JP5589893B2 - High-strength thin steel sheet excellent in elongation and hole expansion and method for producing the same - Google Patents

High-strength thin steel sheet excellent in elongation and hole expansion and method for producing the same Download PDF

Info

Publication number
JP5589893B2
JP5589893B2 JP2011040077A JP2011040077A JP5589893B2 JP 5589893 B2 JP5589893 B2 JP 5589893B2 JP 2011040077 A JP2011040077 A JP 2011040077A JP 2011040077 A JP2011040077 A JP 2011040077A JP 5589893 B2 JP5589893 B2 JP 5589893B2
Authority
JP
Japan
Prior art keywords
less
elongation
temperature
cooling
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011040077A
Other languages
Japanese (ja)
Other versions
JP2011195956A (en
Inventor
力 岡本
夏子 杉浦
幸一 佐野
千智 若林
直樹 吉永
薫 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011040077A priority Critical patent/JP5589893B2/en
Publication of JP2011195956A publication Critical patent/JP2011195956A/en
Application granted granted Critical
Publication of JP5589893B2 publication Critical patent/JP5589893B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、主としてプレス加工されて使用される自動車等の構造材料に好適な伸びと穴拡げ性に優れた高強度薄鋼板およびその製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a high-strength thin steel sheet excellent in elongation and hole expansibility suitable for structural materials such as automobiles that are mainly pressed and used, and a method for producing the same.

自動車の車体、部品等の軽量化と安全性とを両立させるために、素材である鋼板の高強度化が進められている。一般に、鋼板を高強度化すると、延性や穴広げ性などが低下し、成形性が損なわれる。これに対し、高強度鋼板において,残留オーステナイトを鋼組織に持つ残留オーステナイト鋼は, TRIP効果を利用して、高強度であるにも関わらず、非常に高い伸びをもつことが知られている。この残留オーステナイト鋼において、さらに伸びを高めるべく、例えば、特許文献1では、残留オーステナイトの分率を高く確保しつつ、2種類のフェライト(ベイニティックフェライト、ポリゴナルフェライト)を制御して均一伸びを確保する技術が開示されている。一方で、特許文献2では、伸びと形状凍結性を確保する目的で、オーステナイト相の形状をアスペクト比で規定する技術が開示されている。また、特許文献3では、オーステナイト相の分布を最適化することにより、より高い伸びが確保できるとしている。   In order to achieve both weight reduction and safety of automobile bodies, parts, etc., the strength of steel plates as materials is being increased. In general, when the strength of a steel plate is increased, ductility, hole expansibility and the like are lowered, and formability is impaired. On the other hand, in high-strength steel sheets, retained austenitic steels with retained austenite in the steel structure are known to have a very high elongation despite the high strength using the TRIP effect. In this retained austenitic steel, in order to further increase the elongation, for example, in Patent Document 1, uniform elongation is achieved by controlling two types of ferrites (bainitic ferrite and polygonal ferrite) while ensuring a high fraction of retained austenite. A technique for ensuring the above is disclosed. On the other hand, Patent Document 2 discloses a technique for defining the shape of an austenite phase by an aspect ratio for the purpose of securing elongation and shape freezing property. Patent Document 3 states that higher elongation can be secured by optimizing the distribution of the austenite phase.

一方で、TRIP効果を利用した鋼板は、穴拡げ加工前の打ち抜き時に残留オーステナイト相がマルテンサイトに変態してしまうため、穴拡げ加工時に、DP鋼のように、相界面の応力集中が助長されることで、穴拡げ性が劣化してしまう。特許文献4では、残留オーステナイト鋼において、少量存在するマルテンサイト相を焼戻すことで、穴拡げ性を改善させる技術が開示されている。ただし、この技術においても、打ち抜き時に加工誘起変態により生成するマルテンサイトによる穴拡げ劣化を抑制することはできず、現在、高強度鋼板において要求されている高い加工性にこたえられる、伸びと穴拡げ性が両立できているとはいえない。   On the other hand, the steel sheet using the TRIP effect transforms the retained austenite phase into martensite when punching before hole expansion, and as a result, stress concentration at the phase interface is promoted during hole expansion. As a result, the hole expandability deteriorates. Patent Document 4 discloses a technique for improving hole expandability by tempering a small amount of martensite phase in retained austenitic steel. However, even with this technology, it is not possible to suppress the hole expansion deterioration due to martensite generated by processing-induced transformation at the time of punching, and the elongation and hole expansion that can meet the high workability currently required for high-strength steel sheets. It cannot be said that sex is compatible.

特開2006−274418号公報JP 2006-274418 A 特開2007−154283号公報JP 2007-154283 A 特開2008−56993号公報JP 2008-56993 A 特開2006−104532号公報JP 2006-104532 A

本発明は、従来の問題点を解決するためになされたものであって、残留オーステナイト鋼において、穴拡げ性を向上すべく鋭意検討を重ねた結果見出した技術であり、伸びと穴拡げ性に優れた高強度薄鋼板およびその製造方法を提供することを課題とする。   The present invention has been made to solve the conventional problems, and is a technique found as a result of intensive studies to improve hole expandability in retained austenitic steel. It is an object to provide an excellent high-strength thin steel sheet and a method for producing the same.

残留オーステナイト鋼は焼鈍中のフェライト変態、ベイナイト変態を制御して、オーステナイト中のC濃度を高めることで、製品の鋼組織にオーステナイトを残し、この残留オーステナイトのTRIP効果によって、高い伸びを持つ高強度鋼板である。しかし、打ち抜き時にマルテンサイトが生じ、マルテンサイトとフェライトの大きな硬度差から、相境界に応力集中が起きやすく、穴拡げ性の劣化を起こしていた。加えて、TRIP効果を効果的に作用させるためには、高いC濃度をもつ安定な残留オーステナイトが必要であるが、このような残留オーステナイトは変態後に高い硬度を持つため、穴拡げ性を劣化させるという課題があった。これに対して本発明者らは、鋭意検討を重ねた結果、変態後のマルテンサイトを低く抑えつつ、残留オーステナイト相の安定性を高めるために、オーステナイト相中の濃度勾配をコントロールすることで、変態後のマルテンサイト硬度を強めることなく、安定なオーステナイト相を作る技術を見出し、本発明を完成するに至った。   Residual austenitic steel controls the ferrite transformation and bainite transformation during annealing, and increases the C concentration in austenite, leaving austenite in the steel structure of the product, and high strength with high elongation due to the TRIP effect of this retained austenite It is a steel plate. However, martensite was generated at the time of punching, and due to a large hardness difference between martensite and ferrite, stress concentration was likely to occur at the phase boundary, resulting in deterioration of hole expansibility. In addition, in order for the TRIP effect to work effectively, stable retained austenite having a high C concentration is necessary. However, since such retained austenite has high hardness after transformation, the hole expandability is deteriorated. There was a problem. On the other hand, as a result of intensive studies, the present inventors have controlled the concentration gradient in the austenite phase in order to increase the stability of the retained austenite phase while keeping the martensite after transformation low. A technique for producing a stable austenite phase without increasing the martensite hardness after transformation has been found, and the present invention has been completed.

即ち、本発明の伸びと穴拡げ性に優れた高強度薄鋼板は、
(1)質量%で、
C :0.05以上、0.35%以下、
Si:0.05%以上、2.0%以下、
Mn:0.8%以上、3.0%以下、
P :0.0010%以上、0.1%以下、
S :0.0005%以上、0.05%以下、
N :0.0010%以上、0.010%以下、
Al:0.01%以上、2.0%以下、
を含有して、残部鉄及び不可避的不純物からなる鋼組成をもち、金属組織はフェライト、ベイナイトまたは焼戻しマルテンサイトを主体とし、残留オーステナイト相を3%以上、30%以下含む鋼板において、前記オーステナイト相がフェライト相、ベイナイト相およびマルテンサイト相と接する相界面において、前記オーステナイト相中の平均C濃度が0.6%以上,1.2%以下であり、前記オーステナイト相の中心濃度Cgcとオーステナイト粒の粒界の濃度Cgbが(式1)を満たす範囲にあるオーステナイト粒が50%以上あることを特徴とする伸びと穴拡げ性に優れた高強度薄鋼板。
Cgb/Cgc > 1.3 (式1)
(2)前記オーステナイト相の平均粒径が5μm以下であることを特徴とする上記(1)に記載の伸びと穴拡げ性に優れた高強度薄鋼板。
(3)前記フェライト、前記ベイナイトおよび前記焼戻しマルテンサイトの組織の合計が,全組織に対して、体積分率で50%以上であることを特徴とする上記(1)または(2)に記載の伸びと穴拡げ性に優れた高強度薄鋼板。
(4)さらに、質量%で、
Mo:0.02%以上、0.5%以下、
を含有することを特徴とする上記(1)から(3)の何れかに記載の伸びと穴拡げ性に優れた高強度薄鋼板。
(5)さらに、質量%で、
Nb:0.01%以上、0.10%以下、
Ti:0.01%以上、0.20%以下、
V:0.005%以上、0.10%以下、
Cr:0.1%以上、5.0%以下、
W:0.01%以上、5.0%以下、
の1種または2種以上を含有することを特徴とする上記(1)から(4)の何れかに記載の伸びと穴拡げ性に優れた高強度薄鋼板。
(6)さらに、質量%で、
Ca、Mg、Zr、REMの1種または2種以上を0.0005%以上、0.05%以下含有することを特徴とする上記(1)から(5)の何れかに記載の伸びと穴拡げ性に優れた高強度薄鋼板。
(7)さらに、質量%で、
Cu:0.04%以上、2.0%以下、Ni:0.02%以上、1.0%以下、B:0.0003%以上、0.007%以下の1種または2種以上を含有することを特徴とする上記(1)から(6)の何れかに記載の伸びと穴拡げ性に優れた高強度薄鋼板。
(8) 鋳造スラブに対して,鋳造後そのまま、または、一旦、1100℃以下まで冷却した後に,1100℃以上に再加熱して、熱延を行うにあたり、その仕上げ温度を850℃以上,970℃以下にて終了し、その後650℃以下の温度域まで平均で10℃/秒以上,200℃/秒以下で冷却した後650℃以下の温度範囲で巻取り、酸洗後、40%以上の冷間圧延を施し、焼鈍時の最高温度が700℃以上、900℃以下で焼鈍した後に、平均で0.1℃/秒以上,200℃/秒以下の冷却速度で350℃以上,480℃以下の温度域に冷却し、引き続いて同温度域で20秒以上,800秒以下保持を行った後,350℃から220℃までの温度域を5℃/秒以上25℃/秒以下の冷却速度で一次冷却し、さらに、120℃から常温近傍までの温度域を100℃/秒以上または5℃/秒以下の平均冷却速度で二次冷却する最終冷却工程を備えることを特徴とする上記(1)〜(7)の何れかに記載の伸びと穴拡げ性に優れた高強度薄鋼板の製造方法。
(9)鋳造スラブに対して,鋳造後そのまま、または、一旦、1100℃以下まで冷却した後に,1100℃以上に再加熱して、熱延を行うにあたり、その仕上げ温度を850℃以上,970℃以下にて終了し、その後650℃以下の温度域まで平均で10℃/秒以上,200℃/秒以下で冷却した後650℃以下の温度範囲で巻取り、酸洗後、40%以上の冷間圧延を施し、焼鈍時の最高温度が700℃以上、900℃以下で焼鈍した後に、平均で0.1℃/秒以上,200℃/秒以下の冷却速度で350℃以上,480℃以下の温度域に冷却し、引き続いて同温度域で20秒以上,800秒以下保持を行った後,溶融亜鉛めっきに浸漬し,350℃から220℃までの温度域を5℃/秒以上25℃/秒以下の冷却速度で一次冷却し、さらに、120℃から常温近傍までの温度域を100℃/秒以上または5℃/秒以下の平均冷却速度で二次冷却する最終冷却工程を備えることを特徴とする上記(1)〜(7)の何れかに記載の伸びと穴拡げ性に優れた高強度薄鋼板の製造方法。
(10) 鋳造スラブに対して,鋳造後そのまま、または、一旦、1100℃以下まで冷却した後に,1100℃以上に再加熱して、熱延を行うにあたり、その仕上げ温度を850℃以上,970℃以下にて終了し、その後650℃以下の温度域まで平均で10℃/秒以上,200℃/秒以下で冷却した後650℃以下の温度範囲で巻取り、酸洗後、40%以上の冷間圧延を施し、焼鈍時の最高温度が700℃以上、900℃以下で焼鈍した後に、平均で0.1℃/秒以上,200℃/秒以下の冷却速度で350℃以上,480℃以下の温度域に冷却し、引き続いて同温度域で20秒以上,800秒以下保持を行った後,溶融亜鉛めっきに浸漬し、440℃以上,580℃以下の範囲で合金化処理を行い、350℃から220℃までの温度域を5℃/秒以上25℃/秒以下の冷却速度で一次冷却し、さらに、120℃から常温近傍までの温度域を100℃/秒以上または5℃/秒以下の平均冷却速度で二次冷却する最終冷却工程を備えることを特徴とする上記(1)〜(7)の何れかに記載の伸びと穴拡げ性に優れた高強度薄鋼板の製造方法。
That is, the high-strength thin steel sheet excellent in elongation and hole expansibility of the present invention is
(1) In mass%,
C: 0.05 or more and 0.35% or less,
Si: 0.05% or more, 2.0% or less,
Mn: 0.8% or more, 3.0% or less,
P: 0.0010% or more, 0.1% or less,
S: 0.0005% or more, 0.05% or less,
N: 0.0010% or more, 0.010% or less,
Al: 0.01% or more, 2.0% or less,
A steel composition comprising the balance iron and unavoidable impurities and having a metal structure mainly composed of ferrite, bainite or tempered martensite, and containing 3% or more and 30% or less of the retained austenite phase. In the phase interface in contact with the ferrite phase, bainite phase and martensite phase, the average C concentration in the austenite phase is 0.6% or more and 1.2% or less, and the central concentration Cgc of the austenite phase and the austenite grains A high-strength thin steel sheet excellent in elongation and hole expansibility, characterized in that the austenite grains having a grain boundary concentration Cgb in a range satisfying (Equation 1) are 50% or more.
Cgb / Cgc> 1.3 (Formula 1)
(2) The high-strength thin steel sheet excellent in elongation and hole expansibility as described in (1) above, wherein the austenite phase has an average particle size of 5 μm or less.
(3) The total structure of the ferrite, the bainite, and the tempered martensite is 50% or more in terms of volume fraction with respect to the entire structure, as described in (1) or (2) above A high-strength thin steel sheet with excellent elongation and hole expandability.
(4) Furthermore, in mass%,
Mo: 0.02% or more, 0.5% or less,
A high-strength thin steel sheet excellent in elongation and hole expansibility according to any one of (1) to (3) above.
(5) Furthermore, in mass%,
Nb: 0.01% or more, 0.10% or less,
Ti: 0.01% or more, 0.20% or less,
V: 0.005% or more, 0.10% or less,
Cr: 0.1% or more, 5.0% or less,
W: 0.01% or more, 5.0% or less,
A high-strength thin steel sheet excellent in elongation and hole expansibility according to any one of (1) to (4) above, comprising one or more of the following.
(6) Furthermore, in mass%,
Elongation and hole according to any one of (1) to (5) above, containing one or more of Ca, Mg, Zr, and REM in an amount of 0.0005% to 0.05% A high-strength thin steel sheet with excellent spreadability.
(7) Furthermore, in mass%,
Cu: 0.04% or more, 2.0% or less, Ni: 0.02% or more, 1.0% or less, B: 0.0003% or more, 0.007% or less A high-strength thin steel sheet excellent in elongation and hole expansibility according to any one of (1) to (6) above.
(8) For the cast slab, after casting, or once cooled to 1100 ° C. or lower and then reheated to 1100 ° C. or higher to perform hot rolling, the finishing temperature is 850 ° C. or higher and 970 ° C. Finished below, and then cooled to a temperature range of 650 ° C. or less at an average of 10 ° C./second or more and 200 ° C./second or less, wound up in a temperature range of 650 ° C. or less, pickled, and then cooled to 40% or more. After annealing and annealing at a maximum temperature of 700 ° C. or higher and 900 ° C. or lower after annealing, the average temperature is 350 ° C. or higher and 480 ° C. or lower at a cooling rate of 0.1 ° C./second or higher and 200 ° C./second or lower. After cooling to a temperature range and holding for 20 seconds or more and 800 seconds or less in the same temperature range, the temperature range from 350 ° C to 220 ° C is primary at a cooling rate of 5 ° C / second or more and 25 ° C / second or less. Cool, and further from 120 ° C to near room temperature And a final cooling step in which the temperature range is secondary cooled at an average cooling rate of 100 ° C./second or more or 5 ° C./second or less, and the elongation according to any one of (1) to (7) above A method for producing high-strength thin steel sheets with excellent hole expandability.
(9) With respect to the cast slab, as it is after casting or once cooled to 1100 ° C. or lower, when re-heating to 1100 ° C. or higher and performing hot rolling, the finishing temperature is 850 ° C. or higher and 970 ° C. Finished below, and then cooled to a temperature range of 650 ° C. or lower on average at 10 ° C./second or higher and 200 ° C./second or lower, wound up in a temperature range of 650 ° C. or lower, pickled, and cooled to 40% or higher. After annealing and annealing at a maximum temperature of 700 ° C. or higher and 900 ° C. or lower after annealing, the average temperature is 350 ° C. or higher and 480 ° C. or lower at a cooling rate of 0.1 ° C./second or higher and 200 ° C./second or lower. After cooling to the temperature range and holding in the same temperature range for 20 seconds or more and 800 seconds or less, it is immersed in a hot dip galvanizing bath , and the temperature range from 350 ° C to 220 ° C is 5 ° C / second to 25 ° C. Primary cooling at a cooling rate of less than Any one of the above (1) to (7), comprising a final cooling step of secondary cooling the temperature range from 0 ° C. to near room temperature at an average cooling rate of 100 ° C./second or more or 5 ° C./second or less. A method for producing a high-strength thin steel sheet excellent in elongation and hole expandability according to crab.
(10) When the cast slab is cast as it is or once cooled to 1100 ° C. or lower and then reheated to 1100 ° C. or higher to perform hot rolling, the finishing temperature is 850 ° C. or higher and 970 ° C. Finished below, and then cooled to a temperature range of 650 ° C. or lower on average at 10 ° C./second or higher and 200 ° C./second or lower, wound up in a temperature range of 650 ° C. or lower, pickled, and cooled to 40% or higher. After annealing and annealing at a maximum temperature of 700 ° C. or higher and 900 ° C. or lower after annealing, the average temperature is 350 ° C. or higher and 480 ° C. or lower at a cooling rate of 0.1 ° C./second or higher and 200 ° C./second or lower. It cooled to a temperature range, subsequently at the same temperature range for 20 seconds or more, after holding 800 seconds or less, and immersed in molten zinc plating bath, 440 ° C. or higher, subjected to alloying treatment in the range of 580 ° C. or less, 350 Temperature range from ℃ to 220 5 ℃ A final cooling step in which primary cooling is performed at a cooling rate of not lower than 25 seconds and not higher than 25 ° C./second, and secondary cooling is performed at an average cooling rate of not lower than 100 ° C./second or not higher than 5 ° C./second in a temperature range from 120 ° C. to near normal temperature. high strength thin steel sheet manufacturing method having excellent elongation and hole expandability according to any one of the above features (1) to (7) in that it comprises.

本発明の高強度薄鋼板は、残留オーステナイトのTRIP効果にて,高強度であるにもかかわらず,極めて高い伸びを確保しつつ,高い穴拡げ性を得ることが可能となる。また,本発明の根本となる,オーステナイト相中のC濃度勾配は、残留オーステナイト中の平均C濃度を高めることなく、安定性を高める極めて効率的かつ有効な手法であり,この技術によって,初めて,伸びと穴拡げ性を高いレベルで両立することが可能とできる。   The high-strength thin steel sheet of the present invention can obtain high hole expansibility while ensuring extremely high elongation due to the TRIP effect of retained austenite, despite its high strength. In addition, the C concentration gradient in the austenite phase, which is the basis of the present invention, is an extremely efficient and effective method for improving stability without increasing the average C concentration in retained austenite. It is possible to achieve both a high level of elongation and hole expandability.

この効果は,残留オーステナイトを生成した後に,残留オーステナイト相中のC濃度勾配を作ることが可能であれば継続させることができる。すなわち,冷延鋼板,溶融亜鉛めっき鋼板のみならず,熱延鋼板においても同様の効果を得ることができる。また,この濃度勾配を壊すことがなければ効果は継続できるため,電気めっき鋼板にも適用可能である。   This effect can be continued if it is possible to create a C concentration gradient in the retained austenite phase after generating the retained austenite. That is, the same effect can be obtained not only in cold-rolled steel sheets and hot-dip galvanized steel sheets but also in hot-rolled steel sheets. Moreover, since the effect can be continued without breaking this concentration gradient, it can also be applied to electroplated steel sheets.

本発明は、鋳造条件により影響を受けるもではない。例えば、鋳造方法(連続鋳造かインゴット鋳造),スラブ厚の違いによる影響少なく,薄スラブなど特殊な鋳造−熱延方法を用いてもよい。   The present invention is not affected by casting conditions. For example, a special casting-hot rolling method such as a thin slab may be used without being affected by a casting method (continuous casting or ingot casting) or a difference in slab thickness.

本発明の鋼板が比較鋼に比べ、優れた伸びをもつことを示す図である。It is a figure which shows that the steel plate of this invention has the outstanding elongation compared with comparative steel. 本発明の鋼板が比較鋼に比べ、優れた穴拡げ性をもつことを示す図である。It is a figure which shows that the steel plate of this invention has the outstanding hole expansibility compared with comparative steel.

本発明の高強度薄鋼板は、残留オーステナイト鋼において,残留オーステナイト相の平均C濃度を高めることなく、安定性を高めることに着目したもので、鋭意検討を重ねた結果、残留オーステナイト相の濃度勾配を制御することで、これを実現することが可能であり、強度と伸びと穴拡げ性を高いレベルで両立できることを見出した。   The high-strength thin steel sheet of the present invention focuses on improving the stability of the retained austenitic steel without increasing the average C concentration of the retained austenite phase. As a result of extensive studies, the concentration gradient of the retained austenite phase It has been found that this can be realized by controlling, and that strength, elongation and hole expandability can be achieved at a high level.

組織はフェライト相とベイナイト相と焼戻しマルテンサイト相を主体とし,残留オーステナイト相を3%以上含有することが必要である。より高い強度を望む場合にはマルテンサイトを含有してもよいが、フェライト相とベイナイト相を主体としない場合,伸びが著しく低下する。また、パーライトは5%以下であれば含んでも材質を著しく劣化させることはないので、5%以下であることが望ましい。   The microstructure is mainly composed of ferrite phase, bainite phase and tempered martensite phase, and it is necessary to contain 3% or more of retained austenite phase. When higher strength is desired, martensite may be contained, but when the ferrite phase and bainite phase are not mainly used, the elongation is remarkably reduced. Further, even if pearlite is contained in an amount of 5% or less, the material is not significantly deteriorated.

残留オーステナイトの平均C濃度は,残留オーステナイトの安定性と加工誘起変態後のマルテンサイト硬さに大きく寄与する。平均C濃度が0.6%未満ではC濃度勾配を利用しても残留オーステナイトの安定性を十分に高めることができないため,TRIP効果を効果的に得ることができず,伸びが劣化する。一方で,1.2%を超えると、変態後のマルテンサイト硬さが強くなりすぎ、穴拡げ性の劣化を起こす。このため0.6%以上,1.2%以下とする。   The average C concentration of retained austenite greatly contributes to the stability of retained austenite and the martensite hardness after processing-induced transformation. If the average C concentration is less than 0.6%, the stability of retained austenite cannot be sufficiently increased even if the C concentration gradient is used, so that the TRIP effect cannot be obtained effectively and the elongation deteriorates. On the other hand, if it exceeds 1.2%, the martensite hardness after transformation becomes too strong, causing deterioration of hole expansibility. For this reason, it is 0.6% or more and 1.2% or less.

残留オーステナイト相中のC濃度分布は本発明において最も重要なもののひとつである。それぞれの残留オーステナイト粒は,フェライト相、ベイナイト相およびマルテンサイト相と接する相界面において、C濃度が中心部の濃度に比べて,高く保つことで相境界の残留オーステナイト安定性が高くなり,相全体の安定性が高まる。残留オーステナイト相中の平均C濃度が低い条件で、優れたTRIP効果を得るためには、濃度勾配を大きく保つこと、すなわち、残留オーステナイト粒の中心濃度Cgcと残留オーステナイト粒の粒界の濃度Cgbからなる(式1)の左辺を大きくする必要である。(式1)の右辺が1.3以上の値が得られるときに、その効果が顕著に表れ高い伸びが得られる。したがって、(式1)の範囲は1.3以上とする。この効果を組織全体で担保するためには,全体の残留オーステナイト粒のうち,(式1)を満たす残留オーステナイト粒が50%以上であることが必要である。
Cgb/Cgc >1.3 (式1)
ここで,Cgc,Cgbは,正確に分解濃度が得られる条件で,精度が保証される測定方法であればどのような測定方法でも構わないが,例えば,FE-SEM付属のEPMAを用いて,0.5μm以下ピッチでC濃度を注意深く測定することによって得ることができる。ただし、界面の局部的なC濃度を測ることは現時点では不可能である。そのため、(式1)に示される比が1.3は本発明者らが検討を重ねた結果、通常の測定において、最低、この値を満たしたとき、十分な効果が見られると判断できたことから発明に至った。
The C concentration distribution in the retained austenite phase is one of the most important in the present invention. Each retained austenite grain has high stability of retained austenite at the phase boundary by keeping the C concentration higher than the concentration at the center at the phase interface in contact with the ferrite phase, bainite phase, and martensite phase. Increased stability. In order to obtain an excellent TRIP effect under the condition that the average C concentration in the retained austenite phase is low, the concentration gradient must be kept large, that is, from the central concentration Cgc of the retained austenite grains and the concentration Cgb of the grain boundaries of the retained austenite grains. It is necessary to enlarge the left side of (Formula 1). When the value on the right side of (Formula 1) is 1.3 or more, the effect is remarkably exhibited and high elongation is obtained. Therefore, the range of (Formula 1) is 1.3 or more. In order to secure this effect in the entire structure, it is necessary that the remaining austenite grains satisfying (Equation 1) among the entire retained austenite grains be 50% or more.
Cgb / Cgc> 1.3 (Formula 1)
Here, Cgc and Cgb may be any measurement method as long as accuracy is guaranteed under the condition that the decomposition concentration can be accurately obtained. For example, using EPMA attached to FE-SEM, It can be obtained by carefully measuring the C concentration with a pitch of 0.5 μm or less. However, it is currently impossible to measure the local C concentration at the interface. Therefore, the ratio shown in (Equation 1) is 1.3, and as a result of repeated investigations by the present inventors, it has been determined that a sufficient effect can be seen when this value is met at the minimum in normal measurement. Invented.

残留オーステナイトの平均粒径は5μm以下であることが必要である。5μm超では,残留オーステナイト相の分散が粗く,TRIP効果を充分に発揮することができないため,伸びが低下する。一方で,0.5μm未満では,相界面の濃度勾配を得ることが難しく,伸びが劣化する。したがって,0.5μm以上が望ましい。   The average particle size of the retained austenite needs to be 5 μm or less. If it exceeds 5 μm, the dispersion of the retained austenite phase is coarse, and the TRIP effect cannot be fully exhibited, so the elongation decreases. On the other hand, if it is less than 0.5 μm, it is difficult to obtain a concentration gradient at the phase interface, and the elongation deteriorates. Therefore, 0.5 μm or more is desirable.

母相となる,フェライト、ベイナイトおよび焼戻しマルテンサイト組織の合計は,全組織に対して、体積分率で50%以上であることが必要である。50%未満では,オーステナイト相中のC濃度を高くすることができないため,濃度勾配を用いても安定性を確保することが困難となり,伸びが劣化する。一方,95%を超えると残留オーステナイト相の必要分率を確保することが困難となり,伸びの劣化を引き起こすため,95%以下であることが望ましい。
以下に本発明の高強度薄鋼板の化学成分の限定理由を説明する。
Cは、強度確保の観点から、またオ−ステナイトを安定化する基本元素として、必須の元素である。Cが0.05%未満では強度が満足せず、また残留オ−ステナイトが形成されない。また、0.35%を超えると、強度が上がりすぎ、延性が不足し工業材料として使用できない。また,スポット溶接性を著しく劣化させる。高い伸びが必要な場合,0.2%以上とすることが望ましい。一方で,溶接性が必要とされる場合は, 0.25%以下とすることが望ましい。
Siは強度確保の観点で添加することに加え、セメンタイトの生成を遅らせる元素であり、残留オ−ステナイト生成に有効な元素であるため、通常、延性の確保のために添加される元素である。しかし,2.0%を超えて添加しても,その効果は飽和されることに加え,脆化を引き起こしやすくなる。溶融亜鉛めっき性,化成処理のしやすさが必要な場合,1.5%以下が望ましい。一方,0.05%未満の添加では,セメンタイトの抑制効果が得られない。そこで,0.05%を下限とする。Siと同様の効果が得られるAl添加量が0.1%以下のときは,1%以上の添加が望ましい。
Mnは強度確保の観点で添加が必要であることに加え、炭化物の生成を遅らせる元素であり残留オ−ステナイトの生成に有効な元素である。Mnが0.8%未満では、強度が満足せず、また残留オ−ステナイトの形成が不十分となり延性が劣化する。また、Mn添加量が3.0%を超えると、焼入れ性が高まるため、残留オ−ステナイトに変わってマルテンサイトが生成し、強度上昇を招きやすく、これにより、製品のバラツキが大きくなるほか、延性が不足し工業材料として使用できない。従って、本発明におけるMnの範囲は、0.8%以上,3.0%以下とする。材質面では,1.0以上,2.4%以下が好ましい。
The total of ferrite, bainite, and tempered martensite structure, which are the parent phase, needs to be 50% or more in terms of volume fraction with respect to the entire structure. If it is less than 50%, the C concentration in the austenite phase cannot be increased, so that it becomes difficult to ensure stability even if a concentration gradient is used, and the elongation deteriorates. On the other hand, if it exceeds 95%, it becomes difficult to secure the necessary fraction of the retained austenite phase, and this causes deterioration of elongation.
The reason for limiting the chemical components of the high-strength thin steel sheet of the present invention will be described below.
C is an essential element from the viewpoint of securing strength and as a basic element for stabilizing austenite. If C is less than 0.05%, the strength is not satisfactory, and no retained austenite is formed. On the other hand, if it exceeds 0.35%, the strength is excessively increased, the ductility is insufficient, and it cannot be used as an industrial material. In addition, spot weldability is significantly degraded. When high elongation is required, 0.2% or more is desirable. On the other hand, when weldability is required, it is desirable to make it 0.25% or less.
Si is an element that delays the formation of cementite and is an element that is effective in generating retained austenite, and is usually an element that is added to ensure ductility. However, even if added over 2.0%, the effect is saturated and it is easy to cause embrittlement. When hot dip galvanizing and ease of chemical conversion are required, 1.5% or less is desirable. On the other hand, when it is added less than 0.05%, the cementite suppressing effect cannot be obtained. Therefore, 0.05% is the lower limit. When the amount of Al added to obtain the same effect as Si is 0.1% or less, addition of 1% or more is desirable.
Mn is an element that delays the formation of carbides and is effective in the formation of retained austenite, in addition to the need to be added from the viewpoint of securing strength. If Mn is less than 0.8%, the strength is not satisfied, and the formation of retained austenite becomes insufficient, resulting in deterioration of ductility. In addition, when the Mn addition amount exceeds 3.0%, the hardenability is improved, so that martensite is generated instead of retained austenite, which easily causes an increase in strength. It cannot be used as an industrial material due to lack of ductility. Therefore, the range of Mn in the present invention is 0.8% or more and 3.0% or less. In terms of material, 1.0 to 2.4% is preferable.

Pは鋼板の強度を上げる元素として必要な強度レベルに応じて添加する。しかし、添加量が多いと粒界へ偏析するために局部延性を劣化させる。また、溶接性を劣化させる。従って、P上限値は0.1%とする。一方,0.0010%未満ではPの劣化効果は無視できる他,これ未満にするにはコストの上昇を招く。   P is added according to the strength level required as an element for increasing the strength of the steel sheet. However, if the addition amount is large, segregation to the grain boundary causes deterioration of local ductility. In addition, the weldability is deteriorated. Therefore, the P upper limit is set to 0.1%. On the other hand, if it is less than 0.0010%, the deterioration effect of P can be ignored, and if it is less than this, the cost increases.

Sは、MnSを生成することで局部延性、溶接性を劣化させる元素であり、鋼中に存在しない方が好ましい元素である。従って、上限を0.05%とする。一方,0.0005%未満にするにはコストの上昇を招くため、下限を0.0005%とする。   S is an element that degrades local ductility and weldability by generating MnS, and is preferably an element that does not exist in steel. Therefore, the upper limit is made 0.05%. On the other hand, if it is less than 0.0005%, the cost increases, so the lower limit is made 0.0005%.

Alは、Siと同様,フェライト生成を促進する効果がある他,セメンタイトも抑制できる重要な元素の1つである。すなわち,残留オ−ステナイトを安定化させる作用がある。0.01%未満のAl添加ではこの効果は期待できない。一方、Alを過度に添加しても上記効果は飽和し、かえって鋼を脆化させるため,2.0%を上限とした。溶融亜鉛めっき性を考慮する場合,Alはこれを劣化させるため、その上限を1.8%とすることが望ましい。   Al, like Si, has an effect of promoting ferrite formation and is one of important elements that can also suppress cementite. That is, it has the effect of stabilizing the retained austenite. This effect cannot be expected when Al is added in an amount of less than 0.01%. On the other hand, even if Al is added excessively, the above effect is saturated and the steel is embrittled, so 2.0% was made the upper limit. In consideration of hot dip galvanizing properties, Al deteriorates this, so the upper limit is desirably 1.8%.

Nは、不可避的に含まれる元素であるが、あまり多量に含有する場合は、時効性を劣化させるのみならず、AlN析出量が多くなってAl添加の効果を減少させるので、0.010%以下の含有が好ましい。 また、不必要にNを低減することは製鋼工程でのコストが増大するので通常0.0010%以上に制御することが好ましい。   N is an element that is inevitably included, but if it is contained in a large amount, not only the aging property is deteriorated, but also the AlN precipitation amount is increased to reduce the effect of Al addition, so 0.010% The following contents are preferred. Further, unnecessarily reducing N increases the cost in the steelmaking process, so it is usually preferable to control the N to 0.0010% or more.

Moは、鋼中のパーライトの生成を抑制する元素で,焼鈍中の冷却速度が遅い場合,または,めっきの合金化処理等で再加熱がなされる場合に特に重要となる元素である。この効果を得るためには,Moの最低添加量を0.02%とした。これ未満では、パ−ライトの生成が抑制されず、残留オ−ステナイト率が低減する。一方で,過多のMoの添加は延性の劣化や化成処理性を劣化させることがあるので、上限を0.5%とした。より高い強度−延性バランスを得るためには、0.3%以下とすることが好ましい。   Mo is an element that suppresses the formation of pearlite in steel, and is an especially important element when the cooling rate during annealing is slow, or when reheating is performed by alloying treatment of plating or the like. In order to obtain this effect, the minimum addition amount of Mo was set to 0.02%. Below this, the formation of pearlite is not suppressed, and the retained austenite ratio is reduced. On the other hand, excessive addition of Mo may deteriorate ductility and chemical conversion properties, so the upper limit was made 0.5%. In order to obtain a higher strength-ductility balance, the content is preferably 0.3% or less.

Nb,Ti,V,Cr,Wは微細な炭化物、窒化物または炭窒化物を生成する元素であり、強度確保に有効であるため、必要に応じて1種または2種以上を添加することが可能である。これを達成するためには,Nb,Ti,Wで0.01%,Vで0.005%,Crで0.1%,の添加が必要である。一方で,過度の添加は、強度が上昇しすぎて延性が低下するため、Nbは0.10%以下,Tiは0.20%以下,Vは0.10%以下,Crは5.0%以下,Wは5.0%以下であることが必要である。   Nb, Ti, V, Cr, and W are elements that generate fine carbides, nitrides, or carbonitrides, and are effective in securing strength. Therefore, one or more elements may be added as necessary. Is possible. In order to achieve this, it is necessary to add 0.01% for Nb, Ti, and W, 0.005% for V, and 0.1% for Cr. On the other hand, excessive addition increases the strength too much and lowers the ductility, so Nb is 0.10% or less, Ti is 0.20% or less, V is 0.10% or less, and Cr is 5.0%. Hereinafter, W needs to be 5.0% or less.

鋼はさらに、Ca、Mg、Zr、REM(希土類元素)の1種または2種以上を、単独または合計で0.0005%以上、0.05%以下含有することができる。Ca、Mg、Zr、REMは、硫化物や酸化物の形状を制御して局部延性や穴拡げ性を向上させる。この目的のためには、これらの元素の1種または2種以上を単独または合計で0.0005%以上添加する必要がある。しかし、過度の添加は加工性を劣化させるため、その上限を0.05%とした。   The steel can further contain one or more of Ca, Mg, Zr, and REM (rare earth elements) alone or in total from 0.0005% to 0.05%. Ca, Mg, Zr, and REM improve the local ductility and hole expansibility by controlling the shapes of sulfides and oxides. For this purpose, it is necessary to add one or more of these elements alone or in total of 0.0005% or more. However, excessive addition deteriorates workability, so the upper limit was made 0.05%.

鋼はさらに、Cu:0.04%以上、2.0%以下、Ni:0.02%以上、1.0%以下、B:0.0003%以上、0.007%以下の1種または2種以上を含有することができる。これらの元素は変態を遅らせ鋼の強度を高めることができるが、Cu:0.04%未満、Ni:0.02%未満、B:0.0003%未満では焼入れ性が弱く、高温でフェライト形成を促すために、必要な強度を得ることができない。一方で、この範囲を超えた添加では、焼き入れ性が強くなりすぎて、フェライト,ベイナイト変態が遅くなるため残留オーステナイト相へのC濃化を遅れさせてしまう。   Further, the steel is Cu: 0.04% or more, 2.0% or less, Ni: 0.02% or more, 1.0% or less, B: 0.0003% or more, 0.007% or less. More than seeds can be contained. These elements can delay the transformation and increase the strength of the steel. However, when Cu is less than 0.04%, Ni is less than 0.02%, and B is less than 0.0003%, the hardenability is weak and ferrite is formed at a high temperature. The necessary strength cannot be obtained. On the other hand, if the addition exceeds this range, the hardenability becomes too strong, and the ferrite and bainite transformation is slowed down, so that the C concentration to the retained austenite phase is delayed.

鋼は、以上の元素のほかSn、Asなどの不可避的に混入する元素を含み、残部鉄からなる。
以下に本発明に係る高強度薄鋼板の製造方法について説明する。
In addition to the above elements, steel contains elements inevitably mixed such as Sn and As, and is made of the remaining iron.
Below, the manufacturing method of the high intensity | strength thin steel plate which concerns on this invention is demonstrated.

本発明者らは、鋭意検討の結果、本発明の高強度薄鋼板を製造するに際しては、ベイナイト変態またはマルテンサイトの焼戻しによりオーステナイト相へのC濃化を促した後の冷却条件の制御によりオーステナイト相中の濃度勾配制御が可能であることを見出した。また,これ以前のオーステナイト相中への濃化とあわせることで,残留オーステナイト相の安定性を高くすることが可能である。この効果を実現するために本発明で最も重要なもののひとつはベイナイト変態、マルテンサイト焼戻し後の冷却条件である。過時効(OA)処理後,の冷却において,350℃から220℃までの平均冷却速度が5℃/秒以上25℃/秒以下で一次冷却し、さらに、120℃以下常温近傍までの温度域を100℃/秒以上または5℃/秒以下の平均冷却速度で二次冷却する。
OA後の冷却中に起こる微かな変態はオーステナイト中の粒界近傍のC濃度を増すうえで重要な役割を担うこのため、一次冷却では、350℃から220℃温度域の冷却速度が25℃/秒を超えるとこの間に変態が進まずオーステナイト中へのC濃化がおこらない。一方、350℃から220℃温度域の冷却速度が5℃/秒未満だと、オーステナイト中でのC拡散が進み、Cの濃度勾配が小さくなる。
また、120℃以下の低温域ではC拡散がさらに限定され、変態が起こりにくくなる。このため、二次冷却では120℃から常温近傍までの平均冷却速度100℃/秒以上で鋼板を冷却することによりオーステナイト中のC濃度勾配を350℃から220℃温度域で達成したままの状態にすることができる。あるいは、二次冷却では120℃から常温近傍までの平均冷却速度を5℃/秒以下で冷却することによりオーステナイト相中のC濃度勾配をより著しいものとすることができる。二次冷却において、5℃/秒超100℃/秒未満では変態が起こらないばかりでなく、粒界のC濃度の低下が起こる。
As a result of intensive studies, the inventors of the present invention have produced a high-strength steel sheet of the present invention by controlling the cooling conditions after promoting C concentration to the austenite phase by bainite transformation or tempering martensite. It was found that concentration gradient control in the phase was possible. In addition, it is possible to increase the stability of the retained austenite phase by combining it with the previous enrichment in the austenite phase. In order to realize this effect, one of the most important things in the present invention is the cooling condition after bainite transformation and martensite tempering. In the cooling after over-aging (OA) treatment, the primary cooling is performed at an average cooling rate from 350 ° C. to 220 ° C. at 5 ° C./second or more and 25 ° C./second or less, and further, the temperature range from 120 ° C. or less to near room temperature. Secondary cooling is performed at an average cooling rate of 100 ° C./second or more or 5 ° C./second or less.
The slight transformation that occurs during cooling after OA plays an important role in increasing the C concentration near the grain boundary in austenite. Therefore, in the primary cooling, the cooling rate in the temperature range of 350 ° C. to 220 ° C. is 25 ° C. / If it exceeds 2 seconds, transformation does not proceed during this time, and C concentration does not occur in austenite. On the other hand, when the cooling rate in the temperature range from 350 ° C. to 220 ° C. is less than 5 ° C./second, C diffusion in austenite proceeds and the C concentration gradient becomes small.
In addition, C diffusion is further limited in a low temperature range of 120 ° C. or lower, and transformation hardly occurs. For this reason, in the secondary cooling, the steel sheet is cooled at an average cooling rate of 100 ° C./second or more from 120 ° C. to near room temperature, so that the C concentration gradient in the austenite is still achieved in the 350 ° C. to 220 ° C. temperature range. can do. Alternatively, in the secondary cooling, the C concentration gradient in the austenite phase can be made more remarkable by cooling at an average cooling rate from 120 ° C. to around room temperature at 5 ° C./second or less. In the secondary cooling, if it exceeds 5 ° C./second and less than 100 ° C./second, not only transformation does not occur, but also the C concentration at the grain boundary decreases.

熱間圧延前のスラブは、連続鋳造後そのまま、または、再加熱により1100℃以上とする。この温度未満では、均質処理が不十分で、強度と伸びの低下を起こす。   The slab before hot rolling is set to 1100 ° C. or higher as it is after continuous casting or by reheating. Below this temperature, the homogenization process is insufficient, causing a decrease in strength and elongation.

次いで、仕上げ温度を850℃以上、970℃以下としてスラブを熱間圧延する。仕上げ温度が、850℃未満では(α+γ)2相域圧延となり、延性の低下をもたらすからであり、970℃を超えるとオーステナイト粒径が粗大になって、フェライト相分率が小さくなって、延性が低下するからである。   Next, the slab is hot-rolled at a finishing temperature of 850 ° C. or higher and 970 ° C. or lower. If the finishing temperature is less than 850 ° C., it becomes (α + γ) two-phase rolling, resulting in a decrease in ductility. If it exceeds 970 ° C., the austenite grain size becomes coarse, the ferrite phase fraction becomes small, and the ductility This is because of a decrease.

その後650℃以下の温度域まで平均で10℃/秒以上,200℃/秒以下で冷却した後,650℃以下の温度範囲で巻取る。この冷却速度未満,巻取り温度超では,曲げ性を著しく劣化させるパーライト相が生成する。平均冷却速度が200℃/秒を超えるとパーライト抑制効果は飽和すること,また,冷却終点温度のばらつきが大きくなり安定した材質を確保することが難しくなる。従って,200℃/秒以下とする。   Thereafter, it is cooled to a temperature range of 650 ° C. or less at an average of 10 ° C./second or more and 200 ° C./second or less, and then wound in a temperature range of 650 ° C. or less. Below this cooling rate and above the coiling temperature, a pearlite phase that significantly degrades the bendability is formed. When the average cooling rate exceeds 200 ° C./second, the effect of suppressing pearlite is saturated, and the variation in the cooling end point temperature becomes large, making it difficult to secure a stable material. Therefore, it shall be 200 ° C./second or less.

酸洗後は試作材に40%以上の冷間圧延を施すことができる。これ未満では,焼鈍中の再結晶や逆変態が抑制されて,伸びの低下を起こす。   After pickling, the prototype material can be cold-rolled by 40% or more. Below this, recrystallization and reverse transformation during annealing are suppressed and elongation decreases.

焼鈍時の最高温度は700℃以上、900℃以下とする。700℃未満では焼鈍中のフェライト相の再結晶が遅れるため,伸びの低下を引き起こす。一方,900℃より高温では,マルテンサイト分率が増加し,伸びの劣化を起こす。   The maximum temperature during annealing is 700 ° C or higher and 900 ° C or lower. If the temperature is lower than 700 ° C., the recrystallization of the ferrite phase during annealing is delayed, causing a decrease in elongation. On the other hand, at a temperature higher than 900 ° C., the martensite fraction increases and the elongation deteriorates.

焼鈍工程の均熱処理後の冷却において,組織を凍結し,ベイナイト変態を効率的に引き起こすためには,冷却速度は速いほうが良い。ただし,0.1℃/秒未満では変態を制御できない。一方で,200℃/秒を越えても,その効果は飽和し,また残留オーステナイト生成に最も重要となる,冷却終点温度の温度制御性を著しく劣化させる。このため,焼鈍後の冷却速度は,平均で0.1℃/秒以上,200℃/秒以下とする。
冷却終点温度およびその後の保持はベイナイト生成を制御し,残留オーステナイトのC濃度を決定する重要な技術である。冷却終点温度を350℃未満とするとマルテンサイトが多量にでてしまい,鋼強度を過剰に高くし,加えて,オーステナイトを残留させることが難しくなるため伸びの劣化が極めて大きくなる。一方で,480℃を超えるとベイナイト変態が遅くなり,加えて保持中にセメンタイトの生成が起こり,残留オーステナイト中のCの濃化が低下する。従って,冷却停止温度,および保持温度は350℃以上,480℃以下とする。
In cooling after soaking in the annealing process, a faster cooling rate is better for freezing the structure and causing bainite transformation efficiently. However, the transformation cannot be controlled at less than 0.1 ° C./second. On the other hand, even if it exceeds 200 ° C./second, the effect is saturated, and the temperature controllability of the cooling end point temperature, which is most important for the formation of retained austenite, is significantly deteriorated. For this reason, the cooling rate after annealing is set to 0.1 ° C./second or more and 200 ° C./second or less on average.
The cooling end point temperature and subsequent holding is an important technique for controlling the bainite formation and determining the C concentration of retained austenite. When the cooling end point temperature is less than 350 ° C., a large amount of martensite is generated, the steel strength is excessively increased, and in addition, it becomes difficult to leave austenite, so that the elongation deterioration becomes extremely large. On the other hand, when the temperature exceeds 480 ° C., the bainite transformation is delayed, and in addition, cementite is generated during the holding, and the concentration of C in the retained austenite is lowered. Therefore, the cooling stop temperature and the holding temperature are 350 ° C. or higher and 480 ° C. or lower.

保持時間は残留オーステナイトへのC濃化の点では長い程よい。20秒未満では,ベイナイト変態量が少なく、排出されるC量が減少することから、濃度勾配ができにくい。一方で、長時間になると、Cの濃化が大きくなりすぎ、加工誘起変態後のマルテンサイトの硬さを高めて穴拡げ性を劣化させる。800秒を越えるとベイナイト変態が遅くなり、濃度勾配が小さくなること、また、オーステナイト相中にセメンタイトが生成し,これにより,Cの濃度低下が起こりやすくなる。従って,保持時間は20秒以上,800秒以下とする。   The longer the holding time, the better in terms of C concentration to retained austenite. If it is less than 20 seconds, the amount of bainite transformation is small and the amount of C discharged is reduced, so that it is difficult to produce a concentration gradient. On the other hand, when the time is long, the concentration of C becomes too large, and the hardness of martensite after the processing-induced transformation is increased to deteriorate the hole expandability. If it exceeds 800 seconds, the bainite transformation is slowed down, the concentration gradient becomes small, and cementite is generated in the austenite phase, which tends to cause a decrease in C concentration. Accordingly, the holding time is 20 seconds or more and 800 seconds or less.

本技術は,溶融めっき鋼板においても適用が可能である,これに適用する場合,350℃から480℃での保持後,溶融亜鉛めっきに浸漬する。また,本技術は,浸漬後,合金化処理を施すことも可能である。このとき,440℃以上,580℃の範囲でめっきの合金化処理を行う。440℃より低い温度では合金化が不十分となり,580℃を超えると過合金となり耐食性が著しく劣化する。
以下、実施例に基づき本発明を詳細に説明する。
The present technology can also be applied to a hot-dip galvanized steel sheet. In this case, the technique is immersed in a hot-dip galvanizing tank after being held at 350 ° C. to 480 ° C. In addition, the present technology can also be alloyed after immersion. At this time, the alloying treatment of the plating is performed in the range of 440 ° C. or higher and 580 ° C. When the temperature is lower than 440 ° C., alloying becomes insufficient.
Hereinafter, the present invention will be described in detail based on examples.

表1に示した成分組成を有する鋼を製造し、冷却凝固後1200℃まで再加熱し、880℃にて仕上圧延を行い、冷却後550℃まで,平均冷却速度60℃/秒冷却後,巻取りを行った。その後,この熱延板を50%の冷間圧延した。その後連続焼鈍にて、表2示した条件にて,焼鈍処理を行った。焼鈍後は,降伏点伸びを抑制する目的から,1%のスキンパス圧延を行った。
Steel having the composition shown in Table 1 was manufactured, reheated to 1200 ° C. after cooling and solidification, finish-rolled at 880 ° C., cooled to 550 ° C., cooled at an average cooling rate of 60 ° C./second, wound I took it. Thereafter, this hot-rolled sheet was cold-rolled by 50%. At subsequent continuous annealing, under the conditions shown in Table 2, it was subjected to annealing treatment. After annealing, 1% skin pass rolling was performed to suppress the yield point elongation.

引張特性は、JIS5号引張試験片のC方向引張にて評価した。組織の同定、存在位置の観察および平均粒径(平均円相当径)と占有率の測定は、ナイタ−ル試薬により鋼板圧延方向断面または圧延方向と直角な断面を腐食して500倍〜1000倍の光学顕微鏡観察により定量化した。   Tensile properties were evaluated by C direction tension of JIS No. 5 tensile test pieces. Identification of structure, observation of existing position, and measurement of average particle size (average equivalent circle diameter) and occupancy ratio are 500 times to 1000 times by corroding the steel sheet rolling direction cross section or the cross section perpendicular to the rolling direction with the Nital reagent. Was quantified by observation with an optical microscope.

穴拡げ試験は、穴径10mm、クリアランス12%で打ち抜きを行ったサンプルを頂点角60°のポンチにて穴を押し上げ、亀裂が板厚を貫通したところの穴径d1から
穴拡げ率(%)=(d1−10)/10×100
にて求めた。
In the hole expansion test, a sample punched with a hole diameter of 10 mm and clearance of 12% was pushed up with a punch with a vertex angle of 60 °, and the hole expansion ratio (%) from the hole diameter d1 where the crack penetrated the plate thickness = (D1-10) / 10 × 100
I asked for.

残留オーステナイトの体積率及びその平均の炭素濃度は特開平11−193435号後方に記載されているようにX線回折により求めた。すなわち、残留オーステナイトの体積率Vγは、Mo-Kα線を用いて得られたデータから次式により算出することが出来る。   The volume fraction of retained austenite and its average carbon concentration were determined by X-ray diffraction as described in JP-A-11-193435. That is, the volume fraction Vγ of retained austenite can be calculated from the data obtained using the Mo—Kα ray by the following equation.

Vγ=(2/3){100/(0.7×α(111)/γ(200)+1)}+(1/3){100/(0.78×α(211)/γ(311)+1)}
但し、α(211)、γ(200)、α(211)、γ(311)は面強度を表す。
Vγ = (2/3) {100 / (0.7 × α (111) / γ (200) +1)} + (1/3) {100 / (0.78 × α (211) / γ (311) +1) }
However, α (211), γ (200), α (211), and γ (311) represent surface strength.

また残留オーステナイトの炭素濃度CγはCu-Kα線によるX線解析でオーステナイトの(200)面、(220)面、(311)面の反射角から格子定数(単位はオングストローム)を求め、次式に従い算出することが出来る。   The carbon concentration Cγ of retained austenite is obtained by calculating the lattice constant (unit: angstrom) from the reflection angles of the (200), (220), and (311) surfaces of austenite by X-ray analysis using Cu-Kα rays. Can be calculated.

Cγ=(格子定数-3.572)/0.033
発明例である試料A〜gのうち,aはC含有量の上限,bはC含有量の下限を満足していない。c,d,e,gはそれぞれ,S,Si,Mn,Al含有量の上限を満足していない。fはSiとAl含有量の下限を満足していない。 表2の実験結果のうち,A3は保持時間が下限を下回っており、オーステナイト中の平均C濃度が高い。B3は焼鈍温度,オーステナイト粒径が上限を超えているためオーステナイト粒径が大きすぎ、D3については焼鈍温度が下限を下回っているため、伸び、穴拡げ率が低下している。F3は保持温度が下限を下回り、フェライト+ベイナイト分率、オーステナイト分率がともに範囲外にある。F4は保持温度が上限を超え、フェライト+ベイナイト分率、オーステナイト中の平均C濃度が低い。H3はオーステナイト中の平均C濃度が高く、伸び、穴拡げ率が低下している。H4は最終の一次冷却速度が本発明の範囲外にあり、式(1)を満たすオーステナイト粒が全体の50%未満である。a1はオーステナイト中の平均C濃度が高く、伸び、穴拡げ率が低下している。b1はオーステナイト分率が範囲以下である。d1はオーステナイト中のC濃度が高い。e1はオーステナイト中の平均C濃度が低い。f1はオーステナイト分率が確保できない。g1はオーステナイト中の平均C濃度が高い。G3、Q3は最終の二次冷却速度が範囲外にあり、式(1)を満たすオーステナイトが範囲外にある。図1、2にこれらの材質を示すが、本発明の鋼板のみ、伸び、穴拡げ性を両立したものであり、比較鋼に比べ、
極めて高い値を示しており、本発明の目的を達成している。
Cγ = (Lattice constant-3.572) /0.033
Among samples A to g which are invention examples, a does not satisfy the upper limit of the C content and b does not satisfy the lower limit of the C content. c, d, e, and g do not satisfy the upper limits of S, Si, Mn, and Al contents, respectively. f does not satisfy the lower limits of the Si and Al contents. Of the experimental results in Table 2, A3 has a retention time below the lower limit, and the average C concentration in austenite is high. Since B3 has an annealing temperature and an austenite grain size that exceeds the upper limit, the austenite grain size is too large. For D3, since the annealing temperature is below the lower limit, the elongation and the hole expansion rate are reduced. In F3, the holding temperature is below the lower limit, and the ferrite + bainite fraction and the austenite fraction are both out of range. F4 has a holding temperature exceeding the upper limit, and the ferrite + bainite fraction and the average C concentration in austenite are low. H3 has a high average C concentration in austenite, and the elongation and hole expansion rate are reduced. H4 has a final primary cooling rate outside the range of the present invention, and austenite grains satisfying the formula (1) are less than 50% of the whole. a1 has a high average C concentration in austenite, and the elongation and the hole expansion rate are reduced. b1 has an austenite fraction below the range. d1 has a high C concentration in austenite. e1 has a low average C concentration in austenite. f1 cannot secure an austenite fraction. g1 has a high average C concentration in austenite. In G3 and Q3, the final secondary cooling rate is out of the range, and austenite satisfying the formula (1) is out of the range. Although these materials are shown in FIGS. 1 and 2, only the steel plate of the present invention has both elongation and hole expansibility, compared with the comparative steel,
It shows an extremely high value and achieves the object of the present invention.

Figure 0005589893
Figure 0005589893

Figure 0005589893
Figure 0005589893

Claims (10)

質量%で、
C :0.05以上、0.35%以下、
Si:0.05%以上、2.0%以下、
Mn:0.8%以上、3.0%以下、
P :0.0010%以上、0.1%以下、
S :0.0005%以上、0.05%以下、
N :0.0010%以上、0.010%以下、
Al:0.01%以上、2.0%以下、
を含有して、残部鉄及び不可避的不純物からなる鋼組成をもち、金属組織はフェライトまたはベイナイトまたは焼戻しマルテンサイトを主体とし、残留オーステナイト相を3%以上、30%以下含む鋼板において、前記オーステナイト相がフェライト相、ベイナイト相およびマルテンサイト相と接する相界面において、前記オーステナイト相中の平均C濃度が0.6%以上,1.2%以下であり、前記オーステナイト相の中心濃度Cgcとオーステナイト粒の粒界の濃度Cgbが式(1)を満たす範囲にあるオーステナイト粒が50%以上あることを特徴とする伸びと穴拡げ性に優れた高強度薄鋼板。
Cgb/Cgc > 1.3 (1)
% By mass
C: 0.05 or more and 0.35% or less,
Si: 0.05% or more, 2.0% or less,
Mn: 0.8% or more, 3.0% or less,
P: 0.0010% or more, 0.1% or less,
S: 0.0005% or more, 0.05% or less,
N: 0.0010% or more, 0.010% or less,
Al: 0.01% or more, 2.0% or less,
A steel composition comprising the balance iron and inevitable impurities, the metal structure being mainly composed of ferrite, bainite or tempered martensite, and containing 3% or more and 30% or less of the retained austenite phase. In the phase interface in contact with the ferrite phase, bainite phase and martensite phase, the average C concentration in the austenite phase is 0.6% or more and 1.2% or less, and the central concentration Cgc of the austenite phase and the austenite grains A high-strength steel sheet excellent in elongation and hole expansibility, characterized in that there are 50% or more of austenite grains having a grain boundary concentration Cgb in a range satisfying the formula (1).
Cgb / Cgc> 1.3 (1)
前記オーステナイト相の平均粒径が5μm以下であることを特徴とする請求項1に記載の伸びと穴拡げ性に優れた高強度薄鋼板。   The high-strength thin steel sheet excellent in elongation and hole expansibility according to claim 1, wherein an average particle size of the austenite phase is 5 μm or less. 前記フェライトと前記ベイナイトと前記焼戻しマルテンサイト組織の合計が,全組織に対して、体積分率で50%以上であることを特徴とする請求項1または請求項2に記載の伸びと穴拡げ性に優れた高強度薄鋼板。   3. The elongation and hole expansibility according to claim 1, wherein the total of the ferrite, the bainite, and the tempered martensite structure is 50% or more in terms of volume fraction with respect to the entire structure. Excellent high strength thin steel sheet. さらに、質量%で、
Mo:0.02%以上、0.5%以下、
を含有することを特徴とする請求項1から請求項3に何れか1項に記載の伸びと穴拡げ性に優れた高強度薄鋼板。
Furthermore, in mass%,
Mo: 0.02% or more, 0.5% or less,
The high-strength thin steel sheet excellent in elongation and hole expansibility according to any one of claims 1 to 3, characterized in that
さらに、質量%で、
Nb:0.01%以上、0.10%以下、
Ti:0.01%以上、0.20%以下、
V:0.005%以上、0.10%以下、
Cr:0.1%以上、5.0%以下、
W:0.01%以上、5.0%以下、
の1種または2種以上を含有することを特徴とする請求項1から請求項4に何れか1項に記載の伸びと穴拡げ性に優れた高強度薄鋼板。
Furthermore, in mass%,
Nb: 0.01% or more, 0.10% or less,
Ti: 0.01% or more, 0.20% or less,
V: 0.005% or more, 0.10% or less,
Cr: 0.1% or more, 5.0% or less,
W: 0.01% or more, 5.0% or less,
The high-strength thin steel sheet excellent in elongation and hole expansibility according to any one of claims 1 to 4, characterized by containing one or more of the following.
さらに、質量%で、
Ca、Mg、Zr、REMの1種または2種以上を0.0005%以上、0.05%以下含有することを特徴とする請求項1から請求項5に何れか1項に記載の伸びと穴拡げ性に優れた高強度薄鋼板。
Furthermore, in mass%,
The elongation according to any one of claims 1 to 5, characterized by containing one or more of Ca, Mg, Zr, and REM in an amount of 0.0005% to 0.05%. A high-strength thin steel plate with excellent hole expandability.
さらに、質量%で、
Cu:0.04%以上、2.0%以下、Ni:0.02%以上、1.0%以下、B:0.0003%以上、0.007%以下の1種または2種以上を含有することを特徴とする請求項1から請求項6の何れか1項に記載の伸びと穴拡げ性に優れた高強度薄鋼板。
Furthermore, in mass%,
Cu: 0.04% or more, 2.0% or less, Ni: 0.02% or more, 1.0% or less, B: 0.0003% or more, 0.007% or less The high-strength thin steel sheet excellent in elongation and hole expansibility according to any one of claims 1 to 6, characterized in that:
鋳造スラブに対して,鋳造後そのまま、または、一旦、1100℃以下まで冷却した後に,1100℃以上に再加熱して、熱延を行うにあたり、その仕上げ温度を850℃以上,970℃以下にて終了し、その後650℃以下の温度域まで平均で10℃/秒以上,200℃/秒以下で冷却した後650℃以下の温度範囲で巻取り、酸洗後、40%以上の冷間圧延を施し、焼鈍時の最高温度が700℃以上、900℃以下で焼鈍した後に、平均で0。1℃/秒以上,200℃/秒以下の冷却速度で350℃以上,480℃以下の温度域に冷却し、引き続いて同温度域で20秒以上,800秒以下保持を行った後,350℃から220℃までの温度域を5℃/秒以上25℃/秒以下の冷却速度で一次冷却し、さらに、120℃から常温近傍までの温度域を100℃/秒以上または5℃/秒以下の平均冷却速度で二次冷却する最終冷却工程を備えることを特徴とする請求項1〜7の何れか1項に記載の伸びと穴拡げ性に優れた高強度薄鋼板の製造方法。   For the cast slab, after casting, or once cooled to 1100 ° C. or lower, reheated to 1100 ° C. or higher and perform hot rolling at a finishing temperature of 850 ° C. or higher and 970 ° C. or lower. After that, after cooling to a temperature range of 650 ° C. or lower and an average of 10 ° C./second or higher and 200 ° C./second or lower to a temperature range of 650 ° C. or lower, winding in a temperature range of 650 ° C. or lower, pickling, and cold rolling of 40% or higher After annealing at a maximum temperature of 700 ° C or higher and 900 ° C or lower after annealing, the average temperature is 0.1 ° C / second or higher and 200 ° C / second or lower to a temperature range of 350 ° C or higher and 480 ° C or lower. After cooling and subsequently holding in the same temperature range for 20 seconds or more and 800 seconds or less, the temperature range from 350 ° C. to 220 ° C. is primarily cooled at a cooling rate of 5 ° C./second to 25 ° C./second, Furthermore, temperatures from 120 ° C to near room temperature It is equipped with the last cooling process which carries out the secondary cooling with the average cooling rate of 100 degrees C / sec or more or 5 degrees C / sec or less, The elongation and hole expansibility of any one of Claims 1-7 characterized by the above-mentioned. An excellent method for producing high strength thin steel sheets. 鋳造スラブに対して,鋳造後そのまま、または、一旦、1100℃以下まで冷却した後に,1100℃以上に再加熱して、熱延を行うにあたり、その仕上げ温度を850℃以上,970℃以下にて終了し、その後650℃以下の温度域まで平均で10℃/秒以上,200℃/秒以下で冷却した後650℃以下の温度範囲で巻取り、酸洗後、40%以上の冷間圧延を施し、焼鈍時の最高温度が700℃以上、900℃以下で焼鈍した後に、平均で0.1℃/秒以上,200℃/秒以下の冷却速度で350℃以上,480℃以下の温度域に冷却し、引き続いて同温度域で20秒以上,800秒以下保持を行った後,溶融亜鉛めっきに浸漬し,350℃から220℃までの温度域を5℃/秒以上25℃/秒以下の冷却速度で一次冷却し、さらに、120℃から常温近傍までの温度域を100℃/秒以上または5℃/秒以下の平均冷却速度で二次冷却する最終冷却工程を備えることを特徴とする請求項1〜7の何れか1項に記載の伸びと穴拡げ性に優れた高強度薄鋼板の製造方法。
For the cast slab, after casting, or once cooled to 1100 ° C. or lower, reheated to 1100 ° C. or higher and perform hot rolling at a finishing temperature of 850 ° C. or higher and 970 ° C. or lower. After that, after cooling at an average temperature of 10 ° C./second or more and 200 ° C./second or less to a temperature range of 650 ° C. or less, winding in a temperature range of 650 ° C. or less, pickling, and cold rolling at 40% or more After annealing at a maximum temperature of 700 ° C. or more and 900 ° C. or less after annealing, the temperature is 350 ° C. or more and 480 ° C. or less at an average cooling rate of 0.1 ° C./second or more and 200 ° C./second or less. After cooling and holding at the same temperature range for 20 seconds or more and 800 seconds or less, it is immersed in a hot dip galvanizing bath and the temperature range from 350 ° C to 220 ° C is 5 ° C / second or more and 25 ° C / second or less. Primary cooling at a cooling rate of 120 ° C 8. A final cooling step of performing secondary cooling of the temperature range from about 1 to about room temperature to an average cooling rate of 100 ° C./second or more or 5 ° C./second or less is provided. Of high-strength steel sheet with excellent elongation and hole expandability.
鋳造スラブに対して,鋳造後そのまま、または、一旦、1100℃以下まで冷却した後に,1100℃以上に再加熱して、熱延を行うにあたり、その仕上げ温度を850℃以上,970℃以下にて終了し、その後650℃以下の温度域まで平均で10℃/秒以上,200℃/秒以下で冷却した後650℃以下の温度範囲で巻取り、酸洗後、40%以上の冷間圧延を施し、焼鈍時の最高温度が700℃以上、900℃以下で焼鈍した後に、平均で0.1℃/秒以上,200℃/秒以下の冷却速度で350℃以上,480℃以下の温度域に冷却し、引き続いて同温度域で20秒以上,800秒以下保持を行った後,溶融亜鉛めっきに浸漬し、440℃以上,580℃以下の範囲で合金化処理を行い、350℃から220℃までの温度域を5℃/秒以上25℃/秒以下の冷却速度で一次冷却し、さらに、120℃から常温近傍までの温度域を100℃/秒以上または5℃/秒以下の平均冷却速度で二次冷却する最終冷却工程を備えることを特徴とする請求項1〜7の何れか1項に記載の伸びと穴拡げ性に優れた高強度薄鋼板の製造方法。 For the cast slab, after casting, or once cooled to 1100 ° C. or lower, reheated to 1100 ° C. or higher and perform hot rolling at a finishing temperature of 850 ° C. or higher and 970 ° C. or lower. After that, after cooling at an average temperature of 10 ° C./second or more and 200 ° C./second or less to a temperature range of 650 ° C. or less, winding in a temperature range of 650 ° C. or less, pickling, and cold rolling at 40% or more After annealing at a maximum temperature of 700 ° C. or more and 900 ° C. or less after annealing, the temperature is 350 ° C. or more and 480 ° C. or less at an average cooling rate of 0.1 ° C./second or more and 200 ° C./second or less. cooling, subsequently at the same temperature range for 20 seconds or more, after holding 800 seconds or less, and immersed in molten zinc plating bath, 440 ° C. or higher, subjected to alloying treatment in the range of 580 ° C. or less, from 350 ° C. 220 The temperature range up to 5 ° C is over 5 ° C / second 2 A primary cooling step is performed in which primary cooling is performed at a cooling rate of 5 ° C./second or less and secondary cooling is performed at an average cooling rate of 100 ° C./second or less or 5 ° C./second or less in a temperature range from 120 ° C. to near normal temperature. method for producing a high strength thin steel sheet excellent in elongation and hole expandability according to any one of claims 1 to 7, characterized in that.
JP2011040077A 2010-02-26 2011-02-25 High-strength thin steel sheet excellent in elongation and hole expansion and method for producing the same Active JP5589893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011040077A JP5589893B2 (en) 2010-02-26 2011-02-25 High-strength thin steel sheet excellent in elongation and hole expansion and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010042393 2010-02-26
JP2010042393 2010-02-26
JP2011040077A JP5589893B2 (en) 2010-02-26 2011-02-25 High-strength thin steel sheet excellent in elongation and hole expansion and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011195956A JP2011195956A (en) 2011-10-06
JP5589893B2 true JP5589893B2 (en) 2014-09-17

Family

ID=44874532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011040077A Active JP5589893B2 (en) 2010-02-26 2011-02-25 High-strength thin steel sheet excellent in elongation and hole expansion and method for producing the same

Country Status (1)

Country Link
JP (1) JP5589893B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097600A1 (en) 2017-11-15 2019-05-23 日本製鉄株式会社 High-strength cold-rolled steel sheet
WO2019186989A1 (en) 2018-03-30 2019-10-03 日本製鉄株式会社 Steel sheet
US10876181B2 (en) 2015-02-24 2020-12-29 Nippon Steel Corporation Cold-rolled steel sheet and method of manufacturing same
WO2021054290A1 (en) 2019-09-17 2021-03-25 株式会社神戸製鋼所 High-strength steel sheet and method for producing same

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5466552B2 (en) * 2010-03-24 2014-04-09 株式会社神戸製鋼所 High-strength cold-rolled steel sheet that combines elongation, stretch flangeability and weldability
EP2831292B2 (en) 2012-03-30 2022-08-10 voestalpine Stahl GmbH High strength cold rolled steel sheet and method of producing such steel sheet
US10227683B2 (en) 2012-03-30 2019-03-12 Voestalpine Stahl Gmbh High strength cold rolled steel sheet
KR101412311B1 (en) 2012-06-28 2014-06-25 현대제철 주식회사 Method for manufacturing high strength cold rolled steel sheet
JP2014185359A (en) * 2013-03-22 2014-10-02 Jfe Steel Corp High strength steel sheet
JP5862591B2 (en) 2013-03-28 2016-02-16 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
WO2015011511A1 (en) 2013-07-24 2015-01-29 Arcelormittal Investigación Y Desarrollo Sl Steel sheet having very high mechanical properties of strength and ductility, manufacturing method and use of such sheets
US10774405B2 (en) 2014-01-06 2020-09-15 Nippon Steel Corporation Steel and method of manufacturing the same
RU2659549C2 (en) 2014-01-06 2018-07-02 Ниппон Стил Энд Сумитомо Метал Корпорейшн Hot-formed member and process for its manufacturing
BR112017000567A2 (en) * 2014-07-18 2017-11-07 Nippon Steel & Sumitomo Metal Corp steel product and manufacturing method
WO2016021197A1 (en) 2014-08-07 2016-02-11 Jfeスチール株式会社 High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
EP3178955B1 (en) 2014-08-07 2020-07-15 JFE Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
EP3178956A4 (en) 2014-08-07 2017-06-28 JFE Steel Corporation High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
JP6282576B2 (en) * 2014-11-21 2018-02-21 株式会社神戸製鋼所 High strength high ductility steel sheet
MX2018009885A (en) * 2016-02-18 2018-11-09 Jfe Steel Corp High-strength cold-rolled steel sheet, and production method therefor.
US20190048436A1 (en) * 2016-02-18 2019-02-14 Jfe Steel Corporation High-strength cold rolled steel sheet and method of producing same
KR102035525B1 (en) * 2016-06-27 2019-10-24 한국기계연구원 Steel having film type retained austenite
CN109642281B (en) 2016-08-31 2021-02-23 杰富意钢铁株式会社 High-strength cold-rolled steel sheet and method for producing same
US11028458B2 (en) 2017-01-27 2021-06-08 Nippon Steel Corporation Steel sheet and plated steel sheet
CN113195761B (en) 2018-12-11 2022-08-09 日本制铁株式会社 High-strength steel sheet having excellent formability and impact resistance, and method for producing high-strength steel sheet having excellent formability and impact resistance
MX2021006793A (en) 2018-12-11 2021-07-16 Nippon Steel Corp High-strength steel plate having excellent formability, toughness and weldability, and production method of same.
MX2021008617A (en) * 2019-01-18 2021-08-19 Jfe Steel Corp High-strength hot-dip galvanized steel sheet and method for manufacturing same.
KR102321292B1 (en) * 2019-12-18 2021-11-03 주식회사 포스코 High strength steel sheet having excellent workability and method for manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4062616B2 (en) * 2002-08-12 2008-03-19 株式会社神戸製鋼所 High strength steel plate with excellent stretch flangeability
JP4325865B2 (en) * 2003-08-29 2009-09-02 株式会社神戸製鋼所 High-tensile steel plate with excellent workability and its manufacturing method
JP4529549B2 (en) * 2004-06-15 2010-08-25 Jfeスチール株式会社 Manufacturing method of high-strength cold-rolled steel sheets with excellent ductility and hole-expansion workability
JP4445365B2 (en) * 2004-10-06 2010-04-07 新日本製鐵株式会社 Manufacturing method of high-strength thin steel sheet with excellent elongation and hole expandability

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10876181B2 (en) 2015-02-24 2020-12-29 Nippon Steel Corporation Cold-rolled steel sheet and method of manufacturing same
WO2019097600A1 (en) 2017-11-15 2019-05-23 日本製鉄株式会社 High-strength cold-rolled steel sheet
KR20200067887A (en) 2017-11-15 2020-06-12 닛폰세이테츠 가부시키가이샤 High strength cold rolled steel sheet
US11208705B2 (en) 2017-11-15 2021-12-28 Nippon Steel Corporation High-strength cold-rolled steel sheet
WO2019186989A1 (en) 2018-03-30 2019-10-03 日本製鉄株式会社 Steel sheet
KR20200106191A (en) 2018-03-30 2020-09-11 닛폰세이테츠 가부시키가이샤 Grater
US11492687B2 (en) 2018-03-30 2022-11-08 Nippon Steel Corporation Steel sheet
WO2021054290A1 (en) 2019-09-17 2021-03-25 株式会社神戸製鋼所 High-strength steel sheet and method for producing same
KR20220047846A (en) 2019-09-17 2022-04-19 가부시키가이샤 고베 세이코쇼 High-strength steel sheet and manufacturing method thereof
US11913088B2 (en) 2019-09-17 2024-02-27 Kobe Steel, Ltd. High-strength steel sheet and method for producing same

Also Published As

Publication number Publication date
JP2011195956A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
JP5589893B2 (en) High-strength thin steel sheet excellent in elongation and hole expansion and method for producing the same
JP4902026B2 (en) Steel plate and steel plate manufacturing method
JP5403185B2 (en) High-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet excellent in plating adhesion, formability and hole expansibility having a tensile strength of 980 MPa or more, and a method for producing the same
JP5578289B2 (en) Cold-rolled steel sheet, method for producing the same, and hot stamping molded body
JP5369663B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP5719545B2 (en) High strength thin steel sheet with excellent elongation and press forming stability
KR101618477B1 (en) High-strength steel sheet and method for manufacturing same
JP5382278B1 (en) Hot stamp molded body and manufacturing method thereof
RU2680041C2 (en) Method for producing high-strength steel sheet and produced sheet
JP5418047B2 (en) High strength steel plate and manufacturing method thereof
JP5310968B1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP4959161B2 (en) Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, elongation and hole expansibility
JP4589880B2 (en) High-strength hot-dip galvanized steel sheet excellent in formability and hole expansibility, high-strength alloyed hot-dip galvanized steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet
JP5114747B2 (en) Manufacturing method of high-strength steel sheet with extremely good balance between hole expansibility and ductility and manufacturing method of galvanized steel sheet
JP5807368B2 (en) High-strength cold-rolled steel sheet having a very high uniform elongation in the direction of 45 ° with respect to the rolling direction and a method for producing the same
KR20120099505A (en) High-strength hot-dip galvanized steel sheet with excellent processability and impact resistance and process for producing same
JP5589925B2 (en) High-strength thin steel sheet with excellent elongation and uniform paint bake-hardening performance and method for producing the same
JP2008156680A (en) High-strength cold rolled steel sheet having high yield ratio, and its production method
KR20070011007A (en) Hot dip galvanized steel sheets of trip steels which have good adhesion property and excellent formability and the method of developing those steels
JP2005281854A (en) High-strength and high-ductility hot-dip galvanized steel sheet superior in hole expandability, and manufacturing method therefor
UA125769C2 (en) Cold rolled and coated steel sheet and a method of manufacturing thereof
JP4227431B2 (en) High strength and high ductility steel sheet and method for producing the same
JP2007070662A (en) Hot dip galvanized high strength steel sheet and hot dip zincing high strength steel sheet having excellent corrosion resistance and formability, and method for producing them
UA126725C2 (en) Cold rolled and coated steel sheet and a method of manufacturing thereof
RU2795439C1 (en) Cold-rolled and coated steel sheet and method for its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140714

R151 Written notification of patent or utility model registration

Ref document number: 5589893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350