JP5682880B2 - Nanocrystal particle dispersion, electronic device and method for producing the same - Google Patents

Nanocrystal particle dispersion, electronic device and method for producing the same Download PDF

Info

Publication number
JP5682880B2
JP5682880B2 JP2008116625A JP2008116625A JP5682880B2 JP 5682880 B2 JP5682880 B2 JP 5682880B2 JP 2008116625 A JP2008116625 A JP 2008116625A JP 2008116625 A JP2008116625 A JP 2008116625A JP 5682880 B2 JP5682880 B2 JP 5682880B2
Authority
JP
Japan
Prior art keywords
nanocrystal
particles
electronic device
liquid
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008116625A
Other languages
Japanese (ja)
Other versions
JP2009267190A (en
Inventor
誠一 高見
誠一 高見
裕 若山
裕 若山
知京 豊裕
豊裕 知京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2008116625A priority Critical patent/JP5682880B2/en
Publication of JP2009267190A publication Critical patent/JP2009267190A/en
Application granted granted Critical
Publication of JP5682880B2 publication Critical patent/JP5682880B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Thin Film Transistor (AREA)

Description

本発明は、導電性若しくは半導電性成分を基板に塗布、乾燥して導電体部若しくは半導電体部を形成する電子デバイス作成用の液とそれを用いた電子デバイス及び当該デバイスの製造方法に関する。   The present invention relates to a liquid for forming an electronic device in which a conductive or semiconductive component is applied to a substrate and dried to form a conductive portion or a semiconductive portion, an electronic device using the same, and a method for manufacturing the device. .

従来、半導体素子を構成する半導体層を形成する手法としては、スパッタリング法、蒸着法など、高真空中に置かれた基板上に、原子状ないし分子状の半導体やその前駆体を堆積する手法が用いられてきた。   Conventionally, as a method of forming a semiconductor layer constituting a semiconductor element, there is a method of depositing an atomic or molecular semiconductor or its precursor on a substrate placed in a high vacuum such as a sputtering method or a vapor deposition method. Has been used.

上記手法を用いて、高い結晶性を有する半導体層を形成する場合には、半導体層の形成に加えて、結晶化の過程を進行させる必要があるため、基板の温度を数百℃程度以上に加熱することが必要であった。   In the case of forming a semiconductor layer having high crystallinity using the above technique, it is necessary to advance the crystallization process in addition to the formation of the semiconductor layer. It was necessary to heat.

また、半導体層を形成する手法として、低温で分解する無機化合物の溶液を塗布後、乾燥する手法も知られている。
しかし、この手法では、堆積可能な半導体材料の種類が、無機化合物前駆体の安定性、コストにより制限されるほか、基板上で高温状態を経ることがないため、結晶化が十分進行せず、高品質な材料の形成が困難であった。
In addition, as a method for forming a semiconductor layer, a method of drying after applying a solution of an inorganic compound that decomposes at a low temperature is also known.
However, in this method, the type of semiconductor material that can be deposited is limited by the stability and cost of the inorganic compound precursor, and since it does not go through a high temperature state on the substrate, crystallization does not proceed sufficiently, It was difficult to form a high quality material.

本発明は、塗布、乾燥手法によっても、従来のスパッタリング法、蒸着法等を用いた電子デバイスと同様な品質を有することが可能な分散液を提供すること目的とする。   An object of the present invention is to provide a dispersion that can have the same quality as an electronic device using a conventional sputtering method, vapor deposition method, or the like, even by a coating or drying method.

発明1のナノ結晶粒子分散液は、導電性若しくは半導電性成分からなる無機ナノ結晶粒子が液状分散媒中に分散されてなることを特徴とする。   The nanocrystal particle dispersion liquid of the invention 1 is characterized in that inorganic nanocrystal particles comprising a conductive or semiconductive component are dispersed in a liquid dispersion medium.

発明2は、発明1のナノ結晶粒子分散液において、前記分散媒には、分散した無機ナノ結晶粒子の成分と同様な成分が溶解されていることを特徴とする。   Invention 2 is characterized in that, in the nanocrystal particle dispersion liquid of Invention 1, a component similar to the component of dispersed inorganic nanocrystal particles is dissolved in the dispersion medium.

発明3は、発明2のナノ結晶粒子分散液において、前記分散媒は、前記ナノ結晶粒子に対して難溶解性であることを特徴とする。   Invention 3 is the nanocrystal particle dispersion liquid of Invention 2, wherein the dispersion medium is hardly soluble in the nanocrystal particles.

発明4は、発明1から3のいずれかのナノ結晶粒子分散液であって、インクジェット印刷用の液体を分散媒としてあることを特徴とする。 The invention 4 is the nanocrystal particle dispersion liquid according to any one of the inventions 1 to 3, wherein a liquid for inkjet printing is used as a dispersion medium.

発明5は、基板上に配置した電極を半導体部により接続してなる電子デバイスであって、少なくとも前記半導体部若しくは導電体部のいずれかが一方が発明1から4のいずれかの半導体ナノ結晶粒子の凝集体からなることを特徴とする。   Invention 5 is an electronic device in which electrodes arranged on a substrate are connected by a semiconductor part, and at least one of the semiconductor part and the conductor part is the semiconductor nanocrystal particle according to any one of Inventions 1 to 4 It consists of the aggregate of these.

発明6は、発明5の電子デバイスの製造方法であって、基板の所定箇所に発明1から4の無機半導体ナノ結晶粒子分散液を滴下し、その分散媒を除去して、それに含まれる半導体ナノ結晶粒子を凝集して所望の導電体部又は半導電体部を形成することを特徴とする。   Invention 6 is an electronic device manufacturing method of Invention 5, wherein the inorganic semiconductor nanocrystal particle dispersion liquid of Inventions 1 to 4 is dropped onto a predetermined portion of the substrate, the dispersion medium is removed, and the semiconductor nanoparticle contained therein is removed. The crystal particles are aggregated to form a desired conductor portion or semiconductor portion.

本発明は、電子デバイスで用いられる導電体部若しくは半導体部を、事前に合成したナノ結晶粒子を堆積することで形成する手法に関するものである。
この手法そのものも特徴を有するものであり、基板に対する熱負荷を掛けずに、結晶性を生かした性能を発揮させることが出来るものである。
また、本ナノ結晶粒子を懸濁した溶液のスピンコート、もしくは、インクジェット印刷による堆積が可能であるため、大面積デバイスを高速に作成することを実現する。さらに、結晶性の高いナノ結晶粒子を予め高温で合成し、これを低温で基板上に堆積することが可能となるため、耐熱性や耐環境性の低い基板上に高品質な層を形成することを実現する。
The present invention relates to a method of forming a conductor portion or a semiconductor portion used in an electronic device by depositing nanocrystal particles synthesized in advance.
This method itself has a feature, and can exhibit the performance utilizing the crystallinity without applying a thermal load to the substrate.
In addition, since a solution in which the nanocrystal particles are suspended can be deposited by spin coating or ink jet printing, a large-area device can be formed at high speed. Furthermore, nanocrystalline particles with high crystallinity can be synthesized in advance at a high temperature and deposited on the substrate at a low temperature, so that a high-quality layer is formed on a substrate with low heat resistance and environmental resistance. Realize that.

特に、分散液中に、結晶粒子の成分を溶解させておくことで、この成分が乾燥する過程で、結晶粒子間を結合することとなり、粒子間の電荷移動を容易にして、凝集体でありながら一体化したのと同様な電荷移動を実現することができた。   In particular, by dissolving the components of the crystal particles in the dispersion, the crystal particles are bonded in the process of drying, facilitating charge transfer between the particles and forming an aggregate. However, it was possible to realize the same charge transfer as that integrated.

ナノ結晶粒子の大きさとしては、結晶性の良い粒子を堆積させるという点から、直径が(組成によって決定される結晶化最少直径、具体的には数nm)以上であることが望ましい。また、インクジェット法などで堆積を行うという点からは、直径が1μm以下であることが望ましい。   As for the size of the nanocrystal particles, it is desirable that the diameter is equal to or greater than the minimum crystallization diameter determined by the composition (specifically, several nm) from the viewpoint of depositing particles with good crystallinity. In addition, the diameter is desirably 1 μm or less from the viewpoint of performing deposition by an inkjet method or the like.

粒子の形状としては、分散媒を乾燥後に粒子同士が密に接することが望ましいという点から、球形粒子が望ましいが、基板に付着しやすい板状粒子や結晶内部を通る電荷移動のパスが長くなるロッド状粒子でも可能である。 As the particle shape, spherical particles are preferable because it is desirable that the particles are in close contact with each other after drying the dispersion medium, but the path of charge transfer through plate-like particles that easily adhere to the substrate or inside the crystal becomes long Rod-like particles are also possible.

分散媒中に溶解した半導体成分がナノ結晶粒子間を連結することから、一定量の分散媒(水)への溶解度が存在することが望ましい。
結晶粒子の組成に合わせ、下表のようなものが例示できるが、その溶解度としては、100mg/L(20℃)以下、好ましくは30mg/L(20℃)以下、より好ましくは10mg/L(20℃)以下とするのが適切である。
なお、結晶粒子の成分を完全に溶解しない分散液を用いることは、ナノ結晶粒子間の連結が著しく抑制され、ナノ結晶粒子間の電荷移動が抑制されることから、望ましくない。
Since the semiconductor component dissolved in the dispersion medium links the nanocrystal particles, it is desirable that a certain amount of solubility in the dispersion medium (water) exists.
The following table can be exemplified according to the composition of the crystal particles, and the solubility is 100 mg / L (20 ° C.) or less, preferably 30 mg / L (20 ° C.) or less, more preferably 10 mg / L ( 20 ° C.) or less is appropriate.
In addition, it is not desirable to use a dispersion liquid that does not completely dissolve the components of the crystal particles because the connection between the nanocrystal particles is remarkably suppressed and the charge transfer between the nanocrystal particles is suppressed.

半導体成分の水への溶解度が不足する場合は、ナノ結晶粒子の電子移動性を助ける成分を持つ可溶性の添加物を分散媒に添加ないし電子移動性を助ける非可溶性の添加物を事前にナノ結晶粒子に被覆することにより、形成されたデバイスの性能の向上が可能である。   If the solubility of the semiconductor component in water is insufficient, a soluble additive having a component that helps the electron mobility of the nanocrystal particles is added to the dispersion medium, or an insoluble additive that helps the electron mobility is added to the nanocrystal beforehand. By coating the particles, the performance of the formed device can be improved.


本手法を用いることにより、n,p型いずれの半導体材料を形成することが可能であるから、図1に示すボトムゲート型電界効果型トランジスタの他にも、p−n接合ダイオード(図2)など、一般的に半導体デバイスで用いられてきたデバイス構造を本手法により形成することが可能である。
この他にも、トップゲート型電界効果型トランジスタ(図3)、太陽電池(図4)、センサー(図5)、発光体(図6)を形成可能である。
By using this method, it is possible to form an n-type or p-type semiconductor material. In addition to the bottom-gate field-effect transistor shown in FIG. 1, a pn junction diode (FIG. 2) It is possible to form a device structure generally used in a semiconductor device by this method.
In addition, a top-gate field effect transistor (FIG. 3), a solar cell (FIG. 4), a sensor (FIG. 5), and a light emitter (FIG. 6) can be formed.

半導体ナノ結晶粒子の製造方法としては、原料が安価である点、合成速度が速い点などから水熱合成法が好ましいが、他の手法で合成した半導体ナノ結晶粒子でも可能である。   As a method for producing semiconductor nanocrystal particles, a hydrothermal synthesis method is preferable because raw materials are inexpensive and a synthesis rate is fast, but semiconductor nanocrystal particles synthesized by other methods are also possible.

半導体ナノ結晶粒子の種類としては、前記表1に示した物の外にも、従来周知の無機半導体結晶粒子で、本発明の趣旨にかなう物であれば適用可能である。 As the types of semiconductor nanocrystal particles, in addition to the materials shown in Table 1, conventionally known inorganic semiconductor crystal particles that are applicable to the gist of the present invention are applicable.

本手法で形成したトランジスタを数百℃に加熱することにより、トランジスタ特性をさらに向上させることも容易に推測できる。   It can be easily estimated that the transistor characteristics are further improved by heating the transistor formed by this method to several hundred degrees Celsius.

以上に示した電子デバイスの種類、半導体ナノ結晶粒子材料、粒子の形状、粒子の大きさ、粒子の製法を整理すると表2のようになる。   Table 2 summarizes the types of electronic devices, semiconductor nanocrystal particle materials, particle shapes, particle sizes, and particle manufacturing methods described above.


図1に示すように、半導体層をチャネル層として用いるボトムゲート型電界効果型トランジスタ。基板構造を作成後、半導体ナノ結晶粒子分散液を滴下、乾燥させることにより、ゲート電極、ドレイン電極間を半導体層で接続し、ここに流れる電流をゲート電圧により制御する。   As shown in FIG. 1, a bottom-gate field effect transistor using a semiconductor layer as a channel layer. After creating the substrate structure, the semiconductor nanocrystal particle dispersion is dropped and dried to connect the gate electrode and the drain electrode with a semiconductor layer, and the current flowing therethrough is controlled by the gate voltage.

n型半導体材料として知られている酸化亜鉛(ZnO)のナノ結晶粒子(直径:20〜30nm、形状:球形)を図7に示す装置を用いて以下の手順で合成した。
まず、濃度0.01mol/Lの硝酸亜鉛(Zn(NO)水溶液を調製し、これを高圧ポンプ1から4mL/minの流量で供給する。一方、高圧ポンプ2から水を6mL/minの流量で供給し、ヒータ3を用いて380℃まで加熱する。供給された硝酸亜鉛水溶液4と水5はT字状の混合部6で混合され流れ7となる。混合後の流れ7の温度は300℃となる。その後、流れ7は300℃に設定された加熱部8を通る。この時、加熱部8での滞在時間は5秒である。
Zinc oxide (ZnO) nanocrystal particles (diameter: 20 to 30 nm, shape: spherical), which is known as an n-type semiconductor material, were synthesized by the following procedure using the apparatus shown in FIG.
First, a zinc nitrate (Zn (NO 3 ) 2 ) aqueous solution having a concentration of 0.01 mol / L is prepared and supplied from the high-pressure pump 1 at a flow rate of 4 mL / min. On the other hand, water is supplied from the high pressure pump 2 at a flow rate of 6 mL / min and heated to 380 ° C. using the heater 3. The supplied zinc nitrate aqueous solution 4 and water 5 are mixed in a T-shaped mixing section 6 to become a flow 7. The temperature of the stream 7 after mixing is 300 ° C. Thereafter, the flow 7 passes through the heating section 8 set at 300 ° C. At this time, the staying time in the heating unit 8 is 5 seconds.

その後、流れ7は、高圧ポンプ9から10mL/minの流量で供給される濃度0.008mol/Lの水酸化カリウム(KOH)水溶液と混合された直後、冷却部10を通ることにより室温まで冷却される。ここを通過した流れ11は背圧弁保護フィルター12を通過した後に、背圧弁13から排出される。この背圧弁13により、全ての流路内において圧力は25MPaに保たれている。背圧弁13から排出された生成物14は、水、酸化亜鉛ナノ結晶粒子、副生成物である硝酸カリウム(KNO)、もし存在すれば未反応物を含む。
この生成物を16×10G、2時間の条件で遠心分離することにより、固体成分である酸化亜鉛ナノ結晶粒子のみを沈殿させ、上澄み液を除去後、水を加えるという操作を2回繰り返して粒子を洗浄した後、水を加えて超音波をかけて分散させることにより、水中に酸化亜鉛ナノ結晶粒子が懸濁した溶液を準備した。この分散液中における酸化亜鉛ナノ結晶粒子の濃度は、2mg/mLで、一個の平均粒子径は25nm、凝集したものが幾つか認められるが、総じて、単離状態で液中に分散した状態であった。
このようにして形成された酸化亜鉛ナノ結晶粒子のX線回折スペクトルを図8に示す。
ここに示すように、上記手法で合成した酸化亜鉛ナノ結晶粒子は標準試料として記載している酸化亜鉛結晶と同様の結晶性を有している。
Thereafter, the stream 7 is cooled to room temperature by passing through the cooling unit 10 immediately after being mixed with a potassium hydroxide (KOH) aqueous solution having a concentration of 0.008 mol / L supplied from the high-pressure pump 9 at a flow rate of 10 mL / min. The After passing through the back pressure valve protection filter 12, the flow 11 passing here is discharged from the back pressure valve 13. By this back pressure valve 13, the pressure is kept at 25 MPa in all the flow paths. The product 14 discharged from the back pressure valve 13 contains water, zinc oxide nanocrystal particles, by-product potassium nitrate (KNO 3 ) and, if present, unreacted material.
This product is centrifuged at 16 × 10 3 G for 2 hours to precipitate only zinc oxide nanocrystal particles, which are solid components, and after removing the supernatant liquid, the operation of adding water is repeated twice. After washing the particles, water was added and dispersed by applying ultrasonic waves to prepare a solution in which the zinc oxide nanocrystal particles were suspended in water. The concentration of the zinc oxide nanocrystal particles in this dispersion is 2 mg / mL, the average particle diameter is 25 nm, and some agglomerated particles are observed. there were.
FIG. 8 shows an X-ray diffraction spectrum of the zinc oxide nanocrystal particles thus formed.
As shown here, the zinc oxide nanocrystal particles synthesized by the above method have the same crystallinity as the zinc oxide crystal described as the standard sample.

一方、ボロン(B)ドープによりp型の性質を示し、抵抗値が0.02Ωcm以下であるシリコンの(100)面上に熱酸化法によって400nmの厚みの熱酸化膜を形成し、この上に図9に示す形状を有し、厚さが200nmの金電極パターンをスパッタリング法により形成した基板を用意した。
この基板の上にZnOナノ結晶粒子分散液をピペットを用いて、1cmあたりに20μLの割合で基板全面に摘下後、室温、真空中で乾燥することにより図10、図11に示す構造を形成した。
図12に示すように、電極1にプローブ2を、電極3にプローブ4を、さらに研磨することにより露出させたシリコン基板部5にプローブ6を接触させ、電極1、3、シリコン基板5をそれぞれソース、ドレイン、ゲートとした。ゲート電極の電位を−60〜60Vの範囲で、20V間隔で一定の値に固定し、かつソース電極の電位を0Vに固定したまま、ドレイン電極の電位を0〜60Vの範囲で1Vずつ増加させながら、ソースとドレイン間に流れる電流を測定したところ、図13に示されるようにゲートの電位によりソース−ドレイン間の電流が制御されるという電界効果型トランジスタの動作を確認した。
On the other hand, a thermal oxide film having a thickness of 400 nm is formed by thermal oxidation on a (100) surface of silicon having p-type properties due to boron (B) doping and having a resistance value of 0.02 Ωcm or less. A substrate having the shape shown in FIG. 9 and having a gold electrode pattern with a thickness of 200 nm formed by a sputtering method was prepared.
The ZnO nanocrystal particle dispersion liquid is pipetted onto the entire surface of the substrate at a rate of 20 μL per 1 cm 2 on this substrate and dried in vacuum at room temperature to obtain the structure shown in FIGS. Formed.
As shown in FIG. 12, the probe 2 is brought into contact with the electrode 1, the probe 4 is brought into contact with the electrode 3, and the probe 6 is brought into contact with the silicon substrate portion 5 exposed by further polishing. Source, drain, and gate were used. The potential of the drain electrode is increased by 1 V in the range of 0 to 60 V while the potential of the gate electrode is fixed to a constant value at intervals of 20 V in the range of −60 to 60 V and the potential of the source electrode is fixed to 0 V. However, when the current flowing between the source and the drain was measured, as shown in FIG. 13, the operation of the field effect transistor in which the current between the source and the drain was controlled by the gate potential was confirmed.

p型半導体材料として知られている酸化ニッケル(NiO)のナノ結晶粒子(平板型、直径〜100nm、厚さ〜10nm)を図14に示す装置を用いて以下の手順で合成した。
まず、濃度0.01mol/Lの硝酸ニッケル(Ni(NO)水溶液を調製し、これを高圧ポンプ1から2mL/minの流量で供給する。一方、高圧ポンプ2から水を8mL/minの流量で供給し、ヒータ3を用いて356℃まで加熱する。供給された硝酸ニッケル水溶液4と水5はT字状の混合部6で混合され流れ7となる。混合後の流れ7の温度は342℃となる。その後、流れ7は340℃に設定された加熱部8を通る。この時、加熱部8での滞在時間は1/2分である。その後、流れ7は冷却部9を通ることにより室温まで冷却される。ここを通過した流れ10は背圧弁保護フィルター11を通過した後に、背圧弁12から排出される。この背圧弁12により、全ての流路内において圧力は25MPaに保たれている。背圧弁12から排出された生成物13は、水、酸化ニッケルナノ結晶粒子、副生成物である硝酸(HNO)、もし存在すれば未反応物を含む。この生成物を16×10G、1/2時間の条件で遠心分離することにより、固体成分である酸化ニッケルナノ結晶粒子のみを沈殿させ、上澄み液を除去後、水を加えるという操作を2回繰り返して粒子を洗浄した後、水を加えて超音波をかけて分散させることにより、水中に酸化ニッケルナノ結晶粒子が懸濁した溶液を準備した。この分散液中における酸化ニッケルナノ結晶粒子の濃度は、3mg/mLである。一個の平均粒子径は直径〜100nm、厚さ〜10nm、凝集したものが幾つか認められるが、総じて、単離状態で液中に分散した状態であった。
このようにして形成された酸化ニッケルナノ結晶粒子のX線回折スペクトルを図15に示す。ここに示すように、上記手法で合成した酸化ニッケルナノ結晶粒子は標準試料として記載している酸化ニッケル結晶と同じ位置にピークを有し、その強度は平板型の形状を反映して111面が強調されている。
Nickel oxide (NiO) nanocrystal particles (flat plate type, diameter ˜100 nm, thickness ˜10 nm) known as a p-type semiconductor material were synthesized by the following procedure using the apparatus shown in FIG.
First, an aqueous nickel nitrate (Ni (NO 3 ) 2 ) solution having a concentration of 0.01 mol / L is prepared and supplied from the high-pressure pump 1 at a flow rate of 2 mL / min. On the other hand, water is supplied from the high-pressure pump 2 at a flow rate of 8 mL / min and heated to 356 ° C. using the heater 3. The supplied nickel nitrate aqueous solution 4 and water 5 are mixed in a T-shaped mixing section 6 to become a flow 7. The temperature of stream 7 after mixing is 342 ° C. Thereafter, stream 7 passes through heating section 8 set at 340 ° C. At this time, the staying time in the heating unit 8 is ½ minute. Thereafter, stream 7 is cooled to room temperature by passing through cooling section 9. After passing through the back pressure valve protection filter 11, the flow 10 passing here is discharged from the back pressure valve 12. By this back pressure valve 12, the pressure is maintained at 25 MPa in all the flow paths. The product 13 discharged from the back pressure valve 12 contains water, nickel oxide nanocrystal particles, by-product nitric acid (HNO 3 ), if present, and unreacted material. By centrifuging this product under the conditions of 16 × 10 3 G and ½ hour, only the nickel oxide nanocrystal particles that are solid components are precipitated, and after removing the supernatant, water is added. After washing the particles repeatedly, water was added and dispersed by applying ultrasonic waves to prepare a solution in which nickel oxide nanocrystal particles were suspended in water. The concentration of nickel oxide nanocrystal particles in this dispersion is 3 mg / mL. One average particle diameter was a diameter of 100 nm, a thickness of 10 nm, and some agglomerated particles were observed, but as a whole, it was in a state of being dispersed in a liquid in an isolated state.
FIG. 15 shows an X-ray diffraction spectrum of the nickel oxide nanocrystal particles thus formed. As shown here, the nickel oxide nanocrystal particles synthesized by the above method have a peak at the same position as the nickel oxide crystal described as the standard sample, and its intensity reflects the flat plate shape and the 111 plane is It is emphasized.

一方、ボロン(B)ドープによりp型の性質を示し、抵抗値が0.02Ωcm以下であるシリコンの(100)面上に熱酸化法によって400nmの厚みの熱酸化膜を形成し、この上に図9に示す形状を有し、厚さが200nmの金電極パターンをスパッタリング法により形成した基板を用意した。
この基板の上に酸化ニッケルナノ結晶粒子分散液をピペットを用いて、1cmあたりに20μLの割合で基板全面に摘下後、室温、真空中で乾燥することにより図16に示す構造を形成した。図17に示すように、電極1にプローブ2を、電極3にプローブ4を、さらに研磨することにより露出させたシリコン基板部5にプローブ6を接触させ、電極1、3、シリコン基板5をそれぞれソース、ドレイン、ゲートとした。ゲート電極の電位を−100〜100Vの範囲で、25V間隔で一定の値に固定し、かつソース電極の電位を0Vに固定したまま、ドレイン電極の電位を0〜−100Vの範囲で4Vずつ減少させながら、ソースとドレイン間に流れる電流を測定したところ、図18に示されるようにゲートの電位によりソース−ドレイン間の電流が制御されるという電界効果型トランジスタの動作を確認した。
On the other hand, a thermal oxide film having a thickness of 400 nm is formed by thermal oxidation on a (100) surface of silicon having p-type properties due to boron (B) doping and having a resistance value of 0.02 Ωcm or less. A substrate having the shape shown in FIG. 9 and having a gold electrode pattern with a thickness of 200 nm formed by a sputtering method was prepared.
A nickel oxide nanocrystal particle dispersion liquid was dropped on the entire surface of the substrate at a rate of 20 μL per 1 cm 2 on this substrate and then dried in a vacuum at room temperature to form the structure shown in FIG. . As shown in FIG. 17, the probe 2 is brought into contact with the electrode 1, the probe 4 is brought into contact with the electrode 3, and the probe 6 is brought into contact with the silicon substrate portion 5 exposed by further polishing, and the electrodes 1, 3 and the silicon substrate 5 are brought into contact with each other. Source, drain, and gate were used. The potential of the drain electrode is decreased by 4V in the range of 0 to -100V while the potential of the gate electrode is fixed to a constant value at intervals of 25V in the range of -100 to 100V and the potential of the source electrode is fixed to 0V. Then, the current flowing between the source and the drain was measured, and as a result, the operation of the field effect transistor in which the current between the source and the drain was controlled by the gate potential as shown in FIG. 18 was confirmed.

半導体ナノ結晶粒子をチャネル層として用いたボトムゲート型電界効果トランジスタの模式図Schematic diagram of bottom-gate field effect transistor using semiconductor nanocrystal particles as channel layer 半導体ナノ結晶粒子を半導体層として用いたpn接合ダイオードの模式図Schematic diagram of a pn junction diode using semiconductor nanocrystal particles as a semiconductor layer 半導体ナノ結晶粒子を用いたトップゲート型電界効果型トランジスタの模式図Schematic diagram of a top-gate field-effect transistor using semiconductor nanocrystal particles 半導体ナノ結晶粒子を用いた太陽電池の模式図Schematic diagram of solar cell using semiconductor nanocrystal particles 半導体ナノ結晶粒子を用いたセンサーの模式図Schematic diagram of sensor using semiconductor nanocrystal particles 半導体ナノ結晶粒子を用いた発光体の模式図Schematic diagram of phosphor using semiconductor nanocrystal particles 実施例1にて用いたZnOナノ結晶粒子の合成装置Synthesis apparatus for ZnO nanocrystal particles used in Example 1 実施例1にて合成したZnOナノ結晶粒子のX線回折スペクトルX-ray diffraction spectrum of ZnO nanocrystal particles synthesized in Example 1 実施例1にて用いた基板上に形成した金電極の走査電子顕微鏡像Scanning electron microscope image of the gold electrode formed on the substrate used in Example 1 実施例1にて作製したZnOナノ結晶粒子デバイス構造の模式図Schematic diagram of ZnO nanocrystal particle device structure fabricated in Example 1 実施例1にて作製したZnOナノ結晶粒子デバイス構造断面の走査電子顕微鏡像Scanning electron microscope image of the cross section of the ZnO nanocrystal particle device structure produced in Example 1 実施例1にて作成したZnOナノ結晶粒子デバイスの特性評価法の模式図Schematic diagram of characteristic evaluation method of ZnO nanocrystal particle device prepared in Example 1 実施例1のソース−ドレイン間電流のゲート電圧依存性Gate voltage dependence of source-drain current in Example 1 実施例2にて用いたNiOナノ結晶粒子の合成装置NiO nanocrystal particle synthesis apparatus used in Example 2 実施例2にて合成したNiOナノ結晶粒子のX線回折スペクトルX-ray diffraction spectrum of NiO nanocrystal particles synthesized in Example 2 実施例2にて作製したNiOナノ結晶粒子デバイス構造の模式図Schematic diagram of the NiO nanocrystal particle device structure produced in Example 2 実施例2にて作成したNiOナノ結晶粒子デバイスの特性評価法の模式図Schematic diagram of characteristic evaluation method of NiO nanocrystal particle device created in Example 2 実施例2のソース−ドレイン間電流のゲート電圧依存性Gate voltage dependence of source-drain current in Example 2

Claims (5)

導電性若しくは半導電性成分を基板に塗布、乾燥して導電体部若しくは半導電体部を形成する電子デバイス作成用の液であって、
導電性若しくは半導電性成分からなる無機ナノ結晶粒子が液状分散媒中に分散されているとともに、
前記液は、前記液が乾燥した時前記無機ナノ結晶粒子の間の電荷移動を助ける成分を溶解した、
ナノ結晶粒子分散液。
A liquid for creating an electronic device in which a conductive or semiconductive component is applied to a substrate and dried to form a conductive portion or a semiconductive portion,
Inorganic nanocrystal particles composed of a conductive or semiconductive component are dispersed in a liquid dispersion medium,
The liquid dissolves components that assist charge transfer between the inorganic nanocrystal particles when the liquid is dried,
Nanocrystal particle dispersion.
前記液は前記無機ナノ結晶粒子を溶解する、請求項1に記載のナノ結晶粒子分散液。 The nanocrystal particle dispersion according to claim 1, wherein the liquid dissolves the inorganic nanocrystal particles. 前記無機ナノ結晶粒子の成分は金属の酸化物であり、前記分散液は前記金属の水酸化物を含む、請求項1に記載のナノ結晶粒子分散液。 The nanocrystal particle dispersion according to claim 1, wherein the component of the inorganic nanocrystal particles is a metal oxide, and the dispersion includes the metal hydroxide. 基板上に配置した電極を半導体部により接続してなる電子デバイスであって、少なくとも前記半導体部若しくは導電体部のいずれか一方が請求項1から3のいずれかに記載の無機ナノ結晶粒子の凝集体からなる電子デバイス。 4. An electronic device in which electrodes arranged on a substrate are connected by a semiconductor part, wherein at least one of the semiconductor part and the conductor part is agglomerated inorganic nanocrystal particles according to claim 1. An electronic device consisting of a collection. 基板の所定箇所に請求項1から3の何れかに記載のナノ結晶粒子分散液を滴下し、その分散媒を除去して、それに含まれる無機ナノ結晶粒子を凝集して所望の導電体部又は半導電体部を形成する、請求項4に記載の電子デバイスの製造方法。

Was added dropwise nanocrystal particle dispersion liquid according to any one of claims 1 to 3 at a predetermined position of the substrate, and removing the dispersion medium, a desired conductor portion by agglomerating inorganic nanocrystalline particles contained therein Or the manufacturing method of the electronic device of Claim 4 which forms a semiconductor part.

JP2008116625A 2008-04-28 2008-04-28 Nanocrystal particle dispersion, electronic device and method for producing the same Expired - Fee Related JP5682880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008116625A JP5682880B2 (en) 2008-04-28 2008-04-28 Nanocrystal particle dispersion, electronic device and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008116625A JP5682880B2 (en) 2008-04-28 2008-04-28 Nanocrystal particle dispersion, electronic device and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009267190A JP2009267190A (en) 2009-11-12
JP5682880B2 true JP5682880B2 (en) 2015-03-11

Family

ID=41392644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008116625A Expired - Fee Related JP5682880B2 (en) 2008-04-28 2008-04-28 Nanocrystal particle dispersion, electronic device and method for producing the same

Country Status (1)

Country Link
JP (1) JP5682880B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5597510B2 (en) * 2010-10-14 2014-10-01 出光興産株式会社 Core-shell semiconductor fine particles
EP2636069B1 (en) * 2010-11-03 2021-07-07 L. Pierre De Rochemont Semiconductor chip carriers with monolithically integrated quantum dot devices and method of manufacture thereof
JP6786100B2 (en) * 2016-08-29 2020-11-18 国立研究開発法人物質・材料研究機構 Semiconductor device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4559035B2 (en) * 2002-07-24 2010-10-06 関西ペイント株式会社 Semiconductor fine particle dispersion, method for producing semiconductor fine particle dispersion, method for forming semiconductor fine particle film, and photoelectrode
JP2004193321A (en) * 2002-12-11 2004-07-08 Central Glass Co Ltd Substrate with semiconductor electrode film, coating agent, and dye-sensitized solar cell
JP4345524B2 (en) * 2004-03-04 2009-10-14 株式会社村田製作所 Method for producing metal oxide ultrafine particle dispersion solution
JP4562467B2 (en) * 2004-09-10 2010-10-13 ペクセル・テクノロジーズ株式会社 Viscous dispersion containing semiconductor nanoparticles
KR100741242B1 (en) * 2005-07-05 2007-07-19 삼성전자주식회사 Method for Dispersing Nanoparticles and Method for Producing Nanoparticles Thin Film Using the Same
JP4738931B2 (en) * 2005-07-29 2011-08-03 富士フイルム株式会社 Nanoparticle dispersion, semiconductor device manufacturing method using the same, and semiconductor device
WO2007023612A1 (en) * 2005-08-26 2007-03-01 Konica Minolta Holdings, Inc. Thin film transistor
DE102007018431A1 (en) * 2007-04-19 2008-10-30 Evonik Degussa Gmbh Pyrogenic zinc oxide containing composite of layers and field effect transistor having this composite

Also Published As

Publication number Publication date
JP2009267190A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
CN101213671B (en) Method for making electronic devices using metal oxide nanoparticles
CN102234111B (en) Comprise silicon nanowires of high desnity metal nanocluster and preparation method thereof
Ko et al. ZnO nanowire network transistor fabrication on a polymer substrate by low-temperature, all-inorganic nanoparticle solution process
Chang et al. ZnO nanowire field-effect transistors
US20070057255A1 (en) Nanomaterials with tetrazole-based removable stabilizing agents
US9475695B2 (en) Printable inks with silicon/germanium based nanoparticles with high viscosity alcohol solvents
JP2008544522A5 (en)
TW200910427A (en) Semiconductor layer for thin film transistor
Kang et al. Direct growth of doping controlled monolayer WSe 2 by selenium-phosphorus substitution
WO2016040690A1 (en) High performance thin films from solution processible two-dimensional nanoplates
WO2007148601A1 (en) Thin film transistor, method for manufacturing the thin film transistor and electronic device using the thin film transistor
CN102668021A (en) CZTS/Se precursor inks and methods for preparing CZTS/Se thin films and CZTS/Se-based photovoltaic cells
JP2005093974A (en) Semiconductor material for active layer of thin film transistor element and its manufacturing method
JP5682880B2 (en) Nanocrystal particle dispersion, electronic device and method for producing the same
Bang et al. Effects of Li doping on the structural and electrical properties of solution-processed ZnO films for high-performance thin-film transistors
Lin et al. Variable-range hopping and thermal activation conduction of Y-doped ZnO nanocrystalline films
US20120080678A1 (en) Compositions for solution process, electronic devices fabricated using the same, and fabrication methods thereof
Ramachandran et al. Metal oxide heterojunctions using a printable nickel oxide ink
Rawat et al. Synthesis of Cu2ZnSnS4 nanoparticles and controlling the morphology with polyethylene glycol
CN109455756B (en) Preparation method of SnS quantum dot/graphene memristor
James et al. Design of lead telluride based thermoelectric materials through incorporation of lead sulfide inclusions or ligand stripping of nanosized building blocks
Shen et al. Hydrothermally synthesized ultrathin zinc oxide nanowires based field-effect transistors
WO2015045634A1 (en) Semiconductor film, oxide microparticle dispersion, method for manufacturing semiconductor film, and thin film transistor
Nawar et al. Improving the optical and electrical properties of Zinc Oxide thin film by Cupric Oxide dopant
JP6257585B2 (en) Formulations containing ammoniacal hydroxozinc compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150106

R150 Certificate of patent or registration of utility model

Ref document number: 5682880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees