JP5586509B2 - Method for producing acid-modified olefin-based aqueous dispersion - Google Patents

Method for producing acid-modified olefin-based aqueous dispersion Download PDF

Info

Publication number
JP5586509B2
JP5586509B2 JP2011061117A JP2011061117A JP5586509B2 JP 5586509 B2 JP5586509 B2 JP 5586509B2 JP 2011061117 A JP2011061117 A JP 2011061117A JP 2011061117 A JP2011061117 A JP 2011061117A JP 5586509 B2 JP5586509 B2 JP 5586509B2
Authority
JP
Japan
Prior art keywords
acid
aqueous dispersion
amount
modified olefin
olefin polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011061117A
Other languages
Japanese (ja)
Other versions
JP2012197337A (en
Inventor
智紀 高瀬
信隆 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UMG ABS Ltd
Original Assignee
UMG ABS Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UMG ABS Ltd filed Critical UMG ABS Ltd
Priority to JP2011061117A priority Critical patent/JP5586509B2/en
Publication of JP2012197337A publication Critical patent/JP2012197337A/en
Application granted granted Critical
Publication of JP5586509B2 publication Critical patent/JP5586509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、酸変性オレフィン系重合体を含有する水性分散体の製造方法に関する。   The present invention relates to a method for producing an aqueous dispersion containing an acid-modified olefin polymer.

ポリオレフィンは軽量かつ安価である上、成形性および耐溶剤性に優れるため、近年、自動車用途に多く採用されている。従来、ポリオレフィンの成形体に対して塗装や接着を行う場合には、トルエンやキシレンなどの芳香族系有機溶剤に塩素化ポリオレフィンを溶解させた塗料や接着剤が広く使用されていた。
しかしながら、近年、環境への配慮から、有機溶剤を含有しない塗料や接着剤あるいはプライマーが求められている。
有機溶剤を含有しない水性分散体の製造法としては重合法および押出機などを用いて転相現象を利用する方法が知られている。引用文献1、2には、押出機を用いる方法について具体的に開示されている。
特許文献1、2には、押出機を利用して得た水性分散体は平均粒子径が小さく、未乳化物量の少ないものが安定して製造できる旨が開示されている。
Polyolefins are light and inexpensive, and are excellent in moldability and solvent resistance, and thus have been widely used in automotive applications in recent years. Conventionally, when coating or bonding a polyolefin molded body, a paint or an adhesive in which chlorinated polyolefin is dissolved in an aromatic organic solvent such as toluene or xylene has been widely used.
However, in recent years, a paint, an adhesive, or a primer that does not contain an organic solvent has been demanded in consideration of the environment.
As a method for producing an aqueous dispersion not containing an organic solvent, a method utilizing a phase inversion phenomenon using a polymerization method or an extruder is known. References 1 and 2 specifically disclose a method using an extruder.
Patent Documents 1 and 2 disclose that an aqueous dispersion obtained using an extruder has a small average particle diameter and can be stably produced with a small amount of non-emulsified product.

特公平7−96647号公報Japanese Examined Patent Publication No. 7-96647 特開2008−101156号公報JP 2008-101156 A

しかしながら、特許文献1、2に記載の方法によって、酸変性されたポリマー材料の水性分散体を製造した場合には、得られた水性分散体の粒子径が小さく、未乳化物量が少ないにもかかわらず、粘度が高い傾向にあった。そのため、塗料化時の分散性、作業性、ろ過性の低下などが生じ、作業効率の低下を招き、産業上のデメリットが多かった。
また、押出機を用いた水性分散体の製造法において、ポリマーの熱劣化および省エネルギーのために、押出機の温度を、使用するポリマー材料の融点以下にすると、混練不良を起こし、水性分散体を得ることが困難になった。
本発明は、酸変性ポリマー材料の水性分散体の粒子径を小さく、未乳化物量を少なくかつ粘度を低下させることができる酸変性オレフィン系水性分散体の製造方法を提供することを目的とする。
However, when an aqueous dispersion of an acid-modified polymer material is produced by the methods described in Patent Documents 1 and 2, the resulting aqueous dispersion has a small particle size and a small amount of non-emulsified matter. However, the viscosity tended to be high. For this reason, the dispersibility, workability, and filterability of the paint are reduced, resulting in a decrease in work efficiency and many industrial demerits.
In addition, in the method for producing an aqueous dispersion using an extruder, if the temperature of the extruder is set to be equal to or lower than the melting point of the polymer material used for thermal degradation and energy saving of the polymer, a kneading failure occurs, and the aqueous dispersion It became difficult to get.
An object of the present invention is to provide a method for producing an acid-modified olefin-based aqueous dispersion in which the particle size of the aqueous dispersion of the acid-modified polymer material is small, the amount of non-emulsified material can be reduced, and the viscosity can be reduced.

本発明者らは、上記目的を達成すべく検討した結果、以下の酸変性オレフィン系水性分散体の製造方法を発明するに至った。
[1]酸基を有する第1の酸変性オレフィン系重合体(A)を含有する酸変性ポリマー材料(P)とアニオン型界面活性剤(C)とを溶融混練して混練物を得る第1の混練工程の温度が融点以上であり、前記混練物に、塩基性物質(D)と水(E)とを添加し、溶融混練する第2の混練工程の温度が融点以下であり、水(E)の添加量が第1の酸変性オレフィン系重合体(A)100重量部に対して10〜22質量部であることを特徴とする酸変性オレフィン系水性分散体の製造方法。
[2]第1の酸変性オレフィン系重合体(A)が、オレフィン単位と不飽和カルボン酸単位または不飽和カルボン酸無水物単位とを有し且つ酸価が10mgKOH/g以上、質量平均分子量が2,000〜30,000であることを特徴とする[1]に記載の酸変性オレフィン系水性分散体の製造方法。
[3]酸変性ポリマー材料(P)が、オレフィン単位と不飽和カルボン酸単位または不飽和カルボン酸無水物単位とを有し且つ質量平均分子量が31,000〜50,000の第2の酸変性オレフィン系重合体(B)を、第1の酸変性オレフィン系重合体(A)100質量部に対して1〜50質量部含有する[1]または[2]に記載の酸変性オレフィン系水性分散体の製造方法。
As a result of studies to achieve the above object, the present inventors have invented the following method for producing an acid-modified olefin-based aqueous dispersion.
[1] A first kneaded product obtained by melt-kneading an acid-modified polymer material (P) containing an acid group-containing first acid-modified olefin polymer (A) and an anionic surfactant (C) The temperature of the kneading step is equal to or higher than the melting point, the basic material (D) and water (E) are added to the kneaded material, and the temperature of the second kneading step for melt kneading is equal to or lower than the melting point, A method for producing an acid-modified olefin-based aqueous dispersion, wherein the amount of addition of E) is 10 to 22 parts by mass with respect to 100 parts by weight of the first acid-modified olefin polymer (A).
[2] The first acid-modified olefin polymer (A) has an olefin unit and an unsaturated carboxylic acid unit or an unsaturated carboxylic acid anhydride unit, an acid value of 10 mgKOH / g or more, and a mass average molecular weight. It is 2,000-30,000, The manufacturing method of the acid-modified olefin type aqueous dispersion as described in [1] characterized by the above-mentioned.
[3] Second acid modification in which the acid-modified polymer material (P) has an olefin unit and an unsaturated carboxylic acid unit or an unsaturated carboxylic anhydride unit and has a mass average molecular weight of 31,000 to 50,000. The acid-modified olefin-based aqueous dispersion according to [1] or [2], containing 1 to 50 parts by mass of the olefin polymer (B) with respect to 100 parts by mass of the first acid-modified olefin polymer (A). Body manufacturing method.

本発明の酸変性オレフィン系水性分散体の製造方法によれば、酸変性ポリマー材料の水性分散体の粒子径を小さく、未乳化物量を少なくかつ粘度を低下させることができる。この方法により得た水性分散体によれば、塗料化時の分散性、作業性、ろ過性の低下を改善できる。   According to the method for producing an acid-modified olefin-based aqueous dispersion of the present invention, the particle size of the aqueous dispersion of the acid-modified polymer material can be reduced, the amount of non-emulsified material can be reduced, and the viscosity can be reduced. According to the aqueous dispersion obtained by this method, it is possible to improve the deterioration of dispersibility, workability, and filterability during coating.

<酸変性オレフィン系水性分散体>
本発明の酸変性オレフィン系水性分散体の製造方法により得られる酸変性オレフィン系水性分散体(以下、「水性分散体」と略す。)は、酸変性ポリマー材料(P)、アニオン型界面活性剤(C)、塩基性物質(D)、水(E)を含み、有機溶剤および塩素原子含有重合体を含まないものである。
<Acid-modified olefin-based aqueous dispersion>
The acid-modified olefin-based aqueous dispersion (hereinafter abbreviated as “aqueous dispersion”) obtained by the method for producing an acid-modified olefin-based aqueous dispersion of the present invention includes an acid-modified polymer material (P) and an anionic surfactant. It contains (C), basic substance (D), and water (E), and does not contain organic solvent and chlorine atom-containing polymer.

(酸変性ポリマー材料(P))
酸変性ポリマー材料(P)は、酸基を有するものであり、第1の酸変性オレフィン系重合体(A)を必須成分として含有し、第2の酸変性オレフィン系重合体(B)を任意成分として含有する。
(Acid-modified polymer material (P))
The acid-modified polymer material (P) has an acid group, contains the first acid-modified olefin polymer (A) as an essential component, and optionally contains the second acid-modified olefin polymer (B). Contains as a component.

[第1の酸変性オレフィン系重合体(A)]
第1の酸変性オレフィン系重合体(A)は、オレフィン単位と、不飽和カルボン酸単位または不飽和カルボン酸無水物単位とを有するオレフィン系重合体である。
オレフィン成分単位としては、炭素数2〜4のオレフィン、すなわち、エチレン、プロピレン、1−ブテンが好ましいが、1−ペンテン、1−ヘキセン、1−オクテン等であってもよい。これらは1種を単独で用いてもよいし、2種以上を組み合わせてもよい。
不飽和カルボン酸単位または不飽和カルボン酸無水物単位としては、フマル酸、マレイン酸、イタコン酸、シトラコン酸、アコニット酸、またはこれらの無水物が挙げられる。これらは1種を単独で用いてもよいし、2種以上を組み合わせてもよい。
[First Acid-Modified Olefin Polymer (A)]
The first acid-modified olefin polymer (A) is an olefin polymer having an olefin unit and an unsaturated carboxylic acid unit or an unsaturated carboxylic anhydride unit.
The olefin component unit is preferably an olefin having 2 to 4 carbon atoms, that is, ethylene, propylene, 1-butene, but may be 1-pentene, 1-hexene, 1-octene and the like. These may be used individually by 1 type and may combine 2 or more types.
Examples of the unsaturated carboxylic acid unit or the unsaturated carboxylic acid anhydride unit include fumaric acid, maleic acid, itaconic acid, citraconic acid, aconitic acid, and anhydrides thereof. These may be used individually by 1 type and may combine 2 or more types.

第1の酸変性オレフィン系重合体(A)の酸価は10mgKOH/g以上が好ましく、20〜55mgKOH/gがより好ましい。ここでいう、酸価は、酸変性オレフィン系重合体1gを中和するのに必要な水酸化カリウムのmg数である。酸価が10mgKOH/g以上であれば、製造時に安定な水性分散体を採取できる。   The acid value of the first acid-modified olefin polymer (A) is preferably 10 mgKOH / g or more, more preferably 20 to 55 mgKOH / g. The acid value here is the number of mg of potassium hydroxide required to neutralize 1 g of the acid-modified olefin polymer. When the acid value is 10 mgKOH / g or more, a stable aqueous dispersion can be collected during production.

第1の酸変性オレフィン系重合体(A)の質量平均分子量は2,000〜30,000が好ましく、5,000〜28,000がより好ましく、10,000〜26,000が特に好ましい。質量平均分子量が2,000〜30,000であれば、製造時に安定な水性分散体を採取できる。
本発明における質量平均分子量Mwは、ゲルパーミエーションクロマトグラフィを用いて測定し、標準ポリスチレンで換算した値である。
The mass average molecular weight of the first acid-modified olefin polymer (A) is preferably 2,000 to 30,000, more preferably 5,000 to 28,000, and particularly preferably 10,000 to 26,000. If the weight average molecular weight is 2,000 to 30,000, a stable aqueous dispersion can be collected during production.
The mass average molecular weight Mw in the present invention is a value measured by gel permeation chromatography and converted to standard polystyrene.

第1の酸変性オレフィン系重合体(A)を製造する方法としては、特開2004−115712号公報に記載されているような前駆体ポリオレフィンを重合する重合工程と、該前駆体ポリオレフィンに不飽和カルボン酸または不飽和カルボン酸無水物をグラフトする変性工程とを有する方法が好ましい。   As a method for producing the first acid-modified olefin polymer (A), there are a polymerization step for polymerizing a precursor polyolefin as described in JP-A No. 2004-115712, and the precursor polyolefin is unsaturated. A method having a modification step of grafting carboxylic acid or unsaturated carboxylic acid anhydride is preferred.

前駆体オレフィン系重合体の組成は、重合工程時のオレフィンモノマーの供給量を適宜変更することにより調節できる。また、質量平均分子量と融点の調整方法としては、重合時に水素ガスを使用して制御する方法、モノマー濃度を制御する方法、重合温度を制御する方法等が挙げられる。   The composition of the precursor olefin polymer can be adjusted by appropriately changing the supply amount of the olefin monomer during the polymerization step. Examples of methods for adjusting the mass average molecular weight and the melting point include a method of controlling using hydrogen gas during polymerization, a method of controlling the monomer concentration, and a method of controlling the polymerization temperature.

変性工程では、ラジカル重合開始剤を用いることが好ましい。ラジカル重合開始剤としては、有機過酸化物、アゾニトリルから適宜選択して使用できる。
有機過酸化物としては、ジ(t−ブチルパーオキシ)シクロヘキサンなどのパーオキシケタール類、クメンヒドロキシパーオキシドなどのハイドロパーオキシド類、ジ(t−ブチル)パーオキシドなどのジアルキルパーオキサイド類、ベンゾイルパーオキシドなどのジアシルパーオキサイド類が挙げられる。
アゾニトリルとしては、アゾイソブチロニトリル、アゾイソプロピロニトリル等が挙げられる。
これらラジカル重合開始剤は1種を単独で用いても構わないし、2種以上を組み合わせてもよい。
ラジカル重合開始剤の添加量は、前駆体のポリオレフィン系重合体100質量部に対して0.1〜10質量部であることが好ましい。
In the modification step, it is preferable to use a radical polymerization initiator. As the radical polymerization initiator, an organic peroxide or an azonitrile can be appropriately selected and used.
Organic peroxides include peroxyketals such as di (t-butylperoxy) cyclohexane, hydroperoxides such as cumene hydroxyperoxide, dialkyl peroxides such as di (t-butyl) peroxide, and benzoyl peroxide. And diacyl peroxides such as oxides.
Examples of the azonitrile include azoisobutyronitrile and azoisopropylonitrile.
These radical polymerization initiators may be used alone or in combination of two or more.
The addition amount of the radical polymerization initiator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the precursor polyolefin polymer.

グラフト反応させる方法は、第1の酸変性オレフィン系重合体(A)を製造できれば、いかなる方法であってもよい。例えば、無溶媒で溶融加熱攪拌して反応させる方法、押出機で加熱混練して反応させる方法等が挙げられる。それらの中でも押出機を用いてグラフト重合する方法は溶媒を使用する必要がなく、溶媒留去工程が不要であり、さらにグラフト重合工程に時間を有しないためエネルギー的に有利な点で好適である。   The method for the graft reaction may be any method as long as the first acid-modified olefin polymer (A) can be produced. Examples thereof include a method of reacting by melting and stirring without a solvent, a method of reacting by heating and kneading with an extruder, and the like. Among them, the method of graft polymerization using an extruder does not require the use of a solvent, does not require a solvent distillation step, and further has no time in the graft polymerization step, which is preferable in terms of energy advantage. .

[第2の酸変性オレフィン系重合体(B)]
第2の酸変性オレフィン系重合体(B)は、オレフィン単位と、不飽和カルボン酸単位または不飽和カルボン酸無水物単位とを必須成分として有する重合体である。ここで、オレフィン単位、不飽和カルボン酸単位または不飽和カルボン酸無水物単位としては、第1の酸変性オレフィン系重合体(A)と同じものを使用できる。
[Second acid-modified olefin polymer (B)]
The second acid-modified olefin polymer (B) is a polymer having an olefin unit and an unsaturated carboxylic acid unit or an unsaturated carboxylic anhydride unit as essential components. Here, as the olefin unit, unsaturated carboxylic acid unit or unsaturated carboxylic anhydride unit, the same as the first acid-modified olefin polymer (A) can be used.

第2の酸変性オレフィン系重合体(B)としては、オレフィン単位を有する重合体に、不飽和カルボン酸または不飽和カルボン酸無水物を結合させたものが好ましく用いられる。不飽和カルボン酸単位または不飽和カルボン酸無水物単位は、前記重合体100質量部に対して1.5〜7.5質量部であることが好ましい。   As the second acid-modified olefin polymer (B), a polymer having an olefin unit and an unsaturated carboxylic acid or an unsaturated carboxylic acid anhydride is preferably used. The unsaturated carboxylic acid unit or unsaturated carboxylic anhydride unit is preferably 1.5 to 7.5 parts by mass with respect to 100 parts by mass of the polymer.

第2の酸変性オレフィン系重合体(B)の質量平均分子量は、水性分散体の貯蔵安定性がより高くなることから、31,000〜50,000であることが好ましく、35,000〜45,000であることがより好ましい。
第2の酸変性オレフィン系重合体(B)の酸価は、水性分散体の貯蔵安定性がより高くなることから、20〜60mgKOH/gであることが好ましく、30〜50mgKOH/gであることがより好ましい。
The mass average molecular weight of the second acid-modified olefin polymer (B) is preferably 31,000 to 50,000, preferably 35,000 to 45, because the storage stability of the aqueous dispersion becomes higher. Is more preferable.
The acid value of the second acid-modified olefin polymer (B) is preferably 20 to 60 mgKOH / g and more preferably 30 to 50 mgKOH / g because the storage stability of the aqueous dispersion becomes higher. Is more preferable.

第2の酸変性オレフィン系重合体(B)の含有量は、水性分散体の未乳化物量が少なく、貯蔵安定性がより高くなることから、第1の酸変性オレフィン系重合体(A)100質量部に対して1〜50質量部であることが好ましく、10〜40質量部であることがより好ましい。   Since the content of the second acid-modified olefin polymer (B) is small in the amount of non-emulsified aqueous dispersion and storage stability is higher, the first acid-modified olefin polymer (A) 100 is increased. It is preferable that it is 1-50 mass parts with respect to a mass part, and it is more preferable that it is 10-40 mass parts.

(アニオン型界面活性剤(C))
アニオン型界面活性剤(C)としては、例えば、第1級高級脂肪酸、第2級高級脂肪酸、第1級高級アルコール硫酸エステル、第2級高級アルコール硫酸エステル、第1級高級アルキルスルホン酸、第2級高級アルキルスルホン酸、高級アルキルジスルホン酸、スルホン化高級脂肪酸、高級脂肪酸硫酸エステル、高級脂肪酸エステルスルホン酸、高級アルコールエーテルの硫酸エステル、高級アルコールエーテルのスルホン酸、高級脂肪酸アミドのアルキロール化硫酸エステル、アルキルベンゼンスルホン酸、アルキルフェノールスルホン酸、アルキルナフタリンスルホン酸、アルキルベンゾイルイミダゾールスルホン酸などの酸およびその塩が挙げられる。
上記のアニオン型界面活性剤を構成する高級脂肪酸としては、カプリン酸、ウンデカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、マーガリン酸、ステアリン酸、アラキン酸等の飽和脂肪酸、リンデル酸、ツズ酸、ペトロセリン酸、オレイン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸と、これらの混合物が挙げられる。
酸と塩を形成するための元素としては、ナトリウム、カリウム等のアルカリ金属が挙げられる。中でも脂肪酸カリウムが、水性分散体の製造時の安定性の面から好ましい。
アニオン型界面活性剤は1種を単独で使用してもよいし、2種以上を組合せて使用してもよい。
(Anionic surfactant (C))
Examples of the anionic surfactant (C) include primary higher fatty acids, secondary higher fatty acids, primary higher alcohol sulfates, secondary higher alcohol sulfates, primary higher alkyl sulfonic acids, Secondary higher alkyl sulfonic acid, higher alkyl disulfonic acid, sulfonated higher fatty acid, higher fatty acid sulfuric acid ester, higher fatty acid ester sulfonic acid, higher alcohol ether sulfuric acid ester, higher alcohol ether sulfonic acid, higher fatty acid amide alkylolated sulfuric acid Examples thereof include acids such as esters, alkylbenzenesulfonic acid, alkylphenolsulfonic acid, alkylnaphthalenesulfonic acid, and alkylbenzoylimidazolesulfonic acid, and salts thereof.
Examples of higher fatty acids constituting the above anionic surfactant include capric acid, undecanoic acid, lauric acid, myristic acid, palmitic acid, margaric acid, margaric acid, stearic acid, arachidic acid, and other saturated fatty acids, Linderic acid, Tuzic acid, Examples include unsaturated fatty acids such as petroceric acid, oleic acid, linoleic acid, linolenic acid, and arachidonic acid, and mixtures thereof.
Examples of the element for forming a salt with an acid include alkali metals such as sodium and potassium. Of these, potassium fatty acid is preferred from the viewpoint of stability during production of the aqueous dispersion.
An anionic surfactant may be used individually by 1 type, and may be used in combination of 2 or more type.

アニオン型界面活性剤(C)の量は、第1の酸変性オレフィン系重合体(A)100質量部に対して1〜40質量部であることが好ましく、5〜25質量部であることがより好ましい。アニオン型界面活性剤(C)の量が1質量部以上であれば、水性分散体の貯蔵安定性が向上し、40質量部以下であれば、水性分散体の平均粒子径が小さく、未乳化物量が少なくなる。   The amount of the anionic surfactant (C) is preferably 1 to 40 parts by mass, and 5 to 25 parts by mass with respect to 100 parts by mass of the first acid-modified olefin polymer (A). More preferred. If the amount of the anionic surfactant (C) is 1 part by mass or more, the storage stability of the aqueous dispersion is improved, and if it is 40 parts by mass or less, the average particle size of the aqueous dispersion is small and non-emulsified. The quantity is reduced.

(塩基性物質(D))
塩基性物質(D)は、第1の酸変性オレフィン系重合体(A)と第2の酸変性オレフィン系重合体(B)や未中和のアニオン型界面活性剤を中和するために必要とされる。
塩基性物質(D)としては、アルカリ金属、アルカリ土類金属、アンモニア、およびアミン等の水中で塩基として作用する物質、アルカリ金属の酸化物、水酸化物、弱塩基、水素化物、アルカリ土類金属の酸化物、水酸化物、弱塩基、水素化物等の水中で塩基として作用する物質、これらの金属のアルコキシド等を挙げることができる。中でも、貯蔵安定性の点から、水酸化カリウムが好ましい。
塩基性物質(D)の量は、水性分散体の貯蔵安定性の点から、酸変性ポリマー材料(P)およびアニオン型界面活性剤(C)に由来する酸を中和するのに必要な量に対して1〜2倍量であることが好ましく、1.2〜1.8倍量であることがより好ましい。
(Basic substance (D))
The basic substance (D) is necessary for neutralizing the first acid-modified olefin polymer (A) and the second acid-modified olefin polymer (B) and the non-neutralized anionic surfactant. It is said.
Basic substances (D) include substances that act as bases in water such as alkali metals, alkaline earth metals, ammonia, and amines, alkali metal oxides, hydroxides, weak bases, hydrides, alkaline earths Examples thereof include substances that act as bases in water, such as metal oxides, hydroxides, weak bases, and hydrides, and alkoxides of these metals. Among these, potassium hydroxide is preferable from the viewpoint of storage stability.
The amount of the basic substance (D) is the amount necessary to neutralize the acid derived from the acid-modified polymer material (P) and the anionic surfactant (C) from the viewpoint of the storage stability of the aqueous dispersion. The amount is preferably 1 to 2 times the amount, more preferably 1.2 to 1.8 times the amount.

(水(E))
水(E)の量は、第1の酸変性オレフィン系重合体(A)100質量部に対して10〜22質量部である。水(E)の量が10質量部未満および22質量部を超えると、水性分散体の未乳化物量が多くなる。
また、前記で得られた水性分散体は固形分濃度が80%以上であり、実質的に固体であるため、塗料や接着剤等で使用する場合、作業性、取扱い性の点から水で希釈することが好ましい。具体的には、水性分散体に34質量部以上の希釈水を添加して、固形分濃度が10〜60質量%になる量が好ましい。
(Water (E))
The amount of water (E) is 10 to 22 parts by mass with respect to 100 parts by mass of the first acid-modified olefin polymer (A). When the amount of water (E) is less than 10 parts by mass and more than 22 parts by mass, the amount of the non-emulsified product in the aqueous dispersion increases.
In addition, since the aqueous dispersion obtained above has a solid content concentration of 80% or more and is substantially solid, it is diluted with water from the viewpoint of workability and handling when used as a paint or an adhesive. It is preferable to do. Specifically, an amount in which 34 parts by mass or more of dilution water is added to the aqueous dispersion and the solid content concentration becomes 10 to 60% by mass is preferable.

(他の成分)
本発明で得られた水性分散体には、必要に応じて、他の水性樹脂、例えば、ポリオレフィン樹脂エマルション、水性アクリル樹脂、水性ウレタン樹脂、水性エポキシ樹脂、水性アルキッド樹脂、水性フェノール樹脂、水性アミノ樹脂、水性ポリブタジエン樹脂、水性シリコン樹脂等が含まれてもよい。
(Other ingredients)
The aqueous dispersion obtained in the present invention may contain other aqueous resins such as polyolefin resin emulsions, aqueous acrylic resins, aqueous urethane resins, aqueous epoxy resins, aqueous alkyd resins, aqueous phenol resins, aqueous amino acids as necessary. Resins, aqueous polybutadiene resins, aqueous silicone resins and the like may be included.

また、本発明で得られた水性分散体は、必要に応じて、副資材を含んでもよい。
副資材としては、例えば、カチオン性界面活性剤、ノニオン性界面活性剤等の分散剤、乳化剤、安定化剤、湿潤剤、増粘剤、起泡剤、消泡剤、ゲル化剤、老化防止剤、軟化剤、可塑剤、充填剤、着色剤、付香剤、粘着防止剤、離型剤、造膜助剤、レベリング剤等が挙げられる。
Moreover, the aqueous dispersion obtained by this invention may also contain a submaterial as needed.
Examples of auxiliary materials include dispersants such as cationic surfactants and nonionic surfactants, emulsifiers, stabilizers, wetting agents, thickeners, foaming agents, antifoaming agents, gelling agents, and anti-aging agents. Agents, softeners, plasticizers, fillers, colorants, flavoring agents, anti-tacking agents, mold release agents, film-forming aids, leveling agents and the like.

(使用方法)
本発明で得られた水性分散体は、例えば、各種基材に塗布して使用することができる。
基材としては、例えば、紙、繊維織物、プラスチック成形品、とりわけポリプロピレン成形品やポリエチレン成形品等の非極性基材に対しては、水性分散体の高い付着性が発揮される。該非極性基材に、他のポリオレフィン(例えば、エチレン・プロピレン共重合体ゴム等)、無機フィラー(例えば、タルク、ガラス繊維、炭酸カルシウム等)、安定剤、着色剤などの各種添加剤が含まれている場合も同様である。
塗布方法としては、例えば、各種塗工機を用いる方法、スプレーを用いる方法、刷毛塗りなどを採ることができる。
(how to use)
The aqueous dispersion obtained in the present invention can be used by applying to various substrates, for example.
As the base material, for example, high adhesion of the aqueous dispersion is exerted on nonpolar base materials such as paper, fiber woven fabric, plastic molded product, especially polypropylene molded product and polyethylene molded product. The nonpolar base material includes various additives such as other polyolefins (for example, ethylene / propylene copolymer rubber), inorganic fillers (for example, talc, glass fiber, calcium carbonate, etc.), stabilizers, and coloring agents. The same applies to the case where
As a coating method, for example, a method using various coating machines, a method using a spray, a brush coating, or the like can be employed.

本発明で得られた水性分散体は、有機溶剤を全く含有しないため、有機溶剤を留去する必要がなく、VOCの排出を抑制できる。   Since the aqueous dispersion obtained by the present invention does not contain any organic solvent, it is not necessary to distill off the organic solvent, and VOC emission can be suppressed.

<水性分散体の製造方法>
本発明の酸変性オレフィン系水性分散体の製造方法は、加熱可能なバレル内に2本のスクリューが配備された二軸押出機と、該二軸押出機の先端側に設けられた冷却手段と、二軸押出機のバレル先端および冷却手段を接続する流路とを具備し、流路の一部が連結管からなる製造装置を用いる。冷却手段としては、例えば、ジャケット付きスタティックミキサーを用いて、得られた水性分散体を80℃以下まで冷却することが好ましい。なお、冷却手段としては、ジャケット付きスタティックミキサーの他には、単軸または多軸の押出機を使用することもできる。
<Method for producing aqueous dispersion>
The method for producing an acid-modified olefin-based aqueous dispersion of the present invention includes a twin-screw extruder in which two screws are provided in a heatable barrel, and a cooling means provided on the front end side of the twin-screw extruder. And a production apparatus comprising a barrel tip of a twin-screw extruder and a flow path for connecting a cooling means, wherein a part of the flow path comprises a connecting pipe. As a cooling means, for example, it is preferable to cool the obtained aqueous dispersion to 80 ° C. or lower using a jacketed static mixer. In addition to the static mixer with jacket, a single-screw or multi-screw extruder can be used as the cooling means.

前記二軸押出機は二軸押出機根元にある材料投入口(以下、「投入口」と示す)から二軸押出機中間部(以下、「中間部」と示す)までに酸変性ポリマー材料(P)とアニオン型界面活性剤(C)とを溶融混練して混練物を得る第1の混練工程と、中間部から二軸押出機先端側(以下「先端側」と示す)に前記混練物に対して二軸押出機の中間部に設けた水溶液供給口より塩基性物質(D)と水(E)とを添加し、溶融混練する第2の混練工程とを有する。
第1の混練工程においては、加熱温度を第1の酸変性オレフィン系重合体(A)の融点以上とし、第2の混練工程においては、加熱温度を第1の酸変性オレフィン系重合体(A)の融点以下とする。
第1の混練工程の加熱温度(以下、「バレル前半温度」という。)が第1の酸変性オレフィン系重合体(A)の融点未満であると、製造時の安定性が低下し、粒子径が大きく、未乳化物量が多くなる。第2の混練工程の加熱温度(以下、「バレル後半温度」という。)が第1の酸変性オレフィン系重合体(A)の融点を超えると、得られた水性分散体の粘度が上昇する。
The twin-screw extruder has an acid-modified polymer material (hereinafter referred to as “intermediate part”) from a material input port (hereinafter referred to as “input port”) at the base of the twin-screw extruder to an acid-modified polymer material ( P) and an anionic surfactant (C) are melt-kneaded to obtain a kneaded product, and the kneaded product from the middle part to the tip side of the twin-screw extruder (hereinafter referred to as “tip side”) On the other hand, a basic substance (D) and water (E) are added from an aqueous solution supply port provided in an intermediate part of the twin-screw extruder, and a second kneading step of melt-kneading is included.
In the first kneading step, the heating temperature is set to be equal to or higher than the melting point of the first acid-modified olefin polymer (A). In the second kneading step, the heating temperature is set to the first acid-modified olefin polymer (A ) Or less.
When the heating temperature in the first kneading step (hereinafter referred to as “barrel first half temperature”) is lower than the melting point of the first acid-modified olefin polymer (A), the stability during production decreases, and the particle diameter Is large, and the amount of non-emulsified product increases. When the heating temperature in the second kneading step (hereinafter referred to as “barrel latter half temperature”) exceeds the melting point of the first acid-modified olefin polymer (A), the viscosity of the obtained aqueous dispersion increases.

第1の混練工程でのアニオン型界面活性剤(C)の添加量は、第1の酸変性オレフィン系重合体(A)100質量部に対して1〜40質量部であることが好ましく、5〜25質量部であることがより好ましい。アニオン型界面活性剤(C)の添加量が1質量部以上であれば、水性分散体の貯蔵安定性が向上し、40質量部以下であれば、水性分散体の平均粒子径が小さく、未乳化物量が少なくなる。   The amount of the anionic surfactant (C) added in the first kneading step is preferably 1 to 40 parts by mass with respect to 100 parts by mass of the first acid-modified olefin polymer (A). More preferably, it is -25 mass parts. If the added amount of the anionic surfactant (C) is 1 part by mass or more, the storage stability of the aqueous dispersion is improved, and if it is 40 parts by mass or less, the average particle size of the aqueous dispersion is small, The amount of emulsion is reduced.

第2の混練工程での塩基性物質(D)の添加量は、水性分散体の貯蔵安定性の点から、酸変性ポリマー材料(P)およびアニオン型界面活性剤(C)に由来する酸を中和するのに必要な量に対して1〜2倍量であることが好ましく、1.2〜1.8倍量であることがより好ましい。
塩基性物質(D)は混練物に直接添加してもよいが、5〜40質量%程度の水溶液の形態で添加するのが好ましい。
The amount of the basic substance (D) added in the second kneading step is such that the acid derived from the acid-modified polymer material (P) and the anionic surfactant (C) is used from the viewpoint of the storage stability of the aqueous dispersion. The amount required for neutralization is preferably 1 to 2 times, more preferably 1.2 to 1.8 times.
The basic substance (D) may be added directly to the kneaded product, but is preferably added in the form of an aqueous solution of about 5 to 40% by mass.

第2の混練工程で添加する水(E)は、転相に必要な水である。
第2の混練工程での水(E)の添加量は、第1の酸変性オレフィン系重合体(A)100質量部に対して10〜22質量部である。水(E)の添加量が10質量部未満および22質量部を超えると、製造時に不安定となり未乳化物量が多くなる。
Water (E) added in the second kneading step is water necessary for phase inversion.
The amount of water (E) added in the second kneading step is 10 to 22 parts by mass with respect to 100 parts by mass of the first acid-modified olefin polymer (A). If the amount of water (E) added is less than 10 parts by mass or more than 22 parts by mass, it becomes unstable during production and the amount of non-emulsified product increases.

水(E)の添加量が前記範囲である水性分散体の固形分濃度は80質量%以上であり、実質的に固体である。そのため、この水性分散体を既存の塗工方法で塗工するためには、あるいは、他の薬剤を混合しやすくするためには、第2の混練工程の後に、水性分散体に34質量部以上の希釈水を添加して希釈する希釈工程を有することが好ましい。希釈工程では、固形分濃度が10〜60質量%にすることが好ましい。   The solid content concentration of the aqueous dispersion in which the amount of water (E) added is in the above range is 80% by mass or more, and is substantially solid. Therefore, in order to apply this aqueous dispersion by the existing coating method, or in order to make it easy to mix other chemicals, 34 parts by mass or more are added to the aqueous dispersion after the second kneading step. It is preferable to have a dilution step of adding and diluting the diluted water. In the dilution step, the solid concentration is preferably 10 to 60% by mass.

上記の製造方法では、第1の酸変性オレフィン系重合体(A)の乳化時に水を多く存在させるため、押出機内の温度が第1の酸変性オレフィン系重合体(A)の融点以下でも混練不良が起きにくい。そのため、酸変性ポリマー材料の水性分散体の粒子径を小さく、未乳化物量を少なくかつ粘度を低下させることができる。この方法により得た水性分散体によれば、塗料化時の分散性、作業性、ろ過性の低下を改善できる。また、水性分散体の貯蔵安定性を高くできる。
また、上記製造方法では、有機溶剤を使用しないため、製造時のVOCの排出を抑制でき、得られる水性分散体に有機溶剤は含まれない。
In the above production method, since a large amount of water is present during emulsification of the first acid-modified olefin polymer (A), kneading is performed even when the temperature in the extruder is lower than the melting point of the first acid-modified olefin polymer (A). Defects are less likely to occur. Therefore, the particle size of the aqueous dispersion of the acid-modified polymer material can be reduced, the amount of non-emulsified material can be reduced, and the viscosity can be reduced. According to the aqueous dispersion obtained by this method, it is possible to improve the deterioration of dispersibility, workability, and filterability during coating. Further, the storage stability of the aqueous dispersion can be increased.
Moreover, in the said manufacturing method, since the organic solvent is not used, discharge | emission of VOC at the time of manufacture can be suppressed, and the organic solvent is not contained in the obtained aqueous dispersion.

以下、本発明を製造例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、以下の例において「%」は「質量%」、「部」は「質量部」のことを意味する。
第1の酸変性オレフィン系重合体(A)および第2の酸変性オレフィン系重合体(B)の特性(質量平均分子量、融点、酸価)は、下記のようにして測定した。
Hereinafter, the present invention will be specifically described with reference to production examples, but the present invention is not limited to the following examples. In the following examples, “%” means “mass%” and “part” means “part by mass”.
The characteristics (mass average molecular weight, melting point, acid value) of the first acid-modified olefin polymer (A) and the second acid-modified olefin polymer (B) were measured as follows.

[質量平均分子量]:ウォーターズ社製、アライアンスGPC V2000型(標準物質;ポリスチレン, 溶媒;オルトジクロロベンゼン, 測定温度;140℃, 溶媒流速;1mL/分)により測定した。 [Mass average molecular weight]: Measured by Alliance GPC V2000 type (standard material: polystyrene, solvent: orthodichlorobenzene, measurement temperature: 140 ° C., solvent flow rate: 1 mL / min) manufactured by Waters.

[融点]:セイコーインスツルメンツ製、DSC200、示差走査熱量計(DSC)を使用して、以下の方法で求めた。試料(約5〜10mg)を160℃で3分間融解後、10℃/分の速度で−20℃まで降温し、−20℃で2分間保持した後、10℃/分で160℃まで昇温することにより融解曲線を得、最後の昇温段階における主吸熱ピークのピークトップ温度を融点として求めた。 [Melting point]: The melting point was determined by the following method using DSC200, a differential scanning calorimeter (DSC) manufactured by Seiko Instruments Inc. A sample (about 5 to 10 mg) was melted at 160 ° C. for 3 minutes, cooled to −20 ° C. at a rate of 10 ° C./minute, held at −20 ° C. for 2 minutes, and then heated to 160 ° C. at 10 ° C./minute. Thus, a melting curve was obtained, and the peak top temperature of the main endothermic peak in the final temperature rising stage was obtained as the melting point.

[酸価の測定]:第1の酸変性プロピレン系重合体(A)または第2の酸変性プロピレン系重合体(B)200mgとクロロホルム4800mgを10mlのサンプル瓶に入れて50℃で30分加熱し完全に溶解させた。NaCl、光路長0.5mmの液体セルにクロロホルムを入れ、バックグラウンドとした。次に、溶解した酸変性プロピレン系重合体溶液をセルに入れ、FT−IR(日本分光社製)を用いて、積算回数32回にて赤外吸収スペクトルを測定した。また、無水マレイン酸をクロロホルムに溶解した溶液を測定し、検量線を作成したものを用いて無水マレイン酸のグラフト率を計算した。
赤外吸収スペクトルにおけるカルボニル基の吸収ピーク(1780cm−1付近の極大ピーク、1750〜1813cm−1)の面積から、別途作成した検量線に基づき、重合体中の酸成分含有量を算出した。算出した酸成分含有量/(100−酸成分含有量)×1/97(グラフトされた無水マレイン酸1分子当りの分子量)×2当量(グラフトされた1分子の無水マレイン酸が中和された時のカルボン酸基数)×57(KOH分子量)×1000から酸価を算出した。
[Measurement of Acid Value]: 200 mg of the first acid-modified propylene polymer (A) or the second acid-modified propylene polymer (B) and 4800 mg of chloroform are placed in a 10 ml sample bottle and heated at 50 ° C. for 30 minutes. And completely dissolved. Chloroform was placed in a liquid cell with NaCl and an optical path length of 0.5 mm as a background. Next, the dissolved acid-modified propylene-based polymer solution was put into a cell, and an infrared absorption spectrum was measured using FT-IR (manufactured by JASCO Corporation) at a total number of 32 times. Further, a solution in which maleic anhydride was dissolved in chloroform was measured, and the graft ratio of maleic anhydride was calculated using a calibration curve.
From the area of the absorption peak of the carbonyl group in the infrared absorption spectrum (maximum peak near 1780 cm −1 , 1750 to 1813 cm −1 ), the acid component content in the polymer was calculated based on a separately prepared calibration curve. Calculated acid component content / (100-acid component content) × 1/97 (molecular weight per grafted maleic anhydride molecule) × 2 equivalents (one grafted maleic anhydride was neutralized) The acid value was calculated from the number of carboxylic acid groups at the time) × 57 (KOH molecular weight) × 1000.

酸変性オレフィン系重合体の前駆体として使用するオレフィン系重合体(AP−1)を以下の方法により得た。
1000mL丸底フラスコに、脱イオン水110mL、硫酸マグネシウム・7水和物22.2gおよび硫酸18.2gを採取し、攪拌して溶解させた。これにより得た溶液に、市販の造粒モンモリロナイト16.7gを分散させ、100℃まで昇温し、2時間攪拌を行った。その後、室温まで冷却し、得られたスラリーを濾過してウェットケーキを回収した。回収したウェットケーキを1000mL丸底フラスコにて、脱塩水500mLにて再度スラリー化し、濾過を行った。この操作を2回繰り返した。最終的に得られたケーキを、窒素雰囲気下110℃で一晩乾燥して、化学処理モンモリロナイト13.3gを得た。
得られた化学処理モンモリロナイト4.4gに、トリエチルアルミニウムのトルエン溶液(0.4mmol/mL)20mLを加え、室温で1時間攪拌した。この懸濁液にトルエン80mLを加え、攪拌後、上澄みを除いた。この操作を2回繰り返した後、トルエンを加えて、粘土スラリー(スラリー濃度=99mg粘土/mL)を得た。別のフラスコに、トリイソブチルアルミニウム0.2mmolを採取し、ここで得られた粘土スラリー19mLおよびジクロロ[ジメチルシリレン(シクロペンタジエニル)(2,4−ジメチル−4H−5,6,7,8−テトラヒドロ−1−アズレニル)ハフニウム]131mg(57μmol)のトルエン希釈液を加え、室温で10分間攪拌し、触媒スラリーを得た。
次いで、内容積24リットルの誘導攪拌式オートクレーブ内に液体プロピレン2.48Lおよび液体エチレン0.05Lを導入した。室温で、上記触媒スラリーを全量導入し、85℃まで昇温し重合時全圧を0.60MPa、水素濃度400ppmで一定に保持しながら、同温度で2時間攪拌を継続した。攪拌終了後、未反応オレフィンを放出して重合を停止した。オートクレーブを開放してポリマーのトルエン溶液を全量回収し、溶媒並びに粘土残渣を除去して、プロピレン−エチレン共重合体トルエン溶液を得た。得られたプロピレン−エチレン共重合体をオレフィン系重合体(AP−1)とした。
オレフィン系重合体(AP−1)の質量平均分子量Mwは70,000(ポリスチレン換算)、融点は135℃であった(表1参照)。
An olefin polymer (AP-1) used as a precursor of the acid-modified olefin polymer was obtained by the following method.
In a 1000 mL round bottom flask, 110 mL of deionized water, 22.2 g of magnesium sulfate heptahydrate and 18.2 g of sulfuric acid were collected and dissolved by stirring. In this solution, 16.7 g of commercially available granulated montmorillonite was dispersed, heated to 100 ° C., and stirred for 2 hours. Then, it cooled to room temperature and filtered the obtained slurry, and collect | recovered the wet cake. The collected wet cake was slurried again with 500 mL of demineralized water in a 1000 mL round bottom flask and filtered. This operation was repeated twice. The finally obtained cake was dried at 110 ° C. overnight under a nitrogen atmosphere to obtain 13.3 g of chemically treated montmorillonite.
To 4.4 g of the obtained chemically treated montmorillonite, 20 mL of a toluene solution of triethylaluminum (0.4 mmol / mL) was added and stirred at room temperature for 1 hour. To the suspension, 80 mL of toluene was added, and after stirring, the supernatant was removed. After repeating this operation twice, toluene was added to obtain a clay slurry (slurry concentration = 99 mg clay / mL). In a separate flask, 0.2 mmol of triisobutylaluminum was collected, and 19 mL of the clay slurry obtained here and dichloro [dimethylsilylene (cyclopentadienyl) (2,4-dimethyl-4H-5,6,7,8 -Tetrahydro-1-azulenyl) hafnium] 131 mg (57 μmol) of toluene diluted solution was added and stirred at room temperature for 10 minutes to obtain a catalyst slurry.
Next, 2.48 L of liquid propylene and 0.05 L of liquid ethylene were introduced into an induction stirring autoclave having an internal volume of 24 liters. The whole amount of the catalyst slurry was introduced at room temperature, the temperature was raised to 85 ° C., and the stirring was continued for 2 hours at the same temperature while keeping the total pressure during polymerization at 0.60 MPa and a hydrogen concentration of 400 ppm. After completion of the stirring, the unreacted olefin was released and the polymerization was stopped. The autoclave was opened and the whole toluene solution of the polymer was recovered, and the solvent and the clay residue were removed to obtain a propylene-ethylene copolymer toluene solution. The obtained propylene-ethylene copolymer was used as an olefin polymer (AP-1).
The olefin polymer (AP-1) had a mass average molecular weight Mw of 70,000 (in terms of polystyrene) and a melting point of 135 ° C. (see Table 1).

上記オレフィン系重合体(AP−1)に無水マレイン酸をグラフトさせる変性処理を施して、第1の酸変性オレフィン系重合体(A−1)を得た。
具体的には、上記オレフィン系重合体(AP−1)100部に、無水マレイン酸2部、ジ−t−ブチルパーオキシド1.8部を、170℃に設定した二軸押出機を用いて反応させて、酸変性オレフィン系重合体を得た。その際、押出機内を脱気して、残留する未反応物を除去した。
この反応により得られた第1の酸変性オレフィン系重合体(A−1)は、質量平均分子量25,000、酸価12mgKOH/gであった。融点はオレフィン系重合体(AP−1)と同じである。
A modification treatment for grafting maleic anhydride onto the olefin polymer (AP-1) was performed to obtain a first acid-modified olefin polymer (A-1).
Specifically, using a twin screw extruder in which 100 parts of the olefin polymer (AP-1) was set to 170 ° C. with 2 parts of maleic anhydride and 1.8 parts of di-t-butyl peroxide. By reacting, an acid-modified olefin polymer was obtained. At that time, the inside of the extruder was deaerated to remove residual unreacted substances.
The first acid-modified olefin polymer (A-1) obtained by this reaction had a mass average molecular weight of 25,000 and an acid value of 12 mgKOH / g. The melting point is the same as that of the olefin polymer (AP-1).

オレフィン系重合体(AP−2)、(AP−3):
エチレンおよび/または1−ブテンのガス供給量を調整した以外は(AP−1)の製法と同様にしてオレフィン系重合体(AP−2)、(AP−3)を調製した。エチレンおよび/または1−ブテンのガス供給量を調整することで、オレフィン系重合体の融点を調整した。得られたオレフィン系重合体(AP−2)の融点は105℃、オレフィン系重合体(AP−3)の融点は95℃であった。質量平均分子量はオレフィン系重合体(AP−1)と同じであった(表1参照)。
Olefin polymer (AP-2), (AP-3):
Olefin polymers (AP-2) and (AP-3) were prepared in the same manner as in the method of (AP-1) except that the gas supply amount of ethylene and / or 1-butene was adjusted. The melting point of the olefin polymer was adjusted by adjusting the gas supply amount of ethylene and / or 1-butene. The melting point of the obtained olefin polymer (AP-2) was 105 ° C., and the melting point of the olefin polymer (AP-3) was 95 ° C. The mass average molecular weight was the same as that of the olefin polymer (AP-1) (see Table 1).

Figure 0005586509
Figure 0005586509

第1の酸変性オレフィン系重合体(A−2):
オレフィン系重合体(AP−1)をオレフィン系重合体(AP−2)に変更したこと以外は、第1の酸変性オレフィン系重合体(A−1)の製造と同様にして、第1の酸変性オレフィン系重合体(A−2)を得た。表2に、得られた第1の酸変性オレフィン系重合体(A−2)の質量平均分子量、酸価、融点を示す。
First acid-modified olefin polymer (A-2):
Except that the olefin polymer (AP-1) is changed to the olefin polymer (AP-2), the first acid-modified olefin polymer (A-1) is produced in the same manner as in the production of the first olefin polymer (AP-1). An acid-modified olefin polymer (A-2) was obtained. Table 2 shows the mass average molecular weight, acid value, and melting point of the obtained first acid-modified olefin polymer (A-2).

第1の酸変性オレフィン系重合体(A−3):
オレフィン系重合体(AP−1)をオレフィン系重合体(AP−3)に変更したこと以外は、第1の酸変性オレフィン系重合体(A−1)の製造と同様にして、第1の酸変性オレフィン系重合体(A−3)を得た。表2に、得られた第1の酸変性オレフィン系重合体(A−3)の質量平均分子量、酸価、融点を示す。
First acid-modified olefin polymer (A-3):
Except for changing the olefin polymer (AP-1) to the olefin polymer (AP-3), the same procedure as in the production of the first acid-modified olefin polymer (A-1), An acid-modified olefin polymer (A-3) was obtained. Table 2 shows the mass average molecular weight, acid value, and melting point of the obtained first acid-modified olefin polymer (A-3).

第1の酸変性オレフィン系重合体(A−4):
無水マレイン酸の添加量を表2に示すように変更した以外は、第1の酸変性オレフィン系重合体(A−1)の製造と同様にして、第1の酸変性オレフィン系重合体(A−4)を得た。表2に、得られた第1の酸変性オレフィン系重合体(A−4)の質量平均分子量、酸価、融点を示す。
First acid-modified olefin polymer (A-4):
The first acid-modified olefin polymer (A) was produced in the same manner as in the production of the first acid-modified olefin polymer (A-1) except that the amount of maleic anhydride added was changed as shown in Table 2. -4) was obtained. Table 2 shows the mass average molecular weight, acid value, and melting point of the obtained first acid-modified olefin polymer (A-4).

第1の酸変性オレフィン系重合体(A−5):
無水マレイン酸の添加量を表2に示すように変更した以外は、第1の酸変性オレフィン系重合体(A−2)の製造と同様にして、第1の酸変性オレフィン系重合体(A−5)を得た。表2に、得られた第1の酸変性オレフィン系重合体(A−5)の質量平均分子量、酸価、融点を示す。
First acid-modified olefin polymer (A-5):
The first acid-modified olefin polymer (A) was prepared in the same manner as in the production of the first acid-modified olefin polymer (A-2) except that the amount of maleic anhydride added was changed as shown in Table 2. -5) was obtained. Table 2 shows the mass average molecular weight, acid value, and melting point of the obtained first acid-modified olefin polymer (A-5).

第1の酸変性オレフィン系重合体(A−6):
無水マレイン酸の添加量を表2に示すように変更した以外は、第1の酸変性オレフィン系重合体(A−3)の製造と同様にして、第1の酸変性オレフィン系重合体(A−6)を得た。表2に、得られた第1の酸変性オレフィン系重合体(A−6)の質量平均分子量、酸価、融点を示す。
First acid-modified olefin polymer (A-6):
The first acid-modified olefin polymer (A) was prepared in the same manner as in the production of the first acid-modified olefin polymer (A-3) except that the amount of maleic anhydride added was changed as shown in Table 2. -6) was obtained. Table 2 shows the mass average molecular weight, acid value, and melting point of the obtained first acid-modified olefin polymer (A-6).

第1の酸変性オレフィン系重合体(A−7)〜(A−10):
無水マレイン酸の変性条件を表2に示すように変更した以外は、酸変性オレフィン系重合体(A−1)の製造と同様にして、酸変性オレフィン系重合体(A−7)〜(A−10)を得た。表2に、得られた酸変性オレフィン系重合体の質量平均分子量、酸価、融点を示す。
First acid-modified olefin polymers (A-7) to (A-10):
Except having changed the modification conditions of maleic anhydride as shown in Table 2, it carried out similarly to manufacture of acid-modified olefin polymer (A-1), and acid-modified olefin polymer (A-7)-(A -10) was obtained. Table 2 shows the mass average molecular weight, acid value, and melting point of the acid-modified olefin polymer obtained.

第1の酸変性オレフィン系重合体(a−11):
無水マレイン酸の変性条件を表2に示すように変更した以外は、酸変性オレフィン系重合体(A−1)の製造と同様にして、酸変性オレフィン系重合体(a−11)を得た。表2に、得られた酸変性オレフィン系重合体の質量平均分子量、酸価、融点を示す。
First acid-modified olefin polymer (a-11):
An acid-modified olefin polymer (a-11) was obtained in the same manner as in the production of the acid-modified olefin polymer (A-1) except that the modification conditions of maleic anhydride were changed as shown in Table 2. . Table 2 shows the mass average molecular weight, acid value, and melting point of the acid-modified olefin polymer obtained.

第2の酸変性オレフィン系重合体(B)としては、下記(B−1)〜(B−3)を用いた。
第2の酸変性オレフィン系重合体(B−1)〜(B−3):
第2の酸変性オレフィン系重合体(B−1)〜(B−3)は、オレフィン系重合体(AP−1)を前駆体として用い、変性条件を表2に示すように変更した以外は、第1の酸変性オレフィン系重合体(A−1)の製造と同様にして得た。表2に、第2の得られた酸変性オレフィン系重合体の質量平均分子量、酸価、融点を示す。
The following (B-1) to (B-3) were used as the second acid-modified olefin polymer (B).
Second acid-modified olefin polymers (B-1) to (B-3):
The second acid-modified olefin polymers (B-1) to (B-3) were used except that the olefin polymer (AP-1) was used as a precursor and the modification conditions were changed as shown in Table 2. And obtained in the same manner as in the production of the first acid-modified olefin polymer (A-1). Table 2 shows the mass average molecular weight, acid value, and melting point of the second obtained acid-modified olefin polymer.

Figure 0005586509
Figure 0005586509

アニオン型界面活性剤(C)としては、脂肪酸カリウム(花王製「KSソープ」)(C−1)を用いた。
塩基性物質(D)としては、水酸化カリウム(D−1)を用いた。
As the anionic surfactant (C), fatty acid potassium (“KS soap” manufactured by Kao) (C-1) was used.
Potassium hydroxide (D-1) was used as the basic substance (D).

(実施例1)
第1の酸変性オレフィン系重合体(A−1)と、第1の酸変性オレフィン系重合体(A−1)100部に対して30部の第2の酸変性オレフィン系重合体(B−1)と16部の脂肪酸カリウム(C−1)を、二軸押出機((株)池貝製、PCM−30型、スクリュー径;30mm、L/D;40、バレル前半温度;140℃、バレル後半温度;130℃)に投入口から供給して溶融混練した。
また、該二軸押出機の中間部に設けた水溶液供給口より、第1の酸変性オレフィン系重合体(A−1)と第2の酸変性オレフィン系重合体(B−1)と脂肪酸カリウム(C−1)の総質量に対して、水酸化カリウム水溶液の形態で、1.8部(酸を中和するのに必要な量に対して1.5倍)の水酸化カリウム(D−1)と17部の水(E)を1.8MPaで連続的に圧入し、二軸押出機内で溶融混練した。
そして、二軸押出機の先端側より吐出させた水性分散体を、ジャケット付きスタティックミキサーを用いて80℃以下まで冷却し、150部の温水中で分散させ、希釈して、固形分濃度が30%の水性分散体を(AW−1)得た。
得られた水性分散体(AW−1)の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を以下のように評価した。その結果を表3に示す。
Example 1
30 parts of second acid-modified olefin polymer (B-) with respect to 100 parts of first acid-modified olefin polymer (A-1) and first acid-modified olefin polymer (A-1). 1) and 16 parts of fatty acid potassium (C-1), a twin screw extruder (manufactured by Ikegai Co., Ltd., PCM-30 type, screw diameter: 30 mm, L / D; 40, first half barrel temperature: 140 ° C., barrel The latter half temperature; 130 ° C.) was supplied from the inlet and melt kneaded.
The first acid-modified olefin polymer (A-1), the second acid-modified olefin polymer (B-1), and fatty acid potassium are supplied from an aqueous solution supply port provided in the middle part of the twin-screw extruder. With respect to the total mass of (C-1), in the form of an aqueous potassium hydroxide solution, 1.8 parts (1.5 times the amount necessary to neutralize the acid) of potassium hydroxide (D- 1) and 17 parts of water (E) were continuously press-fitted at 1.8 MPa, and melt-kneaded in a twin-screw extruder.
Then, the aqueous dispersion discharged from the tip side of the twin screw extruder is cooled to 80 ° C. or lower using a jacketed static mixer, dispersed in 150 parts of warm water, diluted, and the solid content concentration is 30. % Aqueous dispersion (AW-1) was obtained.
The storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion (AW-1) were evaluated as follows. The results are shown in Table 3.

[貯蔵安定性試験]
貯蔵安定性評価として、水性分散体を1Lの密封できる容器に入れ、40℃で1ヶ月間静置した後の水性分散体の状態を、以下の判定基準に従い評価した。
◎:分離および沈殿せず、粘度に変化がない
○:分離および沈殿は確認されないが、増粘している
△:分離および/または沈殿が確認されたが、攪拌にて容易に分散できる
×:分離および/または沈殿が確認され、攪拌にて容易に分散できない
なお、分離および/または沈殿が確認されるが、攪拌にて容易に分散できる場合は、貯蔵安定性を有すると判断した。
[Storage stability test]
As storage stability evaluation, the aqueous dispersion was put in a 1 L sealable container and allowed to stand at 40 ° C. for 1 month, and the state of the aqueous dispersion was evaluated according to the following criteria.
◎: No separation and precipitation, no change in viscosity ○: Separation and precipitation are not confirmed, but thickening Δ: Separation and / or precipitation is confirmed, but can be easily dispersed by stirring ×: Separation and / or precipitation was confirmed and could not be easily dispersed by stirring Note that separation and / or precipitation was confirmed, but when it could be easily dispersed by stirring, it was judged to have storage stability.

[平均粒子径]:日機装社製のマイクロトラック(ナノトラック150)(測定溶媒;純水)を用いて体積基準の平均粒子径を測定した。 [Average particle diameter]: The volume-based average particle diameter was measured using Microtrack (Nanotrack 150) (measuring solvent: pure water) manufactured by Nikkiso Co., Ltd.

[pH測定]
東亜電波工業(株)製、HM−11P型を用いて測定した。
[PH measurement]
Measured using HM-11P type manufactured by Toa Denpa Kogyo Co., Ltd.

[未乳化物量測定]
水性分散体を100メッシュのステンレス製金網で濾過し、メッシュ上の残留分を水洗、乾燥した後、濾過残留固形分の質量を測定した。そして、下記式により水性分散体中の未乳化物の質量割合を求めた。
未乳化物の質量割合(質量%)=[濾過残留固形分の質量(g)/全固形分の質量(g)]×100(質量%)
[Measurement of unemulsified amount]
The aqueous dispersion was filtered through a 100 mesh stainless steel wire mesh, and the residue on the mesh was washed with water and dried, and then the mass of the filtered solid residue was measured. And the mass ratio of the non-emulsified thing in an aqueous dispersion was calculated | required by the following formula.
Non-emulsified mass ratio (mass%) = [mass of filtered solid residue (g) / mass of total solid (g)] × 100 (mass%)

[B型粘度測定]
東機産業(株)製、TVB−10形粘度計を用いた。温度:23℃、ロータ:M1、回転速度:60rpmの測定値を計測した。
[B type viscosity measurement]
A TVB-10 viscometer manufactured by Toki Sangyo Co., Ltd. was used. The measured values of temperature: 23 ° C., rotor: M1, and rotational speed: 60 rpm were measured.

[残存有機溶剤量測定]
ガスクロマトグラフ計を用いた。トルエンの検量線を使用して、水性分散体中の有機溶剤含有量を測定した。
[Measurement of residual organic solvent content]
A gas chromatograph was used. A toluene calibration curve was used to measure the organic solvent content in the aqueous dispersion.

(実施例2)
バレル後半温度を80℃に変更した以外は実施例1と同様にして、固形分濃度が30%の水性分散体(AW−2)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表3に示す。
(Example 2)
An aqueous dispersion (AW-2) having a solid concentration of 30% was obtained in the same manner as in Example 1 except that the barrel latter half temperature was changed to 80 ° C. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 3.

(実施例3)
第1の酸変性オレフィン系重合体(A−2)と、第1の酸変性オレフィン系重合体(A−2)100部に対して30部の第2の酸変性オレフィン系重合体(B−1)と、第1の酸変性オレフィン系重合体(A−2)100部に対して16部の脂肪酸カリウム(C−1)とを、二軸押出機(スクリュー径;30mm、L/D;40、バレル前半温度;110℃、バレル後半温度;100℃)に投入口から供給し、溶融混練した。
また、該二軸押出機の中間部に設けた水溶液供給口より、第1の酸変性オレフィン系重合体(A−2)と第2の酸変性オレフィン系重合体(B−1)と脂肪酸カリウム(C−1)の総質量に対して、水酸化カリウム水溶液の形態で、1.8部(酸を中和するのに必要な量に対して1.5倍)の水酸化カリウム(D−1)と17部の水(E)を1.8MPaで連続的に圧入した。そして、二軸押出機内で溶融混練して水性分散体を得た。
そして、二軸押出機の先端側より吐出させた水性分散体を、ジャケット付きスタティックミキサーを用いて80℃以下まで冷却し、150部の温水中で分散させ、希釈して、固形分濃度が30%の水性分散体(AW−3)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表3に示す。
(Example 3)
30 parts of the second acid-modified olefin polymer (B-) with respect to 100 parts of the first acid-modified olefin polymer (A-2) and the first acid-modified olefin polymer (A-2). 1) and 16 parts of fatty acid potassium (C-1) per 100 parts of the first acid-modified olefin polymer (A-2), a twin screw extruder (screw diameter; 30 mm, L / D; 40, first half temperature of barrel; 110 ° C., second half temperature of barrel; 100 ° C.), and melt kneaded.
The first acid-modified olefin polymer (A-2), the second acid-modified olefin polymer (B-1), and fatty acid potassium are supplied from an aqueous solution supply port provided in the middle part of the twin-screw extruder. With respect to the total mass of (C-1), in the form of an aqueous potassium hydroxide solution, 1.8 parts (1.5 times the amount necessary to neutralize the acid) of potassium hydroxide (D- 1) and 17 parts of water (E) were continuously injected at 1.8 MPa. And it melt-kneaded in the twin-screw extruder, and obtained the aqueous dispersion.
Then, the aqueous dispersion discharged from the tip side of the twin screw extruder is cooled to 80 ° C. or lower using a jacketed static mixer, dispersed in 150 parts of warm water, diluted, and the solid content concentration is 30. % Aqueous dispersion (AW-3) was obtained. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 3.

(実施例4)
第1の酸変性オレフィン系重合体(A−3)と、第1の酸変性オレフィン系重合体(A−3)100部に対して30部の第2の酸変性オレフィン系重合体(B−1)と、第1の酸変性オレフィン系重合体(A−3)100部に対して16部の脂肪酸カリウム(C−1)とを、二軸押出機(スクリュー径;30mm、L/D;40、バレル前半温度;100℃、バレル後半温度:90℃)に投入口から供給し、溶融混練した。
また、該二軸押出機の中間部に設けた水溶液供給口より、第1の酸変性オレフィン系重合体(A−3)と第2の酸変性オレフィン系重合体(B−1)と脂肪酸カリウム(C−1)の総質量に対して、水酸化カリウム水溶液の形態で、1.8部(酸を中和するのに必要な量に対して1.5倍)の水酸化カリウム(D−1)と17部の水(E)を1.8MPaで連続的に圧入した。そして、二軸押出機内で溶融混練して水性分散体を得た。
そして、二軸押出機の先端側より吐出させた水性分散体を、ジャケット付きスタティックミキサーを用いて80℃以下まで冷却し、150部の温水中で分散させ、希釈して、固形分濃度が30%の水性分散体(AW−4)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表3に示す。
Example 4
30 parts of second acid-modified olefin polymer (B-) with respect to 100 parts of first acid-modified olefin polymer (A-3) and first acid-modified olefin polymer (A-3). 1) and 16 parts of fatty acid potassium (C-1) per 100 parts of the first acid-modified olefin polymer (A-3), a twin screw extruder (screw diameter; 30 mm, L / D; 40, first half temperature of barrel; 100 ° C., second half temperature of barrel: 90 ° C.), and melt kneaded.
The first acid-modified olefin polymer (A-3), the second acid-modified olefin polymer (B-1), and fatty acid potassium are supplied from an aqueous solution supply port provided in the middle part of the twin-screw extruder. With respect to the total mass of (C-1), in the form of an aqueous potassium hydroxide solution, 1.8 parts (1.5 times the amount necessary to neutralize the acid) of potassium hydroxide (D- 1) and 17 parts of water (E) were continuously injected at 1.8 MPa. And it melt-kneaded in the twin-screw extruder, and obtained the aqueous dispersion.
Then, the aqueous dispersion discharged from the tip side of the twin screw extruder is cooled to 80 ° C. or lower using a jacketed static mixer, dispersed in 150 parts of warm water, diluted, and the solid content concentration is 30. % Aqueous dispersion (AW-4) was obtained. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 3.

(実施例5)
第1の酸変性オレフィン系重合体(A−1)を第1の酸変性オレフィン系重合体(A−4)に、水酸化カリウム(D−1)の添加量を1.5部に変更した以外は実施例1と同様にして、固形分濃度が30%の水性分散体(AW−5)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表3に示す。
(Example 5)
The first acid-modified olefin polymer (A-1) was changed to the first acid-modified olefin polymer (A-4), and the amount of potassium hydroxide (D-1) added was changed to 1.5 parts. Except that, an aqueous dispersion (AW-5) having a solid content concentration of 30% was obtained in the same manner as in Example 1. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 3.

(実施例6)
第1の酸変性オレフィン系重合体(A−2)を第1の酸変性オレフィン系重合体(A−5)に、水酸化カリウム(D−1)の添加量を1.5部に変更した以外は実施例3と同様にして、固形分濃度が30%の水性分散体(AW−6)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表3に示す。
(Example 6)
The first acid-modified olefin polymer (A-2) was changed to the first acid-modified olefin polymer (A-5), and the amount of potassium hydroxide (D-1) added was changed to 1.5 parts. Except that, an aqueous dispersion (AW-6) having a solid content concentration of 30% was obtained in the same manner as in Example 3. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 3.

(実施例7)
第1の酸変性オレフィン系重合体(A−3)を第1の酸変性オレフィン系重合体(A−6)に、水酸化カリウム(D−1)の添加量を1.5部に変更した以外は実施例4と同様にして、固形分濃度が30%の水性分散体(AW−7)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表3に示す。
(Example 7)
The first acid-modified olefin polymer (A-3) was changed to the first acid-modified olefin polymer (A-6), and the addition amount of potassium hydroxide (D-1) was changed to 1.5 parts. Except that, an aqueous dispersion (AW-7) having a solid content concentration of 30% was obtained in the same manner as in Example 4. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 3.

(実施例8)
第2の酸変性オレフィン系重合体(B−1)を酸変性オレフィン系重合体(B−2)に変更した以外は実施例1と同様にして、固形分濃度が30%の水性分散体(AW−8)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表3に示す。
(Example 8)
An aqueous dispersion having a solid content concentration of 30% in the same manner as in Example 1 except that the second acid-modified olefin polymer (B-1) was changed to the acid-modified olefin polymer (B-2). AW-8) was obtained. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 3.

(実施例9)
第2の酸変性オレフィン系重合体(B−1)を酸変性オレフィン系重合体(B−3)に変更した以外は実施例1と同様にして、固形分濃度が30%の水性分散体(AW−9)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表3に示す。
Example 9
An aqueous dispersion having a solid content concentration of 30% in the same manner as in Example 1 except that the second acid-modified olefin polymer (B-1) was changed to the acid-modified olefin polymer (B-3). AW-9) was obtained. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 3.

Figure 0005586509
Figure 0005586509

(実施例10)
第2の酸変性オレフィン系重合体(B−1)の添加量を0部、水酸化カリウム(D−1)の添加量を1.1部に変更した以外は実施例1と同様にして、固形分濃度が30%の水性分散体(AW−10)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表4に示す。
(Example 10)
Except for changing the addition amount of the second acid-modified olefin polymer (B-1) to 0 part and the addition amount of potassium hydroxide (D-1) to 1.1 parts, the same as in Example 1, An aqueous dispersion (AW-10) having a solid content concentration of 30% was obtained. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 4.

(実施例11)
第2の酸変性オレフィン系重合体(B−1)の添加量を0.5部、水酸化カリウム(D−1)の添加量を1.1部に変更した以外は実施例1と同様にして、固形分濃度が30%の水性分散体(AW−11)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表4に示す。
(Example 11)
The same procedure as in Example 1 was conducted except that the addition amount of the second acid-modified olefin polymer (B-1) was changed to 0.5 part and the addition amount of potassium hydroxide (D-1) was changed to 1.1 parts. Thus, an aqueous dispersion (AW-11) having a solid concentration of 30% was obtained. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 4.

(実施例12)
第2の酸変性オレフィン系重合体(B−1)の添加量を1.5部、水酸化カリウム(D−1)の添加量を1.1部に変更した以外は実施例1と同様にして、固形分濃度が30%の水性分散体(AW−12)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表4に示す。
(Example 12)
The same procedure as in Example 1 was conducted except that the addition amount of the second acid-modified olefin polymer (B-1) was changed to 1.5 parts and the addition amount of potassium hydroxide (D-1) was changed to 1.1 parts. Thus, an aqueous dispersion (AW-12) having a solid concentration of 30% was obtained. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 4.

(実施例13)
第2の酸変性オレフィン系重合体(B−1)の添加量を49部、水酸化カリウム(D−1)の添加量を2.0部に変更した以外は実施例1と同様にして、固形分濃度が30%の水性分散体(AW−13)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表4に示す。
(Example 13)
Except for changing the addition amount of the second acid-modified olefin polymer (B-1) to 49 parts and the addition amount of potassium hydroxide (D-1) to 2.0 parts, the same as in Example 1, An aqueous dispersion (AW-13) having a solid content concentration of 30% was obtained. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 4.

(実施例14)
第2の酸変性オレフィン系重合体(B−1)の添加量を51部、水酸化カリウム(D−1)の添加量を2.1部に変更した以外は実施例1と同様にして、固形分濃度が30%の水性分散体(AW−14)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表4に示す。
(Example 14)
Except having changed the addition amount of the 2nd acid modification olefin type polymer (B-1) to 51 parts and the addition amount of potassium hydroxide (D-1) to 2.1 parts, it is the same as that of Example 1, An aqueous dispersion (AW-14) having a solid content concentration of 30% was obtained. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 4.

(実施例15)
水酸化カリウム(D−1)の添加量を1.9部、水の添加量を10.5部に変更した以外は実施例1と同様にして、固形分濃度が30%の水性分散体(AW−15)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表4に示す。
(Example 15)
An aqueous dispersion having a solid content concentration of 30% was obtained in the same manner as in Example 1 except that the addition amount of potassium hydroxide (D-1) was changed to 1.9 parts and the addition amount of water was changed to 10.5 parts. AW-15) was obtained. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 4.

(実施例16)
水酸化カリウム(D−1)の添加量を1.6部、水の添加量を21.5部に変更した以外は実施例1と同様にして、固形分濃度が30%の水性分散体(AW−16)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表4に示す。
(Example 16)
An aqueous dispersion (solid content concentration of 30%) was obtained in the same manner as in Example 1 except that the addition amount of potassium hydroxide (D-1) was changed to 1.6 parts and the addition amount of water was changed to 21.5 parts. AW-16) was obtained. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 4.

(実施例17)
脂肪酸カリウム(C−1)の添加量を0.5部、水酸化カリウム(D−1)の添加量を1.9部に変更した以外は実施例1と同様にして、固形分濃度が30%の水性分散体(AW−17)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表4に示す。
(Example 17)
The solid content concentration was 30 as in Example 1 except that the amount of fatty acid potassium (C-1) added was changed to 0.5 parts and the amount of potassium hydroxide (D-1) added was changed to 1.9 parts. % Aqueous dispersion (AW-17) was obtained. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 4.

(実施例18)
脂肪酸カリウム(C−1)の添加量を1.5部、水酸化カリウム(D−1)の添加量を1.9部に変更した以外は実施例1と同様にして、固形分濃度が30%の水性分散体(AW−18)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表4に示す。
(Example 18)
The solid content concentration was 30 as in Example 1, except that the addition amount of fatty acid potassium (C-1) was changed to 1.5 parts and the addition amount of potassium hydroxide (D-1) was changed to 1.9 parts. % Aqueous dispersion (AW-18) was obtained. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 4.

(実施例19)
脂肪酸カリウム(C−1)の添加量を39部、水酸化カリウム(D−1)の添加量を1.5部に変更した以外は実施例1と同様にして、固形分濃度が30%の水性分散体(AW−19)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表4に示す。
(Example 19)
The solid content concentration is 30% in the same manner as in Example 1 except that the amount of fatty acid potassium (C-1) added is 39 parts and the amount of potassium hydroxide (D-1) added is 1.5 parts. An aqueous dispersion (AW-19) was obtained. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 4.

(実施例20)
脂肪酸カリウム(C−1)の添加量を41部、水酸化カリウム(D−1)の添加量を1.5部に変更した以外は実施例1と同様にして、固形分濃度が30%の水性分散体(AW−20)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表4に示す。
(Example 20)
The solid content concentration is 30% in the same manner as in Example 1 except that the amount of fatty acid potassium (C-1) added is 41 parts and the amount of potassium hydroxide (D-1) is changed to 1.5 parts. An aqueous dispersion (AW-20) was obtained. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 4.

Figure 0005586509
Figure 0005586509

(実施例21)
水酸化カリウム(D−1)の添加量を1.1部、(A)、(B)、(C)成分の酸に対する塩基当量を0.9倍量に変更した以外は実施例1と同様にして、固形分濃度が30%の水性分散体(AW−21)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表5に示す。
(Example 21)
Example 1 except that the amount of potassium hydroxide (D-1) added was 1.1 parts, and the base equivalent of the components (A), (B) and (C) was changed to 0.9 times the amount of acid. Thus, an aqueous dispersion (AW-21) having a solid concentration of 30% was obtained. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 5.

(実施例22)
水酸化カリウム(D−1)の添加量を1.3部、(A)、(B)、(C)成分の酸に対する塩基当量を1.1倍量に変更した以外は実施例1と同様にして、固形分濃度が30%の水性分散体(AW−22)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表5に示す。
(Example 22)
Example 1 except that the amount of potassium hydroxide (D-1) added is 1.3 parts, and the base equivalent of the components (A), (B), and (C) is 1.1 times the amount. Thus, an aqueous dispersion (AW-22) having a solid concentration of 30% was obtained. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 5.

(実施例23)
水酸化カリウム(D−1)の添加量を2.2部、(A)、(B)、(C)成分の酸に対する塩基当量を1.9倍量に変更した以外は実施例1と同様にして、固形分濃度が30%の水性分散体(AW−23)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表5に示す。
(Example 23)
Example 2 except that the amount of potassium hydroxide (D-1) added is 2.2 parts, and the base equivalent to the acid of the components (A), (B), and (C) is changed to 1.9 times the amount. Thus, an aqueous dispersion (AW-23) having a solid concentration of 30% was obtained. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 5.

(実施例24)
水酸化カリウム(D−1)の添加量を2.3部、(A)、(B)、(C)成分の酸に対する塩基当量を2.1倍量に変更した以外は実施例1と同様にして、固形分濃度が30%の水性分散体(AW−24)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表5に示す。
(Example 24)
Example 1 except that the amount of potassium hydroxide (D-1) added is 2.3 parts, and the base equivalent of the components (A), (B) and (C) is 2.1 times the acid. Thus, an aqueous dispersion (AW-24) having a solid content concentration of 30% was obtained. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 5.

(実施例25)
第1の酸変性オレフィン系重合体(A−1)を第1の酸変性オレフィン系重合体(A−7)に変更した以外は実施例1と同様にして、固形分濃度が30%の水性分散体(AW−25)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表5に示す。
(Example 25)
An aqueous solution having a solids concentration of 30% was obtained in the same manner as in Example 1 except that the first acid-modified olefin polymer (A-1) was changed to the first acid-modified olefin polymer (A-7). A dispersion (AW-25) was obtained. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 5.

(実施例26)
第1の酸変性オレフィン系重合体(A−1)を第1の酸変性オレフィン系重合体(A−8)に変更した以外は実施例1と同様にして、固形分濃度が30%の水性分散体(AW−26)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表5に示す。
(Example 26)
An aqueous solution having a solid content concentration of 30% in the same manner as in Example 1 except that the first acid-modified olefin polymer (A-1) was changed to the first acid-modified olefin polymer (A-8). A dispersion (AW-26) was obtained. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 5.

(実施例27)
第1の酸変性オレフィン系重合体(A−1)を第1の酸変性オレフィン系重合体(A−9)に変更した以外は実施例1と同様にして、固形分濃度が30%の水性分散体(AW−27)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表5に示す。
(Example 27)
An aqueous solution having a solid content concentration of 30% in the same manner as in Example 1 except that the first acid-modified olefin polymer (A-1) was changed to the first acid-modified olefin polymer (A-9). A dispersion (AW-27) was obtained. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 5.

(実施例28)
第1の酸変性オレフィン系重合体(A−1)を第1の酸変性オレフィン系重合体(A−10)に変更した以外は実施例1と同様にして、固形分濃度が30%の水性分散体(AW−28)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表5に示す。
(Example 28)
An aqueous solution having a solid content concentration of 30% in the same manner as in Example 1 except that the first acid-modified olefin polymer (A-1) was changed to the first acid-modified olefin polymer (A-10). A dispersion (AW-28) was obtained. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 5.

Figure 0005586509
Figure 0005586509

(比較例1)
バレル後半温度を140℃に変更した以外は実施例1と同様にして、固形分濃度が30%の水性分散体(AW−29)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表6に示す。
(Comparative Example 1)
An aqueous dispersion (AW-29) having a solid content concentration of 30% was obtained in the same manner as in Example 1 except that the barrel latter half temperature was changed to 140 ° C. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 6.

(比較例2)
バレル後半温度を110℃に変更した以外は実施例2と同様にして、固形分濃度が30%の水性分散体(AW−30)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表6に示す。
(Comparative Example 2)
An aqueous dispersion (AW-30) having a solid content concentration of 30% was obtained in the same manner as in Example 2 except that the barrel latter half temperature was changed to 110 ° C. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 6.

(比較例3)
バレル後半温度を100℃に変更した以外は実施例3と同様にして、固形分濃度が30%の水性分散体(AW−31)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表6に示す。
(Comparative Example 3)
An aqueous dispersion (AW-31) having a solid content concentration of 30% was obtained in the same manner as in Example 3 except that the barrel latter half temperature was changed to 100 ° C. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 6.

(比較例4)
バレル前半温度を130℃に変更した以外は実施例1と同様にして、固形分濃度が30%の水性分散体(AW−32)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表6に示す。
(Comparative Example 4)
An aqueous dispersion (AW-32) having a solid content concentration of 30% was obtained in the same manner as in Example 1 except that the temperature in the first half of the barrel was changed to 130 ° C. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 6.

(比較例5)
バレル前半温度を100℃に変更した以外は実施例2と同様にして、固形分濃度が30%の水性分散体(AW−33)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表6に示す。
(Comparative Example 5)
An aqueous dispersion (AW-33) having a solid content concentration of 30% was obtained in the same manner as in Example 2 except that the barrel first half temperature was changed to 100 ° C. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 6.

(比較例6)
バレル前半温度を90℃に変更した以外は実施例3と同様にして、固形分濃度が30%の水性分散体(AW−34)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表6に示す。
(Comparative Example 6)
An aqueous dispersion (AW-34) having a solid content concentration of 30% was obtained in the same manner as in Example 3 except that the barrel first half temperature was changed to 90 ° C. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 6.

(比較例7)
バレル前半温度を130℃、バレル後半温度を140℃に変更した以外は実施例1と同様にして、固形分濃度が30%の水性分散体(AW−35)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表6に示す。
(Comparative Example 7)
An aqueous dispersion (AW-35) having a solid concentration of 30% was obtained in the same manner as in Example 1 except that the first half barrel temperature was changed to 130 ° C and the second half barrel temperature was changed to 140 ° C. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 6.

(比較例8)
バレル前半温度を100℃、バレル後半温度を110℃に変更した以外は実施例2と同様にして、固形分濃度が30%の水性分散体(AW−36)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表6に示す。
(Comparative Example 8)
An aqueous dispersion (AW-36) having a solid content concentration of 30% was obtained in the same manner as in Example 2 except that the first half barrel temperature was changed to 100 ° C and the second half barrel temperature was changed to 110 ° C. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 6.

(比較例9)
バレル前半温度を90℃、バレル後半温度を100℃に変更した以外は実施例3と同様にして、固形分濃度が30%の水性分散体(AW−37)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表6に示す。
(Comparative Example 9)
An aqueous dispersion (AW-37) having a solid content concentration of 30% was obtained in the same manner as in Example 3 except that the barrel first half temperature was changed to 90 ° C and the barrel second half temperature was changed to 100 ° C. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 6.

(比較例10)
水の添加量を9.5部に変更した以外は実施例1と同様にして、固形分濃度が30%の水性分散体(AW−38)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表6に示す。
(Comparative Example 10)
An aqueous dispersion (AW-38) having a solid content concentration of 30% was obtained in the same manner as in Example 1 except that the amount of water added was changed to 9.5 parts. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 6.

(比較例11)
水の添加量を22.5部に変更した以外は実施例1と同様にして、固形分濃度が30%の水性分散体(AW−39)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表6に示す。
(Comparative Example 11)
An aqueous dispersion (AW-39) having a solid content concentration of 30% was obtained in the same manner as in Example 1 except that the amount of water added was changed to 22.5 parts. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 6.

(比較例12)
第1の酸変性オレフィン系重合体(A−1)を第1の酸変性オレフィン系重合体(a−11)に、水酸化カリウム(D−1)の添加量を1.0部に変更した以外は実施例1と同様にして、固形分濃度が30%の水性分散体(AW−40)を得た。そして、実施例1と同様にして、得られた水性分散体の貯蔵安定性、平均粒子径、pH、未乳化物量、B型粘度、残存有機溶剤量を評価した。その結果を表6に示す。
(Comparative Example 12)
The first acid-modified olefin polymer (A-1) was changed to the first acid-modified olefin polymer (a-11), and the amount of potassium hydroxide (D-1) added was changed to 1.0 part. Except for the above, an aqueous dispersion (AW-40) having a solid content concentration of 30% was obtained in the same manner as in Example 1. Then, in the same manner as in Example 1, the storage stability, average particle diameter, pH, unemulsified amount, B-type viscosity, and residual organic solvent amount of the obtained aqueous dispersion were evaluated. The results are shown in Table 6.

Figure 0005586509
Figure 0005586509

本願請求項1に係る発明の範囲にある実施例1〜28の水性分散体は、酸変性ポリマー材料の水性分散体の粒子径が小さく、未乳化物量が少なく、しかもB型粘度が低かった。また、水性分散体は有機溶剤を全く含有せず、貯蔵安定性にも優れていた。   In the aqueous dispersions of Examples 1 to 28 within the scope of the invention according to claim 1 of the present application, the particle size of the aqueous dispersion of the acid-modified polymer material was small, the amount of non-emulsified material was small, and the B-type viscosity was low. Further, the aqueous dispersion did not contain any organic solvent and was excellent in storage stability.

バレル後半温度が第1の酸変性オレフィン系重合体の融点より高かった比較例1〜3では粒子径が小さく、未乳化物量が少ないにもかかわらず、B型粘度が高かった。
バレル前半温度が第1の酸変性オレフィン系重合体の融点より低かった比較例4〜6では製造時に不安定となり、粒子径が大きく、未乳化物量が多く、貯蔵安定性が低かった。
バレル前半温度が第1の酸変性オレフィン系重合体の融点より低く且つバレル後半温度が第1の酸変性オレフィン系重合体の融点より高かった比較例7〜9では製造時に不安定となり、粒子径が大きく、未乳化物量が多く、貯蔵安定性が低く、さらにB型粘度が高かった。
水(E)の添加量が請求項1の範囲外にある比較例10〜11では、製造時に不安定となり、未乳化物量が多かった。
酸変性オレフィン系重合体ではないポリマーを用い、水の添加量が多い比較例12では、製造時の温度にかかわらず不安定となり、未乳化物量が多かった。
In Comparative Examples 1 to 3, in which the barrel latter half temperature was higher than the melting point of the first acid-modified olefin polymer, the B-type viscosity was high although the particle size was small and the amount of non-emulsified material was small.
In Comparative Examples 4 to 6, in which the temperature in the first half of the barrel was lower than the melting point of the first acid-modified olefin polymer, it was unstable during production, the particle size was large, the amount of unemulsified material was large, and the storage stability was low.
In Comparative Examples 7 to 9, in which the first half barrel temperature was lower than the melting point of the first acid-modified olefin polymer and the second half barrel temperature was higher than the melting point of the first acid-modified olefin polymer, The amount of non-emulsified product was large, the storage stability was low, and the B-type viscosity was high.
In Comparative Examples 10 to 11 in which the amount of water (E) added was outside the range of claim 1, the amount of water (E) became unstable during production and the amount of non-emulsified product was large.
In Comparative Example 12 in which a polymer that was not an acid-modified olefin polymer was used and the amount of water added was large, the polymer became unstable regardless of the temperature during production, and the amount of non-emulsified product was large.

Claims (3)

酸基を有する第1の酸変性オレフィン系重合体(A)を含有する酸変性ポリマー材料(P)とアニオン型界面活性剤(C)とを溶融混練して混練物を得る第1の混練工程の温度が融点以上であり、前記混練物に、塩基性物質(D)と水(E)とを添加し、溶融混練する第2の混練工程の温度が融点以下であり、水(E)の添加量が第1の酸変性オレフィン系重合体(A)100重量部に対して10〜22質量部であることを特徴とする酸変性オレフィン系水性分散体の製造方法。   First kneading step of obtaining a kneaded product by melt-kneading the acid-modified polymer material (P) containing the first acid-modified olefin polymer (A) having an acid group and the anionic surfactant (C) The temperature of the second kneading step in which the basic substance (D) and water (E) are added to the kneaded material and melt kneaded is below the melting point, and the temperature of the water (E) The method for producing an acid-modified olefin-based aqueous dispersion, wherein the addition amount is 10 to 22 parts by mass with respect to 100 parts by weight of the first acid-modified olefin polymer (A). 第1の酸変性オレフィン系重合体(A)が、オレフィン単位と不飽和カルボン酸単位または不飽和カルボン酸無水物単位とを有し且つ酸価が10mgKOH/g以上、質量平均分子量が2,000〜30,000であることを特徴とする請求項1に記載の酸変性オレフィン系水性分散体の製造方法。   The first acid-modified olefin polymer (A) has an olefin unit and an unsaturated carboxylic acid unit or an unsaturated carboxylic acid anhydride unit, an acid value of 10 mgKOH / g or more, and a mass average molecular weight of 2,000. It is -30,000, The manufacturing method of the acid-modified olefin type aqueous dispersion of Claim 1 characterized by the above-mentioned. 酸変性ポリマー材料(P)が、オレフィン単位と不飽和カルボン酸単位または不飽和カルボン酸無水物単位とを有し且つ質量平均分子量が31,000〜50,000の第2の酸変性オレフィン系重合体(B)を、第1の酸変性オレフィン系重合体(A)100質量部に対して1〜50質量部含有する請求項1または請求項2に記載の酸変性オレフィン系水性分散体の製造方法。
The acid-modified polymer material (P) has an olefin unit and an unsaturated carboxylic acid unit or an unsaturated carboxylic anhydride unit, and has a weight average molecular weight of 31,000 to 50,000. The production of the acid-modified olefin-based aqueous dispersion according to claim 1 or 2, wherein the blend (B) is contained in an amount of 1 to 50 parts by mass with respect to 100 parts by mass of the first acid-modified olefin polymer (A). Method.
JP2011061117A 2011-03-18 2011-03-18 Method for producing acid-modified olefin-based aqueous dispersion Active JP5586509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011061117A JP5586509B2 (en) 2011-03-18 2011-03-18 Method for producing acid-modified olefin-based aqueous dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011061117A JP5586509B2 (en) 2011-03-18 2011-03-18 Method for producing acid-modified olefin-based aqueous dispersion

Publications (2)

Publication Number Publication Date
JP2012197337A JP2012197337A (en) 2012-10-18
JP5586509B2 true JP5586509B2 (en) 2014-09-10

Family

ID=47179901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011061117A Active JP5586509B2 (en) 2011-03-18 2011-03-18 Method for producing acid-modified olefin-based aqueous dispersion

Country Status (1)

Country Link
JP (1) JP5586509B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6106531B2 (en) * 2012-06-22 2017-04-05 ユーエムジー・エービーエス株式会社 Method for producing aqueous dispersion, method for producing graft polymer, and method for producing thermoplastic resin composition
KR102302377B1 (en) * 2014-06-03 2021-09-15 유니띠까 가부시키가이샤 Aqueous dispersion, and laminate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4978707A (en) * 1986-04-24 1990-12-18 Mitsui Petrochemical Industries, Ltd. Aqueous dispersion and process for preparation thereof
GB0004898D0 (en) * 2000-03-02 2000-04-19 Ici Plc Extrusion process
TW200517426A (en) * 2003-08-25 2005-06-01 Dow Global Technologies Inc Aqueous dispersion, its production method, and its use
JP5085151B2 (en) * 2007-02-13 2012-11-28 ユーエムジー・エービーエス株式会社 Aqueous dispersion and method for producing the same
JP5323321B2 (en) * 2007-02-13 2013-10-23 ユーエムジー・エービーエス株式会社 Aqueous dispersion and method for producing the same
JP4892410B2 (en) * 2007-06-07 2012-03-07 ユーエムジー・エービーエス株式会社 Aqueous dispersion and method for producing the same
JP5114116B2 (en) * 2007-07-09 2013-01-09 ユーエムジー・エービーエス株式会社 Aqueous dispersion and method for producing the same, and aqueous dispersion mixture
JP2009173756A (en) * 2008-01-23 2009-08-06 Umg Abs Ltd Aqueous dispersion, method for producing it, coating composition, and coated body
JP2011052058A (en) * 2009-08-31 2011-03-17 Sharp Corp Method for producing fine resin particle dispersion liquid
JP5723869B2 (en) * 2010-03-26 2015-05-27 ユーエムジー・エービーエス株式会社 Acid-modified propylene-based aqueous dispersion, aqueous coating composition using the same, and method for producing the same

Also Published As

Publication number Publication date
JP2012197337A (en) 2012-10-18

Similar Documents

Publication Publication Date Title
CA2672498C (en) Polyolefin resin dispersion composition and process for producing the same
JP4987473B2 (en) Chlorinated propylene-based random copolymer and composition containing the same
JP6962777B2 (en) Dispersed resin composition and its uses
KR102163899B1 (en) Modified polyolefin resin
JP4055995B2 (en) Aqueous dispersion, production method and use thereof
JP2009091426A (en) Aqueous dispersion, its manufacturing method and layered product
JP5323321B2 (en) Aqueous dispersion and method for producing the same
JP5650035B2 (en) Modified polyolefin resin dispersion composition
JP6011612B2 (en) Process for producing modified polyolefin aqueous dispersion composition
WO2016017804A1 (en) Aqueous resin dispersion, paint, adhesive, and laminate
JPWO2019181336A1 (en) Aqueous dispersion composition
JP4892410B2 (en) Aqueous dispersion and method for producing the same
JP2008214414A (en) Modified polyolefin dispersion resin composition and primer containing it
JP5049944B2 (en) Aqueous dispersion, coating composition and painted body
JP5586509B2 (en) Method for producing acid-modified olefin-based aqueous dispersion
JP5085151B2 (en) Aqueous dispersion and method for producing the same
JP5037012B2 (en) Method for producing aqueous polyolefin resin dispersion
WO2003074606A1 (en) Aqueous dispersion, process for producing the same, and use
JP2004091559A (en) Water-borne resin composition
JP2012149199A (en) Aqueous coating material composition and method for producing the same
JP2019123791A (en) Aqueous dispersion and method for producing the same, and coating material
JP7124316B2 (en) Method for producing aqueous resin dispersion
WO2020031916A1 (en) Modified polyolefin resin, aqueous dispersion, and primer
JP3965697B2 (en) Chlorinated polyolefin binder resin composition with good solvent resistance
JP2012202002A (en) Fiber for reinforcing thermoplastic resin and fiber-reinforced thermoplastic resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140722

R150 Certificate of patent or registration of utility model

Ref document number: 5586509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250