JP5600271B2 - 放射線撮影装置および方法並びにプログラム - Google Patents

放射線撮影装置および方法並びにプログラム Download PDF

Info

Publication number
JP5600271B2
JP5600271B2 JP2010149442A JP2010149442A JP5600271B2 JP 5600271 B2 JP5600271 B2 JP 5600271B2 JP 2010149442 A JP2010149442 A JP 2010149442A JP 2010149442 A JP2010149442 A JP 2010149442A JP 5600271 B2 JP5600271 B2 JP 5600271B2
Authority
JP
Japan
Prior art keywords
radiation source
radiation
subject
image
captured images
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010149442A
Other languages
English (en)
Other versions
JP2012010891A (ja
Inventor
貞登 赤堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010149442A priority Critical patent/JP5600271B2/ja
Publication of JP2012010891A publication Critical patent/JP2012010891A/ja
Application granted granted Critical
Publication of JP5600271B2 publication Critical patent/JP5600271B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Description

本発明は、断層画像を生成するトモシンセシス撮影を行うための放射線撮影装置および方法並びにプログラムに関するものである。
近年、X線撮影装置において、患部をより詳しく観察するために、X線管を移動させて異なる角度から被写体にX線を照射して撮影を行い、これにより取得した画像を加算して所望の断層面を強調した画像を得ることができるトモシンセシス撮影が提案されている。トモシンセシス撮影では、撮影装置の特性や必要な断層画像に応じて、X線管をX線検出器と平行に移動させたり、円や楕円の弧を描くように移動させて、異なる照射角で被写体を撮影した複数の撮影画像を取得し、単純逆投影法あるいはフィルタ逆投影法等の逆投影法等を用いてこれらの撮影画像を再構成して断層画像を生成する。ここで、単純逆投影法は、各撮影画像を、被写体の再構成を所望する断層面上において、X線照射時の撮像系の幾何学的配置に応じた経路に逆投影し、逆投影した逆投影像を加算することにより、所望とする断面の断層画像を再構成する手法である。フィルタ逆投影法は、逆投影像のボケを防止するために撮影画像に対して高周波を強調するフィルタ補正を行い、フィルタ補正された撮影画像を逆投影して加算することにより、所望とする断面の断層画像を再構成する手法である。
このようなトモシンセシス撮影を行う場合には、撮影により取得した複数の撮影画像を再構成する際に、各撮影画像の位置合わせが必要となる。このため、トモシンセシス撮影時に、被写体あるいは被写体を載置する撮影台にマーカを付与し、被写体とともにマーカを撮影することにより、マーカ像が含まれる複数の撮影画像を取得することが行われている。このように被写体とともにマーカを撮影することにより、複数の撮影画像のそれぞれに含まれるマーカ像を基準として複数の撮影画像の位置合わせを行いつつ、断層画像を再構成することができる。
一方、複数のマーカを用いて撮影を行うことにより得た複数の撮影画像のそれぞれに含まれる複数のマーカ像に基づいて、X線源の位置およびX線検出器の位置を複数の撮影画像毎に算出し、算出したX線源の位置およびX線検出器の位置に基づいて、再構成を行う手法も提案されている(特許文献1,2参照)。
また、トモシンセシス撮影時においては、被写体を透過したX線を投影するX線検出器に対して様々な角度からX線が照射されるが、X線検出器に対して斜めの方向からX線が照射される場合、X線検出器上のX線が照射される領域内の位置によって、X線管からの距離が異なるものとなる。ここで、撮影画像の濃度はX線検出器により受光されたX線の線量に反比例するため、X線が照射された領域内の位置によって、到達するX線の線量が変わってしまい、画像上の濃度ムラを生じさせてしまう。このため、撮影画像の濃度分布、並びにX線管とX線検出器との距離および角度関係に基づいて撮影画像の濃度を補正して再構成を行う手法が提案されている(特許文献3参照)。
また、フィルタ逆投影法を用いた再構成時に、撮影画像を表すデータ(投影データ)上においてフィルタにより補正を行ってから再構成することにより、演算時間を短縮する手法が提案されている(特許文献4参照)。
特開2005−21345号公報 特開2005−21675号公報 特開2009−11639号公報 特開2007−117740号公報
ところで、トモシンセシス撮影時には、複数の線源位置のそれぞれにおいてX線管から被写体に放射線を照射することにより複数の撮影画像が取得されるが、その際、複数の線源位置が、所定の基準位置からX線管の移動範囲を定める角度(断層角度とする)を等分する位置にない、すなわち基準位置を基準とした各線源位置の角度間隔が等間隔でないと、複数の撮影画像を逆投影法等により逆投影した際の、断層画像における各撮影画像の情報量のバランスが均等でなくなる。具体的には、X線管の移動範囲を等分するように線源位置を設定した場合、各線源位置の角度範囲を等間隔となるようにした場合と比較して、X線検出器に対して斜めの方向からX線が照射される場合ほど角度間隔が小さくなるため、断層画像を再構成した際に、X線検出器に対して斜め方向からX線を照射することにより取得した撮影画像の情報量が密となる。このように撮影画像を取得したX線源の位置に応じて、断層画像における撮影画像の情報量に粗密が生じると、各撮影画像と線源位置との関係が正確であっても、断層画像に寄与する情報量の角度別のバランスが不均等になってアーチファクトが生じる。したがって、各線源位置は基準位置を基準として等角度間隔とすることが好ましい。
しかしながら、撮像系によっては等角度間隔となるように撮影するための制御が複雑となる場合が多い。例えば、X線管を直線軌道に沿って移動させる場合、線源位置を等角度間隔とするためには、X線管の移動速度を非線形に制御したり、撮影間隔を非線形に制御したりする必要がある。また、等角度間隔となるように制御しても、装置の機械的なズレにより、実際には線源位置が等角度間隔とはならない場合がある。
ここで、上記特許文献1,2に記載された手法は、X線源の位置およびX線検出器の位置を複数の撮影画像毎に算出し、算出したX線源の位置およびX線検出器の位置に基づいて再構成を行う手法であり、基準位置を基準とした線源位置の角度間隔を問題にするものではない。また、特許文献3に記載された手法は、1つの撮影画像内におけるX線管からの距離の相違による濃度ムラを補正するものであり、特許文献1,2と同様に基準位置を基準とした線源位置の角度間隔を問題にするものではない。また、特許文献4は、フィルタ逆投影法を用いた再構成時に、撮影画像を表すデータ上においてフィルタにより補正を行ってから再構成するものであり、同様に、基準位置を基準とした線源位置の角度間隔を問題にするものではない。
本発明は上記事情に鑑みなされたものであり、アーチファクトが低減された断層画像を簡易に取得できるようにすることを目的とする。
本発明による放射線撮影装置は、被写体に放射線を照射する放射線源と、
前記被写体を透過した放射線を検出する検出手段と、
断層画像を取得する範囲を定める基準面上の所定の基準点を基準とした所定断層角度に基づいて算出される移動範囲内において、前記放射線源を前記検出手段に対して相対的に移動させ、前記放射線源の移動による複数の線源位置において前記被写体に前記放射線を照射して、前記複数の線源位置のそれぞれに対応する複数の撮影画像を取得する画像取得手段と、
前記被写体の所望とする断面に前記複数の撮影画像を逆投影し、該逆投影した撮影画像のそれぞれについて、該各撮影画像を取得した線源位置の、前記基準点を基準とした角度間隔が大きいほど重み付けを大きくして重み付け加算することにより、前記被写体の断層画像を生成する画像再構成手段とを備えたことを特徴とするものである。
「放射線源を検出手段に対して相対的に移動させる」とは、検出手段を固定して放射線源のみを移動させる場合、および検出手段と放射線源との双方を同期させて移動する場合の両方を含む。
「断層画像を取得する範囲を定める基準面」としては、例えば被写体を載置する撮影台の天板面、検出手段の検出面、関心領域を設定した場合における関心領域の検出手段に最も近い面、あるいは被写体における任意の断層面等を用いることができる。
「断層角度」とは、基準面上の基準点から放射線源の移動範囲を定める2つの端部を臨む角度である。
「基準点を基準とした角度」とは、基準点を通る基準面に平行な放射線源の移動方向に延びる軸と、基準点および線源位置を結ぶ直線とがなす角度であり、「基準点を基準とした角度間隔」は、ある線源位置に隣接する2つの線源位置についての基準点を基準とした角度の差分値として算出することができる。
なお、本発明による放射線撮影装置においては、前記角度間隔を取得する角度間隔取得手段をさらに備えるものとしてもよい。
この場合、前記撮影画像を取得した際の前記複数の線源位置の情報を取得する線源位置取得手段をさらに備えるものとし、
前記角度間隔取得手段を、前記取得した線源位置の情報に基づいて、前記角度間隔を取得する手段としてもよい。
本発明による放射線撮影方法は、被写体に放射線を照射する放射線源と、
前記被写体を透過した放射線を検出する検出手段と、
断層画像を取得する範囲を定める基準面上の所定の基準点を基準とした所定断層角度に基づいて算出される移動範囲内において、前記放射線源を前記検出手段に対して相対的に移動させ、前記放射線源の移動による複数の線源位置において前記被写体に前記放射線を照射して、前記複数の線源位置のそれぞれに対応する複数の撮影画像を取得する画像取得手段とを備えた放射線撮影装置における放射線撮影方法であって、
前記被写体の所望とする断面に前記複数の撮影画像を逆投影し、該逆投影した撮影画像のそれぞれについて、該各撮影画像を取得した線源位置の、前記基準点を基準とした角度間隔が大きいほど重み付けを大きくして重み付け加算することにより、前記被写体の断層画像を生成することを特徴とするものである。
なお、本発明による放射線撮影方法をコンピュータに実行させるためのプログラムとして提供してもよい。
上述したように、基準点を基準とした各線源位置の角度間隔が等間隔でないと、複数の撮影画像を逆投影した際の断層画像において撮影画像の情報量のバランスが均等でなくなり、角度間隔が小さい線源位置において取得した撮影画像ほど情報量が密となって、断層画像において撮影画像の情報量の粗密が生じる。このように断層画像において撮影画像の情報量に粗密が生じると、各撮影画像と線源位置との関係が正確であっても、断層画像に寄与する情報量の角度別のバランスが不均等になってアーチファクトが生じる。この場合、基準点を基準として各線源位置を等角度間隔とすることが好ましいが、線源位置を等角度間隔となるようにするためには、放射線源を移動させる際の制御が複雑となる。
本発明によれば、被写体の所望とする断面に複数の撮影画像を逆投影し、逆投影した撮影画像のそれぞれについて、各撮影画像を取得した線源位置の、基準点を基準とした角度間隔が大きいほど重み付けを大きくして重み付け加算することにより、被写体の断層画像を生成するようにしたものである。このため、複数の線源位置の角度間隔が不均等であっても、断層画像に寄与する情報量の角度別のバランスが均等化され、これにより、アーチファクトの少ない高画質の断層画像を生成することができる。
また、撮影画像を取得した際の複数の線源位置の情報を取得し、取得した線源位置の情報に基づいて角度間隔を取得することにより、逆投影された撮影画像に対して、撮影時の実際の線源位置に応じた重み付けを行うことができるため、撮影時の位置ずれに起因する逆投影経路のずれを補正すると同時に、断層画像に寄与する情報量の角度別のバランスを補正することができ、これにより、アーチファクトの少ない高画質の断層画像を生成することができる。
本発明の第1の実施形態による放射線撮影装置を適用したX線撮影装置の概略図 X線管の移動範囲の算出を説明するための図 再構成部が行う処理を概略的に示す図 第1の実施形態における重み係数の算出を説明するための図 第1の実施形態において行われる処理を示すフローチャート 断層画像における情報量の粗密を説明するための図 本発明の第2の実施形態による放射線撮影装置を適用したX線撮影装置の概略図 第2の実施形態において使用されるマーカおよびマーカの配置位置を説明する撮影台の天板の平面図 第2の実施形態における重み係数の算出を説明するための図 第2の実施形態において行われる処理を示すフローチャート
以下、図面を参照して本発明の実施形態について説明する。図1は本発明の第1の実施形態による放射線撮影装置を適用したX線撮影装置の概略図である。図1に示すように、第1の実施形態によるX線撮影装置10は、トモシンセシス撮影を行うためのものであり、X線管12およびフラットパネルX線検出器(以下、単に検出器とする)14を備える。X線管12は移動機構16により直線または円弧に沿って移動し、移動経路上の複数の位置において、撮影台天板4上の被写体2にX線を照射する。本実施形態においては直線軌道に沿って矢印A方向にX線管12を移動させるものとする。なお、被写体2へのX線照射量は後述する制御部により所定量となるように制御される。
また、X線管12にはコリメータ(照射野絞り)6が接続されており、被写体2に照射されるX線の範囲(照射範囲)を操作者が設定できるようになっている。なお、コリメータ6を用いて照射範囲を設定する際には、X線に代えて可視光がコリメータ6を介して被写体2に照射される。なお、可視光はコリメータ6に設けられた照射野ランプ(不図示)から発せられる。これにより、操作者は被写体2に照射された可視光の範囲をコリメータ6を用いて調整することにより、X線の照射範囲を設定することができる。
検出器14は、被写体2を透過したX線を検出するために、被写体2を載置する撮影台天板4を間に挟んでX線管12と対向するように配置されている。検出器14は、移動機構18により必要に応じて直線または円弧に沿って移動し、移動経路上の複数の位置において被写体2を透過したX線を検出する。なお、本実施形態においては直線軌道に沿って矢印B方向に検出器14を移動させるものとする。
また、X線撮影装置10は、画像取得部20および再構成部22を備える。画像取得部20は、直線に沿ってX線管12を移動させ、X線管12の移動による複数の線源位置において被写体2にX線を照射し、被写体2を透過したX線を検出器14により検出して、移動中の複数の線源位置における複数の撮影画像を取得する。再構成部22は、画像取得部20が取得した複数の撮影画像を再構成することにより、被写体2の所望の断面を示す断層画像を生成する。本実施形態においては、再構成部22は、単純逆投影法あるいはフィルタ逆投影法等の逆投影法等を用いてこれらの撮影画像を再構成して断層画像を生成するものとする。なお、本実施形態においては、フィルタ逆投影法を用いるものとする。
また、X線撮影装置10は、操作部24、表示部26および記憶部28を備える。操作部24はキーボード、マウスあるいはタッチパネル方式の入力装置からなり、操作者によるX線撮影装置10の操作を受け付ける。また、トモシンセシス撮影を行うために必要な、撮影条件等の各種情報の入力および情報の修正の指示も受け付ける。本実施形態においては、操作者が操作部24から入力した情報に従って、X線撮影装置10の各部が動作する。表示部26は液晶モニタ等の表示装置であり、画像取得部20が取得した撮影画像および再構成部22が再構成した断層画像の他、操作に必要なメッセージ等を表示する。なお、表示部26は音声を出力するスピーカを内蔵するものであってもよい。記憶部28は、X線撮影装置10を動作させるために必要な撮影条件を設定する各種パラメータ等を記憶している。なお、各種パラメータは、撮影部位に応じた標準値が記憶部28に記憶されており、必要に応じて操作者が操作部24から指示を行うことにより修正される。
撮影条件を設定するためのパラメータとしては、基準面、断層角度、線源距離、ショット数、ショット間隔、X線管12の管電圧および管電流、並びにX線の曝射時間等が挙げられる。なお、これらのパラメータのうち、ショット数、ショット間隔、X線管12の管電圧および管電流、並びにX線の曝射時間は、これらがそのまま撮影条件となりうるものである。
図2は各種パラメータを説明するための図である。基準面は、断層画像を取得する範囲を定める面であり、例えば撮影台天板4の天板面、検出器14の検出面あるいは被写体2における任意の断層面等を用いることができる。図2においては、被写体2の厚さを2等分する面(以下中心面とする)を基準面として用いる。断層角度は、基準面上の基準点B0からX線管12の移動範囲を定める2つの端部を臨む角度である。ここで、検出器14の検出面とX線管12の移動経路とは平行となっているため、X線管12の移動経路上における検出器14の検出面に最も近い距離を線源距離とする。なお、図2および以降の説明においては、X線管12の移動経路に平行な方向をx方向、X線管12の移動経路に垂直な方向をz方向、紙面に垂直な方向をy方向とする。
ショット数は、断層角度の範囲内においてX線管12が端から端まで移動する間の撮影回数である。ショット間隔は、各ショット間の時間間隔である。
なお、図2および以降の説明においては、X線管12の移動範囲をs0、X線管12と検出器14の検出面との距離(すなわち線源距離)をsz、断層角度をθ、検出器14の検出面と基準面(すなわち被写体2の中心面)との距離をd0、検出器14の検出面と撮影台天板4の天板面までの距離をmzとする。また、基準面上の所定の基準点B0として、検出器14の重心を通る垂線と基準面との交点を用いるものとする。
また、X線撮影装置10は演算部30を備える。演算部30は、X線管12の移動範囲等の撮影条件を記憶部28に記憶されたパラメータにしたがって算出する。
ここで、図2に示す関係を参照すると、線源距離sz、距離d0および断層角度θから、X線管12の移動範囲s0を算出することができる。すなわち、基準点B0を通る垂線とX線管12の移動経路との交点を原点O1とすると、基準面とX線管12との距離はsz−d0となるため、演算部30は、X線管12の移動範囲s0を、-(sz−d0)・tan(θ/2)〜(sz−d0)・tan(θ/2)として算出する。なお、これにより、算出した移動範囲s0の両端の位置が定まる。
また、演算部30は、X線管12の移動範囲s0をショット数により等分することにより、各撮影におけるX線管12の位置(以下線源位置とする)を算出する。これにより、移動範囲s0を等分するようにX線管12の線源位置S1〜Snを算出することができる。
また、演算部30は、撮影時間および線源走行速度を撮影条件として算出する。撮影時間は、ショット数×ショット間隔により算出できる。線源走行速度は、移動範囲s0/撮影時間により算出できる。
また、X線撮影装置10は、複数の撮影画像を再構成する際に使用する重み係数を算出する重み算出部32を備える。ここで、本実施形態においては、再構成部22は、フィルタ逆投影法を用いて断層画像を再構成する。図3は再構成部22が行う処理を概略的に示す図である。本実施形態においては、複数の線源位置S1〜Snにおいて被写体2を撮影することにより、複数の撮影画像G1〜Gnが取得される。そして、複数の撮影画像G1〜Gnのそれぞれに対して、1次元フィルタにより高周波を強調するフィルタ補正F1〜Fnを行い、フィルタ補正された撮影画像G1′〜Gn′を、被写体2の再構成を所望する断層面上において、複数の線源位置により定められる経路に逆投影して加算することにより、所望とする断面の断層画像D0を再構成する。
この際、本実施形態においては、各撮影画像G1〜Gnを取得した線源位置S1〜Snの、基準点B0を基準とした角度間隔が大きいほど重み付けを大きくして、フィルタ補正された撮影画像G1′〜Gn′を加算するものである。重み算出部32は、フィルタ補正された撮影画像G1′〜Gn′を加算する際の重み係数W1〜Wnを算出する。なお、重み算出部32が本発明の角度間隔取得手段に相当する。
図4は重み係数の算出を説明するための図である。図4に示すように、重み算出部32は、各線源位置S1〜Snを基準点B0を基準とする角度θ1〜θnに換算する。具体的には、角度θ1〜θnは、基準点B0を通る基準面に平行なx方向の軸と、基準点B0および線源位置S1〜Snを結ぶ直線とがなす角度である。ここで、線源位置S1〜Snの位置および基準点B0は既知であることから、角度θ1〜θnは幾何学的に算出することができる。なお、線源位置S1〜S3についてみると、各線源位置は等間隔であることから、角度θ1〜θ3の関係はθ1<θ2<θ3となり、線源位置が原点O1に近づくほど大きくなる。
次いで、重み算出部32は、各線源位置S1〜Snの角度間隔dθi(i=1〜n)を下記の式(1)により算出する。
dθi=(θi+1−θi-1)/2 (1)
すなわち、対象とする線源位置Siについて、これに隣接する線源位置Si+1,Si−1の角度θi+1,θi−1を等分する値を、対象とする線源位置Siの角度間隔として算出する。なお、両端部の線源位置S1,Snの角度間隔d1,dnはそれぞれd2−d1,dn−dn-1により算出する。重み算出部32は、このようにして算出した角度間隔dθiをフィルタ補正された撮影画像G1′〜Gn′に対する重み係数Wiとして出力する。なお、下記の式(2)により、角度間隔dθiを正規化した値を重み係数Wiとしてもよい。
Wi=dθi/(Σdθi) (2)
さらに、X線撮影装置10は、X線撮影装置10の各部を制御するための制御部34を備える。制御部34は、操作部24からの指示に応じてX線撮影装置10の各部を制御する。また、制御部34は、記憶部28に記憶されたX線管12の管電圧および管電流、並びにX線の曝射時間によりX線管12に基づいて、被写体2へのX線照射量を制御する。
次いで第1の実施形態において行われる処理について説明する。図5は第1の実施形態において行われる処理を示すフローチャートである。なお、ここでは、X線管12のみを移動し、検出器14は移動させないでトモシンセシス撮影を行うものとして説明する。操作者による処理開始の指示を操作部24が受け付けることにより制御部34が処理を開始し、X線管12を移動させつつトモシンセシス撮影を行い(ステップST1)、画像取得部20が複数の撮影画像を取得する(ステップST2)。次いで、重み算出部32が、複数の撮影画像に対する重み係数Wiを算出する(ステップST3)。なお、重み係数Wiはあらかじめ算出して記憶部28に記憶しておくようにしてもよい。次いで、再構成部22が、重み係数Wiを用いてフィルタ逆投影法により複数の撮影画像を再構成して断層画像を生成し(ステップST4)、処理を終了する。すなわち、複数の撮影画像G1〜Gnのそれぞれに対して、1次元フィルタにより高周波を強調するフィルタ補正F1〜Fnを行い、フィルタ補正された撮影画像G1′〜Gn′を、被写体2の再構成を所望する断層面上において、複数の線源位置により定められる経路に逆投影し、逆投影された撮影画像G1′〜Gn′を重み係数Wiにより重み付けて加算することにより、断層画像を再構成する。なお、生成された断層画像は、不図示のHDD等の記憶装置に記憶されるか、またはネットワークを介して外部のサーバに送信される。
ここで、基準点B0を基準とした各線源位置S1〜Snの角度間隔dθiが等間隔でないと、複数の撮影画像G1〜Gnを逆投影した際の断層画像における撮影画像G1〜Gnの情報量のバランスが均等でなくなり、角度間隔が小さい線源位置において取得した撮影画像ほど情報量が密となって、断層画像において撮影画像G1〜Gnの情報量の粗密が生じる。図6は断層画像における情報の粗密を説明するための図である。なお、図6は複数の撮影画像のそれぞれをフーリエ変換し、撮影画像の情報をフーリエ空間において表した図である。また、図6においては、線源位置が移動範囲s0の原点O1にある場合の撮影画像の情報はfx軸上に位置し、線源位置が原点O1から離れるほど、フーリエ空間上の原点を中心に撮影画像の情報が傾斜して表されることとなる。
ここで、図6(a)は線源位置S1〜Snの角度間隔が等間隔である場合の各撮影画像の情報を示すものである。図6(a)に示すように、線源位置S1〜Snの角度間隔が等間隔であると、フーリエ空間においては、撮影画像の情報は等角度間隔で並ぶこととなる。一方、X線管12の移動範囲s0を等分するように線源位置を決定すると、図6(b)に示すように、検出器14に対して斜めの方向からX線が照射される場合ほど、撮影画像の情報の角度間隔が小さくなる。ここで、逆投影された撮影画像を加算することは、フーリエ空間上において情報を積分することと等価である。このため、図6(a)に示すように、線源位置S1〜Snの角度間隔が等間隔であると、断層画像において各撮影画像の情報量の粗密は生じないが、図6(b)に示すように、線源位置S1〜Snの角度間隔が等間隔でないと、断層画像において各撮影画像の情報量に粗密が生じる。これにより、断層画像において各撮影画像の情報量のバランスが均等でなくなり、角度間隔が小さいほど撮影画像に含まれる情報量が多くなる。このように断層画像における撮影画像の情報量に粗密が生じると、各撮影画像G1〜Gnと線源位置S1〜Snとの関係が正確であっても、断層画像に寄与する情報量の角度別のバランスが不均等になってアーチファクトが生じる。この場合、基準点B0を基準として各線源位置S1〜Snを等角度間隔とすることが好ましいが、線源位置を等角度間隔となるようにするためには、X線管12を移動させる際の制御が複雑となる。
本実施形態によれば、各撮影画像G1〜Gnを取得した線源位置S1〜Snの、基準点B0を基準とした角度間隔dθiが大きいほど重み付けを大きくして、逆投影された撮影画像G1〜Gnを重み付け加算するようにしたため、角度間隔dθiが不均等であっても、角度間隔dθiの粗密に応じて、撮影画像G1〜Gnの断層画像への寄与の角度別のバランスを均等にすることができ、その結果、アーチファクトの少ない高画質の断層画像を生成することができる。
次いで、本発明の第2の実施形態について説明する。図7は本発明の第2の実施形態による放射線撮影装置を適用したX線撮影装置の概略図である。なお、第2の実施形態において第1の実施形態と同一の構成については同一の参照番号を付与し、ここでは詳細な説明は省略する。第2の実施形態によるX線撮影装置10Aは、被写体2とともに複数のマーカを撮影し、撮影画像に含まれるマーカ像を用いてX線管12の線源位置S1〜Snを算出する線源位置算出部36をさらに備えた点が第1の実施形態と異なる。
図8は第2の実施形態において使用されるマーカおよびマーカの配置位置を説明する撮影台の天板の平面図である。図8に示すように、第2の実施形態においては、4つの円形のマーカM1〜M4を使用するものとし、X線の照射方向において、被写体2とマーカM1〜M4とが重なるように、操作者が撮影台天板4上に4つのマーカM1〜M4を配置する。なお、マーカM1〜M4は、X線吸収率が高い例えば鉛等の材料からなる。マーカM1〜M4の大きさは1cm程度であり、それぞれが固有の形状の孔が形成されてなる。これにより、撮影画像に含まれる4つのマーカM1〜M4はそれぞれが識別可能とされている。なお、図8においては、マーカM1〜M4の大きさは拡大して示している。また、マーカの形状は円形に限定されるものではなく、公知の任意の形状のものを使用できる。また、マーカの数も4つに限定されるものではなく、1以上の任意の数であればよい。
線源位置算出部36は、トモシンセシス撮影により取得された複数の撮影画像のそれぞれからマーカM1〜M4のマーカ像を検出し、検出したマーカ像の位置(マーカ像の中心位置)を用いて線源位置を算出する。ここで、X線管12、検出器14、マーカM1〜M4およびマーカ像の位置の間には一定の関係が成立する。X線管12、マーカM1〜M4およびマーカ像はともに点の位置であり、検出器14の位置は平面の位置である。なお、マーカM1〜M4の位置は、撮影台天板4上に配置した際に取得しておく。線源位置算出部36は、例えば特許文献2に記載された手法を用いることにより、マーカM1〜M4、マーカ像、X線管12および検出器14の各位置の関係に関する関係式を算出し、マーカM1〜M4の位置、マーカ像の位置の情報を関係式に代入して方程式を求める。この方程式をX線撮影装置の座標の成分(x,y,z)毎に分解することにより、マーカ1個につき3個の方程式が求められることとなる。そして算出したX線管12の位置(すなわち線源位置)および検出器14の位置を未知の情報とし、4個のマーカM1〜M4から導かれる12個の連立方程式を解くことにより、線源位置S1〜Snおよび検出器14の位置を算出する。なお、検出器14を移動させない場合には、検出器14の位置は固定であることから、より簡単な方程式により線源位置を算出することができる。
なお、線源位置算出部36は、上記特許文献1等、他の公知の手法を用いてマーカM1〜M4の位置、およびマーカ像の位置の情報に基づいて、線源位置を算出するようにしてもよい。ここで、特許文献1に記載された手法を用いた場合、線源位置算出部36は、複数の撮影画像のそれぞれからマーカM1〜M4のマーカ像の位置の情報を取得し、マーカM1〜M4の位置が既知であるという前提の元、投影演算を行うことによりマーカM1〜M4の検出器14上の投影位置を推定する。この投影位置の推定には、線源位置のパラメータ、検出器14の原点の位置のパラメータ、検出面の向きを定めるベクトルが用いられる。したがって、推定された投影位置と、検出したマーカ像の位置との誤差が最小となるように、線源位置のパラメータ、検出器14の原点の位置のパラメータ、検出面の向きを定めるベクトルを決定することにより、線源位置の情報を算出することができる。
図9は算出された線源位置S1〜Snを示す図である。図9に示すように、線源位置S1〜Snは本来であれば、図4に示すようにX線管12の移動経路上に等間隔で並ぶはずであるが、機械的な誤差等により、実際には移動経路から外れたり、角度間隔が等しくないものとなっている。第2の実施形態においては、重み算出部32は、算出された線源位置S1〜Snを用いて、各線源位置S1〜Snを基準点B0を通る平面を基準とする角度θ1〜θnに換算する。そして、上記第1の実施形態と同様に、角度間隔dθiすなわち重み係数Wiを算出する。
次いで、第2の実施形態において行われる処理について説明する。図10は第2の実施形態において行われる処理を示すフローチャートである。なお、ここでは、X線管12のみを移動し、検出器14は移動させないでトモシンセシス撮影を行うものとして説明する。操作者による処理開始の指示を操作部24が受け付けることにより制御部34が処理を開始し、X線管12を移動させつつトモシンセシス撮影を行い(ステップST11)、画像取得部20が複数の撮影画像を取得する(ステップST12)。次いで、線源位置算出部36が、マーカM1〜M4の位置およびマーカ像の位置に基づいて、線源位置を算出する(ステップST13)。そして、重み算出部32が、算出された線源位置に基づいて、複数の撮影画像に対する重み係数Wiを算出する(ステップST14)。さらに再構成部22が、複数の撮影画像を再構成して断層画像を生成し(ステップST15)、処理を終了する。
このように、第2の実施形態においては、撮影画像を取得した際の複数の線源位置を算出し、算出した線源位置に基づいて重み係数Wiを算出するようにしたため、逆投影された撮影画像に対して、撮影時の実際の線源位置に応じた重み付けを行うことができ、その結果、撮影時の状態を反映させた高画質の断層画像を取得することができる。
なお、上記第1および第2の実施形態においては、フィルタ逆投影法を用いて断層画像を再構成しているが、単純逆投影法を用いて断層画像を再構成するようにしてもよい。
また、上記第1および第2の実施形態においては、X線管12のみを移動させているが、X線管12と検出器14とを同期させて移動させるようにしてもよい。
また、上記第1および第2の実施形態においては、被写体を臥位にて撮影台に載置してトモシンセシス撮影を行っているが、立位の撮影台を用いてトモシンセシス撮影を行う場合にも本発明を適用できることはもちろんである。
また、上記第2の実施形態においては、マーカ像を用いてX線管12の位置すなわち線源位置を算出しているが、線源位置を検出するセンサを設け、センサにより検出した線源位置を用いて重み係数Wiを算出するようにしてもよい。
2 被写体
4 撮影台天板
6 コリメータ
10,10A X線撮影装置
12 X線管
14 検出器
16,18 移動機構
20 画像取得部
22 再構成部
24 操作部
26 表示部
28 記憶部
30 演算部
32 重み算出部
34 制御部
36 線源位置算出部

Claims (5)

  1. 被写体に放射線を照射する放射線源と、
    前記被写体を透過した放射線を検出する検出手段と、
    断層画像を取得する範囲を定める基準面上の所定の基準点から前記放射線源の移動範囲を定める2つの端部を臨む所定断層角度に基づいて、前記基準点を基準とした移動範囲を算出し、該算出され移動範囲内において、前記放射線源を前記検出手段に対して相対的に移動させ、前記放射線源の移動による複数の線源位置において前記被写体に前記放射線を照射して、前記複数の線源位置のそれぞれに対応する複数の撮影画像を取得する画像取得手段と、
    前記被写体の所望とする断面に前記複数の撮影画像を逆投影し、該逆投影した撮影画像のそれぞれについて、該各撮影画像を取得した線源位置の、前記基準点を基準とした角度間隔が大きいほど重み付けを大きくして重み付け加算することにより、前記被写体の断層画像を生成する画像再構成手段とを備えたことを特徴とする放射線撮影装置。
  2. 前記角度間隔を取得する角度間隔取得手段をさらに備えたことを特徴とする請求項1記載の放射線撮影装置。
  3. 前記撮影画像を取得した際の前記複数の線源位置の情報を取得する線源位置取得手段をさらに備え、
    前記角度間隔取得手段は、前記取得した線源位置の情報に基づいて、前記角度間隔を取得する手段であることを特徴とする請求項2記載の放射線撮影装置。
  4. 被写体に放射線を照射する放射線源と、
    前記被写体を透過した放射線を検出する検出手段と、
    断層画像を取得する範囲を定める基準面上の所定の基準点から前記放射線源の移動範囲を定める2つの端部を臨む所定断層角度に基づいて、前記基準点を基準とした移動範囲を算出し、該算出され移動範囲内において、前記放射線源を前記検出手段に対して相対的に移動させ、前記放射線源の移動による複数の線源位置において前記被写体に前記放射線を照射して、前記複数の線源位置のそれぞれに対応する複数の撮影画像を取得する画像取得手段とを備えた放射線撮影装置における放射線撮影方法であって、
    前記被写体の所望とする断面に前記複数の撮影画像を逆投影し、該逆投影した撮影画像のそれぞれについて、該各撮影画像を取得した線源位置の、前記基準点を基準とした角度間隔が大きいほど重み付けを大きくして重み付け加算することにより、前記被写体の断層画像を生成することを特徴とする放射線撮影方法。
  5. 被写体に放射線を照射する放射線源と、
    前記被写体を透過した放射線を検出する検出手段と、
    断層画像を取得する範囲を定める基準面上の所定の基準点から前記放射線源の移動範囲を定める2つの端部を臨む所定断層角度に基づいて、前記基準点を基準とした移動範囲を算出し、該算出され移動範囲内において、前記放射線源を前記検出手段に対して相対的に移動させ、前記放射線源の移動による複数の線源位置において前記被写体に前記放射線を照射して、前記複数の線源位置のそれぞれに対応する複数の撮影画像を取得する画像取得手段とを備えた放射線撮影装置における放射線撮影方法をコンピュータに実行させるためのプログラムであって、
    前記被写体の所望とする断面に前記複数の撮影画像を逆投影し、該逆投影した撮影画像のそれぞれについて、該各撮影画像を取得した線源位置の、前記基準点を基準とした角度間隔が大きいほど重み付けを大きくして重み付け加算することにより、前記被写体の断層画像を生成する手順をコンピュータに実行させることを特徴とするプログラム。
JP2010149442A 2010-06-30 2010-06-30 放射線撮影装置および方法並びにプログラム Active JP5600271B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010149442A JP5600271B2 (ja) 2010-06-30 2010-06-30 放射線撮影装置および方法並びにプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010149442A JP5600271B2 (ja) 2010-06-30 2010-06-30 放射線撮影装置および方法並びにプログラム

Publications (2)

Publication Number Publication Date
JP2012010891A JP2012010891A (ja) 2012-01-19
JP5600271B2 true JP5600271B2 (ja) 2014-10-01

Family

ID=45598066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010149442A Active JP5600271B2 (ja) 2010-06-30 2010-06-30 放射線撮影装置および方法並びにプログラム

Country Status (1)

Country Link
JP (1) JP5600271B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101899304B1 (ko) 2012-01-26 2018-09-17 삼성전자주식회사 실시간 피드백을 활용한 비순차적 스캔 방식의 영상 복원 시스템 및 방법
US9526467B2 (en) 2012-03-27 2016-12-27 Hitachi, Ltd. Radiation image pick-up device and image processing method
JP5952251B2 (ja) * 2012-12-14 2016-07-13 富士フイルム株式会社 画像処理装置、放射線画像撮影システム、画像処理プログラム、及び画像処理方法
WO2019003506A1 (ja) * 2017-06-30 2019-01-03 株式会社島津製作所 断層像生成方法および放射線撮影装置
JP7233236B2 (ja) * 2019-02-08 2023-03-06 キヤノンメディカルシステムズ株式会社 医用画像処理装置、x線診断装置、およびプログラム
CN113017662B (zh) * 2021-01-28 2022-06-14 明峰医疗系统股份有限公司 一种ct图像的混叠伪影去除方法及系统、ct扫描仪

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4054402B2 (ja) * 1997-04-25 2008-02-27 株式会社東芝 X線断層撮影装置
JP2005245904A (ja) * 2004-03-08 2005-09-15 Shimadzu Corp デジタルx線断層撮影装置
JP2009011639A (ja) * 2007-07-06 2009-01-22 Konica Minolta Holdings Inc 情報処理装置、およびプログラム

Also Published As

Publication number Publication date
JP2012010891A (ja) 2012-01-19

Similar Documents

Publication Publication Date Title
JP5600272B2 (ja) 放射線撮影装置および方法並びにプログラム
JP6316283B2 (ja) X線ctイメージャの動き層分解較正
JP5600271B2 (ja) 放射線撮影装置および方法並びにプログラム
JP6636923B2 (ja) X線画像装置
JP2015518765A5 (ja)
WO2013005833A1 (ja) X線撮影装置およびそのキャリブレーション方法
JP5019879B2 (ja) X線ct装置、画像処理プログラム、及び画像処理方法
JP5301403B2 (ja) 放射線撮影装置
JP5460482B2 (ja) 放射線撮影装置および方法並びにプログラム
JP5060862B2 (ja) 断層撮影装置
JP5608441B2 (ja) 放射線撮影装置および方法並びにプログラム
JP4537090B2 (ja) トモシンセシス装置
JP5584037B2 (ja) 放射線撮影装置およびその制御方法並びにプログラム
WO2015146166A1 (ja) 放射線画像撮影装置および方法並びにプログラム
US20220313180A1 (en) Radiographic imaging device and radiographic treatment device
US10945682B2 (en) Geometric misalignment correction method for chest tomosynthesis reconstruction
JP5547565B2 (ja) 放射線撮影装置および方法
JP2010184086A (ja) 放射線ct装置及びその制御方法
US7860211B1 (en) Method of producing a laminography image with a rotating object, fixed x-ray source, and fixed detector columns
JP5559648B2 (ja) 放射線撮影装置、方法およびプログラム
JP5415885B2 (ja) 放射線ct装置および画像処理装置
JP5995743B2 (ja) 画像生成装置、画像生成方法及びプログラム
JP2010227171A (ja) 放射線ct装置、画像処理装置および画像処理方法
JP6183884B2 (ja) 放射線断層撮影装置および投影データ補正方法並びにプログラム
JP2018183364A (ja) 放射線撮影装置、放射線撮影方法およびプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140815

R150 Certificate of patent or registration of utility model

Ref document number: 5600271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250