JP5597510B2 - Core-shell semiconductor fine particles - Google Patents

Core-shell semiconductor fine particles Download PDF

Info

Publication number
JP5597510B2
JP5597510B2 JP2010231179A JP2010231179A JP5597510B2 JP 5597510 B2 JP5597510 B2 JP 5597510B2 JP 2010231179 A JP2010231179 A JP 2010231179A JP 2010231179 A JP2010231179 A JP 2010231179A JP 5597510 B2 JP5597510 B2 JP 5597510B2
Authority
JP
Japan
Prior art keywords
core
oxide
particles
shell
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010231179A
Other languages
Japanese (ja)
Other versions
JP2012084762A (en
Inventor
眞 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2010231179A priority Critical patent/JP5597510B2/en
Publication of JP2012084762A publication Critical patent/JP2012084762A/en
Application granted granted Critical
Publication of JP5597510B2 publication Critical patent/JP5597510B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、コアシェル型粒子及びその製造方法に関する。また、本発明は、コアシェル型粒子を用いて製造した薄膜トランジスタ、その製造方法に関する。   The present invention relates to a core-shell type particle and a method for producing the same. The present invention also relates to a thin film transistor manufactured using core-shell particles and a method for manufacturing the same.

電界効果型トランジスタは、半導体メモリ集積回路の単位電子素子、高周波信号増幅素子、液晶駆動用素子等として広く用いられており、現在最も多く実用化されている電子デバイスである。   Field effect transistors are widely used as unit electronic elements, high frequency signal amplifying elements, liquid crystal driving elements and the like of semiconductor memory integrated circuits, and are the most widely used electronic devices at present.

その中でも、近年における表示装置のめざましい発展に伴い、液晶表示装置(LCD)のみならず、エレクトロルミネッセンス(EL)表示装置や、フィールドエミッションディスプレイ(FED)等の各種の表示装置において、表示素子に駆動電圧を印加して表示装置を駆動させるスイッチング素子として、薄膜トランジスタ(TFT)が多用されている。   Among them, with the remarkable development of display devices in recent years, not only liquid crystal display devices (LCD) but also various display devices such as electroluminescence (EL) display devices and field emission displays (FED) are driven by display elements. Thin film transistors (TFTs) are frequently used as switching elements for driving a display device by applying a voltage.

その材料としては、シリコン半導体化合物が最も広く用いられており、一般に、高速動作が必要な高周波増幅素子、集積回路用素子等には、シリコン単結晶が用いられ、液晶駆動用素子等には、大面積化の要求からアモルファスシリコンが用いられている。
アモルファスシリコンは、比較的低温で形成できる利点を有すものの結晶性シリコンと比較してスイッチング速度が遅いため、表示装置を駆動するスイッチング素子として使用したときに、高速な動画の表示に追従できない場合がある。また、可視光の透過率が低いため、半導体層が電極部にはみ出ると表示部の透過率が下がり、バックライトによる照明効率が低下して画面が暗くなるおそれがあり、加工精度の公差が小さくコストアップの一因となっていた。
As the material, a silicon semiconductor compound is most widely used. Generally, a silicon single crystal is used for a high-frequency amplifying element and an integrated circuit element that require high-speed operation, and a liquid crystal driving element or the like is used. Amorphous silicon is used because of the demand for large area.
Amorphous silicon has the advantage that it can be formed at a relatively low temperature, but its switching speed is slower than crystalline silicon, so when it is used as a switching element to drive a display device, it cannot follow high-speed video display There is. In addition, since the transmittance of visible light is low, if the semiconductor layer protrudes from the electrode section, the transmittance of the display section may decrease, the illumination efficiency by the backlight may decrease, and the screen may become dark, and the tolerance of processing accuracy is small. It contributed to the cost increase.

このような状況下において上記問題を解決するものとして酸化物半導体が提案されている。近年、気相法で作製したアモルファス酸化物半導体を用いたフレキシブル薄膜トランジスタが報告されている。これによれば、プラスチック基板上に気相法によりアモルファスZnGaInOが形成され、高い整流特性が得られている。 Under such circumstances, an oxide semiconductor has been proposed as a solution to the above problem. In recent years, a flexible thin film transistor using an amorphous oxide semiconductor manufactured by a vapor phase method has been reported. According to this, amorphous ZnGaInO 4 is formed on the plastic substrate by a vapor phase method, and high rectification characteristics are obtained.

しかしながら、気相法は真空系が必要であり大面積とするには装置が大掛かりで複雑となるため、塗布等の湿式プロセスが検討されている。また、高性能なZnGaInOでは稀少かつ高価なGaやInが多く使用されており省エネルギー、省資源の点で大きな課題である。 However, since the vapor phase method requires a vacuum system and the apparatus is large and complicated for a large area, wet processes such as coating have been studied. Further, high-performance ZnGaInO 4 uses a large amount of rare and expensive Ga and In, which is a big problem in terms of energy saving and resource saving.

稀少かつ高価な元素の使用を低減する方法として、表面にのみこれらの高機能な元素を存在させ、コアとして、多量に存在しかつ安価な元素を用いるコアシェル型の粒子とすることがある。
コアシェル型の半導体粒子としては、量子井戸構造を発現させ電子の動きをシェル層により抑制し、発光効率が向上させることが知られており、特許文献1にはコアとしてSi,Ge,InN,InPや化合物半導体を用いた例が示されている。
As a method of reducing the use of rare and expensive elements, there are cases where these high-functional elements are present only on the surface, and core-shell type particles using a large amount of inexpensive elements as the core are used.
As the core-shell type semiconductor particles, it is known that a quantum well structure is expressed and the movement of electrons is suppressed by the shell layer, so that the light emission efficiency is improved. Patent Document 1 discloses Si, Ge, InN, InP as cores. And examples using compound semiconductors are shown.

特許文献1には、可視光のエネルギーギャップ以下のバンドギャップ(3eV以下)である金属元素をコアとするコアシェル型粒子が記載されているが、可視光近傍(350〜1100nm:3.54〜1.13eV)の発光を目的としており、可視光を透過させるものではなく、透明半導体粒子としては用いることができない。   Patent Document 1 describes a core-shell type particle having a metal element having a band gap (3 eV or less) below the energy gap of visible light as a core, but in the vicinity of visible light (350 to 1100 nm: 3.54 to 1). .13 eV) and does not transmit visible light, and cannot be used as transparent semiconductor particles.

特開2009−132771号公報JP 2009-132771 A

本発明の目的は、塗布等の湿式プロセスによる半導体デバイスの製造において用いることができ、良好な電気特性を有し、安価に製造することができるコアシェル型微粒子を提供することである。   An object of the present invention is to provide core-shell type fine particles that can be used in the manufacture of semiconductor devices by a wet process such as coating, have good electrical characteristics, and can be manufactured at low cost.

本発明によれば、以下のコアシェル型粒子等が提供される。
1.コア粒子と、前記コア粒子の表面の少なくとも一部を覆うシェルからなり、
前記コア粒子は、バンドギャップが3eV以上である少なくとも1種の金属酸化物(A)からなり、
前記シェルは、少なくとも1種の金属酸化物(B)からなる
0.01〜1μmのコアシェル型粒子。
2.前記金属酸化物(A)がSn,Zn,In及びGaから選ばれる金属の酸化物である1に記載のコアシェル型粒子。
3.前記金属酸化物(B)がSn,Zn,In,Ga,Al,Ti,Zr,Hf及びCuから選ばれる金属の酸化物である1又は2に記載のコアシェル型粒子。
4.a)バンドギャップが3eV以上である金属酸化物を少なくとも1種含有するコア粒子に、少なくとも1種の金属化合物を溶解又は分散させた溶液を混合し、
b)前記混合物を200〜800℃で反応させて、前記コア粒子の表面の少なくとも一部を前記金属化合物の金属の酸化物で覆う0.01〜1μmのコアシェル型粒子の製造方法。
5.前記金属酸化物がSn,Zn,In及びGaから選ばれる金属の酸化物である4に記載のコアシェル型粒子の製造方法。
6.前記金属化合物が硝酸塩類、炭酸塩類、酢酸塩類、水酸化物及びハロゲン化物から選ばれる金属化合物である4又は5に記載のコアシェル型粒子の製造方法。
7.4〜6のいずれかに記載の方法により得られたコアシェル型粒子。
8.1〜3,7のいずれかに記載のコアシェル型粒子と分散媒を含む分散液。
9.前記分散媒が水又は非水系溶媒から選ばれる少なくとも1種である8に記載の分散液。
10.8又は9に記載の分散液からなる半導体成膜用塗布液。
11.1〜3,7のいずれかに記載のコアシェル型粒子からなるチャネル層を有する薄膜トランジスタ。
12.8又は9に記載の分散液を塗布して乾燥させて形成する薄膜の製造方法。
13.12に記載の製造方法で得られた薄膜をチャネル層として用いる薄膜トランジスタ。
According to the present invention, the following core-shell type particles and the like are provided.
1. A core particle and a shell covering at least a part of the surface of the core particle;
The core particle is made of at least one metal oxide (A) having a band gap of 3 eV or more,
The shell is a core-shell type particle of 0.01 to 1 μm made of at least one metal oxide (B).
2. 2. The core-shell type particle according to 1, wherein the metal oxide (A) is a metal oxide selected from Sn, Zn, In, and Ga.
3. 3. The core-shell type particle according to 1 or 2, wherein the metal oxide (B) is an oxide of a metal selected from Sn, Zn, In, Ga, Al, Ti, Zr, Hf and Cu.
4). a) A core particle containing at least one metal oxide having a band gap of 3 eV or more is mixed with a solution in which at least one metal compound is dissolved or dispersed,
b) A method for producing 0.01 to 1 μm core-shell type particles in which the mixture is reacted at 200 to 800 ° C. and at least a part of the surface of the core particles is covered with a metal oxide of the metal compound.
5. 5. The method for producing core-shell particles according to 4, wherein the metal oxide is a metal oxide selected from Sn, Zn, In, and Ga.
6). 6. The method for producing core-shell particles according to 4 or 5, wherein the metal compound is a metal compound selected from nitrates, carbonates, acetates, hydroxides and halides.
7.4 Core-shell particles obtained by the method according to any one of 7.4 to 6.
8. Dispersion liquid containing core-shell type particle | grains in any one of 1-3, 7, and a dispersion medium.
9. 9. The dispersion liquid according to 8, wherein the dispersion medium is at least one selected from water or a non-aqueous solvent.
A coating liquid for forming a semiconductor film, comprising the dispersion liquid according to 10.8 or 9.
11. A thin film transistor having a channel layer made of core-shell particles according to any one of 11.1 to 3.
A method for producing a thin film, which is formed by applying and drying the dispersion according to 12.8 or 9.
13. A thin film transistor using a thin film obtained by the production method according to 13.12 as a channel layer.

本発明によれば、塗布等の湿式プロセスによる半導体デバイスの製造において用いることができ、良好な電気特性を有し、安価に製造することができるコアシェル型微粒子を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, it can be used in manufacture of the semiconductor device by wet processes, such as application | coating, and it can provide the core-shell type fine particle which has a favorable electrical property and can be manufactured cheaply.

本発明の薄膜トランジスタの一実施形態を示す図である。It is a figure which shows one Embodiment of the thin-film transistor of this invention.

本発明のコアシェル型粒子は、コア粒子と、コア粒子の表面の少なくとも一部を覆うシェルからなる。コア粒子は、バンドギャップが3eV以上である金属酸化物(A)を少なくとも1種含有し、シェルは、金属酸化物(B)を少なくとも1種含有する。コアシェル型粒子の粒径は0.01〜1μmである。   The core-shell type particle of the present invention comprises a core particle and a shell covering at least a part of the surface of the core particle. The core particle contains at least one metal oxide (A) having a band gap of 3 eV or more, and the shell contains at least one metal oxide (B). The particle diameter of the core-shell type particles is 0.01 to 1 μm.

コアシェル型粒子の粒径は好ましくは0.01〜0.2μmであり、さらに好ましくは0.01〜0.1μm、より好ましくは0.01〜0.05μmである。0.01〜0.2μmであると透明かつ安定したFET動作が得られる。
シェルの厚さは、通常0.1〜3nmである。
The particle diameter of the core-shell type particles is preferably 0.01 to 0.2 μm, more preferably 0.01 to 0.1 μm, and more preferably 0.01 to 0.05 μm. Transparent and stable FET operation can be obtained when the thickness is 0.01 to 0.2 μm.
The thickness of the shell is usually 0.1 to 3 nm.

コア粒子は、バンドギャップが3.0eV以上、好ましくは3.1eV以上である金属酸化物(A)1種又は1種以上からなる。このことによって、透明な酸化物半導体となる。   The core particle is composed of one or more metal oxides (A) having a band gap of 3.0 eV or more, preferably 3.1 eV or more. As a result, a transparent oxide semiconductor is obtained.

バンドギャップは、UV−Visスペクトルにより測定できる。UV−Visスペクトルの吸収端から次式で決定する。
α・hν=A(hν−E
αは吸収端近傍の吸光度、νは振動数、Aは定数、Eはバンドギャップエネルギー、nは定数である。この式より、(α・hν)1/2を光エネルギーhνに対してプロットすることにより、切片からEを決定する。
The band gap can be measured by UV-Vis spectrum. It is determined by the following equation from the absorption edge of the UV-Vis spectrum.
α · hν = A (hν−E g ) n
α is the absorbance near the absorption edge, ν is the frequency, A is a constant, E g is the bandgap energy, and n is a constant. From this equation, E g is determined from the intercept by plotting (α · hν) 1/2 against the light energy hν.

バンドギャップが3eV以上である金属酸化物(A)としては、SnO(3.8〜4.0eV)、ZnO(3.3〜3.6eV)、In(3.6〜4.2eV)、Ga(4.8〜5.0eV)が挙げられるが、これらに限定されるものではない。
中でも、製造コストの観点からSnO及びZnOが好ましい。化学的な安定性の観点からSnOが好ましい。また、高移動度の観点からSnO,
ZnOおよびInが好ましい。さらに、SnO又はZnOを用いると、稀少元素の使用を低減できるため好ましい。
Examples of the metal oxide (A) having a band gap of 3 eV or more include SnO 2 (3.8 to 4.0 eV), ZnO (3.3 to 3.6 eV), In 2 O 3 (3.6 to 4. 2eV) and Ga 2 O 3 (4.8 to 5.0 eV), but are not limited thereto.
Among these, SnO 2 and ZnO are preferable from the viewpoint of manufacturing cost. SnO 2 is preferable from the viewpoint of chemical stability. From the viewpoint of high mobility, SnO 2 ,
ZnO and In 2 O 3 are preferred. Furthermore, it is preferable to use SnO 2 or ZnO because the use of rare elements can be reduced.

好ましくはコア部分の金属酸化物(A)は結晶質であり、コアの金属を覆うシェル部分の金属酸化物(B)が非晶質である。このようにすると、コアシェル粒子の界面で電子キヤリアが散乱することを妨げることができる。   Preferably, the metal oxide (A) in the core portion is crystalline, and the metal oxide (B) in the shell portion covering the core metal is amorphous. In this way, it is possible to prevent the electron carrier from being scattered at the interface of the core-shell particles.

金属酸化物(B)は特に限定されないが、Sn,Zn,In,Ga,Al,Ti,Zr,Hf,Cuから選択される少なくとも1種、好ましくは2〜4種の金属の酸化物が好ましい。   The metal oxide (B) is not particularly limited, but an oxide of at least one selected from Sn, Zn, In, Ga, Al, Ti, Zr, Hf, and Cu, preferably 2 to 4 metals is preferable. .

Sn,Zn,In,Ga又はAlを用いた場合、電界効果移動度が向上し、Ti,Zr又はHfを用いた場合、酸素を取り込みやすいためコアシェル型粒子の酸素欠損が低減され、キヤリア濃度を低減し良好なFET特性とすることができる。
また、コアシェル型粒子を構成する他の金属元素に対して価数の低いCu等の元素を用いることによっても、キヤリア濃度を低減することができる。
When Sn, Zn, In, Ga, or Al is used, field effect mobility is improved, and when Ti, Zr, or Hf is used, oxygen is easily taken in, so oxygen vacancies in the core-shell type particles are reduced, and the carrier concentration is increased. It can reduce and it can be set as the favorable FET characteristic.
The carrier concentration can also be reduced by using an element such as Cu having a low valence with respect to other metal elements constituting the core-shell type particles.

コアとシェルを形成する金属酸化物に透明のものを選択すれば、透明な半導体粒子を形成できる。例えば、コアとして酸化錫、シェルとしてインジウム−ガリウム−亜鉛アモルファス酸化物を選択する。   Transparent metal particles can be formed by selecting a transparent metal oxide that forms the core and shell. For example, tin oxide is selected as the core and indium-gallium-zinc amorphous oxide is selected as the shell.

本発明のコアシェル型粒子は、以下の工程を含む方法で製造できる:
a)バンドギャップが3eV以上である金属酸化物(A)を少なくとも1種含有するコア粒子に、少なくとも1種の金属化合物を溶解又は分散させた溶液を、混合する工程;
b)上記混合物を200〜800℃で反応させて、上記コア粒子の表面の少なくとも一部を上記金属化合物の金属の酸化物(B)で覆う工程。
The core-shell type particles of the present invention can be produced by a method including the following steps:
a) a step of mixing a solution in which at least one metal compound is dissolved or dispersed in core particles containing at least one metal oxide (A) having a band gap of 3 eV or more;
b) The process which makes the said mixture react at 200-800 degreeC, and covers at least one part of the surface of the said core particle with the metal oxide (B) of the said metal compound.

工程a)で用いるコア粒子としては、上記で説明したものを用いることができる。   As the core particles used in step a), those described above can be used.

コア粒子に含浸させる溶液は、金属化合物を水等の溶媒に溶解又は分散させたものであり、好ましくは2〜4種の金属化合物を溶解又は分散させたものである。
金属化合物は、好ましくはSn,Zn,In,Ga,Al,Ti,Zr,Hf又はCuの化合物であり、好ましくは硝酸塩、炭酸塩、酢酸塩、水酸化物又はハロゲン化物である。水和物であってもよい。
The solution to be impregnated into the core particles is a solution in which a metal compound is dissolved or dispersed in a solvent such as water, and preferably a solution in which 2 to 4 kinds of metal compounds are dissolved or dispersed.
The metal compound is preferably a compound of Sn, Zn, In, Ga, Al, Ti, Zr, Hf or Cu, and is preferably a nitrate, carbonate, acetate, hydroxide or halide. Hydrates may also be used.

金属酸化物(A)と金属化合物の配合比は、金属酸化物(A)1molに対して、1種以上の金属化合物はそれぞれ0.001〜0.1molであると好ましい。   The compounding ratio of the metal oxide (A) and the metal compound is preferably 0.001 to 0.1 mol of one or more metal compounds with respect to 1 mol of the metal oxide (A).

上記コア粒子に上記の溶液を混合すると、コア粒子の表面に溶液が含浸する。混合は例えばボールミルにより1〜20時間行う。   When the above solution is mixed with the core particle, the surface of the core particle is impregnated with the solution. Mixing is performed, for example, for 1 to 20 hours using a ball mill.

次に、この混合物を200〜800℃、好ましくは300〜600℃で反応させて、上記の金属化合物の金属の酸化物(B)を生成する。この金属酸化物(B)は上記コア粒子の表面の少なくとも一部又は全部を覆う。
この反応は、例えば不活性ガス雰囲気(窒素等)又は大気雰囲気下で、例えば0.1〜10時間で行う。
Next, this mixture is reacted at 200 to 800 ° C., preferably 300 to 600 ° C., to produce a metal oxide (B) of the above metal compound. This metal oxide (B) covers at least part or all of the surface of the core particle.
This reaction is performed, for example, in an inert gas atmosphere (nitrogen or the like) or an air atmosphere, for example, for 0.1 to 10 hours.

複合酸化物の超微粒子の製造方法としては、一般的に複数の金属塩水溶液をPH調整して共沈し、複合水酸化物を得て、これをろ過、乾燥後焼成する方法が用いられる。
しかしながら、超微粒子であるためにろ過や組成の制御が困難であり、かつ水酸化物から酸化物への変換のため微粒子結晶に欠陥が残りやすい。このため電子の移動度を上げるのが難しくFET挙動を発現させるのが困難になる。
As a method for producing composite oxide ultrafine particles, a method is generally used in which a plurality of metal salt aqueous solutions are co-precipitated by pH adjustment to obtain composite hydroxide, which is filtered, dried and then fired.
However, because of the ultrafine particles, filtration and composition control are difficult, and defects are likely to remain in the fine crystal due to the conversion from hydroxide to oxide. For this reason, it is difficult to increase the mobility of electrons, and it becomes difficult to develop the FET behavior.

本発明では、表面層のシェルが2種以上の金属酸化物からなるときは、複合酸化物を形成する。
既存の酸化物微粒子を原料のコア粒子として用い、その表面層にのみ複合酸化物粒子を生成させることにより、コア粒子の高い結晶性を利用して高い移動度とすることで、容易にFET挙動を発現させることができる。
表面層に複合酸化物を被覆させる方法としては、コアとなる酸化物超微粒子に複数の種類の金属塩水溶液を含浸させ、乾燥後に焼成する。
In the present invention, when the shell of the surface layer is composed of two or more metal oxides, a composite oxide is formed.
By using existing oxide fine particles as core particles of raw materials and generating composite oxide particles only on the surface layer, high mobility can be achieved by utilizing the high crystallinity of the core particles, so that FET behavior can be easily achieved. Can be expressed.
As a method for coating the surface layer with the composite oxide, a plurality of kinds of metal salt aqueous solutions are impregnated into the oxide ultrafine particles serving as the core, followed by baking after drying.

本発明の方法において、表面層のコーティングの過程で、液相法ではなく固相法を用いるため、ろ過工程や沈殿、共沈工程が不要であり、また原料をアルコキシ化する必要もないため、製造コストを低減できる。
また、コア粒子の結晶性を確保しつつ、粒子間に生じる接触抵抗を低減させることができることから、得られる薄膜トランジスタの高移動度、及びオンオフ比の向上も期待される。
In the method of the present invention, since a solid phase method is used instead of a liquid phase method in the process of coating the surface layer, a filtration step, a precipitation, a coprecipitation step are unnecessary, and it is not necessary to alkoxylate the raw material. Manufacturing cost can be reduced.
Further, since the contact resistance generated between the particles can be reduced while ensuring the crystallinity of the core particles, the high mobility and the on / off ratio of the obtained thin film transistor are expected.

本発明の分散液は本発明のコアシェル型粒子と分散媒を含む。分散液は、半導体成膜用塗布液として使用できる。
本発明の分散液を用いて、薄膜を塗布法で容易に成膜できる。例えば、分散液を、印刷法、インクジェット方式及びディスペンサー方式等で、基板又は基体に向かって吐出する。その後、加熱等で乾燥して成膜する。
The dispersion of the present invention contains the core-shell type particles of the present invention and a dispersion medium. The dispersion can be used as a coating liquid for semiconductor film formation.
A thin film can be easily formed by a coating method using the dispersion of the present invention. For example, the dispersion is discharged toward the substrate or the substrate by a printing method, an inkjet method, a dispenser method, or the like. Thereafter, it is dried by heating or the like to form a film.

上記分散媒は、好ましくは水又は非水系溶媒から選ばれる少なくとも1種以上である。非水系溶媒としては、アルコール類、ケトン類、エーテル類、エステル類、芳香族系溶媒等が挙げられ、環境性から非芳香族系の溶媒が好ましい。
界面活性剤等の分散剤を添加して粉の分散性をより向上させることが好ましい。
The dispersion medium is preferably at least one selected from water or a non-aqueous solvent. Examples of the non-aqueous solvent include alcohols, ketones, ethers, esters, aromatic solvents, and the like, and non-aromatic solvents are preferable from the environmental viewpoint.
It is preferable to further improve the dispersibility of the powder by adding a dispersant such as a surfactant.

本発明の薄膜トランジスタは、コアシェル型粒子を用いて製造したチャネル層を有する。構成はチャネル層がコアシェル型粒子からなれば限定されないが、図1に一実施形態を示す。   The thin film transistor of the present invention has a channel layer manufactured using core-shell type particles. The configuration is not limited as long as the channel layer is made of core-shell type particles. FIG. 1 shows an embodiment.

薄膜トランジスタ1は、基板(ゲート電極)10上に絶縁膜20を有し、絶縁膜20上に所定の間隔をあけて形成された一対のソース電極30及びドレイン電極40を有し、ソース電極30及びドレイン電極40の間の絶縁膜20を覆うようにチャネル層50が設けられている。
チャネル層50が本発明のコアシェル型粒子からなる。チャネル層50は、上記の塗布法で形成することができる。
The thin film transistor 1 has an insulating film 20 on a substrate (gate electrode) 10, and has a pair of a source electrode 30 and a drain electrode 40 formed on the insulating film 20 at a predetermined interval. A channel layer 50 is provided so as to cover the insulating film 20 between the drain electrodes 40.
The channel layer 50 is composed of the core-shell type particles of the present invention. The channel layer 50 can be formed by the above coating method.

基板10がゲート電極を兼ねており、基板10に印加される電圧によってソース電極30とドレイン電極40の間のチャネル層50に流れる電流が制御されることで、薄膜トランジスタ1がオン/オフ動作する。   The substrate 10 also serves as a gate electrode, and the current flowing through the channel layer 50 between the source electrode 30 and the drain electrode 40 is controlled by a voltage applied to the substrate 10, whereby the thin film transistor 1 is turned on / off.

実施例1
(1)微粒子酸化物の作製
酸化錫超微粒子(三菱マテリアル、商品名S−1)を19.611g秤量し、これに硝酸インジウム3水和物0.185g、硝酸ガリウム8水和物0.1258g、硝酸亜鉛6水和物0.078gを水4gに混合、溶解した水溶液を加え、遊星ボールミルにて2時間混合した。
Example 1
(1) Production of fine particle oxide 19.611 g of tin oxide ultrafine particles (Mitsubishi Materials, trade name S-1) were weighed, and 0.185 g of indium nitrate trihydrate and 0.1258 g of gallium nitrate octahydrate were added thereto. Then, 0.078 g of zinc nitrate hexahydrate was mixed with 4 g of water, a dissolved aqueous solution was added, and the mixture was mixed for 2 hours with a planetary ball mill.

混合粉末を乾燥機にて3時間乾燥した後、管状炉にて窒素を0.5L/分で流しながら500℃で30分間焼成し、淡黄色の微粒子酸化物を得た。この淡黄色の粒子について、粒子抵抗測定システム(株式会社ダイアインスツルメント製)を用い、加圧しながら四探針法により測定し、圧力−電気伝導度のグラフから9.81MPaにおける電気伝導度(σ)を得た。また、コアシェル型粒子を構成する元素の元素比をICP−MS(誘導結合プラズマ質量分析)にて測定した。尚、コア粒子の粒径はBET法により測定した。結果を表1に示す。   The mixed powder was dried with a dryer for 3 hours and then calcined at 500 ° C. for 30 minutes while flowing nitrogen at 0.5 L / min in a tubular furnace to obtain pale yellow fine particle oxides. About this light yellow particle | grain, it measured by four-probe method using a particle-resistance measuring system (made by Dia Instruments Co., Ltd.), and it measured the electric conductivity in 9.81 MPa from the graph of pressure-electric conductivity ( σ) was obtained. Further, the element ratio of the elements constituting the core-shell type particles was measured by ICP-MS (inductively coupled plasma mass spectrometry). The particle size of the core particles was measured by the BET method. The results are shown in Table 1.

(2)微粒子分散液の作製
上記で作製した微粒子0.4gを、メトキシプロパノール3.56gと分散剤(Chemie社製BYK−2000)0.05gの溶液に添加し、超音波洗浄機にて1時間分散させ、分散液を作製した。
(2) Production of Fine Particle Dispersion Solution 0.4 g of the fine particles produced above were added to a solution of 3.56 g of methoxypropanol and 0.05 g of a dispersant (Chemie BYK-2000), and 1 was added using an ultrasonic cleaner. Dispersion was carried out over time to prepare a dispersion.

(3)薄膜トランジスタの作製
図1に示すボトムコンタクト型の薄膜トランジスタ1を作製した。
100nm厚みの熱酸化膜(SiO膜)20付きの導電性シリコン基板10を使用した。熱酸化膜がゲート絶縁膜20として機能し、導電性シリコン部10がゲート電極として機能する。
(3) Production of Thin Film Transistor The bottom contact type thin film transistor 1 shown in FIG. 1 was produced.
A conductive silicon substrate 10 with a thermal oxide film (SiO 2 film) 20 having a thickness of 100 nm was used. The thermal oxide film functions as the gate insulating film 20, and the conductive silicon portion 10 functions as the gate electrode.

ゲート絶縁膜10の上に金属マスクを設置し、ソース・ドレイン電極間間隙(L)が200μm、幅(W)が3000μmのチャンネル部50が形成されるように、チャンネル部の両端部付近に、金を蒸着してソース電極30及びドレイン電極40を形成した。   A metal mask is installed on the gate insulating film 10, and the channel portion 50 having a source-drain electrode gap (L) of 200 μm and a width (W) of 3000 μm is formed in the vicinity of both ends of the channel portion. Gold was deposited to form the source electrode 30 and the drain electrode 40.

その後、微粒子分散液をマイクロシリンジに取り、ソース・ドレイン間に滴下し、ホットプレート上で50℃で30分間乾燥後、管状炉に入れ窒素気流下300℃で熱処理し、薄膜トランジスタ1を作製した。   Thereafter, the fine particle dispersion was taken in a microsyringe, dropped between the source and the drain, dried on a hot plate at 50 ° C. for 30 minutes, and then placed in a tubular furnace and heat-treated at 300 ° C. in a nitrogen stream to produce the thin film transistor 1.

作製したTFTについて、半導体パラメータアナライザを用い、ソース−ドレイン間の電圧を20ボルトに固定し、ゲート電圧を−30Vから+30Vまで変えたときのソース−ドレイン間電流Idsを測定し、最大と最小のドレイン電流の比(以下オン/オフ比)を特性の目安として算出した結果、2×10であった。結果を表1に示す。 Using the semiconductor parameter analyzer, the source-drain current Ids when the gate voltage was changed from -30V to + 30V was measured using the semiconductor parameter analyzer, and the maximum and minimum values were measured. As a result of calculating the drain current ratio (hereinafter referred to as on / off ratio) as a measure of characteristics, it was 2 × 10 3 . The results are shown in Table 1.

実施例2
酸化錫超微粒子(三菱マテリアル、商品名S−1)を19.574g秤量し、これに硝酸インジウム3水和物0.23g、硝酸ガリウム8水和物0.157g、硝酸亜鉛6水和物0.039gを水4gに混合、溶解した水溶液を加え、遊星ボールミルにて2時間混合した。
この他は実施例1と同様に微粒子酸化物、微粒子分散液及びTFTを作製し、評価した。結果を表1に示す。大きなON/OFF比が得られた。
Example 2
19.574 g of tin oxide ultrafine particles (Mitsubishi Materials, trade name S-1) was weighed, and 0.23 g of indium nitrate trihydrate, 0.157 g of gallium nitrate octahydrate, zinc nitrate hexahydrate 0 0.039 g was mixed with 4 g of water and a dissolved aqueous solution was added, and mixed for 2 hours with a planetary ball mill.
Other than this, a fine particle oxide, a fine particle dispersion and a TFT were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1. A large ON / OFF ratio was obtained.

実施例3
酸化錫超微粒子(三菱マテリアル、商品名S−1)を19.692g秤量し、これに硝酸ガリウム8水和物0.189g、硝酸亜鉛6水和物0.118gを水4gに混合、溶解した水溶液を加え、遊星ボールミルにて2時間混合した。
この他は実施例1と同様に微粒子酸化物、微粒子分散液及びTFTを作製し、評価した。結果を表1に示す。大きなON/OFF比が得られた。
Example 3
19.692 g of tin oxide ultrafine particles (Mitsubishi Materials, trade name S-1) was weighed, and 0.189 g of gallium nitrate octahydrate and 0.118 g of zinc nitrate hexahydrate were mixed and dissolved in 4 g of water. The aqueous solution was added and mixed for 2 hours in a planetary ball mill.
Other than this, a fine particle oxide, a fine particle dispersion and a TFT were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1. A large ON / OFF ratio was obtained.

実施例4
酸化錫超微粒子(三菱マテリアル、商品名S−1)を19.605g秤量し、これに硝酸インジウム3水和物0.277g、硝酸亜鉛6水和物0.118gを水4gに混合、溶解した水溶液を加え、遊星ボールミルにて2時間混合した。
この他は実施例1と同様に微粒子酸化物、微粒子分散液及びTFTを作製し、評価した。結果を表1に示す。大きなON/OFF比が得られた。
Example 4
19.605 g of tin oxide ultrafine particles (Mitsubishi Materials, trade name S-1) were weighed, and 0.277 g of indium nitrate trihydrate and 0.118 g of zinc nitrate hexahydrate were mixed and dissolved in 4 g of water. The aqueous solution was added and mixed for 2 hours in a planetary ball mill.
Other than this, a fine particle oxide, a fine particle dispersion and a TFT were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1. A large ON / OFF ratio was obtained.

実施例5
焼成雰囲気を大気とした以外は実施例4と同様に微粒子酸化物、微粒子分散液及び薄膜トランジスタを作製し、評価した。結果を表1に示す。大きなON/OFF比が得られた。
Example 5
A fine particle oxide, a fine particle dispersion and a thin film transistor were prepared and evaluated in the same manner as in Example 4 except that the firing atmosphere was changed to air. The results are shown in Table 1. A large ON / OFF ratio was obtained.

実施例6
酸化錫超微粒子(三菱マテリアル、商品名S−1)を19.457g秤量し、これに硝酸インジウム3水和物0.183g、硝酸ガリウム8水和物0.2064g、硝酸亜鉛6水和物0.154gを水4gに混合、溶解した水溶液を加え、遊星ボールミルにて2時間混合した。
この他は実施例1と同様に微粒子酸化物、微粒子分散液及びTFTを作製し、評価した。結果を表1に示す。大きなON/OFF比が得られた。
Example 6
19.457g of tin oxide ultrafine particles (Mitsubishi Materials, trade name S-1) were weighed, 0.183g of indium nitrate trihydrate, 0.2064g of gallium nitrate octahydrate, zinc nitrate hexahydrate 0 154 g was mixed with 4 g of water and dissolved in water, and the mixture was mixed for 2 hours with a planetary ball mill.
Other than this, a fine particle oxide, a fine particle dispersion and a TFT were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1. A large ON / OFF ratio was obtained.

実施例7
酸化インジウム粉末(アジア物性株式会社製、純度4N)59.38gを秤量し、これに0.62gの硝酸銅3水和物を水12gに溶解した水溶液を含浸させ、遊星ボールミルにて2時間混合した後乾燥機にて乾燥させた。この混合粉末を乾燥機にて3時間乾燥した後、管状炉にて窒素を0.5L/分で流しながら350℃にて30分間焼成し、微粒子酸化物を得た。
この他は実施例1と同様に微粒子分散液及びTFTを作製し、評価した。結果を表1に示す。大きなON/OFF比が得られた。
Example 7
Weigh 59.38 g of indium oxide powder (manufactured by Asia Physical Properties Co., Ltd., purity 4N), impregnate it with an aqueous solution of 0.62 g of copper nitrate trihydrate dissolved in 12 g of water, and mix for 2 hours in a planetary ball mill And then dried with a dryer. The mixed powder was dried with a dryer for 3 hours and then calcined at 350 ° C. for 30 minutes while flowing nitrogen at 0.5 L / min in a tubular furnace to obtain a fine particle oxide.
Other than this, a fine particle dispersion and TFT were prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1. A large ON / OFF ratio was obtained.

比較例1
微粒子酸化物として酸化錫超微粒子(三菱マテリアル株式会社製、商品名S−1)を用いた他は、実施例1と同様にして微粒子分散液及びTFTを作製し、評価した。結果を表1に示す。ON/OFF比は約2でほとんどFET挙動が見られなかった。
Comparative Example 1
A fine particle dispersion and a TFT were prepared and evaluated in the same manner as in Example 1 except that tin oxide ultrafine particles (manufactured by Mitsubishi Materials Corporation, trade name S-1) were used as the fine particle oxide. The results are shown in Table 1. The ON / OFF ratio was about 2, and almost no FET behavior was observed.

比較例2
微粒子酸化物として酸化インジウム粉末(アジア物性株式会社製、純度4N)を用いた他は、実施例1と同様にして微粒子分散液及び薄膜トランジスタを作製した。結果を表1に示す。ON/OFF比は1以下であり単なる抵抗体としての挙動となり、FET挙動が見られなかった。
Comparative Example 2
A fine particle dispersion and a thin film transistor were prepared in the same manner as in Example 1 except that indium oxide powder (manufactured by Asia Physical Properties Co., Ltd., purity 4N) was used as the fine particle oxide. The results are shown in Table 1. The ON / OFF ratio was 1 or less, which resulted in a behavior as a simple resistor, and no FET behavior was observed.

Figure 0005597510
Figure 0005597510

本発明のコアシェル型粒子は薄膜トランジスタに使用できる。   The core-shell type particles of the present invention can be used for thin film transistors.

1 薄膜トランジスタ
10 基板(ゲート電極)
20 絶縁膜
30 ソース電極
40 ドレイン電極
50 チャネル層
1 Thin film transistor 10 Substrate (gate electrode)
20 Insulating film 30 Source electrode 40 Drain electrode 50 Channel layer

Claims (12)

コア粒子と、前記コア粒子の表面の少なくとも一部を覆うシェルからなり、
前記コア粒子は、バンドギャップが3eV以上である少なくとも1種の金属酸化物(A)からなり、
前記シェルは、Sn,Zn,In,Ti,Zr,Hf及びCuから選ばれる少なくとも1種の金属の酸化物、Sn,Zn,In及びGaの酸化物、又はSn,Zn及びGaの酸化物である金属酸化物(B)からなる
0.01〜1μmのコアシェル型粒子。
A core particle and a shell covering at least a part of the surface of the core particle;
The core particle is made of at least one metal oxide (A) having a band gap of 3 eV or more,
The shell is an oxide of at least one metal selected from Sn, Zn, In, Ti, Zr, Hf and Cu, an oxide of Sn, Zn, In and Ga, or an oxide of Sn, Zn and Ga. 0.01-1 μm core-shell type particles comprising a metal oxide (B).
前記金属酸化物(A)がSn,Zn,In及びGaから選ばれる金属の酸化物である請求項1に記載のコアシェル型粒子。   The core-shell type particle according to claim 1, wherein the metal oxide (A) is an oxide of a metal selected from Sn, Zn, In and Ga. a)バンドギャップが3eV以上である金属酸化物を少なくとも1種含有するコア粒子に、少なくとも1種の金属化合物を溶解又は分散させた溶液を混合し、
b)前記混合物を200〜800℃で反応させて、前記コア粒子の表面の少なくとも一部を前記金属化合物の金属の酸化物で覆う0.01〜1μmのコアシェル型粒子の製造方法。
a) A core particle containing at least one metal oxide having a band gap of 3 eV or more is mixed with a solution in which at least one metal compound is dissolved or dispersed,
b) A method for producing 0.01 to 1 μm core-shell type particles in which the mixture is reacted at 200 to 800 ° C. and at least a part of the surface of the core particles is covered with a metal oxide of the metal compound.
前記金属酸化物がSn,Zn,In及びGaから選ばれる金属の酸化物である請求項に記載のコアシェル型粒子の製造方法。 The method for producing core-shell particles according to claim 3 , wherein the metal oxide is an oxide of a metal selected from Sn, Zn, In, and Ga. 前記金属化合物が硝酸塩類、炭酸塩類、酢酸塩類、水酸化物及びハロゲン化物から選ばれる金属化合物である請求項又はに記載のコアシェル型粒子の製造方法。 The method for producing core-shell particles according to claim 3 or 4 , wherein the metal compound is a metal compound selected from nitrates, carbonates, acetates, hydroxides and halides. 請求項のいずれかに記載の方法により得られたコアシェル型粒子。 Core-shell type particles obtained by the method according to any one of claims 3 to 5 . 請求項1,2及び6のいずれかに記載のコアシェル型粒子と分散媒を含む分散液。 A dispersion comprising the core-shell type particles according to claim 1, 2 and 6 and a dispersion medium. 前記分散媒が水又は非水系溶媒から選ばれる少なくとも1種である請求項に記載の分散液。 The dispersion according to claim 7 , wherein the dispersion medium is at least one selected from water and a non-aqueous solvent. 請求項又はに記載の分散液からなる半導体成膜用塗布液。 Semiconductor deposition coating liquid consisting of a dispersion according to claim 7 or 8. 請求項1,2及び6のいずれかに記載のコアシェル型粒子からなるチャネル層を有する薄膜トランジスタ。 Thin film transistor having a channel layer composed of core-shell particles according to claim 1, 2 and 6. 請求項又はに記載の分散液を塗布して乾燥させて形成する薄膜の製造方法。 The manufacturing method of the thin film formed by apply | coating and drying the dispersion liquid of Claim 7 or 8 . 請求項11に記載の製造方法で得られた薄膜をチャネル層として用いる薄膜トランジスタ。 A thin film transistor using the thin film obtained by the manufacturing method according to claim 11 as a channel layer.
JP2010231179A 2010-10-14 2010-10-14 Core-shell semiconductor fine particles Expired - Fee Related JP5597510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010231179A JP5597510B2 (en) 2010-10-14 2010-10-14 Core-shell semiconductor fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010231179A JP5597510B2 (en) 2010-10-14 2010-10-14 Core-shell semiconductor fine particles

Publications (2)

Publication Number Publication Date
JP2012084762A JP2012084762A (en) 2012-04-26
JP5597510B2 true JP5597510B2 (en) 2014-10-01

Family

ID=46243318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010231179A Expired - Fee Related JP5597510B2 (en) 2010-10-14 2010-10-14 Core-shell semiconductor fine particles

Country Status (1)

Country Link
JP (1) JP5597510B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101656575B1 (en) * 2014-10-16 2016-09-12 전북대학교산학협력단 P-type semiconductor-coated composite nanoparticles sensing materials for semiconductor gas sensor
JP6913473B2 (en) * 2017-01-31 2021-08-04 旭化成株式会社 A dispersion liquid for forming a semiconductor film of a semiconductor element, a method for manufacturing a semiconductor film using the dispersion, and a method for manufacturing a semiconductor element.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7691666B2 (en) * 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
JP4904789B2 (en) * 2005-11-30 2012-03-28 凸版印刷株式会社 Thin film transistor
US20080286907A1 (en) * 2007-05-16 2008-11-20 Xerox Corporation Semiconductor layer for thin film transistors
US7879678B2 (en) * 2008-02-28 2011-02-01 Versatilis Llc Methods of enhancing performance of field-effect transistors and field-effect transistors made thereby
JP5682880B2 (en) * 2008-04-28 2015-03-11 独立行政法人物質・材料研究機構 Nanocrystal particle dispersion, electronic device and method for producing the same
WO2010007333A1 (en) * 2008-07-18 2010-01-21 Panasonic Corporation Semiconductor material

Also Published As

Publication number Publication date
JP2012084762A (en) 2012-04-26

Similar Documents

Publication Publication Date Title
KR101835194B1 (en) Coating liquid for forming metal oxide film, metal oxide film, field-effect transistor, and method for producing field-effect transistor
Du Ahn et al. A review on the recent developments of solution processes for oxide thin film transistors
TWI429775B (en) Sputtering target, oxide semiconductor film and semiconductor device
KR101697412B1 (en) Coating liquid for forming metal oxide thin film, metal oxide thin film, field-effect transistor, and method for manufacturing field-effect transistor
KR102045364B1 (en) P-type oxide, p-type oxide-producing composition, method for producing p-type oxide, semiconductor device, display device, image display apparatus, and system
US8779419B2 (en) Semiconductor device, polycrystalline semiconductor thin film, process for producing polycrystalline semiconductor thin film, field effect transistor, and process for producing field effect transistor
TWI520345B (en) Amorphous oxide semiconductor material, field-effect transistor, and display device
TWI470115B (en) Functional material for printed electronic components
US9343202B2 (en) Transparent metal oxide nanoparticle compositions, methods of manufacture thereof and articles comprising the same
KR20110083601A (en) Oxide sintered body and sputtering target
JP2010045263A (en) Oxide semiconductor, sputtering target, and thin-film transistor
KR20180067738A (en) Coating liquid for forming metal oxide thin film, metal oxide thin film, field effect transistor, and method for producing the field effect transistor
KR101333316B1 (en) Metal oxide thin film, preparation method thereof, and solution for the same
Pujar et al. Trends in low‐temperature combustion derived thin films for solution‐processed electronics
JP2010018479A (en) Metal oxide film, its manufacturing method, and semiconductor device
Gómez-Pozos et al. Effect of the [Al/Zn] ratio in the starting solution and deposition temperature on the physical properties of sprayed ZnO: Al thin films
CN106927689A (en) A kind of oxide semiconductor thin-film and its preparation technology
JP6236778B2 (en) Metal oxide film forming coating solution, metal oxide film, field effect transistor, and method of manufacturing field effect transistor
JP5597510B2 (en) Core-shell semiconductor fine particles
JP5894393B2 (en) Oxide particle dispersion
CN108028270A (en) For forming coating fluid, n-type oxide semiconductor film manufacture method and the manufacturing method for field effect transistor of n-type oxide semiconductor film
KR20230078575A (en) Oxide semiconductor, preparation method thereof, and semiconductor device comprising same
JP5578078B2 (en) Method for producing functional layer
TWI531009B (en) Oxide-type semiconductor material and sputtering target
TW201340332A (en) Field-effect transistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140811

R150 Certificate of patent or registration of utility model

Ref document number: 5597510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees