JP5578078B2 - Method for producing functional layer - Google Patents

Method for producing functional layer Download PDF

Info

Publication number
JP5578078B2
JP5578078B2 JP2010531797A JP2010531797A JP5578078B2 JP 5578078 B2 JP5578078 B2 JP 5578078B2 JP 2010531797 A JP2010531797 A JP 2010531797A JP 2010531797 A JP2010531797 A JP 2010531797A JP 5578078 B2 JP5578078 B2 JP 5578078B2
Authority
JP
Japan
Prior art keywords
layer
conductive
metal
conductive particle
functional layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010531797A
Other languages
Japanese (ja)
Other versions
JPWO2010038570A1 (en
Inventor
本田  誠
桂 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2010531797A priority Critical patent/JP5578078B2/en
Publication of JPWO2010038570A1 publication Critical patent/JPWO2010038570A1/en
Application granted granted Critical
Publication of JP5578078B2 publication Critical patent/JP5578078B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1292Multistep manufacturing methods using liquid deposition, e.g. printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

本発明は、機能性層の製造方法に関する。 The present invention relates to the production how the functional layer.

近年の情報端末の急速な小型化に伴い、それに搭載されるプリント配線板の配線ピッチの狭小化も進み、具体的には、半導体内回路のファイン化に伴い、プリント配線板上に形成される回路パターンの最小線幅、膜厚もますます狭くなっている。   Along with the rapid miniaturization of information terminals in recent years, the wiring pitch of the printed wiring board mounted on the information terminal has also been reduced. Specifically, it is formed on the printed wiring board as the circuit in the semiconductor becomes finer. The minimum line width and film thickness of circuit patterns are becoming increasingly narrower.

このような状況の中、特開2002−324966号公報には、平均粒径数nm〜数100nmの金属超微粒子をインクジェット法で基板上にパターン印刷し、該回路パターンを、200℃以上の温度で焼成し、導電性回路パターンを得る方法が開示されている。   Under such circumstances, Japanese Patent Application Laid-Open No. 2002-324966 discloses pattern printing of ultrafine metal particles having an average particle diameter of several nanometers to several hundred nanometers on a substrate by an inkjet method, and the circuit pattern is heated to a temperature of 200 ° C. or higher. Discloses a method of obtaining a conductive circuit pattern by baking.

また、特開2006−32326号公報には、平均粒径1nm〜40nm金属超微粒子を溶媒に分散した溶液を、基板上にスピンコートまたはスプレーコートによって均一塗膜を形成し400℃〜900℃で焼成して、薄膜電極及び薄膜素子(例えば誘電体素子)を得る方法が開示されている。   Japanese Patent Laid-Open No. 2006-32326 discloses a solution in which ultrafine metal particles having an average particle diameter of 1 nm to 40 nm are dispersed in a solvent, and a uniform coating film is formed on a substrate by spin coating or spray coating at 400 ° C. to 900 ° C. A method for obtaining a thin film electrode and a thin film element (for example, a dielectric element) by firing is disclosed.

しかし、これらの方法は比較的低温な焼成ではあるが、ガラス転移温度、融解温度が低いプラスチック基板を用いようとすると、更に低温での焼成が求められるため、実際には高い導電性や目的の素子特性を得ることはできなかった。   However, although these methods are firing at a relatively low temperature, if a plastic substrate having a low glass transition temperature and a low melting temperature is to be used, firing at a lower temperature is required. Element characteristics could not be obtained.

また、特開2004−55363号公報には、このような耐熱性の低い基板上に薄膜導電性層を得る方法として、平均粒径1nm〜20nmの特定金属化合物ナノ粒子を含有するコロイド分散物を、インクジェット法により描画し、赤外光または紫外光から選ばれたいずれかのレーザーを用いて焼成する方法が開示されている。   Japanese Patent Application Laid-Open No. 2004-55363 discloses a colloidal dispersion containing specific metal compound nanoparticles having an average particle diameter of 1 nm to 20 nm as a method for obtaining a thin film conductive layer on such a substrate having low heat resistance. A method of drawing by an ink jet method and firing using any laser selected from infrared light and ultraviolet light is disclosed.

この方法は、耐熱性の低い基板に対して効果的な方法ではあるが、ビーム径が10μm〜数十μmのレーザーを走査するため、実際にパターン化した電極を焼成しようとすると、長い時間を要すること、表面抵抗が数百Ω/□程度までしか抵抗が下がらないこと、また、金属酸化物からなる透明導電膜についての記載はあるが、微細な金属パターンにいての焼成については詳細な記載がされていない。   This method is an effective method for a substrate having low heat resistance. However, since a laser having a beam diameter of 10 μm to several tens of μm is scanned, it takes a long time to fire an actually patterned electrode. In other words, there is a description about a transparent conductive film made of a metal oxide, but the detailed description about firing in a fine metal pattern is that the surface resistance is reduced to only about several hundred Ω / □. Has not been.

また、特開2005−294053号公報には、マイクロ波を用いた焼成方法も開示されており、この方法は熱分解性を有し、且つ、高周波電磁波を吸収する粒子を、各種基板上に表面塗布を行った後に、高周波電磁波照射を行うことで、熱分解性粒子を選択的に加熱し、分解、融着することで低抵抗な金属パターンが得られるものである。   Japanese Patent Application Laid-Open No. 2005-294053 also discloses a baking method using microwaves, and this method has a thermal decomposability and particles that absorb high-frequency electromagnetic waves on the surface of various substrates. After application, high-frequency electromagnetic wave irradiation is performed, whereby the thermally decomposable particles are selectively heated, decomposed, and fused to obtain a low-resistance metal pattern.

しかも、高周波電磁波を吸収する粒子自身が分解して金属となることから、電磁波吸収能が消失し自発的に加熱が終了する利点がある。   And since the particle | grains which absorb a high frequency electromagnetic wave itself decompose | disassemble and become a metal, there exists an advantage which electromagnetic wave absorption capability lose | disappears and a heating is complete | finished spontaneously.

しかしながら、この方法で効率よく導電性パターンを作製するためには、高い電磁波吸収能(誘電損失)と低い分解温度の両方を併せ持つ材料を選択する必要があり、実質的には、高い誘電損失と低温分解(還元反応)性を有する酸化銀、窒化銀、ハロゲン化銀を用いなければ効率が低く、中でも高い誘電損失をもつ酸化銀を用いないと実用可能な導電率を得ることは難しかった。   However, in order to efficiently produce a conductive pattern by this method, it is necessary to select a material having both high electromagnetic wave absorption capability (dielectric loss) and low decomposition temperature. The efficiency is low unless silver oxide, silver nitride, and silver halide having low temperature decomposition (reduction reaction) properties are used, and it is difficult to obtain a practical conductivity unless silver oxide having high dielectric loss is used.

また、一方で、マイクロ波照射時に放電現象がおこり、結果的にマイクロ波照射が行われる部位での熱暴走がおこり、照射部位に亀裂が発生する等の問題点が指摘されていた。   On the other hand, it has been pointed out that a discharge phenomenon occurs at the time of microwave irradiation, resulting in thermal runaway at a portion where microwave irradiation is performed, and a crack is generated at the irradiated portion.

それに対して、例えば、導電性発泡シートを塗膜の下に敷くことで放電を電磁波照射時の放電を防止する(例えば、特許文献1参照。)、また、透明導電性膜の表面に、酸化チタンの微粒子のペーストを塗布して酸化チタン粒子集合体薄膜を設け、導電体の上側に、酸化チタン粒子集合体薄膜側が下になるような姿勢で載置してマイクロ波を照射して放電を防止する(例えば、特許文献2参照。)等の技術がある。   On the other hand, for example, a conductive foam sheet is laid under the coating to prevent discharge during electromagnetic wave irradiation (see, for example, Patent Document 1), and the surface of the transparent conductive film is oxidized. A titanium oxide particle aggregate thin film is applied by applying a titanium fine particle paste, placed on the conductor in such a position that the titanium oxide particle aggregate thin film side is down, and is irradiated with microwaves to discharge. There is a technique for preventing (see, for example, Patent Document 2).

しかしながら、上記特許文献1及び2に記載の導電性薄膜前駆体からの放電をアースする目的で、導電体を導電性薄膜前駆体に直接密着させる必要があり、密着性が保たれないとアースできなくなり放電するという問題点があった。   However, for the purpose of grounding the discharge from the conductive thin film precursors described in Patent Documents 1 and 2, it is necessary to bring the conductor into direct contact with the conductive thin film precursor. There was a problem that it was discharged.

更に、マイクロ波照射の対象物の損失係数に応じて出力調整することで放電を防止するという技術が開示されている(例えば、特許文献3参照。)。   Furthermore, a technique is disclosed in which discharge is prevented by adjusting the output according to the loss coefficient of an object to be irradiated with microwaves (see, for example, Patent Document 3).

しかしながら、高温に昇温した場合、マイクロ波の出力が上げられなくなる場合があり、また、高温が必要な導電層の形成には出力調整のみでは所定温度まで昇温できないという問題点があった。   However, when the temperature is raised to a high temperature, the output of the microwave may not be increased, and there is a problem that the formation of the conductive layer that requires a high temperature cannot be raised to a predetermined temperature only by adjusting the output.

特開2001−91126号公報JP 2001-91126 A 特開2006−60064号公報JP 2006-60064 A 特開2001−54730号公報JP 2001-54730 A

本発明の目的は、マイクロ波照射による異常放電にもとづく、照射領域での亀裂発生や構成材料の炭化等による劣化を防止した機能性層の製造方法を提供することである。 An object of the present invention is based on the abnormal discharge due to microwave radiation, a Hisage Kyosu Rukoto a method of manufacturing a functional layer capable of preventing deterioration due to carbonization of the crack and the material in the irradiated region.

本発明の上記目的は、下記の構成により達成された。   The above object of the present invention has been achieved by the following constitution.

1.導電性粒子含有層に電磁波を照射する工程を有する機能性層の製造方法において、導電体の上に、該導電性粒子含有層を1mm以下の距離で該導電体から離隔して配置した後、該電磁波を照射する工程を有することを特徴とする機能性層の製造方法。
2.前記導電性粒子含有層は、基板上に形成され、該基板を介して前記導電体の上に配置されることを特徴とする前記1記載の機能性層の製造方法。
3.前記電磁波は、酸素過剰雰囲気中で照射されることを特徴とする前記1又は2記載の機能性層の製造方法。
1. In the method for producing a functional layer having a step of irradiating the conductive particle-containing layer with electromagnetic waves, on the conductor, the conductive particle-containing layer is disposed away from the conductor at a distance of 1 mm or less . A method for producing a functional layer, comprising a step of irradiating the electromagnetic wave.
2. 2. The method for producing a functional layer according to 1, wherein the conductive particle-containing layer is formed on a substrate and disposed on the conductor via the substrate.
3. 3. The method for producing a functional layer according to 1 or 2, wherein the electromagnetic wave is irradiated in an oxygen-excess atmosphere.

.前記機能性層の少なくとも1層が、導電層であることを特徴とする前記1〜3のいずれか1項に記載の機能性層の製造方法。 4 . At least 1 layer of the said functional layer is a conductive layer, The manufacturing method of the functional layer of any one of said 1-3 characterized by the above-mentioned.

.前記機能性層の少なくとも1層が、半導体活性層であることを特徴とする前記1〜4のいずれか1項に記載の機能性層の製造方法。 5 . 5. The method for producing a functional layer according to any one of 1 to 4, wherein at least one of the functional layers is a semiconductor active layer.

.前記導電性粒子含有層の表面積が、前記導電体の表面積以下であることを特徴とする前記1〜のいずれか1項に記載の機能性層の製造方法。 6 . 6. The method for producing a functional layer according to any one of 1 to 5 , wherein a surface area of the conductive particle-containing layer is equal to or less than a surface area of the conductor.

.前記導電性粒子含有層が少なくともIn、ZnまたはSnの酸化物を含むことを特徴とする前記1〜のいずれか1項に記載の機能性層の製造方法。 7 . 7. The method for producing a functional layer according to any one of 1 to 6 , wherein the conductive particle-containing layer includes at least an oxide of In, Zn, or Sn.

.前記電磁波がマイクロ波であることを特徴とする前記1〜のいずれか1項に記載の機能性層の製造方法。 8 . 8. The method for producing a functional layer according to any one of 1 to 7 , wherein the electromagnetic wave is a microwave.

本発明により、マイクロ波照射による異常放電にもとづく、照射領域での亀裂発生や構成材料の炭化等による劣化を防止した機能性層の製造方法を提供することができた。 The present invention, based on the abnormal electrical discharge by the microwave irradiation method of manufacturing a functional layer capable of preventing the deterioration can Hisage Kyosu Rukoto the by carbonization of crack and the material in the irradiated region.

本発明の薄膜トランジスタ素子の構成例を示す断面図である。It is sectional drawing which shows the structural example of the thin-film transistor element of this invention. 本発明の薄膜トランジスタ素子が複数配置される薄膜トランジスタシートの一例の概略等価回路図である。It is a schematic equivalent circuit diagram of an example of the thin film transistor sheet in which a plurality of thin film transistor elements of the present invention are arranged. マイクロ波照射時における、導電性粒子含有層と導電体との位置関係を示す概略断面図である。It is a schematic sectional drawing which shows the positional relationship of a conductive particle content layer and a conductor at the time of microwave irradiation. 本発明の薄膜トランジスタ素子作製工程の模式図である。It is a schematic diagram of the thin-film transistor element manufacturing process of this invention. 本発明の薄膜トランジスタ素子作製工程の模式図である。It is a schematic diagram of the thin-film transistor element manufacturing process of this invention.

本発明の機能性層の製造方法においては、請求項1〜7のいずれか1項に記載の構成により、マイクロ波照射による異常放電にもとづく、照射領域での亀裂発生や構成材料の炭化等による劣化を防止した機能性層の製造方法を提供することができた。   In the method for producing a functional layer according to the present invention, the structure according to any one of claims 1 to 7 is caused by generation of cracks in the irradiated region, carbonization of a constituent material, or the like based on abnormal discharge caused by microwave irradiation. The manufacturing method of the functional layer which prevented deterioration can be provided.

また、該製造方法により製造した機能性層や電子デバイスを提供することができた。   Moreover, the functional layer and electronic device which were manufactured by this manufacturing method were able to be provided.

以下、本発明を実施するための形態について説明するが、本発明はこれらにより限定されない。   Hereinafter, although the form for implementing this invention is demonstrated, this invention is not limited by these.

セラミクスの分野では、本発明に係る電磁波を焼結に利用することが既に公知となっている。磁性を含む材料に電磁波を照射する、その物質の複素透磁率の損失部の大きさに応じて発熱することを利用し、短時間で均一に、且つ、高温にすることができる。   In the field of ceramics, it is already known to use the electromagnetic wave according to the present invention for sintering. The material containing magnetism is irradiated with electromagnetic waves, and heat is generated according to the size of the loss portion of the complex permeability of the substance, so that the temperature can be increased uniformly and in a short time.

一方で、金属に電磁波を照射すると自由電子が高い周波数で運動を始めるためアーク放電が発生し、加熱できないこともよく知られている。   On the other hand, it is also well known that when an electromagnetic wave is irradiated onto a metal, free electrons start to move at a high frequency, so that arc discharge occurs and heating cannot be performed.

このような技術背景のもとに、本発明者等は上記の問題点を鋭意検討した結果、例えば、導電体の上に、導電性粒子含有層を直接または間接的に配置した後、電磁波を照射する工程を設けることにより、マイクロ波照射による異常放電にもとづく、照射領域での亀裂発生や構成材料の炭化等による劣化を防止した機能性層の製造方法を提供することができた。   Based on such a technical background, the present inventors have intensively studied the above-mentioned problems. As a result, for example, after arranging a conductive particle-containing layer directly or indirectly on a conductor, electromagnetic waves are not generated. By providing the irradiation step, it was possible to provide a method for producing a functional layer that prevented the deterioration due to the occurrence of cracks in the irradiated region and the carbonization of the constituent materials based on abnormal discharge caused by microwave irradiation.

また、該製造方法を用いた機能性層や電子デバイスを得ることができた。   Moreover, the functional layer and electronic device which used this manufacturing method were able to be obtained.

《機能性層の製造方法》
本発明の機能性層の製造方法について説明する。
<< Method for producing functional layer >>
The manufacturing method of the functional layer of this invention is demonstrated.

本発明は、導電性粒子含有層(金属酸化物導電膜ともいう)に電磁波を照射する工程を有する機能性層の製造方法において、導電体の上に、導電性粒子含有層を直接または間接的に配置した後、該導電性粒子含有層に電磁波を照射することにより、マイクロ波照射による異常放電にもとづく、照射領域での亀裂発生や構成材料の炭化等による劣化を防止した機能性層の製造方法を提供することができた。   The present invention relates to a method for producing a functional layer having a step of irradiating an electromagnetic wave onto a conductive particle-containing layer (also referred to as a metal oxide conductive film). The conductive particle-containing layer is directly or indirectly provided on a conductor. The functional layer containing the conductive particle-containing layer is then irradiated with electromagnetic waves, thereby preventing the deterioration due to the occurrence of cracks in the irradiated region and carbonization of the constituent materials based on abnormal discharge due to microwave irradiation. Could provide a way.

また、導電性粒子含有層に電磁波を照射することにより得られる本発明に係る機能性層としては、後述するように、半導体活性層または導電層が好ましい。   Moreover, as a functional layer which concerns on this invention obtained by irradiating electromagnetic waves to an electroconductive particle content layer, a semiconductor active layer or an electroconductive layer is preferable so that it may mention later.

以下、順をおって説明する。   Hereinafter, it will be described in order.

(導電性粒子含有層(金属酸化物導電膜ともいう))
本発明に係る導電性粒子含有層について説明する。
(Conductive particle-containing layer (also referred to as metal oxide conductive film))
The conductive particle-containing layer according to the present invention will be described.

導電性粒子含有層が導電層の形成に用いられる場合、本発明に係る導電性粒子含有層に含有される導電性粒子としては、金属酸化物粒子が好ましく、例えば、酸化インジウム、酸化スズ、酸化亜鉛、IZO、ITO等が好ましく、少なくともIn、ZnまたはSnの酸化物を含むことが好ましい。   When the conductive particle-containing layer is used to form a conductive layer, the conductive particles contained in the conductive particle-containing layer according to the present invention are preferably metal oxide particles, such as indium oxide, tin oxide, and oxide. Zinc, IZO, ITO and the like are preferable, and it is preferable to include at least an oxide of In, Zn or Sn.

導電性粒子含有層の一例として、酸化インジウムに錫をドーピングして得られるITO層においては、得られるITO層のIn:Snの原子数比が好ましくは、100:0.5〜100:10の範囲が好ましい。   As an example of the conductive particle-containing layer, in the ITO layer obtained by doping indium oxide with tin, the In: Sn atomic ratio of the obtained ITO layer is preferably 100: 0.5 to 100: 10. A range is preferred.

In:Snの原子数比はXPS(X線光電子スペクトロスコピー)測定により求めることができる。   The atomic ratio of In: Sn can be determined by XPS (X-ray photoelectron spectroscopy) measurement.

また、酸化錫にフッ素をドーピング(Sn:Fの原子数比が100:0.01〜100:50の範囲)して得られる透明導電膜(FTO膜という)、In−ZnO系アモルファス導電膜(In:Znの原子数比が100:50〜100:5の範囲)等を用いることができる。原子数比はXPS測定により求めることができる。In addition, a transparent conductive film (referred to as FTO film) obtained by doping tin oxide with fluorine (Sn: F atomic ratio in the range of 100: 0.01 to 100: 50), In 2 O 3 —ZnO-based amorphous A conductive film (In: Zn atomic ratio in the range of 100: 50 to 100: 5) or the like can be used. The atomic ratio can be determined by XPS measurement.

金属酸化物粒子からなる導電性粒子含有層の形成は、真空蒸着やスパッタ法等を用いることにより、また、インジウム、スズ等の金属アルコキシド、アルキル金属等の有機金属化合物を用いてプラズマCVD法により形成することも好ましい。   Formation of the conductive particle-containing layer made of metal oxide particles can be achieved by using vacuum deposition or sputtering, or by plasma CVD using metal alkoxides such as indium and tin, and organometallic compounds such as alkyl metals. It is also preferable to form.

また、インジウム、スズ等の金属アルコキシド等を用いたゾルゲル法等塗布法によっても製造でき、比抵抗値で10−4Ω・cmオーダーの優れた導電性を有するITO層を得ることができる。また、適当なパターニング方法と組み合わせることにより電極パターンを得ることができる。Moreover, it can manufacture also by application | coating methods, such as a sol gel method using metal alkoxides, such as indium and tin, and can obtain the ITO layer which has the outstanding electroconductivity of a 10 <-4> ohm * cm order by a specific resistance value. Moreover, an electrode pattern can be obtained by combining with an appropriate patterning method.

少なくともIn、Snの酸化物を含む金属酸化物微粒子の分散体としては、特にITO微粒子が非常に微細、且つ、高分散であり好ましい。Sn酸化物は電磁波吸収能が高く、Sn酸化物を含む電極パターン部が最初に高温になるので、これを電極材料前駆体を含む場合、電極パターン部の近傍も高温となるために好ましく用いることができる。   As a dispersion of metal oxide fine particles containing at least an oxide of In and Sn, ITO fine particles are particularly preferable because they are very fine and highly dispersed. Sn oxide has a high ability to absorb electromagnetic waves, and the electrode pattern portion containing Sn oxide is initially heated to a high temperature. Therefore, when an electrode material precursor is included, the vicinity of the electrode pattern portion also becomes high, so that it is preferably used. Can do.

これらの金属酸化物微粒子は、例えば、pHを調製した溶液を加熱して得たゲル状物から、これを加熱、低温焼結する等の方法により得られるもので、これらを水またはアルコール等の適宜な溶媒に分散させた塗料(インク)は、塗布、インクジェットまた印刷法等に用いても凝集等による目詰まりが発生しない微粒子、高分散である。   These metal oxide fine particles are obtained from, for example, a gel-like material obtained by heating a solution adjusted in pH by a method such as heating or low-temperature sintering. The coating material (ink) dispersed in an appropriate solvent is a fine particle having a high degree of dispersion that does not cause clogging due to aggregation even when used in coating, ink jetting, printing, or the like.

このような粒子の粒径は、5nm〜50nmの範囲が好ましい。   The particle size of such particles is preferably in the range of 5 nm to 50 nm.

これらは市販されており、市場から直接入手することもできる。シーアイ化成社製、NanoTek Slurry ITO、ULVAC社製ITO分散液また、SnOなどが挙げられる。These are commercially available and can also be obtained directly from the market. Examples thereof include Cai Kasei Co., Ltd. NanoTek Slurry ITO, ULVAC ITO dispersion, SnO 2 and the like.

これら粒子分散液を、後述する導電層を形成するための前駆体として用いると、スパッタ法等によらず、ITO等の電極材料がインクジェット法等、塗布法により容易にパターニング形成でき、且つ、薄膜の表面温度が200℃〜600℃という比較的低温の熱処理または焼結により、微粒子の結晶化が起こり導電性の高い薄膜が得られる。   When these particle dispersions are used as a precursor for forming a conductive layer, which will be described later, an electrode material such as ITO can be easily patterned by a coating method such as an ink jet method, etc., regardless of a sputtering method, etc. Due to the relatively low temperature heat treatment or sintering at a surface temperature of 200 ° C. to 600 ° C., crystallization of fine particles occurs and a highly conductive thin film is obtained.

また、電極材料前駆体としては、少なくともIn、Sn、Zn原子含有化合物が挙げられ、これらの金属原子を含む、金属塩、ハロゲン化金属化合物、有機金属化合物等を挙げることができる。   Examples of the electrode material precursor include at least In, Sn, and Zn atom-containing compounds, and examples thereof include metal salts, metal halide compounds, and organometallic compounds containing these metal atoms.

少なくともIn、Sn、Znを含む金属塩としては、硝酸塩、酢酸塩等を、ハロゲン金属化合物としては塩化物、ヨウ化物、臭化物等を好適に用いることができる。   As metal salts containing at least In, Sn, and Zn, nitrates, acetates, and the like can be suitably used, and as halogen metal compounds, chlorides, iodides, bromides, and the like can be suitably used.

以上の電極材料前駆体のうち、好ましいのは、インジウム、錫、亜鉛の硝酸塩、ハロゲン化物、アルコキシド類である。具体例としては、硝酸インジウム、硝酸スズ、硝酸亜鉛、塩化インジウム、塩化スズ(2価)、塩化スズ(4価)、塩化亜鉛、トリ−i−プロポキシインジウム、ジエトキシ亜鉛、ビス(ジピバロイルメタナト)亜鉛、テトラエトキシスズ、テトラ−i−プロポキシスズなどが挙げられる。   Among the electrode material precursors described above, preferred are indium, tin, zinc nitrates, halides, and alkoxides. Specific examples include indium nitrate, tin nitrate, zinc nitrate, indium chloride, tin chloride (divalent), tin chloride (tetravalent), zinc chloride, tri-i-propoxyindium, diethoxyzinc, bis (dipivaloylme). Tanato) zinc, tetraethoxytin, tetra-i-propoxytin and the like.

また、導電層の形成に用いられる導電性粒子含有層には、下記のような金属微粒子を含有していることが好ましい。   In addition, the conductive particle-containing layer used for forming the conductive layer preferably contains the following metal fine particles.

(金属微粒子)
本発明に係る導電性粒子含有層が電磁波の照射により機能性層に変換し、該機能性層が導電層を形成する場合には、導電性粒子含有層に、平均粒径1nm〜100nmの金属微粒子を好適に用いることができる。
(Metal fine particles)
When the conductive particle-containing layer according to the present invention is converted into a functional layer by irradiation with electromagnetic waves, and the functional layer forms a conductive layer, a metal having an average particle diameter of 1 nm to 100 nm is formed in the conductive particle-containing layer. Fine particles can be suitably used.

金属微粒子としては、白金、金、銀、ニッケル、クロム、銅、鉄、錫、アンチモン鉛、タンタル、インジウム、パラジウム、テルル、レニウム、イリジウム、アルミニウム、ルテニウム、ゲルマニウム、モリブデン、タングステン、酸化スズ・アンチモン、酸化インジウム・スズ(ITO)、フッ素ドープ酸化亜鉛、亜鉛、炭素、グラファイト、グラッシーカーボン、銀ペースト及びカーボンペースト、リチウム、ベリリウム、ナトリウム、マグネシウム、カリウム、カルシウム、スカンジウム、チタン、マンガン、ジルコニウム、ガリウム、ニオブ、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、アルミニウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム混合物、リチウム/アルミニウム混合物等を用いる。   Metal fine particles include platinum, gold, silver, nickel, chromium, copper, iron, tin, antimony lead, tantalum, indium, palladium, tellurium, rhenium, iridium, aluminum, ruthenium, germanium, molybdenum, tungsten, tin oxide / antimony , Indium tin oxide (ITO), fluorine-doped zinc oxide, zinc, carbon, graphite, glassy carbon, silver paste and carbon paste, lithium, beryllium, sodium, magnesium, potassium, calcium, scandium, titanium, manganese, zirconium, gallium , Niobium, sodium, sodium-potassium alloy, magnesium, lithium, aluminum, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium Indium mixture, aluminum / aluminum oxide mixture, a lithium / aluminum mixture, or the like is used.

本発明に係る金属微粒子の平均粒径は、分散液を用いて導電層を塗布・成膜するとき、金属微粒子の分散性を良好に保ち、凝集体生成を防止し、均一組成の分散液を調製する観点、及び、低温での焼結を容易にする観点から、平均粒径が1nm〜100nmの範囲に調整したものを用いることが好ましく、更に好ましくは、1nm〜40nmの範囲であり、特に好ましくは、2nm〜10nmの範囲である。   The average particle size of the metal fine particles according to the present invention is such that when a conductive layer is applied and formed using a dispersion, the dispersibility of the metal fine particles is kept good, aggregate formation is prevented, and a dispersion with a uniform composition is made. From the viewpoint of preparing, and from the viewpoint of facilitating sintering at a low temperature, it is preferable to use one having an average particle diameter adjusted to a range of 1 nm to 100 nm, more preferably a range of 1 nm to 40 nm. Preferably, it is the range of 2 nm-10 nm.

また、平均粒径1nm〜100nmの金属微粒子として安定に得られる、例えば、Pd系合金、Pt系合金、Au系合金、Ag系合金、Ni系合金、またはこれらの金属の単体微粒子を用いることが好ましい。   In addition, it is possible to use a Pd alloy, a Pt alloy, an Au alloy, an Ag alloy, a Ni alloy, or simple particles of these metals, which can be stably obtained as metal fine particles having an average particle diameter of 1 nm to 100 nm. preferable.

(半導体活性層の形成に用いられる導電性粒子含有層)
本発明に係る導電性粒子含有層が半導体活性層の形成に用いられる場合、本発明に係る導電性粒子含有層は、半導体前駆体として、金属酸化物半導体前駆体を用いることが好ましく、また、有機半導体前駆体材料を併用してもよい。
(Conductive particle-containing layer used for forming semiconductor active layer)
When the conductive particle-containing layer according to the present invention is used for forming a semiconductor active layer, the conductive particle-containing layer according to the present invention preferably uses a metal oxide semiconductor precursor as a semiconductor precursor, An organic semiconductor precursor material may be used in combination.

金属酸化物半導体前駆体としては、金属原子含有化合物が挙げられ、金属原子含有化合物には、金属原子を含む、金属塩、ハロゲン化金属化合物、有機金属化合物等を挙げることができる。   Examples of the metal oxide semiconductor precursor include a metal atom-containing compound, and examples of the metal atom-containing compound include metal salts, metal halide compounds, and organic metal compounds containing a metal atom.

金属塩、ハロゲン金属化合物、有機金属化合物の金属としては、Li、Be、B、Na、Mg、Al、Si、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Rb、Sr、Y、Zr、Nb、Mo、Cd、In、Ir、Sn、Sb、Cs、Ba、La、Hf、Ta、W、Tl、Pb、Bi、Ce、Pr、Nd、Pm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等を挙げることができる。   Metals of metal salts, halogen metal compounds, and organometallic compounds include Li, Be, B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Mo, Cd, In, Ir, Sn, Sb, Cs, Ba, La, Hf, Ta, W, Tl, Pb, Bi, Ce, Pr Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and the like.

それらの金属塩のうち、インジウム、錫、亜鉛のいずれかの金属イオンを含むことが好ましく、それらを併用して混合させてもよい。   Among these metal salts, it is preferable to contain any metal ion of indium, tin, and zinc, and they may be used in combination.

また、その他の金属として、ガリウムまたはアルミニウムを含むことが好ましい。   Moreover, it is preferable that a gallium or aluminum is included as another metal.

金属塩としては、硝酸塩、酢酸塩等を、ハロゲン金属化合物としては塩化物、ヨウ化物、臭化物等を好適に用いることができる。   As metal salts, nitrates, acetates and the like can be suitably used, and as halogen metal compounds, chlorides, iodides, bromides and the like can be suitably used.

有機金属化合物としては、下記の一般式(I)で示すものが挙げられる。   Examples of the organometallic compound include those represented by the following general formula (I).

一般式(I) R MR
式中、Mは金属、Rはアルキル基、Rはアルコキシ基、Rはβ−ジケトン錯体基、β−ケトカルボン酸エステル錯体基、β−ケトカルボン酸錯体基及びケトオキシ基(ケトオキシ錯体基)から選ばれる基であり、金属Mの価数をmとした場合、x+y+z=mであり、x=0〜m、またはx=0〜m−1であり、y=0〜m、z=0〜mで、いずれも0または正の整数である。
Formula (I) R 1 x MR 2 y R 3 z
In the formula, M is a metal, R 1 is an alkyl group, R 2 is an alkoxy group, R 3 is a β-diketone complex group, a β-ketocarboxylic acid ester complex group, a β-ketocarboxylic acid complex group, and a ketooxy group (ketooxy complex group). X + y + z = m, x = 0 to m, or x = 0 to m−1, and y = 0 to m, z = 0. ~ M, each of which is 0 or a positive integer.

のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基等を挙げることができる。Examples of the alkyl group for R 1 include a methyl group, an ethyl group, a propyl group, and a butyl group.

のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、3,3,3−トリフルオロプロポキシ基等を挙げることができる。またアルキル基の水素原子をフッ素原子に置換したものでもよい。Examples of the alkoxy group for R 2 include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a 3,3,3-trifluoropropoxy group. Further, a hydrogen atom in the alkyl group may be substituted with a fluorine atom.

で表される、β−ジケトン錯体基、β−ケトカルボン酸エステル錯体基、β−ケトカルボン酸錯体基及びケトオキシ基(ケトオキシ錯体基)から選ばれる基としては、β−ジケトン錯体基として、例えば、2,4−ペンタンジオン(アセチルアセトンまたはアセトアセトンともいう)、1,1,1,5,5,5−ヘキサメチル−2,4−ペンタンジオン、2,2,6,6−テトラメチル−3,5−ヘプタンジオン、1,1,1−トリフルオロ−2,4−ペンタンジオン等を挙げることができ、β−ケトカルボン酸エステル錯体基として、例えばアセト酢酸メチルエステル、アセト酢酸エチルエステル、アセト酢酸プロピルエステル、トリメチルアセト酢酸エチル、トリフルオロアセト酢酸メチル等を挙げることができ、β−ケトカルボン酸として、例えば、アセト酢酸、トリメチルアセト酢酸等を挙げることができ、また、ケトオキシとして、例えば、アセトオキシ基(またはアセトキシ基)、プロピオニルオキシ基、ブチリロキシ基、アクリロイルオキシ基、メタクリロイルオキシ基等を挙げることができる。Examples of the group represented by R 3 selected from a β-diketone complex group, a β-ketocarboxylic acid ester complex group, a β-ketocarboxylic acid complex group, and a ketooxy group (ketooxy complex group) include a β-diketone complex group, for example, 2,4-pentanedione (also referred to as acetylacetone or acetoacetone), 1,1,1,5,5,5-hexamethyl-2,4-pentanedione, 2,2,6,6-tetramethyl-3, 5-heptanedione, 1,1,1-trifluoro-2,4-pentanedione, and the like. Examples of β-ketocarboxylic acid ester complex groups include methyl acetoacetate, ethyl acetoacetate, propyl acetoacetate. Esters, ethyl trimethylacetoacetate, methyl trifluoroacetoacetate and the like, and β-ketocarboxylic acid and Examples thereof include acetoacetic acid and trimethylacetoacetic acid, and examples of ketooxy include acetooxy group (or acetoxy group), propionyloxy group, butyryloxy group, acryloyloxy group, and methacryloyloxy group. be able to.

これらの基の炭素原子数は18以下が好ましい。また直鎖または分岐のもの、また水素原子をフッ素原子にしたものでもよい。   These groups preferably have 18 or less carbon atoms. Further, it may be linear or branched, or a hydrogen atom may be a fluorine atom.

有機金属化合物の中では、分子内に少なくとも1つ以上の酸素を有するものが好ましい。このようなものとしてRのアルコキシ基を少なくとも1つを含有する有機金属化合物、また、Rのβ−ジケトン錯体基、β−ケトカルボン酸エステル錯体基、β−ケトカルボン酸錯体基及びケトオキシ基(ケトオキシ錯体基)から選ばれる基を少なくとも1つ有する金属化合物が最も好ましい。Among organometallic compounds, those having at least one oxygen in the molecule are preferable. As such, an organometallic compound containing at least one alkoxy group of R 2 , a β-diketone complex group, a β-ketocarboxylic acid ester complex group, a β-ketocarboxylic acid complex group and a ketooxy group of R 3 ( Most preferred is a metal compound having at least one group selected from a ketooxy complex group.

金属塩の中では、硝酸塩が好ましい。硝酸塩は高純度品が入手しやすく、また使用時の媒体として好ましい水に対する溶解度が高い。硝酸塩としては、硝酸インジウム、硝酸錫、硝酸亜鉛、硝酸ガリウム等が挙げられる。   Among metal salts, nitrate is preferable. Nitrate is easily available as a high-purity product and has high solubility in water, which is preferable as a medium for use. Examples of nitrates include indium nitrate, tin nitrate, zinc nitrate, and gallium nitrate.

以上の金属酸化物半導体前駆体のうち、好ましいのは、金属の硝酸塩、金属のハロゲン化物、アルコキシド類である。具体例としては、硝酸インジウム、硝酸亜鉛、硝酸ガリウム、硝酸スズ、硝酸アルミニウム、塩化インジウム、塩化亜鉛、塩化スズ(2価)、塩化スズ(4価)、塩化ガリウム、塩化アルミニウム、トリ−i−プロポキシインジウム、ジエトキシ亜鉛、ビス(ジピバロイルメタナト)亜鉛、テトラエトキシスズ、テトラ−i−プロポキシスズ、トリ−i−プロポキシガリウム、トリ−i−プロポキシアルミニウムなどが挙げられる。   Of the above metal oxide semiconductor precursors, metal nitrates, metal halides, and alkoxides are preferable. Specific examples include indium nitrate, zinc nitrate, gallium nitrate, tin nitrate, aluminum nitrate, indium chloride, zinc chloride, tin chloride (divalent), tin chloride (tetravalent), gallium chloride, aluminum chloride, tri-i-. Examples include propoxyindium, diethoxyzinc, bis (dipivaloylmethanato) zinc, tetraethoxytin, tetra-i-propoxytin, tri-i-propoxygallium, and tri-i-propoxyaluminum.

(導電性粒子含有層の形成方法)
本発明に係る導電性粒子含有層の形成方法について説明する。
(Method for forming conductive particle-containing layer)
The formation method of the electroconductive particle content layer concerning the present invention is explained.

本発明において、導電性粒子含有層を形成するためには、公知の成膜法(例えば、真空蒸着法、分子線エピタキシャル成長法、イオンクラスタービーム法、低エネルギーイオンビーム法、イオンプレーティング法、CVD法、スパッタリング法、大気圧プラズマ法等)、塗布による成膜方法(ウェットプロセスともいう)を用いることができるが、基板上に連続的に塗布により成膜する方法(ウェットプロセスともいう)が好ましい。   In the present invention, in order to form the conductive particle-containing layer, a known film formation method (for example, vacuum deposition method, molecular beam epitaxial growth method, ion cluster beam method, low energy ion beam method, ion plating method, CVD) Method, sputtering method, atmospheric pressure plasma method, etc.), and a film formation method by coating (also referred to as a wet process) can be used, but a method of continuously forming a film by coating on a substrate (also referred to as a wet process) is preferable. .

塗布(ウェットプロセス)により導電性粒子含有層を成膜する方法としては、スプレーコート法、スピンコート法、ブレードコート法、ディップコート法、キャスト法、ロールコート法、バーコート法、ダイコート法、ミスト法、等、凸版、凹版、平版、スクリーン印刷、インクジェット等の印刷法等、広い意味での塗布による方法が挙げられ、また、これによりパターン化する方法等が挙げられる。塗布膜からフォトリソグラフ法、レーザーアブレーション等によりパターン化してもよい。   As a method for forming a conductive particle-containing layer by coating (wet process), spray coating method, spin coating method, blade coating method, dip coating method, casting method, roll coating method, bar coating method, die coating method, mist And the like, and printing methods such as letterpress, intaglio, lithographic printing, screen printing, and ink jet printing, and the like, and the method of patterning by this. The coating film may be patterned by photolithography, laser ablation, or the like.

塗布による導電性粒子含有層の形成方法の中でも、より好ましいのは薄膜の塗布が可能な、インクジェット法、スプレーコート法であり、特に好ましくは、微細回路パターニング、オンデマンド性の観点からインクジェット法が最も好ましい。   Among the methods for forming the conductive particle-containing layer by coating, the inkjet method and spray coating method that can apply a thin film are more preferable, and the inkjet method is particularly preferable from the viewpoint of fine circuit patterning and on-demand properties. Most preferred.

例えば、インクジェット法を用いて導電性粒子含有層を成膜する場合、導電性粒子を含む分散液を滴下して、150℃程度で溶媒を揮発させることにより薄膜パターンを形成することができる。   For example, when forming a conductive particle-containing layer using an inkjet method, a thin film pattern can be formed by dropping a dispersion containing conductive particles and volatilizing the solvent at about 150 ° C.

尚、分散液を滴下する際、基板自体を150℃程度に加熱しておくと、塗布、乾燥の2プロセスを同時に行えるため好ましい。   In addition, when dropping the dispersion, it is preferable to heat the substrate itself to about 150 ° C. because two processes of coating and drying can be performed simultaneously.

また、導電性粒子含有層の膜厚としては、1nm〜200nmの範囲に調整することが好ましく、更に好ましくは、5nm〜100nmの範囲に調整することである。   Moreover, it is preferable to adjust to the range of 1 nm-200 nm as a film thickness of an electroconductive particle content layer, More preferably, it is adjusting to the range of 5 nm-100 nm.

導電性粒子含有層を塗布(ウェットプロセス)により成膜する場合に用いる溶媒としては、水や、エタノール、プロパノール、エチレングリコール等のアルコール類、テトラヒドロフラン、ジオキサン等のエーテル系、酢酸メチル、酢酸エチル等のエステル系、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン系、ジエチレングリコールモノメチルエーテル等グリコールエーテル系、また、アセトニトリル等、更に、キシレン、トルエン等の芳香族炭化水素系溶媒、o−ジクロロベンゼン、ニトロベンゼン、m−クレゾール等の芳香族系溶媒、ヘキサン、シクロヘキサン、トリデカン等の脂肪族炭化水素溶媒、α−テルピネオール、また、クロロホルムや1,2−ジクロロエタン等のハロゲン化アルキル系溶媒、N−メチルピロリドン、2硫化炭素等が好ましく用いられる。   Solvents used when the conductive particle-containing layer is formed by coating (wet process) include water, alcohols such as ethanol, propanol, and ethylene glycol, ethers such as tetrahydrofuran and dioxane, methyl acetate, and ethyl acetate. Esters, ketones such as acetone, methyl ethyl ketone, cyclohexanone, glycol ethers such as diethylene glycol monomethyl ether, acetonitrile, and aromatic hydrocarbon solvents such as xylene and toluene, o-dichlorobenzene, nitrobenzene, m- Aromatic solvents such as cresol, aliphatic hydrocarbon solvents such as hexane, cyclohexane and tridecane, α-terpineol, alkyl halide solvents such as chloroform and 1,2-dichloroethane, N-methylpyrrole Don, carbon disulfide and the like are preferably used.

また、比較的極性の高い溶媒が好ましく、中でも沸点が100℃以下の水、エタノール、プロパノール等のアルコール類、アセトニトリル、またはこれらの混合物を用いると乾燥温度を低くすることができため、樹脂基板に塗設することが可能となり、より好ましい。特に、水またはアルコール類を50質量%以上含有すること溶媒が好ましい。   In addition, a solvent having a relatively high polarity is preferable, and in particular, when water having a boiling point of 100 ° C. or less, alcohols such as ethanol and propanol, acetonitrile, or a mixture thereof can be used, the drying temperature can be lowered. It becomes possible to apply, and is more preferable. In particular, the solvent preferably contains 50% by mass or more of water or alcohols.

また、溶媒中に金属アルコキシドと種々のアルカノールアミン、α−ヒドロキシケトン、β−ジケトン等の多座配位子であるキレート配位子を添加すると、金属アルコキシドを安定化させ、または、カルボン酸塩の溶解度を増加させることができ、悪影響が出ない範囲で添加することが好ましい。   Further, when a metal alkoxide and a chelate ligand which is a multidentate ligand such as various alkanolamines, α-hydroxy ketones, β-diketones, etc. are added to the solvent, the metal alkoxide is stabilized or carboxylate It is preferable to add in the range which can increase the solubility of and does not cause adverse effects.

(導電層粒子含有層形成用分散液の調製)
本発明に係る導電層粒子含有層の形成を塗布(ウェットプロセス)で行う場合には、上記の導電性粒子を適当な分散媒に分散させることによりコロイド分散液を得ることができる。
(Preparation of dispersion for forming conductive layer particle-containing layer)
When the conductive layer particle-containing layer according to the present invention is formed by coating (wet process), a colloidal dispersion can be obtained by dispersing the above conductive particles in an appropriate dispersion medium.

分散媒としては水、アルコール類、グリコール類等が挙げられ、分散液中には、吸着性化合物(分散剤)または界面活性剤等の有機化合物を含有することが好ましい。   Examples of the dispersion medium include water, alcohols and glycols, and the dispersion preferably contains an organic compound such as an adsorbing compound (dispersing agent) or a surfactant.

前記吸着性化合物及び界面活性剤は、コロイド粒子の表面に吸着し、表面修飾することにより、分散液の安定性を向上することができる。   The adsorptive compound and the surfactant can be adsorbed on the surface of the colloidal particles and modified to improve the stability of the dispersion.

吸着性化合物としては、−SH、−CN、−NH、−SOOH、−SOOH、−OPO(OH)、−COOHを含有する化合物等があり、これらのうち−SHまたは−COOH含有化合物が好ましい。親水性コロイドの場合には、親水性基{例えば、−SOMや−COOM(Mは水素原子、アルカリ金属原子またはアンモニウム分子等)}を有する吸着性化合物を使用するのが好ましい。Examples of the adsorptive compound include —SH, —CN, —NH 2 , —SO 2 OH, —SOOH, —OPO (OH) 2 , and a compound containing —COOH, and among them, —SH or —COOH containing Compounds are preferred. In the case of a hydrophilic colloid, it is preferable to use an adsorptive compound having a hydrophilic group {for example, —SO 3 M or —COOM (M is a hydrogen atom, an alkali metal atom, an ammonium molecule, or the like)}.

また、アニオン性界面活性剤(例えば、ビス(2−エチルヘキシル)スルホコハク酸やドデシルベンゼンスルホン酸ナトリウム等)、ノニオン性界面活性剤(例えば、ポリアルキルグリコールのアルキルエステルやアルキルフェニルエーテル等)、フッ素系界面活性剤、親水性高分子(例えば、ヒドロキシエチルセルロース、ポリビニルピロリドン、ポリビニルアルコール、ポリエチレングリコール、ゼラチン等)を分散液中に含有させることも好ましい。   In addition, anionic surfactants (for example, bis (2-ethylhexyl) sulfosuccinic acid and sodium dodecylbenzenesulfonate), nonionic surfactants (for example, polyalkyl glycol alkyl esters and alkylphenyl ethers), fluorine-based surfactants It is also preferable to include a surfactant and a hydrophilic polymer (for example, hydroxyethyl cellulose, polyvinyl pyrrolidone, polyvinyl alcohol, polyethylene glycol, gelatin, etc.) in the dispersion.

導電層粒子含有層形成用分散液は、前記吸着性化合物等の有機化合物の他にも帯電防止剤、UV吸収剤、可塑剤、高分子バインダー、カーボンナノ粒子、色素等の各種添加剤を目的に応じて添加してもよい。物性調整した後、インクジェット用のインクとして用いるのが好ましい。   The conductive layer particle-containing layer forming dispersion is intended for various additives such as antistatic agents, UV absorbers, plasticizers, polymer binders, carbon nanoparticles, and pigments in addition to the organic compounds such as the adsorptive compounds. It may be added depending on. After adjusting the physical properties, it is preferably used as an ink-jet ink.

導電性粒子含有層形成用分散液中の粒子濃度としては、0.5質量%以上であることが好ましく、更に好ましくは、1質量%〜30質量%である。   The particle concentration in the conductive particle-containing layer forming dispersion is preferably 0.5% by mass or more, and more preferably 1% by mass to 30% by mass.

(導電性粒子含有層から機能性層に変換する工程)
導電性粒子含有層に電磁波を照射することにより、焼成が行われ、機能性層を得ることができる。電磁波としては、後述するマイクロ波照射を行うことが好ましい。
(Step of converting conductive particle-containing layer to functional layer)
Firing is performed by irradiating the conductive particle-containing layer with electromagnetic waves, and a functional layer can be obtained. As the electromagnetic wave, it is preferable to perform microwave irradiation described later.

本発明に係る機能性層としては、導電性粒子含有層を変換処理(具体的には、焼成処理である)して得られた導電層や、半導体活性層が好ましい。   As the functional layer according to the present invention, a conductive layer obtained by converting the conductive particle-containing layer (specifically, a baking treatment) or a semiconductor active layer is preferable.

本発明に係る導電層としては、例えば、電極であり、本発明の電子デバイスの好ましい一例である、薄膜トランジスタ素子を構成するゲート電極、ソース電極、ドレイン電極等を具体的に挙げることができる。   Specific examples of the conductive layer according to the present invention include an electrode and a gate electrode, a source electrode, a drain electrode, and the like constituting a thin film transistor element, which are preferable examples of the electronic device of the present invention.

また、本発明に係る半導体活性層は、本発明の電子デバイスの好ましい一例である、薄膜トランジスタ素子を構成する半導体活性層として用いることができる。   Moreover, the semiconductor active layer which concerns on this invention can be used as a semiconductor active layer which comprises a thin-film transistor element which is a preferable example of the electronic device of this invention.

本発明に係る導電性粒子含有層から機能性層への変換工程について、図3(a)、(b)及び(c)を用いて説明する。   The conversion process from the conductive particle-containing layer to the functional layer according to the present invention will be described with reference to FIGS. 3 (a), (b) and (c).

図3(a)は、導電体21の上に、導電性粒子含有層(金属酸化物導電膜ともいう)22が配置されていることを示す模式図である。本発明の機能性層の製造方法においては、導電体21の上に、導電性粒子含有層22が直接または間接的に配置された後、図3(b)、図3(c)に示すように電磁波23が照射される。   FIG. 3A is a schematic diagram showing that a conductive particle-containing layer (also referred to as a metal oxide conductive film) 22 is disposed on the conductor 21. In the method for producing a functional layer of the present invention, after the conductive particle-containing layer 22 is disposed directly or indirectly on the conductor 21, as shown in FIGS. 3 (b) and 3 (c). The electromagnetic wave 23 is irradiated on the surface.

本発明では、導電性粒子含有層(金属酸化物導電膜)22の表面積が、導電体21の表面積以下であることが好ましい。   In the present invention, the surface area of the conductive particle-containing layer (metal oxide conductive film) 22 is preferably less than or equal to the surface area of the conductor 21.

図3(b)は、導電体21上に導電性粒子含有層(金属酸化物導電膜)22が直接配置されている一例を示す概略図である。   FIG. 3B is a schematic view showing an example in which a conductive particle-containing layer (metal oxide conductive film) 22 is directly disposed on the conductor 21.

図3(b)では、電磁波23は、基材20を介して導電性粒子含有層(金属酸化物導電膜)22に照射され、本発明に係る機能性層(例えば、導電層や半導体活性層等)に変換される。   In FIG.3 (b), the electromagnetic wave 23 is irradiated to the electroconductive particle content layer (metal oxide electrically conductive film) 22 via the base material 20, and the functional layer (for example, conductive layer or semiconductor active layer) which concerns on this invention is shown. Etc.).

図3(c)は、導電体21上に基材20を介して導電性粒子含有層(金属酸化物導電膜)22が配置されている一例を示す概略図である。   FIG. 3C is a schematic view showing an example in which a conductive particle-containing layer (metal oxide conductive film) 22 is disposed on the conductor 21 via the base material 20.

図3(c)では、電磁波23は、導電性粒子含有層22(金属酸化物導電膜)に直に照射され、本発明に係る機能性層(例えば、導電層や半導体活性層等)に変換される。   In FIG.3 (c), the electromagnetic waves 23 are directly irradiated to the electroconductive particle content layer 22 (metal oxide electrically conductive film), and are converted into the functional layer (for example, a conductive layer, a semiconductor active layer, etc.) based on this invention. Is done.

本発明では、導電性粒子含有層(金属酸化物導電膜)22と導電体21との構成を図3(a)または図3(b)に記載のようにして、電磁波23を照射することにより、従来、電磁波照射時の放電などにより膜の亀裂発生などを効果的に防止することができた。   In the present invention, the configuration of the conductive particle-containing layer (metal oxide conductive film) 22 and the conductor 21 is irradiated with the electromagnetic wave 23 as shown in FIG. 3 (a) or FIG. 3 (b). Conventionally, it has been possible to effectively prevent the occurrence of cracks in the film due to discharge during electromagnetic wave irradiation.

また、電磁波23を照射時の放電を防止する観点からは、本発明では、導電体21と導電性粒子含有層(金属酸化物導電膜)22との距離が1mm以下に配置されることが好ましい。   Further, from the viewpoint of preventing discharge during irradiation with the electromagnetic wave 23, in the present invention, the distance between the conductor 21 and the conductive particle-containing layer (metal oxide conductive film) 22 is preferably set to 1 mm or less. .

(導電体)
本発明の機能性層の製造方法に係る導電体について説明する。
(conductor)
The conductor according to the method for producing a functional layer of the present invention will be described.

本発明に係る導電体とは、金属酸化物材料が好ましく、中でも、高い導電性を持ちかつ電磁波を吸収する材料が好ましい。   The conductor according to the present invention is preferably a metal oxide material, and particularly preferably a material having high conductivity and absorbing electromagnetic waves.

また、本発明に係る導電体は、例えば、図3(a)〜(c)に示されるように、導電性粒子含有層(図3(b)、図3(c)においては、金属酸化物導電膜と記載される)に対して、対向配置される。   In addition, as shown in FIGS. 3A to 3C, for example, the conductor according to the present invention includes a conductive particle-containing layer (in FIG. 3B and FIG. 3C, a metal oxide). (Described as a conductive film).

また、本発明に係る導電体の好ましい比抵抗としては、1×10−4Ωcm〜1×10Ωcmの範囲であることが好ましく、更に好ましくは、1×10−2Ωcm〜1Ωcmの範囲に調整することである。The preferred specific resistance of the conductor according to the present invention is preferably in the range of 1 × 10 −4 Ωcm to 1 × 10 2 Ωcm, more preferably in the range of 1 × 10 −2 Ωcm to 1 Ωcm. Is to adjust.

理由は定かではないが、本発明の導電体は、マイクロ波により形成しようとする機能層自身にマイクロ波が必要以上に集中してしまうことを防ぎ、尚且つ自ら吸収した余分なマイクロ波エネルギーを熱変換及び/またはアースすることより機能層からの放電を防止していると考えている。   Although the reason is not clear, the conductor of the present invention prevents the microwave from being concentrated more than necessary on the functional layer itself to be formed by the microwave, and further absorbs the excess microwave energy absorbed by itself. It is thought that discharge from the functional layer is prevented by heat conversion and / or grounding.

その様な観点から、導電性が高くとも束縛の緩い自由電子をもつ金属は、自身が放電してしまう可能性が高いことや自由電子の運動のため電磁波を反射してしまうことから本発明の導電体には含まれない。   From such a point of view, a metal having free electrons that are highly conductive but loosely bound is likely to discharge itself or reflects electromagnetic waves due to the movement of free electrons. It is not included in the conductor.

また、同様の観点から縮退伝導により室温から高温域まで比較的高い導電性を示す、ドープされたSi、In酸化物、Zn酸化物、Sn酸化物等のいわゆる導電性金属酸化物が好ましい。   In addition, from the same viewpoint, so-called conductive metal oxides such as doped Si, In oxide, Zn oxide, Sn oxide and the like that exhibit relatively high conductivity from room temperature to high temperature due to degenerate conduction are preferable.

更には、これら導電性金属酸化物の内部に粒界等の抵抗が高い部分があると、その部分で放電を起こす危険性があるので単結晶で作成されたものが好ましい。   Furthermore, if there is a part with high resistance such as a grain boundary in the inside of these conductive metal oxides, there is a risk of causing discharge in that part, so that those made of a single crystal are preferable.

また、このような電磁波吸収能を有する導電体の上に、本発明に係る導電性粒子含有層(例えば、導電層の前駆体層、半導体活性層の前駆体層等が挙げられる)を直接または間接的に配置した後に、電磁波の照射を行うことで、導電性粒子含有層を導電層に変換するのみでなく、その近傍も高温に調整できるので、例えば、金属酸化物半導体の前駆体を含む導電性粒子含有層を半導体活性層への変換などを進行させることも可能である。   Moreover, the conductive particle-containing layer according to the present invention (for example, a precursor layer of a conductive layer, a precursor layer of a semiconductor active layer, or the like) is directly or directly on a conductor having such an electromagnetic wave absorbing ability. By indirectly irradiating it with electromagnetic waves, the conductive particle-containing layer is not only converted to a conductive layer, but also its vicinity can be adjusted to a high temperature, for example, including a precursor of a metal oxide semiconductor. It is also possible to proceed with conversion of the conductive particle-containing layer into a semiconductor active layer.

(電磁波の照射)
本発明に係る電磁波について説明する。
(Electromagnetic radiation)
The electromagnetic wave according to the present invention will be described.

本発明に係る電磁波の照射による導電性粒子含有層を機能性層に変換する工程においては、マイクロ波照射が好ましく、更に好ましくは、酸素の存在下にてマイクロ波を照射がすることが好ましい。   In the step of converting the conductive particle-containing layer by irradiation of electromagnetic waves according to the present invention into a functional layer, microwave irradiation is preferable, and more preferably, microwave irradiation is performed in the presence of oxygen.

マイクロ波としては、0.3GHz〜30GHzの周波数を持つマイクロ波等が挙げられ、携帯通信で用いられる0.8MHz及び1.5GHz帯、2GHz帯、アマチュア無線、航空機レーダー等で用いられる1.2GHz帯、電子レンジ、構内無線、VICS等で用いられる2.4GHz帯、船舶レーダー等に用いられる3GHz帯、その他ETCの通信に用いられる5.6GHz等は全て電磁波の範疇に入る電磁波等が好ましいが、特に好ましく用いられるのは、周波数0.3GHz〜50GHzのマイクロ波である。   Examples of the microwave include a microwave having a frequency of 0.3 GHz to 30 GHz, and 0.8 GHz and 1.5 GHz band, 2 GHz band used for mobile communication, 1.2 GHz used for amateur radio, aircraft radar, and the like. The 2.4 GHz band used in bands, microwave ovens, private radio, VICS, 3 GHz band used for ship radar, etc., and 5.6 GHz used for other ETC communications are preferably electromagnetic waves that fall within the category of electromagnetic waves. Particularly preferably, a microwave having a frequency of 0.3 GHz to 50 GHz is used.

金属塩材料を含む導電性粒子含有層にマイクロ波を照射することで、金属塩材料中の電子が振動し、ジュール熱が発生して導電性粒子含有層が内部から、均一に加熱される。   By irradiating the conductive particle-containing layer containing the metal salt material with microwaves, electrons in the metal salt material vibrate, Joule heat is generated, and the conductive particle-containing layer is uniformly heated from the inside.

本発明に係る機能性層の製造方法においては、例えば、ガラスや樹脂等の基板の上に、本発明に係る導電性粒子含有層を形成してもよいが、その場合、マイクロ波領域に吸収が殆どないいため、基板自体は、ほとんど発熱せずに薄膜部のみを選択的に加熱し熱酸化、半導体活性層(金属酸化物半導体を含む層である)または導電層(導電性材料を含む層である)に変換することが可能である。   In the method for producing a functional layer according to the present invention, for example, the conductive particle-containing layer according to the present invention may be formed on a substrate such as glass or resin. Therefore, the substrate itself hardly heats up, and only the thin film portion is selectively heated to thermally oxidize, a semiconductor active layer (a layer containing a metal oxide semiconductor) or a conductive layer (a layer containing a conductive material). It is possible to convert

マイクロ波加熱においては一般的に、マイクロ波吸収は吸収が強い物質に集中し、且つ、非常に短時間で500℃〜600℃まで昇温することが可能なため、本発明にマイクロ波照射を適用した場合には、基材自身には、ほとんど電磁波による加熱の影響を与えず、短時間で導電性粒子含有層のみを酸化反応が起きる温度まで昇温でき、導電性粒子含有層を本発明に係る機能性層に変換することができる。   Generally, in microwave heating, microwave absorption concentrates on strongly absorbing substances and can be heated up to 500 ° C. to 600 ° C. in a very short time. When applied, the base material itself is hardly affected by heating by electromagnetic waves, and only the conductive particle-containing layer can be heated up to a temperature at which the oxidation reaction occurs in a short time. It can convert into the functional layer which concerns on.

また、加熱温度、加熱時間は照射するマイクロ波の出力、照射時間で制御することが可能であり、前駆体材料、基板材料に合わせて調整することが可能である。   Further, the heating temperature and the heating time can be controlled by the output of the microwave to be irradiated and the irradiation time, and can be adjusted according to the precursor material and the substrate material.

この様に、本発明に係る導電性粒子は、セラミクスと同様に選択的に短時間で均一に、且つ、高温まで加熱できる。   As described above, the conductive particles according to the present invention can be selectively heated uniformly to a high temperature in a short time similarly to ceramics.

導電性粒子を含有する導電性粒子含有層に酸素の存在下で、マイクロ波照射を行って、機能性層(例えば、半導体活性層や導電層等)への変換を行う方法は、短時間で選択的に加熱酸化反応を進行させる観点から好ましい方法である。   A method for performing conversion to a functional layer (for example, a semiconductor active layer or a conductive layer) by irradiating a conductive particle-containing layer containing conductive particles with microwaves in the presence of oxygen in a short time. This is a preferable method from the viewpoint of allowing the heating oxidation reaction to proceed selectively.

但し、熱伝導により少なからず基材にも熱が伝わるため、特に樹脂基板等の耐熱性の低い基材の場合は、マイクロ波の出力、照射時間、更には照射回数を制御し、基板温度が50℃〜200℃、前駆体を含有する薄膜の表面温度が200℃〜600℃の範囲に調整することが好ましい。   However, since heat is transferred to the base material due to heat conduction, especially in the case of a base material with low heat resistance such as a resin substrate, the output of the microwave, the irradiation time, and the number of times of irradiation are controlled, and the substrate temperature is It is preferable to adjust the surface temperature of the thin film containing the precursor to 50 ° C. to 200 ° C. in the range of 200 ° C. to 600 ° C.

電磁波を照射する工程における、導電性粒子含有層の表面の温度、基板の温度等は熱電対を用いた表面温度計、また非接触の表面温度計により測定が可能である。   The surface temperature of the conductive particle-containing layer, the substrate temperature, and the like in the step of irradiating electromagnetic waves can be measured with a surface thermometer using a thermocouple or a non-contact surface thermometer.

(導電層)
本発明に係る導電層について説明する。
(Conductive layer)
The conductive layer according to the present invention will be described.

本発明に係る前駆体層が、電磁波を吸収する粒子と上記の金属微粒子を含有している場合には、電磁波照射により変換処理して得られた機能性層は導電層として好ましく用いることができる。   When the precursor layer according to the present invention contains particles that absorb electromagnetic waves and the above-mentioned metal fine particles, the functional layer obtained by conversion treatment by electromagnetic wave irradiation can be preferably used as a conductive layer. .

本発明に係る導電層としては、本発明の電子デバイス、該電子デバイスの一例である薄膜トランジスタ素子等の電極として好ましく用いられる。   The conductive layer according to the present invention is preferably used as an electrode of the electronic device of the present invention and a thin film transistor element which is an example of the electronic device.

具体的には、本発明の電子デバイスの好ましい一例である薄膜トランジスタ素子を構成するソース電極、ドレイン電極、ゲート電極等の電極に用いられる導電性材料を含有する導電層であることが好ましい。   Specifically, a conductive layer containing a conductive material used for electrodes such as a source electrode, a drain electrode, and a gate electrode constituting a thin film transistor element which is a preferable example of the electronic device of the present invention is preferable.

本発明に係る導電層は、構成材料として、硝酸塩、硫酸塩、燐酸塩、炭酸塩、酢酸塩または蓚酸塩から選ばれる金属塩及び/または金属ナノ粒子と金属酸化物微粒子を含む前駆体層に電磁波照射を行い、機能性層として、導電性材料を含む導電層に変換されたものである。   The conductive layer according to the present invention is a precursor layer containing, as a constituent material, a metal salt selected from nitrate, sulfate, phosphate, carbonate, acetate or oxalate and / or metal nanoparticles and metal oxide fine particles. Electromagnetic wave irradiation is performed, and the functional layer is converted into a conductive layer containing a conductive material.

また、電磁波を照射し、電磁波を吸収する粒子が発熱することにより加熱処理がされるわけであるが、酸化による金属酸化物半導体や導電性材料への変換を迅速に行う観点からは、酸素存在下、マイクロ波の照射により加熱及び酸化処理が行われることが好ましい。   In addition, the heat treatment is performed by irradiating electromagnetic waves and generating particles that absorb the electromagnetic waves. However, from the viewpoint of rapid conversion to metal oxide semiconductors and conductive materials by oxidation, oxygen is present. Below, it is preferable that heating and oxidation treatment are performed by microwave irradiation.

(半導体活性層)
本発明に係る半導体活性層について説明する。
(Semiconductor active layer)
The semiconductor active layer according to the present invention will be described.

本発明に係る半導体活性層とは、金属酸化物半導体の前駆体として硝酸塩、硫酸塩、燐酸塩、炭酸塩、酢酸塩または蓚酸塩から選ばれる金属塩及び金属酸化物の金属成分を含む導電性粒子を用いて、金属酸化物半導体の前駆体となる導電性粒子含有層を設けた後、該導電性粒子含有層に電磁波を照射することにより金属酸化物半導体を含有する層(半導体活性層)に変換したものが好ましい。   The semiconductor active layer according to the present invention includes a metal salt selected from nitrates, sulfates, phosphates, carbonates, acetates or oxalates as a precursor of a metal oxide semiconductor, and a conductive material containing a metal component of the metal oxide. A layer containing a metal oxide semiconductor by irradiating an electromagnetic wave to the conductive particle-containing layer after providing a conductive particle-containing layer serving as a precursor of the metal oxide semiconductor using the particles (semiconductor active layer) Those converted to are preferred.

(金属酸化物半導体)
半導体活性層の含有される金属酸化物半導体としては、単結晶、多結晶、非晶質のいずれの状態も使用可能であるが、好ましくは非晶質の酸化物が用いられる。
(Metal oxide semiconductor)
As the metal oxide semiconductor contained in the semiconductor active layer, any state of single crystal, polycrystal, and amorphous can be used, but an amorphous oxide is preferably used.

金属酸化物半導体の前駆体となる金属化合物材料から形成された、本発明に係る金属酸化物である非晶質酸化物の電子キャリア濃度は1018/cm未満が実現されていればよい。The electron carrier concentration of an amorphous oxide, which is a metal oxide according to the present invention, formed from a metal compound material that is a precursor of a metal oxide semiconductor only needs to be less than 10 18 / cm 3 .

形成された金属酸化物半導体に含まれる金属原子は、上記の前駆体(前駆体材料等ともいう)の記述に挙げたものと同様に、インジウム(In)、錫(Sn)、亜鉛(Zn)、また、その他の金属として、ガリウム(Ga)をその組成に含むものが好ましい。   The metal atoms contained in the formed metal oxide semiconductor are indium (In), tin (Sn), and zinc (Zn) as described in the description of the precursor (also referred to as precursor material). In addition, it is preferable that the other metal contains gallium (Ga) in its composition.

また、これらの金属を成分として含む前駆体溶液を作製する場合、好ましい金属の組成比としては、In、Snの金属塩から選ばれる塩に含有される金属(金属A)と、Ga、Alの金属塩から選ばれる塩に含有される金属(金属B)と、Znの金属塩に含有される金属(金属C=Zn)とのモル比率(金属A:金属B:金属C)が、以下の関係式を満たすことが好ましい。   Moreover, when preparing the precursor solution which contains these metals as a component, as a preferable metal composition ratio, the metal (metal A) contained in the salt chosen from the metal salt of In and Sn, Ga, and Al The molar ratio (metal A: metal B: metal C) of the metal (metal B) contained in the salt selected from metal salts and the metal (metal C = Zn) contained in the metal salt of Zn is as follows: It is preferable to satisfy the relational expression.

金属A:金属B:金属C=1:0.2〜1.5:1〜5
金属塩としては、硝酸塩が最も好ましいので、In、Sn(金属A)と、Ga、Al(金属B)と、Zn(金属C)とのモル比率(A:B:C)が、上記の関係式を満たすように、各金属の硝酸塩を、水を主成分とした溶媒に溶解・形成した塗布液を用いて金属無機塩を含む前駆体薄膜を塗布により形成することが好ましい。
Metal A: Metal B: Metal C = 1: 0.2-1.5: 1-5
As the metal salt, nitrate is most preferable. Therefore, the molar ratio (A: B: C) of In, Sn (metal A), Ga, Al (metal B), and Zn (metal C) is as described above. It is preferable to form a precursor thin film containing a metal inorganic salt by coating using a coating solution in which nitrate of each metal is dissolved and formed in a solvent containing water as a main component so as to satisfy the formula.

電子キャリア濃度は室温で測定する場合の値である。室温とは、例えば25℃であり、具体的には0℃〜40℃程度の範囲から適宜選択されるある温度である。   The electron carrier concentration is a value when measured at room temperature. The room temperature is, for example, 25 ° C., specifically, a certain temperature appropriately selected from the range of about 0 ° C. to 40 ° C.

尚、本発明に係るアモルファス酸化物の電子キャリア濃度は、0℃〜40℃の範囲全てにおいて、1018/cm未満を充足していなくてもよい。In addition, the electron carrier density | concentration of the amorphous oxide which concerns on this invention does not need to satisfy less than 10 < 18 > / cm < 3 > in the whole range of 0 to 40 degreeC.

例えば、25℃において、キャリア電子密度1018/cm未満が実現されていればよい。また、電子キャリア濃度を更に下げ、1017/cm以下、より好ましくは1016/cm以下にするとノーマリーオフのTFTが歩留まり良く得られる。For example, a carrier electron density of less than 10 18 / cm 3 may be realized at 25 ° C. Further, when the electron carrier concentration is further reduced to 10 17 / cm 3 or less, more preferably 10 16 / cm 3 or less, a normally-off TFT can be obtained with a high yield.

電子キャリア濃度の測定は、ホール効果測定により求めることができる。   The electron carrier concentration can be measured by Hall effect measurement.

金属酸化物半導体を含有する半導体活性層の膜厚としては、得られたトランジスタの特性は、半導体膜の膜厚に大きく左右される場合が多く、その膜厚は、半導体により異なるが、一般に1μm以下が好ましく、特に好ましくは10nm〜300nmの範囲である。   As the film thickness of the semiconductor active layer containing the metal oxide semiconductor, the characteristics of the obtained transistor are often greatly influenced by the film thickness of the semiconductor film, and the film thickness varies depending on the semiconductor, but is generally 1 μm. The following is preferable, and the range of 10 nm to 300 nm is particularly preferable.

また、本発明においては、前駆体材料(金属塩)、組成比、製造条件などを制御して、例えば、電子キャリア濃度を、1012/cm以上1018/cm未満であることが好ましく、更に好ましくは1013/cm以上1017/cm以下であり、1015/cm以上1016/cm以下の範囲にすることが特に好ましい。In the present invention, the precursor material (metal salt), composition ratio, production conditions, and the like are controlled, and for example, the electron carrier concentration is preferably 10 12 / cm 3 or more and less than 10 18 / cm 3. More preferably, it is 10 13 / cm 3 or more and 10 17 / cm 3 or less, and particularly preferably in the range of 10 15 / cm 3 or more and 10 16 / cm 3 or less.

(半導体活性層または導電層の膜厚)
金属イオンの酸化処理により形成される、金属酸化物半導体を含む半導体活性層または導電性材料を含む導電層の膜厚は1nm〜200nm、より好ましくは5nm〜100nmが好ましい。
(Thickness of semiconductor active layer or conductive layer)
The film thickness of the semiconductor active layer containing a metal oxide semiconductor or the conductive layer containing a conductive material, formed by oxidation treatment of metal ions, is preferably 1 nm to 200 nm, more preferably 5 nm to 100 nm.

(電子デバイス)
本発明の電子デバイスについて説明する。
(Electronic device)
The electronic device of the present invention will be described.

本発明に係導電性粒子含有層は、各種の素子、また電子回路等の形成に用いることができ、基板上に導電性粒子含有層を直接または間接的に塗布等により形成後、機能性層への変換を行うことによって低温プロセスでの半導体活性層や導電層の製造が可能であり、樹脂基板を用いる電子デバイス、中でも、特に薄膜トランジスタ素子(TFT素子)の製造に好ましく適用することができる。   The conductive particle-containing layer according to the present invention can be used for forming various elements, electronic circuits, and the like. After the conductive particle-containing layer is formed directly or indirectly on the substrate by coating or the like, the functional layer is formed. The semiconductor active layer and the conductive layer can be manufactured by a low-temperature process by performing conversion to, and can be preferably applied to the manufacture of an electronic device using a resin substrate, particularly a thin film transistor element (TFT element).

また、導電性粒子含有層は、形成後、電磁波照射の前に、例えば、酸素プラズマ、UVオゾン洗浄等のドライ洗浄プロセスによって洗浄し、導電性粒子含有層の中または前記導電性粒子層中の表面に存在し、不純物の原因となる有機物を分解、洗浄して、金属成分以外の有機物を排除しておくことも好ましい。   In addition, the conductive particle-containing layer is cleaned by a dry cleaning process such as oxygen plasma or UV ozone cleaning after the formation and before the electromagnetic wave irradiation, in the conductive particle-containing layer or in the conductive particle layer. It is also preferable to decompose and wash organic substances that are present on the surface and cause impurities to exclude organic substances other than metal components.

次に、本発明の機能性層の製造方法により製造された電子デバイスの中でも、特に好ましく用いられる薄膜トランジスタ素子を例に挙げて説明する。   Next, among the electronic devices manufactured by the functional layer manufacturing method of the present invention, a thin film transistor element that is particularly preferably used will be described as an example.

《薄膜トランジスタ素子》
本発明の電子デバイスの好ましい一例である薄膜トランジスタ素子について図1を用いて説明する。
<< Thin film transistor element >>
A thin film transistor element which is a preferable example of the electronic device of the present invention will be described with reference to FIG.

本発明の機能性層の製造方法で得られた導電層を有する電子デバイスは、半導体活性層を有する薄膜トランジスタ素子に好適に用いることができる。   The electronic device having a conductive layer obtained by the method for producing a functional layer of the present invention can be suitably used for a thin film transistor element having a semiconductor active layer.

(素子構成)
図1は、本発明の薄膜トランジスタ素子の構成例を示す断面図である。
(Element structure)
FIG. 1 is a cross-sectional view showing a configuration example of a thin film transistor element of the present invention.

本発明の電極の製造方法により製造した回路パターンを用いた薄膜トランジスタ素子の構成例を、断面図にて図1(a)〜(f)に示す。図1において、半導体層1は、ソース電極2、ドレイン電極3が、これをチャネルとして連結するよう構成されることが好ましい。   The structural example of the thin-film transistor element using the circuit pattern manufactured with the manufacturing method of the electrode of this invention is shown to Fig.1 (a)-(f) with sectional drawing. In FIG. 1, the semiconductor layer 1 is preferably configured such that a source electrode 2 and a drain electrode 3 are connected as a channel.

同図(a)は、基板6上に本発明の方法によりソース電極2及びドレイン電極3を形成した後、両電極間に半導体層1を形成し、その上にゲート絶縁層5を形成し、更にその上にゲート電極4を形成して薄膜トランジスタ素子を形成したものである。同図(b)は、半導体層1を、(a)では両電極間に形成したものを、コート法等を用いて電極及び支持体表面全体を覆うように形成して、薄膜トランジスタ素子を形成したものである。同図(c)は、基板6上に先ず半導体層1を形成し、その後、本発明の方法によりソース電極2、ドレイン電極3を形成し、その上にゲート絶縁層5、ゲート電極4を形成して、薄膜トランジスタ素子を形成したものである。同図(d)は、基板6上にゲート電極4を金属箔等で形成した後、絶縁層5を形成し、その上に本発明の方法によりソース電極2及びドレイン電極3を形成し、該電極間に半導体層1を形成して、薄膜トランジスタ素子を形成したものである。その他、同図(e)、(f)に示すような構成を取ることもできる。尚、本発明に置いては基板に熱的なダメージを伝えにくくする目的で、基板と半導体層の間にゲート絶縁膜が構成される、例えば図1(d)〜(f)の構成が好ましい。   In FIG. 6A, after forming the source electrode 2 and the drain electrode 3 on the substrate 6 by the method of the present invention, the semiconductor layer 1 is formed between both electrodes, and the gate insulating layer 5 is formed thereon. Further, a gate electrode 4 is formed thereon to form a thin film transistor element. In FIG. 5B, the semiconductor layer 1 formed between both electrodes in FIG. 5A is formed so as to cover the entire surface of the electrode and the support using a coating method or the like to form a thin film transistor element. Is. In FIG. 2C, the semiconductor layer 1 is first formed on the substrate 6, and then the source electrode 2 and the drain electrode 3 are formed by the method of the present invention, and the gate insulating layer 5 and the gate electrode 4 are formed thereon. Thus, a thin film transistor element is formed. In FIG. 4D, after forming the gate electrode 4 with a metal foil or the like on the substrate 6, the insulating layer 5 is formed, and the source electrode 2 and the drain electrode 3 are formed thereon by the method of the present invention. A semiconductor layer 1 is formed between the electrodes to form a thin film transistor element. In addition, a configuration as shown in FIGS. In the present invention, for the purpose of making it difficult to transmit thermal damage to the substrate, a gate insulating film is formed between the substrate and the semiconductor layer. For example, the configurations of FIGS. 1D to 1F are preferable. .

図2は、本発明の薄膜トランジスタ素子が複数配置される薄膜トランジスタシートの一例の概略等価回路図である。   FIG. 2 is a schematic equivalent circuit diagram of an example of a thin film transistor sheet in which a plurality of thin film transistor elements of the present invention are arranged.

薄膜トランジスタシート10はマトリクス配置された多数の薄膜トランジスタ素子14を有する。11は各薄膜トランジスタ素子14のゲート電極のゲートバスラインであり、12は各薄膜トランジスタ素子14のソース電極のソースバスラインである。各薄膜トランジスタ素子14のドレイン電極には、出力素子16が接続され、この出力素子16は例えば液晶、電気泳動素子等であり、表示装置における画素を構成する。図示の例では、出力素子16として液晶が、抵抗とコンデンサからなる等価回路で示されている。15は蓄積コンデンサ、17は垂直駆動回路、18は水平駆動回路である。   The thin film transistor sheet 10 has a large number of thin film transistor elements 14 arranged in a matrix. Reference numeral 11 denotes a gate bus line of the gate electrode of each thin film transistor element 14, and reference numeral 12 denotes a source bus line of the source electrode of each thin film transistor element 14. An output element 16 is connected to the drain electrode of each thin film transistor element 14, and the output element 16 is, for example, a liquid crystal or an electrophoretic element, and constitutes a pixel in the display device. In the illustrated example, a liquid crystal is shown as an output element 16 by an equivalent circuit composed of a resistor and a capacitor. 15 is a storage capacitor, 17 is a vertical drive circuit, and 18 is a horizontal drive circuit.

このような、基板上にTFT素子を2次元的に配列した薄膜トランジスタシートの作製に本発明の方法を用いることができる。   The method of the present invention can be used for manufacturing such a thin film transistor sheet in which TFT elements are two-dimensionally arranged on a substrate.

また、本発明の薄膜トランジスタ素子上には、保護層を設けることも可能である。保護層としては後述する無機酸化物または無機窒化物等が挙げられ、上述した大気圧プラズマ法で形成するのが好ましい。   In addition, a protective layer can be provided on the thin film transistor element of the present invention. Examples of the protective layer include inorganic oxides or inorganic nitrides which will be described later, and the protective layer is preferably formed by the atmospheric pressure plasma method described above.

以下、薄膜トランジスタ素子を構成する各要素について説明する。   Hereinafter, each element which comprises a thin-film transistor element is demonstrated.

《基板(基盤、基材等ともいう)》
本発明に用いられる基板について説明する。
<< Substrate (also referred to as substrate, base material, etc.) >>
The substrate used in the present invention will be described.

基板を構成する支持体材料としては、種々の材料が利用可能であり、例えば、ガラス、石英、酸化アルミニウム、サファイア、チッ化珪素、炭化珪素等のセラミック基板、シリコン、ゲルマニウム、ガリウム砒素、ガリウム燐、ガリウム窒素等半導体基板、紙、不織布等を用いることができるが、本発明において支持体は樹脂からなることが好ましく、例えばプラスチックフィルムシートを用いることができる。プラスチックフィルムとしては、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ボリカーボネート(PC)、セルローストリアセテート(TAC)、セルロースアセテートプロピオネート(CAP)等からなるフィルム等が挙げられる。プラスチックフィルムを用いることで、ガラス基板を用いる場合に比べて軽量化を図ることができ、可搬性を高めることができるとともに、衝撃に対する耐性を向上できる。   Various materials can be used as the support material constituting the substrate, for example, ceramic substrates such as glass, quartz, aluminum oxide, sapphire, silicon nitride, silicon carbide, silicon, germanium, gallium arsenide, gallium phosphide. In addition, a semiconductor substrate such as gallium nitrogen, paper, non-woven fabric and the like can be used. In the present invention, the support is preferably made of a resin, for example, a plastic film sheet can be used. Examples of plastic films include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate (PC), and cellulose. Examples include films made of triacetate (TAC), cellulose acetate propionate (CAP), and the like. By using a plastic film, the weight can be reduced as compared with the case of using a glass substrate, the portability can be improved, and the resistance to impact can be improved.

《ゲート絶縁層》
本発明の薄膜トランジスタ素子のゲート絶縁層(膜)としては、種々の絶縁膜を用いることができるが、特に、比誘電率の高い無機酸化物皮膜が好ましい。無機酸化物としては、酸化ケイ素、酸化アルミニウム、酸化タンタル、酸化チタン、酸化スズ、酸化バナジウム、チタン酸バリウムストロンチウム、ジルコニウム酸チタン酸バリウム、ジルコニウム酸チタン酸鉛、チタン酸鉛ランタン、チタン酸ストロンチウム、チタン酸バリウム、フッ化バリウムマグネシウム、チタン酸ビスマス、チタン酸ストロンチウムビスマス、タンタル酸ストロンチウムビスマス、タンタル酸ニオブ酸ビスマス、トリオキサイドイットリウム等が挙げられる。それらのうち好ましいのは、酸化ケイ素、酸化アルミニウム、酸化タンタル、酸化チタンである。窒化ケイ素、窒化アルミニウム等の無機窒化物も好適に用いることができる。
<Gate insulation layer>
Various insulating films can be used as the gate insulating layer (film) of the thin film transistor element of the present invention, and an inorganic oxide film having a high relative dielectric constant is particularly preferable. Inorganic oxides include silicon oxide, aluminum oxide, tantalum oxide, titanium oxide, tin oxide, vanadium oxide, barium strontium titanate, barium zirconate titanate, lead zirconate titanate, lead lanthanum titanate, strontium titanate, Examples thereof include barium titanate, barium magnesium fluoride, bismuth titanate, strontium bismuth titanate, strontium bismuth tantalate, bismuth tantalate niobate, and trioxide yttrium. Of these, silicon oxide, aluminum oxide, tantalum oxide, and titanium oxide are preferable. Inorganic nitrides such as silicon nitride and aluminum nitride can also be suitably used.

上記皮膜の形成方法としては、真空蒸着法、分子線エピタキシャル成長法、イオンクラスタービーム法、低エネルギーイオンビーム法、イオンプレーティング法、CVD法、スパッタリング法、大気圧プラズマ法等のドライプロセスや、スプレーコート法、スピンコート法、ブレードコート法、ディップコート法、キャスト法、ロールコート法、バーコート法、ダイコート法等の塗布による方法、印刷やインクジェット等のパターニングによる方法等のウェットプロセスが挙げられ、材料に応じて使用できる。   Examples of the method for forming the film include a vacuum process, a molecular beam epitaxial growth method, an ion cluster beam method, a low energy ion beam method, an ion plating method, a CVD method, a sputtering method, an atmospheric pressure plasma method, and the like, spraying Examples include a wet process such as a coating method, a spin coating method, a blade coating method, a dip coating method, a casting method, a roll coating method, a bar coating method, a coating method such as a die coating method, and a patterning method such as printing or inkjet. Can be used depending on the material.

ウェットプロセスは、無機酸化物の微粒子を、任意の有機溶剤あるいは水に必要に応じて界面活性剤等の分散補助剤を用いて分散した液を塗布、乾燥する方法や、酸化物前駆体、例えばアルコキシド体の溶液を塗布、乾燥する、いわゆるゾルゲル法が用いられる。これらのうち好ましいのは、大気圧プラズマ法である。   The wet process is a method of applying and drying a liquid in which fine particles of inorganic oxide are dispersed in an arbitrary organic solvent or water using a dispersion aid such as a surfactant as necessary, or an oxide precursor, for example, A so-called sol-gel method in which a solution of an alkoxide body is applied and dried is used. Among these, the atmospheric pressure plasma method is preferable.

ゲート絶縁層(膜)が陽極酸化膜または該陽極酸化膜と絶縁膜とで構成されることも好ましい。陽極酸化膜は封孔処理されることが望ましい。陽極酸化膜は、陽極酸化が可能な金属を公知の方法により陽極酸化することにより形成される。   It is also preferable that the gate insulating layer (film) is composed of an anodized film or the anodized film and an insulating film. The anodized film is preferably sealed. The anodized film is formed by anodizing a metal that can be anodized by a known method.

陽極酸化処理可能な金属としては、アルミニウムまたはタンタルを挙げることができ、陽極酸化処理の方法には特に制限はなく、公知の方法を用いることができる。   Examples of the metal that can be anodized include aluminum and tantalum, and the anodizing method is not particularly limited, and a known method can be used.

また有機化合物皮膜としては、ポリイミド、ポリアミド、ポリエステル、ポリアクリレート、光ラジカル重合系、光カチオン重合系の光硬化性樹脂、あるいはアクリロニトリル成分を含有する共重合体、ポリビニルフェノール、ポリビニルアルコール、ノボラック樹脂等を用いることもできる。   Examples of the organic compound film include polyimide, polyamide, polyester, polyacrylate, photo-curing polymer of photo radical polymerization system, photo cation polymerization system, copolymer containing acrylonitrile component, polyvinyl phenol, polyvinyl alcohol, novolac resin, etc. Can also be used.

無機酸化物皮膜と有機酸化物皮膜は積層して併用することができる。またこれら絶縁膜の膜厚としては、一般に50nm〜3μmの範囲が好ましく、更に好ましくは、100nm〜1μmの範囲である。   An inorganic oxide film and an organic oxide film can be laminated and used together. The thickness of these insulating films is generally preferably in the range of 50 nm to 3 μm, and more preferably in the range of 100 nm to 1 μm.

《有機エレクトロルミネッセンス素子(有機EL素子ともいう)》
本発明の電子デバイスの好ましい一例である薄膜トランジスタ素子は、有機エレクトロルミネッセンス素子に好ましく用いることができる。次に、有機EL素子の作製方法について説明する。
<< Organic electroluminescence element (also referred to as organic EL element) >>
The thin film transistor element which is a preferable example of the electronic device of the present invention can be preferably used for an organic electroluminescence element. Next, a method for manufacturing an organic EL element will be described.

薄膜トランジスタ素子(有機EL素子の場合、スイッチング薄膜トランジスタ素子や、駆動薄膜トランジスタ素子等が一般的に具備される)を有する基板上に、電極用物質、例えば陽極用物質からなる薄膜を1μm以下、好ましくは10nm〜200nmの範囲の膜厚になるように、蒸着やスパッタリング等の方法により陽極を作製する。   On a substrate having a thin film transistor element (in the case of an organic EL element, a switching thin film transistor element, a driving thin film transistor element, etc. are generally provided), a thin film made of an electrode material, for example, an anodic material is 1 μm or less, preferably 10 nm. An anode is produced by a method such as vapor deposition or sputtering so that the film thickness is in the range of ˜200 nm.

該陽極上に正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、電子注入層等からなる各層薄膜を形成した後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50nm〜200nmの範囲の膜厚になるように形成し、陰極を設けることにより、有機EL素子が得られる。   After forming each layer thin film consisting of a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer, etc. on the anode, a thin film made of a cathode material is 1 μm thereon. In the following, an organic EL element is obtained by forming the film preferably in the range of 50 nm to 200 nm and providing a cathode.

本発明に用いられる有機EL素子は、陰極形成を本発明の電極の製造方法で行うことにより、有機物層にダメージを与えることなく、より簡便に有機物上に陰極を形成することが可能となる。更には、正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、電子注入層からなる各有機薄膜層を全て塗布で形成し、更には、陰極も本発明の機能性層の製造方法で製造することにより、飛躍的に生産効率を高めることが可能となる。   The organic EL device used in the present invention can form a cathode on the organic material more easily without damaging the organic material layer by forming the cathode by the method for producing an electrode of the present invention. Furthermore, each organic thin film layer consisting of a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, and an electron injection layer is formed by coating, and a cathode is also a function of the present invention. Production efficiency can be drastically improved by producing the production method of the conductive layer.

このようにして得られた有機EL素子に、直流電圧を印加する場合には、陽極を+、陰極を−の極性として電圧5V〜40V程度を印加すると、発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。   When a DC voltage is applied to the organic EL element thus obtained, light emission can be observed by applying a voltage of about 5V to 40V with the anode as + and the cathode as-. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs.

更に、交流電圧を印加する場合には、陽極が+、陰極が−の状態になったときのみ発光する。尚、印加する交流の波形は任意でよい。   Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state. The alternating current waveform to be applied may be arbitrary.

以下、本発明を具体的に説明するが、本発明の態様はこれらに限定されない。   Hereinafter, the present invention will be specifically described, but the embodiments of the present invention are not limited thereto.

尚、実施例に用いる化合物の構造を下記に示す。   In addition, the structure of the compound used for an Example is shown below.

実施例1
《薄膜トランジスタ素子1の製造》:ボトムゲート・トップコンタクト構成
本発明の薄膜トランジスタの製造プロセスの一例について図4を基に説明する。
Example 1
<< Manufacture of Thin Film Transistor Element 1 >> Bottom Gate / Top Contact Configuration An example of the manufacturing process of the thin film transistor of the present invention will be described with reference to FIG.

支持体6(ガラス基板)を用いてスパッタにてITO膜を作製、パターニングしてゲート電極4とした(厚み100nm)。   An ITO film was produced by sputtering using the support 6 (glass substrate) and patterned to form the gate electrode 4 (thickness 100 nm).

次いで、大気圧プラズマCVD法により、厚さ200nmの酸化珪素からなるゲート絶縁膜5を形成した(図4(1))。   Next, a gate insulating film 5 made of silicon oxide having a thickness of 200 nm was formed by atmospheric pressure plasma CVD (FIG. 4A).

尚、大気圧プラズマ処理装置は、特開2003−303520号公報に記載の図6に準じた装置を用いた。   In addition, the atmospheric pressure plasma processing apparatus used the apparatus according to FIG. 6 described in Unexamined-Japanese-Patent No. 2003-303520.

(使用ガス)
不活性ガス:ヘリウム98.25体積%
反応性ガス:酸素ガス1.5体積%
反応性ガス:テトラエトキシシラン蒸気(ヘリウムガスにてバブリング)0.25体積%
(放電条件)
高周波電源:13.56MHz
放電出力:10W/cm
(電極条件)
電極は、冷却水による冷却手段を有するステンレス製ジャケットロール母材に対して、セラミック溶射によるアルミナを1mm被覆し、その後、テトラメトキシシランを酢酸エチルで希釈した溶液を塗布乾燥後、紫外線照射により封孔処理を行い、表面を平滑にしてRmax5μmとした誘電体(比誘電率10)を有するロール電極であり、アースされている。一方、印加電極としては、中空の角型のステンレスパイプに対し、上記同様の誘電体を同条件にて被覆した。
(Used gas)
Inert gas: helium 98.25% by volume
Reactive gas: oxygen gas 1.5 volume%
Reactive gas: Tetraethoxysilane vapor (bubbled with helium gas) 0.25% by volume
(Discharge conditions)
High frequency power supply: 13.56 MHz
Discharge output: 10 W / cm 2
(Electrode condition)
The electrode is coated with 1 mm of alumina by ceramic spraying on a stainless steel jacket roll base material having cooling means with cooling water, and then a solution obtained by diluting tetramethoxysilane with ethyl acetate is applied and dried, and then sealed by ultraviolet irradiation. This is a roll electrode having a dielectric (relative permittivity of 10) that has been subjected to hole treatment and has a smooth surface and an Rmax of 5 μm, and is grounded. On the other hand, as the application electrode, a hollow rectangular stainless steel pipe was coated with the same dielectric as described above under the same conditions.

次ぎに、半導体前駆体材料として、下記ビシクロポルフィリン化合物の0.8gをクロロホルム1.25gに溶解した溶液をインクとして用いてインクジェット法によりゲート絶縁膜上のチャネル形成部に吐出、乾燥して成膜し、膜厚30nmの導電性粒子含有層(半導体活性層の形成に用いられる)1′を形成した(図4(2))。   Next, as a semiconductor precursor material, a solution obtained by dissolving 0.8 g of the following bicycloporphyrin compound in 1.25 g of chloroform is used as an ink, and is ejected to the channel forming portion on the gate insulating film by an ink jet method and dried to form a film. Then, a conductive particle-containing layer (used for forming a semiconductor active layer) 1 'having a thickness of 30 nm was formed (FIG. 4 (2)).

その後、支持体6のもう一方の面(導電性粒子含有層1′を有する面の反対側)に導電体7(Sb3+イオンを重ドープしたシリコンウエハー(比抵抗:2×10−2Ωcm))を配置し、次いで、酸素と窒素の分圧が1:1の雰囲気下、大気圧条件で、500Wの出力でマイクロ波(2.45GHz)を照射した。マイクロ波の照射は、電磁波出力を調整しながら200℃で15分間保持した。Thereafter, a conductor 7 (silicon wafer heavily doped with Sb 3+ ions on the other side of the support 6 (opposite the side having the conductive particle-containing layer 1 ′) (specific resistance: 2 × 10 −2 Ωcm) Then, in an atmosphere having a partial pressure of oxygen and nitrogen of 1: 1, microwaves (2.45 GHz) were irradiated at an output of 500 W under atmospheric pressure conditions. The microwave irradiation was held at 200 ° C. for 15 minutes while adjusting the electromagnetic wave output.

マイクロ波を照射することで、導電性粒子含有層(半導体活性層の形成に用いられる)1′は、ITOから形成されたゲート電極4が最初に高温まで昇温し、ゲート絶縁層5上のチャネル形成部の導電性粒子含有層(半導体活性層の形成に用いられる)1′(ビシクロポルフィリン化合物の含有層である)も電極部と同程度まで加熱され、熱分解することで(TBP:テトラベンゾポルフィリン銅錯体)膜に変換され、厚さ50nmの半導体活性層1が形成された(図4(3))。   By irradiating the microwave, the conductive particle-containing layer (used for forming the semiconductor active layer) 1 ′ is first heated to a high temperature by the gate electrode 4 made of ITO, and then on the gate insulating layer 5. The conductive particle-containing layer (used for forming the semiconductor active layer) 1 ′ (which is a bicycloporphyrin compound-containing layer) in the channel forming portion is also heated to the same extent as the electrode portion and thermally decomposed (TBP: tetra A benzoporphyrin copper complex) film was converted into a semiconductor active layer 1 having a thickness of 50 nm (FIG. 4 (3)).

次に、導電体7(Sb3+イオンを重ドープしたシリコンウエハー(比抵抗:2×10−2Ωcm))と支持体6とを離し、マスクを介して金を蒸着することで、ソース電極2、ドレイン電極3を形成し薄膜トランジスタ素子1を製造した(図4(4))。Next, the conductor 7 (a silicon wafer heavily doped with Sb 3+ ions (specific resistance: 2 × 10 −2 Ωcm)) and the support 6 are separated from each other, and gold is deposited through a mask, whereby the source electrode 2 The drain electrode 3 was formed to manufacture the thin film transistor element 1 (FIG. 4 (4)).

それぞれのサイズは、幅10μm、長さ50μm(チャネル幅)厚さ50nmであり、ソース電極、ドレイン電極の距離(チャネル長)は15μmとなるようにした。   Each size was 10 μm wide, 50 μm long (channel width) and 50 nm thick, and the distance between the source electrode and the drain electrode (channel length) was 15 μm.

得られた薄膜トランジスタ素子1は、p型のエンハンスメント動作を示した。ドレインバイアスを−10Vとし、ゲートバイアスを+10Vから−40Vまで掃引時、ドレイン電流の増加(伝達特性)が観測された。   The obtained thin film transistor element 1 exhibited p-type enhancement operation. When the drain bias was −10 V and the gate bias was swept from +10 V to −40 V, an increase in drain current (transfer characteristics) was observed.

その飽和領域から見積もられた移動度は1.0cm/Vs、On/Off比は6桁であり、良好に駆動し、p型のエンハンスメント動作を示した。The mobility estimated from the saturation region was 1.0 cm 2 / Vs, the On / Off ratio was 6 digits, and it was driven well and showed a p-type enhancement operation.

上記のドレイン電流の増加から、本発明の機能性層の製造方法を用いて得られた半導体活性層1は、マイクロ波照射による異常放電にもとづく、照射領域での亀裂発生や構成材料の炭化等による劣化が適切に防止されていることが明らかである。   From the increase in the drain current, the semiconductor active layer 1 obtained by using the method for producing a functional layer of the present invention is based on abnormal discharge caused by microwave irradiation, cracking in the irradiated region, carbonization of constituent materials, etc. It is clear that deterioration due to is properly prevented.

実施例2
《薄膜トランジスタ素子2の製造》:ボトムゲート・トップコンタクト構成
本発明の薄膜トランジスタの製造例の一例について図5を基に説明する。
Example 2
<< Manufacture of Thin Film Transistor Element 2 >> Bottom Gate / Top Contact Configuration An example of a manufacturing example of the thin film transistor of the present invention will be described with reference to FIG.

支持体6(ガラス基板)を用い、基板温度を100℃に保って、金ナノ粒子インク(特開平11−80647号公報に記載の方法に準じた方法で作製)をインクジェット法にてゲート電極様にパターニングし、膜厚100nmの電極形成用の導電性粒子含有層4′を形成した(図5(1))。   Using a support 6 (glass substrate), maintaining the substrate temperature at 100 ° C., a gold nanoparticle ink (prepared by a method according to the method described in JP-A No. 11-80647) is gate electrode-like by an inkjet method. Then, a conductive particle-containing layer 4 ′ for forming an electrode having a thickness of 100 nm was formed (FIG. 5 (1)).

次いで、(ゲート)電極形成用の導電性粒子含有層4′上にITOナノ微粒子インク(シーアイ化成 NanoTek Slurry ITO(トルエン))を用い同様にしてインクジェット法にてITO微粒子からなる電磁波吸収層4″をパターニング成膜した(厚み50nm)(図5(2))。   Next, an electromagnetic wave absorbing layer 4 ″ made of ITO fine particles is formed on the conductive particle-containing layer 4 ′ for forming the (gate) electrode using an ITO nano-particle ink (Chiai Kasei NanoTek Slurry ITO (toluene)) by the inkjet method in the same manner. Was patterned (thickness 50 nm) (FIG. 5 (2)).

次いで、アクアミカNN110(パーヒドロポリシラザン/キシレン溶液:AZエレクトロニックマテリアル製)を用いて絶縁膜前駆体材料層5′を形成し(厚み200nm)、更に乾燥後、チャネル形成部に、In、Zn、Ga塩を混合した、半導体活性層形成用の導電性粒子含有層1′をインクジェット法によりパターニング形成し、更に、ソース電極、ドレイン電極パターンに従い、前記ITO微粒子ナノインクを用いてインクジェット法により、ソース電極前駆体膜2′、ドレイン電極前駆体膜3′を各々形成した(図5(3))。   Next, an insulating film precursor material layer 5 ′ is formed using aquamica NN110 (perhydropolysilazane / xylene solution: manufactured by AZ Electronic Material) (thickness 200 nm), and after drying, a channel forming portion is formed with In, Zn, Ga. A conductive particle-containing layer 1 ′ for forming a semiconductor active layer mixed with salt is formed by patterning by an ink jet method, and a source electrode precursor is prepared by an ink jet method using the ITO fine particle nano ink according to the source electrode and drain electrode patterns. A body film 2 'and a drain electrode precursor film 3' were formed (FIG. 5 (3)).

次いで、電極形成用の導電性粒子含有層4′、電磁波吸収層4″、絶縁膜前駆体材料層5′、半導体活性層形成用の導電性粒子含有層1′、ソース電極前駆体膜2′、ドレイン電極前駆体膜3′が形成された支持体6(ガラス基板)のもう一方の面に導電体7を配置した後、下記のようにマイクロ波照射を行った。   Next, a conductive particle-containing layer 4 ′ for forming an electrode, an electromagnetic wave absorbing layer 4 ″, an insulating film precursor material layer 5 ′, a conductive particle-containing layer 1 ′ for forming a semiconductor active layer, and a source electrode precursor film 2 ′. After placing the conductor 7 on the other surface of the support 6 (glass substrate) on which the drain electrode precursor film 3 'was formed, microwave irradiation was performed as follows.

尚、導電体7は、マイクロ波照射時のみ、支持体6(ガラス基板)に配置され、マイクロ波照射後は、導電体7は分離される。   In addition, the conductor 7 is arrange | positioned only at the time of microwave irradiation at the support body 6 (glass substrate), and the conductor 7 is isolate | separated after microwave irradiation.

即ち、酸素と窒素の分圧が1:1の雰囲気下、大気圧条件で、500Wの出力でマイクロ波(2.45GHz)を照射した。マイクロ波の照射は、1サイクルを90secとし、4サイクル行った。   That is, microwaves (2.45 GHz) were irradiated with an output of 500 W under an atmospheric pressure condition in an atmosphere having a partial pressure of oxygen and nitrogen of 1: 1. Microwave irradiation was performed for 4 cycles, with one cycle being 90 sec.

前記電磁波吸収層4″(ゲート電極)また、ITOからなるソース電極前駆体膜2′、ドレイン電極前駆体膜3′はマイクロ波の吸収によって発熱し、電極形成用の導電性粒子含有層4′、絶縁膜前駆体材料層5′、半導体活性層形成用の導電性粒子含有層1′、ソース電極前駆体膜2′及びドレイン電極前駆体膜3′は、各々ゲート電極、ゲート絶縁層5、半導体活性層1、ソース電極2及びドレイン電極3に同時に変換され、薄膜トランジスタ素子2が形成された(図5(4))。   The electromagnetic wave absorbing layer 4 ″ (gate electrode), and the source electrode precursor film 2 ′ and the drain electrode precursor film 3 ′ made of ITO generate heat by absorption of microwaves, and the conductive particle-containing layer 4 ′ for electrode formation. , Insulating film precursor material layer 5 ′, conductive particle-containing layer 1 ′ for forming a semiconductor active layer, source electrode precursor film 2 ′, and drain electrode precursor film 3 ′ are respectively a gate electrode, a gate insulating layer 5, Conversion into the semiconductor active layer 1, the source electrode 2 and the drain electrode 3 at the same time yielded a thin film transistor element 2 (FIG. 5 (4)).

作製した薄膜トランジスタ素子2は、移動度は5cm/Vs以上であり、On/Off比は5桁以上であり、良好に駆動し、ゲート電極、絶縁層、半導体活性層、ソース電極及びドレイン電極への変換が行われたことがわかる。The manufactured thin film transistor element 2 has a mobility of 5 cm 2 / Vs or more, an On / Off ratio of 5 digits or more, and is driven well to the gate electrode, insulating layer, semiconductor active layer, source electrode, and drain electrode. It can be seen that the conversion was performed.

本発明の薄膜トランジスタ素子2が良好な特性を示していることから、本発明の機能性層の製造方法を用いて得られた、ゲート電極、ゲート絶縁層5、半導体活性層1、ソース電極2及びドレイン電極3の各々が、製造時のマイクロ波照射による異常放電にもとづく、照射領域での亀裂発生が適切に防止されていることが明らかである。   Since the thin film transistor element 2 of the present invention exhibits good characteristics, the gate electrode, the gate insulating layer 5, the semiconductor active layer 1, the source electrode 2, and the gate electrode obtained by using the functional layer manufacturing method of the present invention It is apparent that each of the drain electrodes 3 is appropriately prevented from generating cracks in the irradiated region based on abnormal discharge caused by microwave irradiation during manufacturing.

1 半導体活性層
2 ソース電極
3 ドレイン電極
4 ゲート電極
5 ゲート絶縁層
10 薄膜トランジスタシート
11 ゲートバスライン
12 ソースバスライン
14 薄膜トランジスタ素子
15 蓄積コンデンサ
16 出力素子
17 垂直駆動回路
18 水平駆動回路
DESCRIPTION OF SYMBOLS 1 Semiconductor active layer 2 Source electrode 3 Drain electrode 4 Gate electrode 5 Gate insulating layer 10 Thin-film transistor sheet 11 Gate bus line 12 Source bus line 14 Thin-film transistor element 15 Storage capacitor 16 Output element 17 Vertical drive circuit 18 Horizontal drive circuit

Claims (8)

導電性粒子含有層に電磁波を照射する工程を有する機能性層の製造方法において、
導電体の上に、該導電性粒子含有層を1mm以下の距離で該導電体から離隔して配置した後、該電磁波を照射する工程を有することを特徴とする機能性層の製造方法。
In the method for producing a functional layer having a step of irradiating the conductive particle-containing layer with electromagnetic waves,
A method for producing a functional layer comprising the step of irradiating the electromagnetic wave after disposing the conductive particle-containing layer on the conductor at a distance of 1 mm or less from the conductor .
前記導電性粒子含有層は、基板上に形成され、該基板を介して前記導電体の上に配置されることを特徴とする請求項1記載の機能性層の製造方法。The method for producing a functional layer according to claim 1, wherein the conductive particle-containing layer is formed on a substrate and disposed on the conductor via the substrate. 前記電磁波は、大気雰囲気と比較して酸素過剰雰囲気中で照射されることを特徴とする請求項1又は2記載の機能性層の製造方法。The method for producing a functional layer according to claim 1, wherein the electromagnetic wave is irradiated in an oxygen-excess atmosphere as compared with an air atmosphere. 前記機能性層の少なくとも1層が、導電層であることを特徴とする請求項1〜3のいずれか1項に記載の機能性層の製造方法。 The method for producing a functional layer according to any one of claims 1 to 3, wherein at least one of the functional layers is a conductive layer. 前記機能性層の少なくとも1層が、半導体活性層であることを特徴とする請求項1〜4のいずれか1項に記載の機能性層の製造方法。 At least one layer, the manufacturing method of the functional layer according to claim 1, characterized in that the semiconductor active layer of the functional layer. 前記導電性粒子含有層の表面積が、前記導電体の表面積以下であることを特徴とする請求項1〜のいずれか1項に記載の機能性層の製造方法。 The surface area of the conductive particle-containing layer is, the manufacturing method of the functional layer according to any one of claims 1 to 5, wherein the or less surface area of the conductor. 前記導電性粒子含有層が少なくともIn、ZnまたはSnの酸化物を含むことを特徴とする請求項1〜のいずれか1項に記載の機能性層の製造方法。 Method for producing a functional layer according to any one of claims 1 to 6, wherein the conductive particle-containing layer is characterized in that it comprises at least In, oxides of Zn or Sn. 前記電磁波がマイクロ波であることを特徴とする請求項1〜のいずれか1項に記載の機能性層の製造方法。 Method for producing a functional layer according to any one of claims 1 to 7, wherein the electromagnetic wave is a microwave.
JP2010531797A 2008-09-30 2009-08-31 Method for producing functional layer Expired - Fee Related JP5578078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010531797A JP5578078B2 (en) 2008-09-30 2009-08-31 Method for producing functional layer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008252751 2008-09-30
JP2008252751 2008-09-30
PCT/JP2009/065177 WO2010038570A1 (en) 2008-09-30 2009-08-31 Functional layer manufacturing method, functional layer and electronic device
JP2010531797A JP5578078B2 (en) 2008-09-30 2009-08-31 Method for producing functional layer

Publications (2)

Publication Number Publication Date
JPWO2010038570A1 JPWO2010038570A1 (en) 2012-03-01
JP5578078B2 true JP5578078B2 (en) 2014-08-27

Family

ID=42073343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010531797A Expired - Fee Related JP5578078B2 (en) 2008-09-30 2009-08-31 Method for producing functional layer

Country Status (2)

Country Link
JP (1) JP5578078B2 (en)
WO (1) WO2010038570A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201405828A (en) * 2012-07-31 2014-02-01 E Ink Holdings Inc Display panel, thin film transistor and method of fabricating the same
WO2015075310A1 (en) * 2013-11-19 2015-05-28 Teknologian Tutkimuskeskus Vtt Oy A method for the fabrication and use of electronic circuits and an electronics circuit structure
WO2015083307A1 (en) * 2013-12-03 2015-06-11 国立大学法人山形大学 Method for manufacturing metal thin film and conductive structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006060064A (en) * 2004-08-20 2006-03-02 Ishikawajima Harima Heavy Ind Co Ltd Method for heating thin film with microwave
JP2007042690A (en) * 2005-07-29 2007-02-15 Fujifilm Holdings Corp Nano particle dispersion liquid, manufacturing method of semiconductor device using the same, and semiconductor device
JP2008091126A (en) * 2006-09-29 2008-04-17 Dowa Holdings Co Ltd Transparent conductive film and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342319A (en) * 2003-03-19 2004-12-02 Kansai Paint Co Ltd Method for sintering semiconductor particulate dispersion solution on polymer film surface, and photocell
JP2008218243A (en) * 2007-03-05 2008-09-18 Dainippon Printing Co Ltd Manufacturing method of transparent conductive substrate, and transparent conductive substrate
JP2009048778A (en) * 2007-08-13 2009-03-05 Kawai Musical Instr Mfg Co Ltd Forming method for transparent conductive layer, and forming method for laminated structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006060064A (en) * 2004-08-20 2006-03-02 Ishikawajima Harima Heavy Ind Co Ltd Method for heating thin film with microwave
JP2007042690A (en) * 2005-07-29 2007-02-15 Fujifilm Holdings Corp Nano particle dispersion liquid, manufacturing method of semiconductor device using the same, and semiconductor device
JP2008091126A (en) * 2006-09-29 2008-04-17 Dowa Holdings Co Ltd Transparent conductive film and its manufacturing method

Also Published As

Publication number Publication date
JPWO2010038570A1 (en) 2012-03-01
WO2010038570A1 (en) 2010-04-08

Similar Documents

Publication Publication Date Title
KR101835194B1 (en) Coating liquid for forming metal oxide film, metal oxide film, field-effect transistor, and method for producing field-effect transistor
JP5644111B2 (en) METAL OXIDE SEMICONDUCTOR AND ITS MANUFACTURING METHOD, SEMICONDUCTOR ELEMENT, THIN FILM TRANSISTOR
WO2009081968A1 (en) Metal oxide semiconductor manufacturing method and semiconductor element using the same
WO2010061721A1 (en) Thin film transistor and method for manufacturing thin film transistor
JPWO2009031381A1 (en) Method for producing metal oxide semiconductor, and thin film transistor obtained by the method
JP5763876B2 (en) Thin film transistor and manufacturing method thereof
JP2010258057A (en) Metal oxide semiconductor, method of manufacturing the same, and thin film transistor using the same
JP5640323B2 (en) Metal oxide semiconductor manufacturing method, metal oxide semiconductor, and thin film transistor
JP2010098303A (en) Production method of metal oxide precursor layer, production method of metal oxide layer, and electronic device
JP2010283190A (en) Thin film transistor and method of manufacturing the same
JPWO2009011224A1 (en) Method for producing metal oxide semiconductor and thin film transistor obtained thereby
JP6117124B2 (en) Oxide semiconductor film and manufacturing method thereof
JP2009065012A (en) Thin film transistor
JP2010182852A (en) Metal oxide semiconductor, manufacturing method therefor, and thin-film transistor
JPWO2010044332A1 (en) Thin film transistor and manufacturing method thereof
JP5578078B2 (en) Method for producing functional layer
JP2010129742A (en) Electronic device and method of manufacturing the same
JP2010147206A (en) Thin-film transistor and method for manufacturing the same
JP2010258206A (en) Method for manufacturing metal oxide semiconductor, the metal oxide semiconductor, semiconductor element using the same, and thin-film transistor
CN108028270A (en) For forming coating fluid, n-type oxide semiconductor film manufacture method and the manufacturing method for field effect transistor of n-type oxide semiconductor film
JP2010258018A (en) Semiconductor thin film and thin-film transistor using the same
JP6746557B2 (en) Semiconductor film and semiconductor device using the same
JP2010103345A (en) Method of manufacturing functional layer and electronic device
JP2010251591A (en) Thin film transistor and method of manufacturing the thin film transistor
JP5315822B2 (en) Thin film transistor manufacturing method and electronic device manufactured thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120416

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140610

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140623

R150 Certificate of patent or registration of utility model

Ref document number: 5578078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees