindrical body and blow hot air from the lateral direction so that even if the hot air hits the coating directly, it should be uniform Is preferred. By adopting any one of the above methods, drying of the solvent is promoted without causing streaking or unevenness.

乾燥の前後において、先に形成した被覆処理を取り外す。その後、350〜450℃の温度範囲で20〜60分間加熱すると、ポリイミド前駆体は縮合反応しポリイミド樹脂皮膜となり、フッ素樹脂粉体は溶融焼成されてフッ素樹脂層となる。この時、ポリイミド前駆体皮膜中に溶剤が残留していると、皮膜に膨れを生じることがあるため、前記温度に達するまでに、完全に残留溶剤を除去することが好ましく、温度を段階的に上昇させたり、ゆっくりと上昇させることが好ましい。   Before and after drying, the previously formed coating treatment is removed. Thereafter, when heated in the temperature range of 350 to 450 ° C. for 20 to 60 minutes, the polyimide precursor undergoes a condensation reaction to become a polyimide resin film, and the fluororesin powder is melted and fired to become a fluororesin layer. At this time, if the solvent remains in the polyimide precursor film, the film may be swollen. Therefore, it is preferable to completely remove the residual solvent by the time the temperature is reached. It is preferable to raise or slowly raise.

その後、常温に冷やすと、フッ素樹脂層が形成されたポリイミド樹脂皮膜が形成される。   Then, when it cools to normal temperature, the polyimide resin film in which the fluororesin layer was formed is formed.

−抜き取り工程−
抜き取り工程では、フッ素樹脂層が形成されたポリイミド樹脂皮膜を円筒状基体から取り外すことでポリイミド樹脂無端ベルトを得る。更に必要に応じて、端部の長さを揃える切断加工、表面の粗さを調整する研磨加工、等が施され、定着ベルトが得られる。
-Extraction process-
In the extraction step, the polyimide resin endless belt is obtained by removing the polyimide resin film on which the fluororesin layer is formed from the cylindrical substrate. Furthermore, if necessary, a cutting process for aligning the length of the end part, a polishing process for adjusting the roughness of the surface, and the like are performed to obtain a fixing belt.

研磨加工は、乾式法及び湿式法のいずれで行ってもよい。乾式法としては、サンドペーパや研磨フィルムを使用して研磨する方法がある。湿式法としては、上記と同じことを、水等の液体を介して行う方法がある。   The polishing process may be performed by either a dry method or a wet method. As a dry method, there is a method of polishing using sand paper or a polishing film. As a wet method, there is a method of performing the same thing as the above through a liquid such as water.

このようにして、定着ベルトが製造される。定着ベルトとしてのポリイミド樹脂皮膜の厚さは、25〜200μmの範囲が好ましく、非粘着層の厚さは5〜50μmの範囲が好ましい。   In this way, the fixing belt is manufactured. The thickness of the polyimide resin film as the fixing belt is preferably in the range of 25 to 200 μm, and the thickness of the non-adhesive layer is preferably in the range of 5 to 50 μm.

以上説明した本発明の定着ベルトの製造方法において、フッ素樹脂塗膜を形成するための浸漬塗布方法(本発明の浸漬方法)は、上記形態に限られず、種々の用途に用いることができる。例えば、電子写真用の感光体の層形成や、電子写真用機器に用いられる転写ベルト、搬送ベルトなど各種回転体としての無端ベルトの製造等に好ましく用いることができる。特に、本発明の浸漬塗布方法に適用する塗料としては、フッ素樹脂塗料や感光層形成用塗料も含め、例えば、界面活性剤を含む、あるいは高粘度等、泡が発生しやすく、またその泡が消え難いような塗料を使用する場合に好ましく用いられる。   In the manufacturing method of the fixing belt of the present invention described above, the dip coating method (the immersing method of the present invention) for forming the fluororesin coating film is not limited to the above-described form, and can be used for various applications. For example, it can be preferably used for the formation of a layer of an electrophotographic photoreceptor, the production of an endless belt as various rotating bodies such as a transfer belt and a conveyance belt used in an electrophotographic apparatus. In particular, the paint applied to the dip coating method of the present invention includes a fluororesin paint and a coating for forming a photosensitive layer, for example, contains a surfactant, or easily generates bubbles such as high viscosity. It is preferably used when a paint that does not easily disappear is used.

例えば、電子写真感光体を製造する場合には、円筒状基体として導電性基体、塗料として感光層形成用塗料を用いて、上述した浸漬塗布方法に準じて行うことができる。なお、電子写真感光体におけるいずれの層形成にも適用可能である。   For example, when an electrophotographic photosensitive member is produced, a conductive substrate can be used as the cylindrical substrate and a photosensitive layer-forming coating material can be used as the coating material in accordance with the dip coating method described above. It can be applied to any layer formation in an electrophotographic photoreceptor.

ここで、電子写真感光体を製造する場合において、円筒状基体としての導電性基体の材質は、金属(例えばアルミニウム、ステンレス鋼等)、導電性を付与したプラスチック等、従来公知のものが挙げられる。   Here, when manufacturing an electrophotographic photosensitive member, examples of the material of the conductive substrate as the cylindrical substrate include conventionally known materials such as metals (for example, aluminum, stainless steel, etc.), plastics imparted with conductivity, and the like. .

一方、感光層形成用塗料としては、例えば電荷輸送層形成用の場合、電荷輸送剤(例えばヒドラゾン化合物、スチルベン化合物、ベンジジン化合物、ブタジエン化合物、トリフェニルアミン化合物等)を、バインダー樹脂(ポリカーボネート、ポリアリレート、ポリメチルメタクリレート、ポリエステル等)と混合して塗料化したものが挙げられる。また、下引き層形成用の塗料も適用可能である。   On the other hand, as a coating for forming a photosensitive layer, for example, in the case of forming a charge transport layer, a charge transport agent (for example, a hydrazone compound, a stilbene compound, a benzidine compound, a butadiene compound, a triphenylamine compound, etc.) is used as a binder resin (polycarbonate, poly Arylate, polymethylmethacrylate, polyester, etc.) and a paint. In addition, a paint for forming the undercoat layer is also applicable.

また、以上説明した本発明の定着ベルトの製造方法において、皮膜形成用塗料としてポリイミド前駆体溶液を用いた形態を説明したが、これは強度や寸法安定性の面でポリイミドが特に好ましいためである。その他、皮膜形成用塗料としては、皮膜形成用樹脂(例えばポリアミドイミド、ポリベンズイミダゾール、フタル酸系ポリエステル、ポリウレタン等)を塗料化したものが挙げあげられる。皮膜形成用塗料の固形分濃度は15〜50質量%程度であり、粘度は1〜100mPa・s程度が好ましい。塗布の条件としては、引き上げ速度は50〜1000mm/min程度であるのが好ましい。   In the fixing belt manufacturing method of the present invention described above, the embodiment in which the polyimide precursor solution is used as the film-forming coating material has been described. This is because polyimide is particularly preferable in terms of strength and dimensional stability. . In addition, examples of the film-forming paint include those obtained by coating a film-forming resin (eg, polyamideimide, polybenzimidazole, phthalic polyester, polyurethane, etc.). The solid content concentration of the coating material for film formation is about 15 to 50% by mass, and the viscosity is preferably about 1 to 100 mPa · s. As a condition for coating, the pulling speed is preferably about 50 to 1000 mm / min.

ここで、皮膜を形成するには、乾燥後、塗膜を基体ごと所定温度で加熱し、樹脂を硬化させることが好ましい。塗膜の乾燥時に樹脂材料がどうしても下方に垂れる場合には、基体を横にして回転しながら乾燥させる方法もある。その後、形成された皮膜を基体から剥離することで、無端ベルトを得ることができる。無端ベルトには、更に必要に応じて端部のスリット加工、パンチング穴あけ加工、テープ巻き付け加工等が施される。   Here, in order to form a film, it is preferable that after drying, the film is heated together with the substrate at a predetermined temperature to cure the resin. When the resin material inevitably hangs down when the coating film is dried, there is a method in which the substrate is dried while being rotated sideways. Then, an endless belt can be obtained by peeling the formed film from the substrate. The endless belt is further subjected to slit processing at the end, punching drilling, tape winding, and the like as necessary.

なお、皮膜を形成して得られる無端ベルトを転写ベルトや接触帯電フィルムのような帯電体として使用する場合には、樹脂材料の中に必要に応じて導電性物質を分散させる。導電性物質としては、例えば、カーボンブラック、カーボンブラックを造粒したカーボンビーズ、カーボンファイバー、グラファイト等の炭素系物質、銅、銀、アルミニウム等の金属又は合金、酸化錫、酸化インジウム、酸化アンチモン、SnO2−In23複合酸化物等の導電性金属酸化物、チタン酸カリウム等の導電性ウィスカー等が挙げられる。 When an endless belt obtained by forming a film is used as a charged body such as a transfer belt or a contact charging film, a conductive substance is dispersed in the resin material as necessary. Examples of the conductive material include carbon black, carbon beads granulated from carbon black, carbon-based materials such as carbon fiber and graphite, metals or alloys such as copper, silver, and aluminum, tin oxide, indium oxide, antimony oxide, Examples thereof include conductive metal oxides such as SnO 2 —In 2 O 3 composite oxide, and conductive whiskers such as potassium titanate.

以下、本発明を実施例により具体的に説明する。ただし、各実施例は、本発明を制限するものではない。   Hereinafter, the present invention will be specifically described by way of examples. However, each example does not limit the present invention.

(実施例1)
フッ素樹脂塗料として、水のほかに、エタノール、t−ブタノールを含むPFA水性塗料(固形分濃度:60質量%、粘度:500mPa・s)を用意した。この中には固形分として、平均粒径約17μmのPFA粉体(大粒子)が55質量%、平均粒径約1μmのPFA粉体(小粒子)が40質量%、平均粒径約0.1μmのカーボン粉体が5質量%分散されている。この液を20hPaの減圧下で12時間放置して脱泡処理を行った。
Example 1
As the fluororesin coating material, a PFA aqueous coating material (solid content concentration: 60 mass%, viscosity: 500 mPa · s) containing ethanol and t-butanol was prepared in addition to water. Among them, as solids, PFA powder (large particles) having an average particle size of about 17 μm is 55% by mass, PFA powder (small particles) having an average particle size of about 1 μm is 40% by mass, and the average particle size is about 0.1%. 5% by mass of 1 μm carbon powder is dispersed. This liquid was allowed to stand for 12 hours under a reduced pressure of 20 hPa for defoaming treatment.

これを内径が90mm、高さが480mmの塗布槽に入れた。塗布槽の上部には、環状に風速5m/分の気流が上方45°に向けて吹き出される環状送風装置を取り付けた(図2参照)。   This was put in a coating tank having an inner diameter of 90 mm and a height of 480 mm. At the top of the coating tank, an annular air blower was attached in which an air flow of 5 m / min in an annular shape was blown out upward 45 ° (see FIG. 2).

円筒状基体として、被覆体及び保持部材により円筒状基体の両端部の開口面が密閉されたものを用意した(図3参照)。円筒状基体として、外径が30.1mm、長さが600mmのアルミニウム製円筒を用いた。被覆体は、ポリプロピレン(PP)を加工して、断面図形状(筒状部高さA:48mm、底部高さB:14mm、リブ高さC:2mm、外径E:30.8mm、内径D:30.0mm、筒状部肉厚F:0.4mm、図4参照)のものを作製した。   As the cylindrical substrate, a cylindrical substrate was prepared in which the opening surfaces at both ends of the cylindrical substrate were sealed with a covering and a holding member (see FIG. 3). As the cylindrical substrate, an aluminum cylinder having an outer diameter of 30.1 mm and a length of 600 mm was used. The covering is made of polypropylene (PP), and is a cross-sectional view (cylindrical part height A: 48 mm, bottom part height B: 14 mm, rib height C: 2 mm, outer diameter E: 30.8 mm, inner diameter D : 30.0 mm, cylindrical part thickness F: 0.4 mm, see FIG. 4).

円筒状基体の底部に被覆体をリブに円筒状基体下端面が突き当たるまで押し込み嵌め合わせた。円筒状基体保持部材は、弾性膜を膨張させてチャックする構成とした(図3参照)。   The covering was pressed and fitted to the bottom of the cylindrical substrate until the lower end surface of the cylindrical substrate abutted against the rib. The cylindrical substrate holding member was configured to inflate and chuck the elastic membrane (see FIG. 3).

そして、弾性膜を膨張させ、円筒状基体の上部の開口面を密閉した。弾性膜は、円筒状基体の内面に密着し、その部分での空気の漏れはなかった。   Then, the elastic membrane was expanded, and the opening surface at the top of the cylindrical base was sealed. The elastic film was in close contact with the inner surface of the cylindrical substrate, and there was no air leakage at that portion.

次いで、円筒状基体を1000mm/分の速度で前記PFA水性塗料に浸漬し、被覆体と円筒状基体の境界部が液面を通過する間のみ浸漬速度を100mm/分に減速した。次いで環状送風装置により気流を当てながら、200mm/分の速度で引き上げ、PFAの塗膜を形成した。引き上げ終了後、被覆体を取り外した後、60℃の無風乾燥炉で10分間乾燥した。また、引き上げ終了後に、PFA水性塗料と塗膜を観察したところ、気泡の発生や、膜内への気泡混入も見られなかった。   Next, the cylindrical substrate was immersed in the PFA aqueous paint at a speed of 1000 mm / min, and the immersion speed was reduced to 100 mm / min only while the boundary between the coating and the cylindrical substrate passed the liquid surface. Next, while applying an air flow with an annular blower, the film was pulled up at a speed of 200 mm / min to form a PFA coating film. After completion of the pulling, the covering was removed, and then dried for 10 minutes in a 60 ° C. airless drying furnace. Moreover, when the PFA water-based paint and the coating film were observed after the completion of the pulling up, no bubbles were generated and no bubbles were mixed into the film.

その後、加熱焼成工程として、150℃で20分間、220℃で20分間、及び380℃で30分間、加熱した。これにより、アルミニウム製円筒の表面に、均一で欠陥のない40μm厚のPFA被膜を形成することができた。   Then, it heated at 150 degreeC for 20 minutes, 220 degreeC for 20 minutes, and 380 degreeC for 30 minutes as a heat-firing process. As a result, a uniform and defect-free PFA coating having a thickness of 40 μm could be formed on the surface of the aluminum cylinder.

(実施例2)
実施例1において、被覆体の断面形状として被覆体の筒状部肉厚F(図4参照)を1.0mmと肉厚のものとした以外は実施例1と同様にして、円筒状基体に被覆体3を取り付けてPFA水性塗料に浸漬したところ、浸漬過程において、被覆体と円筒状基体との境界部の段差部分より気泡が若干発生するのが観測され、塗布膜表面に泡が付着した状態で引き上げた後、形成された塗膜にはその泡が付着していたが、実用上問題ないレベルであった。
(Example 2)
In Example 1, the cylindrical body thickness F (see FIG. 4) of the covering was changed to 1.0 mm as the cross-sectional shape of the covering, and the cylindrical base was formed in the same manner as in Example 1. When the covering 3 was attached and immersed in the PFA water-based paint, in the immersion process, it was observed that some bubbles were generated from the step portion at the boundary between the covering and the cylindrical substrate, and the bubbles adhered to the coating film surface. After pulling up in the state, the foam was adhered to the formed coating film, but it was at a level that does not cause any practical problems.

(比較例1)
実施例1において、被覆体と円筒状基体の境界部が液面を通過する間のみの浸漬速度を600mm/分と早い速度とした以外は実施例1と同様にして、円筒状基体に被覆体を取り付けてPFA水性塗料に浸漬したところ、浸漬過程において、被覆体と円筒状基体との境界部の段差より気泡が発生するのが観測され、塗布膜表面に泡が付着した状態で引き上げた後、形成された塗膜にはその泡が付着しており、欠陥となった。
(Comparative Example 1)
In Example 1, the cylindrical substrate was coated on the cylindrical substrate in the same manner as in Example 1 except that the immersion speed only while the boundary between the coated body and the cylindrical substrate passed the liquid level was 600 mm / min. And was immersed in a PFA water-based paint, and during the immersion process, it was observed that bubbles were generated from the step at the boundary between the cover and the cylindrical substrate, and the bubbles were attached to the surface of the coating film. The foam was adhered to the formed coating film, resulting in a defect.

(実施例3)
実施例1において、被覆体と円筒状基体の境界部が液面を通過する間のみ浸漬速度を50mm/分と遅い速度とした以外は実施例1と同様にして、円筒状基体に被覆体を取り付けてPFA水性塗料に浸漬したところ、浸漬過程において、被覆体と円筒状基体との境界部の段差より気泡は発生することは無く、塗布膜表面に泡が付着した状態で引き上げた後の形成された塗膜にも泡は見られず、均一で欠陥のないPFA被膜を形成することができた。
(Example 3)
In Example 1, the coated body was applied to the cylindrical substrate in the same manner as in Example 1 except that the immersion speed was set to a slow speed of 50 mm / min only while the boundary between the coated body and the cylindrical substrate passed through the liquid surface. When attached and immersed in PFA water-based paint, no bubbles are generated due to the step at the boundary between the cover and the cylindrical substrate in the immersion process, and formation after pulling up with bubbles attached to the coating film surface No bubbles were observed in the coated film, and a uniform and defect-free PFA film could be formed.

(実施例4)
ポリイミド前駆体溶液を用意した(商品名:Uワニス、宇部興産製)。これは固形分濃度18%(質量%、以下同じ)、粘度約20Pa・sの溶液である。
Example 4
A polyimide precursor solution was prepared (trade name: U varnish, manufactured by Ube Industries). This is a solution having a solid content concentration of 18% (mass%, the same shall apply hereinafter) and a viscosity of about 20 Pa · s.

外径が29.8mm、長さが600mmの素管を350℃で10分間加熱し、自然冷却した後、表面を切削して外径を29.8mmにしたアルミニウム製円筒を用意した。その表面を、球形アルミナ粒子(不二製作所社製、粒径:105〜125μm)によるブラスト処理により、算術平均粗さRaで0.8μmに粗面化した後、シリコーン系離型剤(商品名:KS700、信越化学(株)製)を塗布して、300℃で1時間の焼き付け処理し、円筒状基体とした。   An element tube having an outer diameter of 29.8 mm and a length of 600 mm was heated at 350 ° C. for 10 minutes and naturally cooled, and then an aluminum cylinder having an outer diameter of 29.8 mm was prepared by cutting the surface. The surface was roughened to 0.8 μm with an arithmetic average roughness Ra by blasting with spherical alumina particles (Fuji Seisakusho, particle size: 105 to 125 μm), and then a silicone release agent (trade name) : KS700, manufactured by Shin-Etsu Chemical Co., Ltd.), and baked at 300 ° C. for 1 hour to obtain a cylindrical substrate.

ポリイミド前駆体溶液を回転塗布方法(図1参照)で塗布するため、円筒状基体の軸方向を水平にして、120rpmで回転させた。へらは幅20mm、厚さ0.1mmのステンレス板からなり、弾力性を有しており、これを基体に押し付けた。ポリイミド前駆体溶液は、容器から口径2mmのノズルを通して、エア圧0.4MPaにて、22g/minの流量で押し出した。ポリイミド前駆体溶液がへらを通過する際、へらが押し曲げられ、へらと基体の間には隙間ができた。次いで、ノズルとへらを180mm/分の速度で、基体の一端から他端へ移動させて塗布した。この条件で、基体1回転あたり、ノズルとへらは1.5mmずつ移動する。なお、塗布の際には、基体の両端に25mmずつの不塗布部分を設けたので、塗布した長さは440mmである。   In order to apply the polyimide precursor solution by the spin coating method (see FIG. 1), the axial direction of the cylindrical substrate was horizontal and rotated at 120 rpm. The spatula was made of a stainless plate having a width of 20 mm and a thickness of 0.1 mm, and had elasticity, and was pressed against the substrate. The polyimide precursor solution was extruded from the container through a nozzle with a diameter of 2 mm at an air pressure of 0.4 MPa and a flow rate of 22 g / min. When the polyimide precursor solution passed through the spatula, the spatula was pushed and bent, and a gap was formed between the spatula and the substrate. Subsequently, the nozzle and the spatula were applied by moving the substrate from one end to the other at a speed of 180 mm / min. Under this condition, the nozzle and the spatula move by 1.5 mm per rotation of the substrate. In addition, since the non-application part of 25 mm was provided in the both ends of the base | substrate at the time of application | coating, the applied length is 440 mm.

塗布後、基体を10rpmで回転させながら、120℃の乾燥炉に入れた。60分後に取り出すと、約150μm厚のポリイミド前駆体皮膜が形成され、外径は30.1mmとなった。   After coating, the substrate was placed in a drying oven at 120 ° C. while rotating at 10 rpm. When taken out after 60 minutes, a polyimide precursor film having a thickness of about 150 μm was formed, and the outer diameter was 30.1 mm.

以降は実施例1に示したように、フッ素樹脂塗膜を形成した。その後、150℃で20分間、220℃で20分間、及び380℃で30分間、加熱して、ポリイミド樹脂皮膜を形成すると共に、PFA塗膜を焼成した。室温に冷えた後、基体から皮膜を取り外し、150μm厚のポリイミド樹脂上に、30μm厚のPFA層を有する無端ベルトが作製できた。無端ベルト表面を観察したところ、ポリイミド樹脂層もPFA層も、気泡もむらもない良好な仕上がりであった。長さを340mmとなるように両端を切断して、電子写真用定着ベルトを得ることができた。   Thereafter, as shown in Example 1, a fluororesin coating film was formed. Then, it heated at 150 degreeC for 20 minutes, 220 degreeC for 20 minutes, and 380 degreeC for 30 minutes, and while forming the polyimide resin film, the PFA coating film was baked. After cooling to room temperature, the coating was removed from the substrate, and an endless belt having a 30 μm thick PFA layer on a 150 μm thick polyimide resin could be produced. When the surface of the endless belt was observed, the polyimide resin layer and the PFA layer had a good finish with no bubbles or unevenness. Both ends were cut so that the length was 340 mm, and an electrophotographic fixing belt could be obtained.

(実施例5)
実施例1において、表1に従って、フッ素樹脂塗料の粘度と、被覆体と円筒状基体の境界部が液面を通過する間のみの浸漬速度と、を変化させ、浸漬過程において、被覆体と円筒状基体との境界部の段差よる気泡の発生について調べた。但し、粘度が500mPa・s以下の場合は、フッ素樹脂塗料に代えて、水溶液に増粘剤を加え調整した粘調液を用いた。結果を表1及び図5に示す。
(Example 5)
In Example 1, according to Table 1, the viscosity of the fluororesin coating material and the immersion speed only while the boundary between the coating and the cylindrical substrate passed through the liquid surface were changed. The generation of bubbles due to the level difference at the boundary with the substrate was examined. However, when the viscosity was 500 mPa · s or less, a viscous liquid prepared by adding a thickener to the aqueous solution was used instead of the fluororesin paint. The results are shown in Table 1 and FIG.

なお、気泡の発生については、以下のようにして調べた。フッ素樹脂、もしくは粘調液を深さ500mmの透明な容器に入れ、ポリイミド前駆体からなる皮膜が形成された円筒状基体の底部に被覆体を押し込み嵌め合せ、表1の塗料粘度と浸漬速度を変えた。このとき気泡の発生は、被覆体と円筒状基体との境界部の段差部から300mmの深さまで浸漬するまでに発生した気泡の数をカウントし、発生無しを○、直径1mm以下の気泡が1〜2個発生を△、それ以外を×とした。なお、△は微小な気泡は発生するものの実用上問題ないレベルである。   The generation of bubbles was examined as follows. Put a fluororesin or viscous liquid in a transparent container with a depth of 500 mm, and press the cover into the bottom of the cylindrical substrate on which the film made of the polyimide precursor is formed. changed. At this time, the generation of bubbles was counted by counting the number of bubbles generated from the stepped portion at the boundary between the covering and the cylindrical substrate to a depth of 300 mm. ~ 2 occurrences were marked with Δ, and others were marked with x. In addition, Δ is a level that causes no problem in practical use although fine bubbles are generated.

Figure 0005002901
Figure 0005002901

これら表1及び図5の結果から、上記式(1)を満たすように、被覆体と円筒状基体の境界部が液面を通過する間のみの浸漬速度を制御することで、当該境界部の段差による気泡の発生を防止し、これに起因する欠陥を生じない塗膜が得られることがわかる。また、これを利用して、ポリイミド樹脂皮膜上にフッ素樹脂層が形成された定着ベルトが得られることもわかる。   From the results of Table 1 and FIG. 5, by controlling the immersion speed only while the boundary between the covering and the cylindrical substrate passes through the liquid surface so as to satisfy the above formula (1), It can be seen that it is possible to obtain a coating film which prevents the generation of bubbles due to a step and does not cause defects due to this. It can also be seen that a fixing belt having a fluororesin layer formed on a polyimide resin film can be obtained by utilizing this.

螺旋塗布装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a spiral coating device. 浸漬塗布装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a dip coating apparatus. 浸漬塗布装置に適用する際の円筒状基体を示す一部断面図構成図である。It is a partial cross section block diagram which shows the cylindrical base | substrate at the time of applying to a dip coating apparatus. 円筒状基体に取り付ける被覆体を示す断面図である。It is sectional drawing which shows the coating body attached to a cylindrical base | substrate. 実施例5の結果を示す図である。It is a figure which shows the result of Example 5.

符号の説明Explanation of symbols

10 円筒状基体
12 ポリイミド前駆体溶液
14 流下装置
16 ノズル
18 容器
20 へら
22 円筒状基体保持部材
24 被覆体
26 弾性膜
28 底部
30 筒状部
32 境目
34 リブ
36 皮膜
38 塗布槽
40 フッ素樹脂分散液
42 外部槽
44 ポンプ
46 フィルター
48 塗膜
50 送風装置
DESCRIPTION OF SYMBOLS 10 Cylindrical base | substrate 12 Polyimide precursor solution 14 Flowing-down apparatus 16 Nozzle 18 Container 20 Spatula 22 Cylindrical base | substrate holding member 24 Covering body 26 Elastic film 28 Bottom part 30 Cylindrical part 32 Boundary 34 Rib 36 Film | membrane 38 Coating tank 40 Fluororesin dispersion liquid 42 External tank 44 Pump 46 Filter 48 Coating film 50 Blower

Claims (2)

円筒状基体を、その軸方向が垂直となるように保持しながら塗料に浸漬し、次いで引き上げることにより、該塗料を前記円筒状基体の表面に塗布をする浸漬塗布方法であって、
前記円筒状基体は、その下端の開口を密閉すると共に下端部外周面を覆って被覆体が保持されてなり、
且つ前記被覆体と前記円筒状基体との境界部であって、前記被覆体の最大外径と前記円筒状基体の最大外径との差が0.5mm以下で、その差により形成される段差部からなる境界部が前記塗液の液面を通過する間の浸漬速度Tが下記式(1)及び下記式(2)を満たすことを特徴とする浸漬塗布方法。
式(1):T≦−ρ+1000
式(2):T≦−0.4ρ+460
(ここで、式(1)及び(2)中、Tは浸漬速度(mm/分)、ρは塗液の粘度(mPa・s)を示す。)
A dip coating method in which a cylindrical substrate is dipped in a paint while holding its axial direction perpendicular, and then pulled up to apply the paint to the surface of the cylindrical substrate,
The cylindrical substrate is formed by sealing a lower end opening and covering a lower end outer peripheral surface, and a covering is held.
And a step formed by the difference between the maximum outer diameter of the covering body and the maximum outer diameter of the cylindrical base body, which is a boundary portion between the covering body and the cylindrical base body and is 0.5 mm or less. A dip coating method in which the dip speed T during the passage of the boundary portion formed by the portion passes the liquid surface of the coating liquid satisfies the following formula (1) and the following formula (2).
Formula (1): T ≦ −ρ + 1000
Formula (2): T ≦ −0.4ρ + 460
(Here, in formulas (1) and (2), T represents the dipping rate (mm / min), and ρ represents the viscosity of the coating liquid (mPa · s).)
ポリイミド樹脂皮膜又はポリイミド前駆体皮膜を円筒状基体の表面に形成する工程と、
前記皮膜が表面に形成された円筒状基体を、その軸方向が垂直となるように保持しながら、フッ素樹脂塗料中に浸漬し、引き上げることにより、前記円筒状基体における前記皮膜の表面にフッ素樹脂塗料を塗布する工程と、
塗布された前記フッ素樹脂塗料を加熱焼成して、フッ素樹脂層を形成する工程と、
フッ素樹脂層が形成された前記皮膜を円筒状基体から抜き取る工程と、
を有し、
前記フッ素樹脂層を形成する工程において、
前記円筒状基体は、その下端面の開口を密閉すると共に下端部外周面を覆って被覆体が保持されてなり、
且つ前記被覆体と前記円筒状基体との境界部であって、前記被覆体の最大外径と前記円筒状基体の最大外径との差が0.5mm以下で、その差により形成される段差部からなる境界部が前記塗液の液面を通過する間の浸漬速度Tが下記式(1)及び下記式(2)を満たすことを特徴とする定着ベルトの製造方法。
式(1):T≦−ρ+1000
式(2):T≦−0.4ρ+460
(ここで、式(1)及び(2)中、Tは浸漬速度(mm/分)、ρは塗液の粘度(mPa・s)を示す。)
Forming a polyimide resin film or a polyimide precursor film on the surface of the cylindrical substrate;
The cylindrical substrate with the coating formed on the surface is immersed in a fluororesin paint while being held so that its axial direction is vertical, and then pulled up, so that the fluororesin is applied to the surface of the coating on the cylindrical substrate. Applying a paint; and
Heating and firing the applied fluororesin paint to form a fluororesin layer;
Extracting the film on which the fluororesin layer is formed from a cylindrical substrate;
Have
In the step of forming the fluororesin layer,
The cylindrical base body is configured to seal the opening at the lower end surface and cover the outer peripheral surface of the lower end portion to hold the covering.
And a step formed by the difference between the maximum outer diameter of the covering body and the maximum outer diameter of the cylindrical base body, which is a boundary portion between the covering body and the cylindrical base body and is 0.5 mm or less. A method for producing a fixing belt, characterized in that the immersion speed T during the passage of the boundary portion formed by the portion passes the liquid surface of the coating liquid satisfies the following formulas (1) and (2).
Formula (1): T ≦ −ρ + 1000
Formula (2): T ≦ −0.4ρ + 460
(Here, in formulas (1) and (2), T represents the dipping rate (mm / min), and ρ represents the viscosity of the coating liquid (mPa · s).)
JP2005078143A 2005-03-17 2005-03-17 Immersion coating method and fixing belt manufacturing method Expired - Fee Related JP5002901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005078143A JP5002901B2 (en) 2005-03-17 2005-03-17 Immersion coating method and fixing belt manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005078143A JP5002901B2 (en) 2005-03-17 2005-03-17 Immersion coating method and fixing belt manufacturing method

Publications (2)

Publication Number Publication Date
JP2006255615A JP2006255615A (en) 2006-09-28
JP5002901B2 true JP5002901B2 (en) 2012-08-15

Family

ID=37095401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005078143A Expired - Fee Related JP5002901B2 (en) 2005-03-17 2005-03-17 Immersion coating method and fixing belt manufacturing method

Country Status (1)

Country Link
JP (1) JP5002901B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5328420B2 (en) * 2009-02-27 2013-10-30 トヨタ自動車株式会社 Varnish curing method and apparatus
JP4853534B2 (en) 2009-03-13 2012-01-11 富士ゼロックス株式会社 Polyamic acid composition, polyimide endless belt, fixing device and image forming apparatus
JP5223983B1 (en) * 2012-05-28 2013-06-26 富士ゼロックス株式会社 Rotating body manufacturing apparatus and rotating body manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02277577A (en) * 1989-04-20 1990-11-14 Fuji Photo Film Co Ltd Coating method
JPH1073934A (en) * 1996-09-02 1998-03-17 Dainippon Ink & Chem Inc Manufacture of photosensitive body for electrophotograph
JP4269722B2 (en) * 2003-03-11 2009-05-27 富士ゼロックス株式会社 Cylindrical dip coating method and fixing belt manufacturing method

Also Published As

Publication number Publication date
JP2006255615A (en) 2006-09-28

Similar Documents

Publication Publication Date Title
JP5002901B2 (en) Immersion coating method and fixing belt manufacturing method
JP5076284B2 (en) Endless belt manufacturing method
JP2003255640A (en) Polyimide resin endless belt and method for manufacturing the same
JP3864736B2 (en) Method for producing endless belt made of polyimide resin and annular coating device
JP4277520B2 (en) Endless belt and manufacturing method thereof
JP2004094042A (en) Endless belt made of polyimide resin and its manufacture method
JP4244638B2 (en) Polyimide resin endless belt and manufacturing method thereof
JP4396096B2 (en) Method for producing endless belt made of polyimide resin, and endless belt made of polyimide resin
JP2008112097A (en) Endless belt, manufacturing method of the same, fixing device, and image forming apparatus
JP4269722B2 (en) Cylindrical dip coating method and fixing belt manufacturing method
JP2006167516A (en) Coating method for polyimide resin precursor solution and production method for polyimide resin endless belt
JP2005305809A (en) Polyimide resin endless belt and method for manufacturing the same
JP4492172B2 (en) Cylindrical core holder, polyimide endless belt manufacturing method, and fixing belt manufacturing method
JP2004109665A (en) Polyimide resin endless belt and its producing method
JP2004255708A (en) Method for producing endless belt of polyimide resin and the endless belt
JP2006240099A (en) Endless belt made of thermosetting resin and its production method
US20120043699A1 (en) Method for producing endless belt
JP2006055778A (en) Coating method for resin solution, and production methods for thermosetting-resin endless belt and thermosetting-resin fixation belt
JP4682514B2 (en) Resin dispersion liquid coating apparatus and coating method, polyimide resin endless belt manufacturing method, and fixing belt manufacturing method
JP4544104B2 (en) Cylindrical core, method for manufacturing the same, and method for manufacturing an endless belt
JP2005172885A (en) Coating device, coating method, and fixing belt manufacturing method
JP4045818B2 (en) Polyimide resin endless belt and manufacturing method thereof
JP2005215133A (en) Endless belt, fixing belt, and its manufacturing method
JP4609254B2 (en) Recycling method of cylindrical core and manufacturing method of endless belt
JP4806903B2 (en) Cylindrical core, coating device, and method for producing polyimide resin endless belt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees