JP5585829B2 - 車両用灯具 - Google Patents

車両用灯具 Download PDF

Info

Publication number
JP5585829B2
JP5585829B2 JP2010187585A JP2010187585A JP5585829B2 JP 5585829 B2 JP5585829 B2 JP 5585829B2 JP 2010187585 A JP2010187585 A JP 2010187585A JP 2010187585 A JP2010187585 A JP 2010187585A JP 5585829 B2 JP5585829 B2 JP 5585829B2
Authority
JP
Japan
Prior art keywords
electrode
light
led element
light source
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010187585A
Other languages
English (en)
Other versions
JP2012048861A (ja
Inventor
竜舞 斎藤
裕介 横林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2010187585A priority Critical patent/JP5585829B2/ja
Priority to CN201110243505.7A priority patent/CN102374466B/zh
Priority to US13/217,231 priority patent/US8686636B2/en
Publication of JP2012048861A publication Critical patent/JP2012048861A/ja
Application granted granted Critical
Publication of JP5585829B2 publication Critical patent/JP5585829B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Devices (AREA)

Description

本発明は車両用灯具に係り、特に、明瞭なカットオフラインを形成することが可能な車両用灯具に関する。
従来、車両用灯具の分野においては、LED素子表面に厚みが均一な波長変換層を積層した半導体発光装置が用いられている(例えば、特許文献1、特許文献2参照)。図22、図23は、LED素子Cp表面に波長変換層Lyを略均一な厚みで積層した半導体発光装置の例である。特許文献1等に記載の半導体発光装置においては、波長変換層の厚みが均一であるため、チップ中心部を最大として周囲に行くほどなだらかに低下する輝度分布となる(図5参照)。これは、面発光のランバーシアン配光と同じ原理であり、面内輝度分布が一様であれば、中心部に最大値を示すCOS関数に従う現象と説明できる。
特開2005−322923号公報 特開2008−507850号公報
しかしながら、車両用前照灯の分野においては、明瞭なカットオフラインを形成するため、輝度分布の最大部をカットオフラインに配光することが求められており、この要求に応えるため、シェード等を用いて図7に示すように輝度分布の半分程度をカットしなければならず、光利用効率が低下する、という問題がある。
本発明は、このような事情に鑑みてなされたものであり、従来のようにLED素子からの光の一部をカットすることなく、輝度分布の最大部をカットオフラインに配光することが可能な光源を用いた車両用灯具を提供することを目的とする。
上記目的を達成するため、請求項1に記載の発明は、LED素子と前記LED素子の発光面を覆うように配置された波長変換層とを含み、前記LED素子からの光のうち前記波長変換層を透過した光と前記LED素子からの光で励起されて発光した前記波長変換層からの光とを含む白色光を発光するように構成された光源と、前記光源の光源像を車両前方に投影することにより、車両前端部に正対した仮想鉛直スクリーン上にヘッドランプ用配光パターンを形成するように構成された投影光学系と、を備えた車両用灯具において、前記LED素子は、矩形の基板と、前記基板の片面に積層されたn型半導体層と、前記n型半導体層表面のうち一方の長辺を含む細幅領域に形成された長辺方向に延びるn電極と、前記n型半導体層表面に積層された活性層と、前記活性層表面に積層されたp型半導体層と、前記p型半導体層表面に形成された透明電極と、前記透明電極表面のうち前記n電極から遠い方の長辺を含む細幅領域に形成された、前記n電極と同一方向に延びるp電極と、を備えたフェイスアップ型のLED素子であり、前記光源の発光面における輝度分布は、前記p電極側にピークを有し、前記投影光学系は、前記p電極に対応する像部分が上方に位置するように前記光源の複数の光源像を車両前方に投影し、車両前端部に正対した仮想鉛直スクリーン上に、前記光源の複数の光源像それぞれの前記p電極に対応する像部分により形成されるカットオフラインを含むヘッドランプ用配光パターンを形成するように構成されていることを特徴とする。
請求項1に記載の発明によれば、特定の電極構造を採用したため、光源の発光面のうち、縦断面においてはp電極側にピークを持ち(p電極側が急峻に立ち上がり)、p電極からn電極に向かうにつれ徐々に減少する輝度分布が形成され、横断面においては一定の輝度分布が形成される、ヘッドランプ用配光パターンの形成に適した輝度分布の光源を構成することが可能となる。
また、請求項1に記載の発明によれば、投影光学系の作用により、光源の複数の光源像それぞれのp電極側(輝度がピークの部分)に対応する複数の像部分を、水平方向及び斜め方向(例えば水平に対して15°)に密に配置することが可能となる。これにより、カットオフライン(水平カットオフライン及び斜めカットオフライン)付近が最も明るく、当該カットオフラインから下側に行くに従って照度が低下していくグラデーション形状の遠方視認性に優れたすれ違いビーム用配光パターンを形成することが可能となる。
また、請求項1に記載の発明によれば、LED素子はp電極側にピークを持つ(p電極側が急峻に立ち上がる)輝度分布となるため、従来のようにLED素子からの光の一部をカットする(図7参照)ことなく、LED素子の発光形状をそのまま利用してすれ違いビーム用配光パターンを形成することが可能となる。すなわち、従来のようにLED素子からの光の一部をカットすることなく、p電極側(輝度がピークの部分)を水平方向及び斜め方向(例えば水平に対し15°)に密に配置して、輝度グラデーション部も配光に合致させることが可能となる。このため、請求項1に記載の発明によれば、光利用効率が向上する。
また、請求項1に記載の発明によれば、透明電極の厚み、各電極の面積、p電極とn電極の間隔等を調整することで、LED素子(光源)の縦断面における輝度分布(ピークの位置、ピークの幅等)を目的の輝度分布に調整することが可能となる。
請求項2に記載の発明は、請求項1に記載の発明において、前記透明電極は、前記p型半導体層表面のうち一方の長辺から他方の長辺にかけての略全領域に形成されていることを特徴とする。
請求項2に記載の発明によれば、特定の電極構造を採用したため、光源の発光面のうち、縦断面においてはp電極側にピークを持ち(p電極側が急峻に立ち上がり)、p電極からn電極に向かうにつれ徐々に減少する輝度分布が形成され、横断面においては一定の輝度分布が形成される、ヘッドランプ用配光パターンの形成に適した輝度分布の光源を構成することが可能となる。
また、請求項2に記載の発明によれば、投影光学系の作用により、光源の複数の光源像それぞれのp電極側(輝度がピークの部分)に対応する複数の像部分を、水平方向及び斜め方向(例えば水平に対して15°)に密に配置することが可能となる。これにより、カットオフライン(水平カットオフライン及び斜めカットオフライン)付近が最も明るく、当該カットオフラインから下側に行くに従って照度が低下していくグラデーション形状の遠方視認性に優れたすれ違いビーム用配光パターンを形成することが可能となる。
また、請求項2に記載の発明によれば、LED素子はp電極側にピークを持つ(p電極側が急峻に立ち上がる)輝度分布となるため、従来のようにLED素子からの光の一部をカットする(図7参照)ことなく、LED素子の発光形状をそのまま利用してすれ違いビーム用配光パターンを形成することが可能となる。すなわち、従来のようにLED素子からの光の一部をカットすることなく、p電極側(輝度がピークの部分)を水平方向及び斜め方向(例えば水平に対し15°)に密に配置して、輝度グラデーション部も配光に合致させることが可能となる。このため、請求項2に記載の発明によれば、光利用効率が向上する。
また、請求項2に記載の発明によれば、透明電極の厚み、各電極の面積、p電極とn電極の間隔等を調整することで、LED素子(光源)の縦断面における輝度分布(ピークの位置、ピークの幅等)を目的の輝度分布に調整することが可能となる。
請求項3に記載の発明は、請求項1に記載の発明において、前記透明電極は、前記p型半導体層表面のうち前記n電極から遠い方の長辺から、当該長辺と他方の長辺との中間において長辺方向に延びる中間ラインにかけての領域に形成されていることを特徴とする。
請求項3に記載の発明によれば、特定の電極構造を採用したため、光源の発光面のうち、縦断面においてはp電極側にピークを持ち(p電極側が急峻に立ち上がり)、p電極からn電極に向かうにつれ徐々に減少する輝度分布が形成され、横断面においては一定の輝度分布が形成される、ヘッドランプ用配光パターンの形成に適した輝度分布の光源を構成することが可能となる。
また、請求項3に記載の発明によれば、投影光学系の作用により、光源の複数の光源像それぞれのp電極側(輝度がピークの部分)に対応する複数の像部分を、水平方向及び斜め方向(例えば水平に対して15°)に密に配置することが可能となる。これにより、カットオフライン(水平カットオフライン及び斜めカットオフライン)付近が最も明るく、当該カットオフラインから下側に行くに従って照度が低下していくグラデーション形状の遠方視認性に優れたすれ違いビーム用配光パターンを形成することが可能となる。
また、請求項3に記載の発明によれば、LED素子はp電極側にピークを持つ(p電極側が急峻に立ち上がる)輝度分布となるため、従来のようにLED素子からの光の一部をカットする(図7参照)ことなく、LED素子の発光形状をそのまま利用してすれ違いビーム用配光パターンを形成することが可能となる。すなわち、従来のようにLED素子からの光の一部をカットすることなく、p電極側(輝度がピークの部分)を水平方向及び斜め方向(例えば水平に対し15°)に密に配置して、輝度グラデーション部も配光に合致させることが可能となる。このため、請求項3に記載の発明によれば、光利用効率が向上する。
また、請求項3に記載の発明によれば、透明電極の縦方向寸法を調整することで、LED素子(光源)の縦断面における輝度分布(ピークの位置、ピークの幅等)を目的の輝度分布に調整することが可能となる。
請求項4に記載の発明は、LED素子と前記LED素子の発光面を覆うように配置された波長変換層とを含み、前記LED素子からの光のうち前記波長変換層を透過した光と前記LED素子からの光で励起されて発光した前記波長変換層からの光とを含む白色光を発光するように構成された光源と、前記光源の光源像を車両前方に投影することにより、車両前端部に正対した仮想鉛直スクリーン上にヘッドランプ用配光パターンを形成するように構成された投影光学系と、を備えた車両用灯具において、前記LED素子は、矩形の基板と、前記基板の片面に積層されたn型半導体層と、前記n型半導体層表面のうち一方の長辺を含む細幅領域に形成された長辺方向に延びるn電極と、前記n型半導体層表面に積層された活性層と、前記活性層表面に積層されたp型半導体層と、前記p型半導体層表面に形成された透明電極と、前記透明電極表面のうち前記n電極から遠い方の長辺を含む細幅領域に形成された、前記n電極と同一方向に延びるp電極と、を備えたフェイスアップ型のLED素子であり、前記透明電極は、前記p型半導体層表面のうち一方の長辺から他方の長辺にかけての略全領域に形成されており、前記p電極は、前記透明電極表面のうち一方の長辺と他方の長辺との中間に形成されており、前記投影光学系は、前記n電極に対応する像部分が上方に位置するように前記光源の複数の光源像を車両前方に投影し、車両前端部に正対した仮想鉛直スクリーン上に、前記光源の複数の光源像それぞれの前記n電極に対応する像部分により形成されるカットオフラインを含むヘッドランプ用配光パターンを形成するように構成されていることを特徴とする。
請求項4に記載の発明によれば、特定の電極構造を採用したため、光源の発光面のうち、縦断面においてはp電極とn電極との間にピークを持ち(p電極とn電極との間が急峻に立ち上がり)、p電極から縦方向に離れるにつれ徐々に減少する輝度分布が形成され、横断面においては一定の輝度分布が形成される、ヘッドランプ用配光パターンの形成に適した輝度分布の光源を構成することが可能となる。
また、請求項4に記載の発明によれば、投影光学系の作用により、光源の複数の光源像それぞれの、p電極とn電極との間(輝度がピークの部分)に対応する複数の像部分が水平方向及び斜め方向(例えば水平に対して15°)に密に配置することが可能となる。
これにより、カットオフライン(水平カットオフライン及び斜めカットオフライン)付近が最も明るく、当該カットオフラインから下側に行くに従って照度が低下していくグラデーション形状の遠方視認性に優れたすれ違いビーム用配光パターンを形成することが可能となる。
また、請求項4に記載の発明によれば、LED素子はp電極とn電極との間にピークを持つ(p電極とn電極との間が急峻に立ち上がる)輝度分布となるため、従来のようにLED素子からの光の一部をカットする(図7参照)ことなく、LED素子の発光形状をそのまま利用してすれ違いビーム用配光パターンを形成することが可能となる。すなわち、従来のようにLED素子からの光の一部をカットすることなく、p電極とn電極との間(輝度がピークの部分)を水平方向及び斜め方向(例えば水平に対し15°)に密に配置して、輝度グラデーション部も配光に合致させることが可能となる。このため、請求項4に記載の発明によれば、光利用効率が向上する。
また、請求項4に記載の発明によれば、n電極とp電極との間隔を調整することで、LED素子(光源)の縦断面における輝度分布(ピークの位置、ピークの幅等)を目的の輝度分布に調整することが可能となる。
請求項5に記載の発明は、LED素子と前記LED素子の発光面を覆うように配置された波長変換層とを含み、前記LED素子からの光のうち前記波長変換層を透過した光と前記LED素子からの光で励起されて発光した前記波長変換層からの光とを含む白色光を発光するように構成された光源と、前記光源の光源像を車両前方に投影することにより、車両前端部に正対した仮想鉛直スクリーン上にヘッドランプ用配光パターンを形成するように構成された投影光学系と、を備えた車両用灯具において、前記LED素子は、矩形の基板と、前記基板の片面に積層されたn型半導体層と、前記n型半導体層表面のうち一方の長辺を含む細幅領域に形成された長辺方向に延びるn電極と、前記n型半導体層表面に積層された活性層と、前記活性層表面に積層されたp型半導体層と、前記p型半導体層表面に形成された透明電極と、前記透明電極表面のうち前記n電極から遠い方の長辺を含む細幅領域に形成された、前記n電極と同一方向に延びるp電極と、を備えたフェイスアップ型のLED素子であり、前記p電極は、当該p電極から前記n電極に向かって延びる複数の付加電極を含んでおり、前記n電極は、当該n電極から前記p電極に向かって延びる複数の付加電極を含んでおり、前記投影光学系は、前記p電極の複数の付加電極の先端と前記n電極の複数の付加電極の先端との間に対応する像部分が上方に位置するように前記光源の複数の光源像を車両前方に投影し、車両前端部に正対した仮想鉛直スクリーン上に、前記光源の複数の光源像それぞれの、前記p電極の複数の付加電極の先端と前記n電極の複数の付加電極の先端との間に対応する像部分により形成されるカットオフラインを含むヘッドランプ用配光パターンを形成するように構成されていることを特徴とする。
請求項5に記載の発明によれば、特定の電極構造を採用したため、光源の発光面のうち、縦断面においてはp電極の複数の付加電極の先端とn電極の複数の付加電極の先端との間にピークを持ち(p電極の複数の付加電極の先端とn電極の複数の付加電極の先端との間が急峻に立ち上がり)、その先端から縦方向に離れるにつれ徐々に減少する輝度分布が形成され、横断面においては一・定の輝度分布が形成される、ヘッドランプ用配光パターンの形成に適した輝度分布の光源を構成することが可能となる。
また、請求項5に記載の発明によれば、投影光学系の作用により、光源の複数の光源像それぞれの、p電極の複数の付加電極の先端とn電極の複数の付加電極の先端との間(輝度がピークの部分)に対応する複数の像部分を、水平方向及び斜め方向(例えば水平に対して150)に密に配置することが可能となる。これにより、カットオフライン(水平カットオフライン及び斜めカットオフライン)付近が最も明るく、当該カットオフラインから下側に行くに従って照度が低下していくグラデーション形状の遠方視認性に優れたすれ違いビーム用配光パターンを形成することが可能となる。
また、請求項5に記載の発明によれば、LED素子はp電極の複数の付加電極の先端とn電極の複数の付加電極の先端との間にピークを持つ(p電極の複数の付加電極の先端とn電極の複数の付加電極の先端との間が急峻に立ち上がる)輝度分布となるため、従来のようにLED素子からの光の一部をカットする(図7参照)ことなく、LED素子の発光形状をそのまま利用してすれ違いビーム用配光パターンを形成することが可能となる。
すなわち、従来のようにLED素子からの光の一部をカットすることなく、p電極の複数の付加電極の先端とn電極の複数の付加電極の先端との間(輝度がピークの部分)を水平方向及び斜め方向(例えば水平に対し150)に密に配置して、輝度グラデーション部も配光に合致させることが可能となる。このため、請求項5に記載の発明によれば、光利用効率が向上する。
また、請求項5に記載の発明によれば、p電極の付加電極とn電極の付加電極との縦方向の重なり量を調整することで、LED素子(光源)の縦断面における輝度分布(ピークの位置、ピークの幅等)を目的の輝度分布に調整することが可能となる。
本発明によれば、従来のようにLED素子からの光の一部をカットすることなく、輝度分布の最大部をカットオフラインに配光することが可能な光源を用いた車両用灯具を提供することが可能となる。
(a)本発明の一実施形態である車両用灯具10の外観図、(b)縦断面図である。 光源20の簡略化した断面図である。 (a)LED素子21の正面図(上面図)、(b)LED素子21の断面図(側面図)、(c)図3(a)中A−A断面におけるLED素子21(発光面)の輝度分布の例である。 電流密度が15A/cm、35A/cmとなるように電流を供給した場合の輝度分布(縦断面)の例である。 従来の電極構造のLED素子(発光面)の輝度分布の例である。 ヘッドランプ用配光パターンの例である。 従来の電極構造のLED素子においては当該LED素子からの光の一部をカットしていたことを説明するための図である。 LED素子21の変形例の正面図(上面図)である。 ヘッドランプ用配光パターンの例である。 (a)本発明の一実施形態である車両用灯具10(変形例1−1)の外観図、(b)縦断面図である。 (a)本発明の一実施形態である車両用灯具10(変形例1−2)の外観図、(b)縦断面図である。 本発明の一実施形態である車両用灯具10(変形例1−3)の縦断面図である。 本発明の一実施形態である車両用灯具10(変形例1−4)の縦断面図である。 (a)LED素子21(変形例2−1)の正面図(上面図)、(b)LED素子21(変形例2−1)の断面図(側面図)、(c)図14(a)中B−B断面におけるLED素子21(変形例2−1)の輝度分布の例である。 (a)LED素子21(変形例2−2)の正面図(上面図)、(b)LED素子21(変形例2−2)の断面図(側面図)、(c)図15(a)中C−C断面におけるLED素子21(変形例2−2)の輝度分布の例である。 (a)LED素子21(変形例2−3)の正面図(上面図)、(b)LED素子21(変形例2−3)の断面図(側面図)、(c)図16(a)中D−D断面におけるLED素子21(変形例2−3)の輝度分布の例である。 (a)LED素子21(変形例2−4)の正面図(上面図)、(b)LED素子21(変形例2−4)の断面図(側面図)、(c)図17(a)中E−E断面におけるLED素子21(変形例2−4)の輝度分布の例である。 (a)定電流回路の例、(b)他の定電流回路の例である。 LED素子21におけるワイヤーW等の断線、短絡を検出した場合の処理例を示すフローチャートである。 (a)LED素子21(変形例2−5)の正面図(上面図)、(b)LED素子21(変形例2−5)の断面図(側面図)、(c)図25(a)中F−F断面におけるLED素子21(変形例2−5)の輝度分布の例である。 LED素子の輝度分布に縞が発生する場合、横縞よりも縦縞の方が許容されることを説明するための図である。 従来の半導体発光装置の側面図である。 従来の半導体発光装置の側面図である。
以下、本発明の一実施形態である車両用灯具について図面を参照しながら説明する。
本実施形態の車両用灯具10は、例えば、車両用ヘッドランプであり、車両前部の左右両側にそれぞれ配置されている。
図1(a)は本発明の一実施形態である車両用灯具10の外観図、図1(b)は縦断面図である。図2は、光源20の簡略化した断面図である。
図1(a)、図1(b)、図2に示すように、車両用灯具10は、LED素子21とLED素子21の発光面を覆うように配置された波長変換層22(蛍光体とも称される)とを含み、LED素子21からの光のうち波長変換層22を透過した光とLED素子21からの光で励起されて発光した波長変換層22からの光とを含む白色光を発光するように構成された光源20、光源20の光源像を車両前方に投影することにより、車両前端部に正対した仮想鉛直スクリーン上にヘッドランプ用配光パターンを形成するように構成された投影光学系30等を備えている。
[LED素子21の構造]
まず、LED素子21の構造について説明する。図3(a)はLED素子21の正面図(上面図)、図3(b)はLED素子21の断面図(側面図)、図3(c)は図3(a)中A−A断面におけるLED素子21(発光面)の輝度分布の例である。
LED素子21は、エピタキシャル成長面側から青色光を取り出すフェイスアップ型(FU型とも称される)のLED素子であり、正面視で略矩形の発光面を備えている(図3(a)参照)。一般的なLED素子(発光面)が縦300μm×横500μm程度のサイズであるのに対し、本実施形態のLED素子21(発光面)は縦H=500〜1200μm、横W=4〜5mm程度の大サイズである(図3(a)参照)。
図3(b)に示すように、LED素子21は、矩形の基板21a、基板21aの片面に積層されたn型半導体層21b、n型半導体層21b表面のうち一方の長辺を含む細幅領域21b1に形成された長辺方向に延びるn電極21c、n型半導体層21b表面のうちn電極21cから遠い方の長辺とn電極21cとの間に積層された活性層21d、活性層21d表面のうち一方の長辺と他方の長辺との間に積層されたp型半導体層21e、p型半導体層21e表面のうち一方の長辺と他方の長辺との間に形成された透明電極21f、透明電極21f表面のうちn電極21cから遠い方の長辺を含む細幅領域21f1に形成された、n電極21cと同一方向に延びるp電極21g等を備えている。
基板21aは、例えば、サファイア基板等の単結晶基板である。n型半導体層21bは、例えば、n-GaN層等の窒化物半導体層である。n電極21cは、例えば、給電用のワイヤーが接続されるパッド21c1を含む電極である。パッド21c1の数は、給電量に応じて増減することが可能である。活性層21dは、例えば、InGan層等の発光層である。p型半導体層21eは、例えば、p-GaN層等の窒化物半導体層である。透明電極21fは、AuNiやITO等の薄膜で低抵抗の透明電極である。透明電極21fは、p型半導体層21e表面のうち一方の長辺から他方の長辺にかけての略全領域に積層されている(図3(a)参照)。透明電極21fは、n型半導体層21bと比べ抵抗率の高いp型半導体層21eの電流拡散を補うために用いられる。p電極21gは、例えば、給電用のワイヤーが接続されるパッド21g1を含む電極である。パッド21g1の数は、給電量に応じて増減することが可能である。
ヘッドランプの用途では、LED素子21には、DC−DCコンバータ等により制御された定電流(順電流:1〜5A、電流密度:35A/cm以上〜70A/cm)を供給するための回路(例えば定電流回路。図示せず)が接続されている。この回路は、例えば、LED素子21に対し、下記の電流分布が形成される程度の電流密度の電流を供給する。この回路からの電流が、p電極21g、透明電極21f、p型半導体層21e、活性層21d、n型半導体層21bを通ってn電極21cへ流れると、活性層21dは青色光を発光する。当該青色光は図3(b)中透明電極21fから上方向へ出射する。
p電極21gへ供給された電流は、p電極21gが電流拡散しやすい金属製であるため、p電極21gにおいては均一に拡散するが、透明電極21f(縦断面)においては当該透明電極21fの抵抗率との関係で均一には拡散せず、p電極21g側に集中し(p電極21g側にピークを持ち)、p電極21gからn電極21cに向かうにつれ徐々に減少する電流分布(図3(c)と略同一の分布)を形成する。一方、p電極21gへ供給された電流は、透明電極21f(横断面)においては、n電極21cとp電極21gとが互いに平行に配置されているため(図3(a)参照)、一定の電流分布を形成する。
このように分布した電流により活性層21dが発光することで、LED素子21(の発光面)には、上記電流分布と同様の輝度分布、すなわち、LED素子21の発光面(縦断面)においては、p電極21g側にピークを持ち、p電極21gからn電極21cに向かうにつれ徐々に減少する輝度分布(図3(c)参照)が形成され、LED素子21の発光面(横断面)においては、一定の輝度分布が形成される。
例えば、縦Hが500μmのLED素子21に対し、電流密度が15A/cm、35A/cmとなるように電流を供給した場合には、図4に示すような輝度分布(縦断面)が形成される。
なお、透明電極21fの厚み、各電極21c、21f、21gの面積、両電極21c、21gの間隔等を調整することで、LED素子21(光源20)の縦断面における輝度分布(ピークの位置、ピークの幅等)を目的の輝度分布に調整することが可能である。
[LED素子21の製造方法]
次に、LED素子21の製造方法(実施例)について説明する。
サファイア基板21aを準備し、MOCVDにより半導体層(n型半導体層21b、活性層21d、p型半導体層21e等)を成長(エピタキシャル成長)させる。
半導体層の成長を順に説明する。サファイア基板21aをMOCVD装置に投入後、水素雰囲気中で1000℃のサーマルクリーニングを10分間行う。TMG(トリメチルガリウム)およびNHを供給してGaN層からなるバッファ層(図示せず)を形成する。続いて、TMG、NHおよびドーパントガスとしてSiHを供給し、n型GaN層からなるn型半導体層21bを形成する。続いて、n型半導体層21bの上に活性層21dを形成する。本実施例では、活性層21dには、InGaN/GaNからなる多重量子井戸構造を適用した。すなわち、InGaN/GaNを1周期として5周期成長を行う。具体的には、TMG、TMI(トリメチルインジウム)、NHを供給しInGaN井戸層を形成し、続いてTMG、NHを供給してGaN障壁層を形成する。かかる処理を5周期分繰り返すことにより活性層21dが形成される。次に、TMG、TMA(トリメチルアルミニウム)、NHおよびドーパントとしてCPMg(bis-cyclopentadienyl Mg)を供給し、p型AlGaNクラッド層(図示せず)を形成する。続いて、TMG、NHおよびドーパントとしてCPMgを供給しp型GaN層からなるp型半導体層21eを形成する。
次に、n型半導体層21b(n型GaN層)の一部が表出するように、ウエハ上方からドライエッチングを施す。ドライエッチングの際は、フォトリソグラフィにてレジストパターンを形成し、レジストパターンをマスクとして、反応性イオンエッチング(RIE)によりレジストパターンで覆われていない部分をエッチングする。その後、レジストパターンをリムーバで除去する。n型半導体層21b(n型GaN層)が露出した部分21b1を覆うようなレジストパターンを新たにフォトリソグラフィで形成した後、蒸着および合金炉を用いて、p型半導体層21eを覆うようにITOからなる透明電極21fを形成する。その後、レジストパターンをリムーバで除去する。
透明電極21fの一部表面と、n型半導体層21b(n型GaN層)の露出面21b1にそれぞれTiAuからなるp電極21gおよびTiAlからなるn電極21cを形成する。電極21g、21c形成の際は、それぞれが形成される部分以外にはマスクをフォトリソグラフィ等で形成しておき、電極21g、21c形成後は、マスクをリムーバで除去する。
以上により、LED素子21が製造される。
[波長変換層22]
波長変換層22は、LED素子21の発光面を覆うように配置されている。図2は、セラミック基板やシリコン基板等の実装基板Cに実装されたLED素子21、LED素子21の発光面を覆うように配置された波長変換層22の例である。なお、LED素子21と実装基板C上のパターン電極とはワイヤーWにより電気的に接続されている。
これにより、LED素子21からの青色光のうち波長変換層22を透過した青色光成分とLED素子21からの青色光で励起されて発光した波長変換層22からの黄色光成分とを含む白色光(擬似白色光)を発光する光源20(白色光源)を構成することが可能となる。波長変換層22としては、例えば、LED素子21からの青色光で励起されて黄色光を発光する蛍光体(例えば、YAG系蛍光体粒子等の蛍光体粒子が分散された樹脂層)を用いることが可能である。
LED素子21(の発光面)には上記のような輝度分布(図3(c)参照)が形成されるため、光源20(の発光面)には、上記輝度分布と同様の輝度分布、すなわち、光源20の発光面(縦断面)においては、p電極21g側にピークを持ち、p電極21gからn電極21cに向かうにつれ徐々に減少する輝度分布(図3(c)参照)が形成され、光源20(の発光面)(横断面)においては、一定の輝度分布が形成される。
図3(c)は、LED素子21(発光面)の縦断面における輝度分布の例である。従来の電極構造のLED素子においては、チップ中心部を最大として周囲に行くほどなだらかに低下する輝度分布となるのに対し(図5参照)、LED素子21においては、p電極21g側にピークを持つ(p電極21g側が急峻に立ち上がる)輝度分布となることが分かる(図3(c)参照)。
図6は、ヘッドランプ用配光パターンの例である。図6中の真中水平ラインは明暗境界を示しており、上部の暗部が対向車側、下部の明部が路面および歩道側を表している。この照度(輝度)の最大部は図6に示すように、明暗境界部の直下に位置していることが好ましく、下側に行くに従って照度が低下していくグラデーション形状が、遠方視認性および路面照度の最適配光となる。従来の電極構造のLED素子では、図7に示すように、輝度のピークがチップ中心にあるため、前記配光条件を満足させるためには半分の領域をカットして使用しなければならず、光を無駄にしていた。
これに対し、本実施形態のLED素子21では、p電極21g側にピークを持つ(p電極21g側が急峻に立ち上がる)輝度分布となる(図3(c)参照)ため、従来のようにLED素子からの光の一部をカットすることなく、LED素子21の発光形状をそのまま利用してすれ違いビームに適した配光パターンPを形成することが可能となる。すなわち、従来のようにLED素子からの光の一部をカットすることなく、p電極21g側(輝度がピークの部分)を前記配光の照度最大部に配置して、輝度グラデーション部も配光に合致させることが可能となる。このため、光利用効率が向上する。
以上説明したように、本実施形態のLED素子21によれば、電極構造を工夫することにより、矩形の発光面のうち、縦断面においてはp電極21g側にピークを持ち(p電極21g側が急峻に立ち上がり)、p電極21gからn電極21cに向かうにつれ徐々に減少する輝度分布(図3(c)参照)が形成され、横断面においては一定の輝度分布が形成される、ヘッドランプ用配光パターンの形成に適した輝度分布の光源20を構成することが可能となる。
また、LED素子21は、横長の単一のLED素子であるため、従来のように複数のLED素子を一列に並べて横長にしたもの(図22参照)と比べ、より均一な発光面を形成することが可能となる。なお、図8に示すように、単一のLED素子21ではなく、複数のLED素子21を一列に並べて用いてもよい。
また、波長変換層22は、横長の単一の波長変換層であるため、従来のように一列に並べた複数のLED素子を、それぞれに対応する複数の波長変換層で覆ったもの(図22参照)と比べ、蛍光体粒子の分布の偏りが生じにくくなり、色ムラ、輝度ムラを防止することが可能となる。
[車両用灯具10]
次に、上記構成の光源20を用いて車両用灯具10を構成する例について図面を参照しながら説明する。
図1(a)、図1(b)に示すように、車両用灯具10は、車両前方側に配置された光源20、車両後方側に配置された本発明の投影光学系としての反射面31等を備えている。
光源20は、p電極21g側(輝度がピークの部分)が車両前方側に位置し、n電極21c側が車両後方側(すなわち反射面31側)に位置し、かつ、当該光源20の照射方向(すなわち当該光源20の発光面)が下向きとなるように配置されている(図1(b)参照)。
反射面31は、焦点が光源20近傍に設定された回転放物面系の反射面(例えば、複数の小反射領域に区画されたいわゆるマルチリフレクタ)であり、光源20からの光が入射するように、光源20の側方から前方にかけての範囲を覆うように(すなわち光源20の前方に)配置されている(図1(a)、図1(b)参照)。
反射面31は、図1(b)に示すように、p電極21g(輝度がピークの部分)に対応する像部分P1´が上方に位置するように光源20(の発光面)の複数の光源像P1(図1(b)中1つの光源像P1を例示)を車両前方に投影し、車両前端部に正対した仮想鉛直スクリーン(図示せず)上に、光源20の複数の光源像P1それぞれのp電極21g(輝度がピークの部分)に対応する像部分P1´を水平方向及び斜め方向(例えば水平に対して15°)に密に配置することにより形成されるカットオフライン(水平カットオフラインCL1、斜めカットオフラインCL2。図9参照)を含むヘッドランプ用配光パターンPを形成するように構成されている。
本実施形態の車両用灯具10によれば、光源20は反射面31に対し上記位置関係に配置されているため(図1(a)、図1(b)参照)、光源20の複数の光源像P1それぞれのp電極21g(輝度がピークの部分)に対応する複数の像部分P1´を、水平方向及び斜め方向(例えば水平に対して15°)に密に配置することが可能となる。これにより、カットオフライン(水平カットオフラインCL1及び斜めカットオフラインCL2)付近が最も明るく、当該カットオフラインから下側に行くに従って照度が低下していくグラデーション形状の遠方視認性に優れたすれ違いビーム用配光パターンPを形成することが可能となる(図9参照)。
また、本実施形態の車両用灯具10によれば、LED素子21はp電極21g側にピークを持つ(p電極21g側が急峻に立ち上がる)輝度分布となる(図3(c)参照)ため、従来のようにLED素子からの光の一部をカットする(図7参照)ことなく、LED素子21の発光形状をそのまま利用してすれ違いビーム用配光パターンPを形成することが可能となる(図9参照)。すなわち、従来のようにLED素子からの光の一部をカットすることなく、p電極21g側(輝度がピークの部分)を水平方向及び斜め方向(例えば水平に対し15°)に密に配置して、輝度グラデーション部も配光に合致させることが可能となる。このため、本実施形態の車両用灯具10によれば、光利用効率が向上する。
[変形例1−1]
次に、車両用灯具10の変形例1−1について図面を参照しながら説明する。
図10(a)は本発明の一実施形態である車両用灯具10(変形例1−1)の外観図、図10(b)は縦断面図である。
図10(a)、図10(b)に示すように、本変形例の車両用灯具10は車両前方側に配置された光源20、車両後方側に配置された本発明の投影光学系としての反射面32等を備えている。
光源20は、n電極21c側が車両前方側に位置し、p電極21g側(輝度がピークの部分)が車両後方側(すなわち反射面31側)に位置し、かつ、当該光源20の照射方向(すなわち当該光源20の発光面)が上向きとなるように配置されている(図10(b)参照)。
反射面32は、焦点が光源20近傍に設定された回転放物面系の反射面(例えば、複数の小反射領域に区画されたいわゆるマルチリフレクタ)であり、光源20からの光が入射するように、光源20の側方から前方にかけての範囲を覆うように(すなわち光源20の前方に)配置されている(図10(a)、図10(b)参照)。
反射面32は、図10(b)に示すように、p電極21g(輝度がピークの部分)に対応する像部分P1´が上方に位置するように光源20(の発光面)の複数の光源像P1(図10(b)中1つの光源像P1を例示)を車両前方に投影し、車両前端部に正対した仮想鉛直スクリーン(図示せず)上に、光源20の複数の光源像P1それぞれのp電極21g(輝度がピークの部分)に対応する像部分P1´を水平方向及び斜め方向(例えば水平に対して15°)に密に配置することにより形成されるカットオフライン(水平カットオフラインCL1、斜めカットオフラインCL2。図9参照)を含むヘッドランプ用配光パターンPを形成するように構成されている。
本変形例の車両用灯具10によれば、光源20は反射面32に対し上記位置関係に配置されているため(図10(a)、図10(b)参照)、光源20の複数の光源像P1それぞれのp電極21g(輝度がピークの部分)に対応する複数の像部分P1´を、水平方向及び斜め方向(例えば水平に対して15°)に密に配置することが可能となる。これにより、カットオフライン(水平カットオフラインCL1及び斜めカットオフラインCL2)付近が最も明るく、当該カットオフラインから下側に行くに従って照度が低下していくグラデーション形状の遠方視認性に優れたすれ違いビーム用配光パターンPを形成することが可能となる(図9参照)。
また、本変形例の車両用灯具10によれば、LED素子21はp電極21g側にピークを持つ(p電極21g側が急峻に立ち上がる)輝度分布となる(図3(c)参照)ため、従来のようにLED素子からの光の一部をカットする(図7参照)ことなく、LED素子21の発光形状をそのまま利用してすれ違いビーム用配光パターンPを形成することが可能となる(図9参照)。すなわち、従来のようにLED素子からの光の一部をカットすることなく、p電極21g側(輝度がピークの部分)を水平方向及び斜め方向(例えば水平に対し15°)に密に配置して、輝度グラデーション部も配光に合致させることが可能となる。このため、本変形例の車両用灯具10によれば、光利用効率が向上する。
[変形例1−2]
次に、車両用灯具10の変形例1−2について図面を参照しながら説明する。
図11(a)は本発明の一実施形態である車両用灯具10(変形例1−2)の外観図、図11(b)は縦断面図である。
図11(a)、図11(b)に示すように、本変形例の車両用灯具10は、車両前方側に配置された光源20、車両後方側に配置された本発明の投影光学系としての反射面33等を備えている。
光源20は、n電極21c側が鉛直上方に位置し、p電極21g側(輝度がピークの部分)が鉛直下方に位置し、かつ、当該光源20の照射方向(すなわち当該光源20の発光面)が略水平方向となるように配置されている(図11(b)参照)。
反射面33は、焦点が光源20近傍に設定された回転放物面系の反射面(例えば、複数の小反射領域に区画されたいわゆるマルチリフレクタ)であり、光源20からの光が入射するように、光源20の前方に配置されている(図11(a)、図11(b)参照)。
反射面33は、図11(b)に示すように、p電極21g(輝度がピークの部分)に対応する像部分P1´が上方に位置するように光源20(の発光面)の複数の光源像P1(図11(b)中1つの光源像P1を例示)を車両前方に投影し、車両前端部に正対した仮想鉛直スクリーン(図示せず)上に、光源20の複数の光源像P1それぞれのp電極21g(輝度がピークの部分)に対応する像部分P1´を水平方向及び斜め方向(例えば水平に対して15°)に密に配置することにより形成されるカットオフライン(水平カットオフラインCL1、斜めカットオフラインCL2。図9参照)を含むヘッドランプ用配光パターンPを形成するように構成されている。
本変形例の車両用灯具10によれば、光源20は反射面33に対し上記位置関係に配置されているため(図11(a)、図11(b)参照)、光源20の複数の光源像P1それぞれのp電極21g(輝度がピークの部分)に対応する複数の像部分P1´を、水平方向及び斜め方向(例えば水平に対して15°)に密に配置することが可能となる。これにより、カットオフライン(水平カットオフラインCL1及び斜めカットオフラインCL2)付近が最も明るく、当該カットオフラインから下側に行くに従って照度が低下していくグラデーション形状の遠方視認性に優れたすれ違いビーム用配光パターンPを形成することが可能となる(図9参照)。
また、本変形例の車両用灯具10によれば、LED素子21はp電極21g側にピークを持つ(p電極21g側が急峻に立ち上がる)輝度分布となる(図3(c)参照)ため、従来のようにLED素子からの光の一部をカットする(図7参照)ことなく、LED素子21の発光形状をそのまま利用してすれ違いビーム用配光パターンPを形成することが可能となる(図9参照)。すなわち、従来のようにLED素子からの光の一部をカットすることなく、p電極21g側(輝度がピークの部分)を水平方向及び斜め方向(例えば水平に対し15°)に密に配置して、輝度グラデーション部も配光に合致させることが可能となる。このため、本変形例の車両用灯具10によれば、光利用効率が向上する。
[変形例1−3]
次に、車両用灯具10の変形例1−3について図面を参照しながら説明する。
図12は、本発明の一実施形態である車両用灯具10(変形例1−3)の縦断面図である。
図12に示すように、本変形例の車両用灯具10は、車両前方側に配置された投影レンズ34a、車両後方側に配置された光源20、光源20からの光が入射するように、光源20の側方から前方にかけての範囲を覆うように(すなわち光源20の前方に)配置された反射面34b、投影レンズ34aと光源20との間に配置されたシェード34c等を備えている。投影レンズ34a、反射面34b、シェード34cが本発明の投影光学系を構成している。
光源20は、p電極21g側(輝度がピークの部分)が車両前方側に位置し、n電極21c側が車両後方側(すなわち反射面31側)に位置し、かつ、当該光源20の照射方向(すなわち当該光源20の発光面)が上向きとなるように配置されている(図12(b)参照)。
反射面34bは、第1焦点が光源20近傍に設定され、第2焦点がシェード34cの上端縁近傍に設定された回転楕円系の反射面であり、光源20からの光が入射するように、光源20の側方から前方にかけての範囲を覆うように(すなわち光源20の前方に)配置されている(図12参照)。
反射面34bは、p電極21g(輝度がピークの部分)に対応する像部分P1´が上方に位置するように光源20(の発光面)の複数の光源像P1を車両前方に投影し、車両前端部に正対した仮想鉛直スクリーン(図示せず)上に、光源20の複数の光源像P1それぞれのp電極21g(輝度がピークの部分)に対応する像部分P1´を水平方向及び斜め方向(例えば水平に対して15°)に密に配置することにより形成されるカットオフライン(水平カットオフラインCL1、斜めカットオフラインCL2。図9参照)を含むヘッドランプ用配光パターンPを形成するように構成されている。
シェード34cは、反射面34bからの反射光の一部を遮光してカットオフラインを形成するための遮光部材であり、上端縁を投影レンズ34aの焦点近傍に位置させた状態で投影レンズ34aと光源20との間に配置されている。
本変形例の車両用灯具10によれば、光源20は上記位置関係に配置されているため(図12参照)、光源20の複数の光源像P1それぞれのp電極21g(輝度がピークの部分)に対応する複数の像部分P1´を、水平方向及び斜め方向(例えば水平に対して15°)に密に配置することが可能となる。これにより、カットオフライン(水平カットオフラインCL1及び斜めカットオフラインCL2)付近が最も明るく、当該カットオフラインから下側に行くに従って照度が低下していくグラデーション形状の遠方視認性に優れたすれ違いビーム用配光パターンPを形成することが可能となる(図9参照)。
また、本変形例の車両用灯具10によれば、LED素子21はp電極21g側にピークを持つ(p電極21g側が急峻に立ち上がる)輝度分布となる(図3(c)参照)ため、従来のようにLED素子からの光の約半分をカットする(図7参照)ことなく、LED素子21の高輝度側端部からのごく一部の光をカットするだけで、LED素子21の発光形状をほぼそのまま利用してすれ違いビーム用配光パターンPを形成することが可能となる(図9参照)。すなわち、従来のようにLED素子からの光の約半分までをカットすることなく、p電極21g側(輝度がピークの部分)を水平方向及び斜め方向(例えば水平に対し15°)に密に配置して、輝度グラデーション部も配光に合致させることが可能となる。このため、本変形例の車両用灯具10によれば、光利用効率が向上する。また、本変形例の車両用灯具10によれば、従来のLED素子を用いる場合と比較して、シェードの受けるエネルギーが少なくなり(すなわちシェードにはLED素子21の高輝度側端部からのごく一部の光しか当たらないため)、シェードが加熱される量を低減することが可能となる。
[変形例1−4]
次に、車両用灯具10の変形例1−4について図面を参照しながら説明する。
図13は、本発明の一実施形態である車両用灯具10(変形例1−4)の縦断面図である。
図13に示すように、本変形例の車両用灯具10は、車両前方側に配置された本発明の投影光学系としての投影レンズ35a、車両後方側に配置された光源20、投影レンズ35aと光源20との間に配置されたシェード35b等を備えている。投影レンズ35a、シェード35bが本発明の投影光学系を構成している。
光源20は、n電極21c側が鉛直上方に位置し、p電極21g側(輝度がピークの部分)が鉛直下方に位置し、かつ、当該光源20の照射方向(すなわち当該光源20の発光面)が車両前方側を向くように配置されている(図13参照)。
シェード35bは、光源20からの光の一部を遮光してカットオフラインを形成するための遮光部材であり、上端縁を投影レンズ35aの焦点近傍に位置させた状態で投影レンズ35aと光源20との間に配置されている。
本変形例の車両用灯具10によれば、光源20は上記位置関係に配置されているため(図13参照)、光源20の複数の光源像P1それぞれのp電極21g(輝度がピークの部分)に対応する複数の像部分P1´を、水平方向及び斜め方向(例えば水平に対して15°)に配置することが可能となる。これにより、カットオフライン(水平カットオフラインCL1及び斜めカットオフラインCL2)付近が最も明るく、当該カットオフラインから下側に行くに従って照度が低下していくグラデーション形状の遠方視認性に優れたすれ違いビーム用配光パターンPを形成することが可能となる(図9参照)。
また、本変形例の車両用灯具10によれば、LED素子21はp電極21g側にピークを持つ(p電極21g側が急峻に立ち上がる)輝度分布となる(図3(c)参照)ため、従来のようにLED素子からの光の約半分をカットする(図7参照)ことなく、LED素子21の高輝度側端部からのごく一部の光をカットするだけで、LED素子21の発光形状をほぼそのまま利用してすれ違いビーム用配光パターンPを形成することが可能となる(図9参照)。すなわち、従来のようにLED素子からの光の約半分までをカットすることなく、p電極21g側(輝度がピークの部分)を水平方向及び斜め方向(例えば水平に対し15°)に密に配置して、輝度グラデーション部も配光に合致させることが可能となる。このため、本変形例の車両用灯具10によれば、光利用効率が向上する。また、本変形例の車両用灯具10によれば、従来のLED素子を用いる場合と比較して、シェードの受けるエネルギーが少なくなり(すなわちシェードにはLED素子21の高輝度側端部からのごく一部の光しか当たらないため)、シェードが加熱される量を低減することが可能となる。
[変形例2−1]
次に、LED素子21の構造(変形例2−1)について図面を参照しながら説明する。図14(a)はLED素子21(変形例2−1)の正面図(上面図)、図14(b)はLED素子21(変形例2−1)の断面図(側面図)、図14(c)は図14(a)中B−B断面におけるLED素子21(変形例2−1)の輝度分布の例である。
上記実施形態及び各変形例では、透明電極21fは、p型半導体層21e表面のうち一方の長辺から他方の長辺にかけての略全領域に形成されている(図3(a)参照)ように説明したが、本発明はこれに限定されない。例えば、図14(a)、図14(b)に示すように、透明電極21fは、p型半導体層21e表面のうちn電極21cから遠い方の長辺から、当該長辺と他方の長辺との中間において長辺方向に延びる中間ラインLにかけての領域にのみ形成されていてもよい。
本変形例によれば、p型半導体層21e表面のうち中間ラインLから、n電極21cから近い方の長辺にかけての領域には、透明電極21fが形成されておらず、p電極21gからの電流が拡散されにくくなるため、p電極21gへ供給された電流は、縦断面においてはp電極21g側に集中し(p電極21g側にピークを持ち)、p電極21gからn電極21cに向かうにつれ徐々に減少し、中間ラインL付近で急激に減少する電流分布(すなわち、図14(c)と略同一の分布)を形成する。
このように分布した電流により活性層21dが発光することで、LED素子21(の発光面)には、上記電流分布と同様の輝度分布、すなわち、LED素子21の発光面(縦断面)においては、p電極21g側にピークを持ち、p電極21gからn電極21cに向かうにつれ徐々に減少し、中間ラインL付近で急激に減少する輝度分布(図14(c)参照)が形成され、LED素子21の発光面(横断面)においては、一定の輝度分布が形成される。
したがって、本変形例のLED素子21の発光面を覆うように波長変換層22を配置することで、縦断面においてはp電極21g側にピークを持ち、p電極21gからn電極21cに向かうにつれ徐々に減少し、中間ラインL付近で急激に減少する輝度分布(図14(c)参照)が形成され、横断面においては一定の輝度分布が形成される、ヘッドランプ用配光パターンの形成に適した輝度分布の光源20を構成することが可能となる。
また、本変形例のLED素子21を含む光源20は上記実施形態の光源20と同様、p電極21g側にピークを持つ(p電極21g側が急峻に立ち上がる)輝度分布であるため、本変形例のLED素子21を含む光源20を用いて、車両用灯具10(図1参照)、変形例1−1〜1−4の車両用灯具10(図10〜図13参照)を構成することが可能である。
また、本変形例によれば、透明電極21fの縦方向寸法H1(図14(a)参照)を調整することで、LED素子21(光源20)の縦断面における輝度分布(ピークの位置、ピークの幅等)を目的の輝度分布に調整することが可能となる。
[変形例2−2]
次に、LED素子21の構造(変形例2−2)について図面を参照しながら説明する。図15(a)はLED素子21(変形例2−2)の正面図(上面図)、図15(b)はLED素子21(変形例2−2)の断面図(側面図)、図15(c)は図15(a)中C−C断面におけるLED素子21(変形例2−2)の輝度分布の例である。
上記実施形態及び各変形例では、p電極21gは、透明電極21f表面のうちn電極21cから遠い方の長辺を含む細幅領域21f1に形成されているように説明したが、本発明はこれに限定されない。例えば、図15(a)、図15(b)に示すように、p電極21gは、透明電極21fのうち一方の長辺と他方の長辺との中間に形成されていてもよい。
本変形例によれば、p電極21gへ供給された電流は、p電極21gが電流拡散しやすい金属製であるため、p電極21gにおいては均一に拡散するが、透明電極21f(縦断面)においては当該透明電極21fの抵抗率との関係で均一には拡散せず、p電極21gとn電極21cとの間に集中し(p電極21gとn電極21cとの間にピークを持ち)、p電極21gから縦方向に離れるにつれ徐々に減少する電流分布(図15(c)と略同一の分布)を形成する。一方、p電極21gへ供給された電流は、透明電極21f(横断面)においては、n電極21cとp電極21gとが互いに平行に配置されているため(図15(a)参照)、一定の電流分布を形成する。
このように分布した電流により活性層21dが発光することで、LED素子21(の発光面)には、上記電流分布と同様の輝度分布、すなわち、LED素子21の発光面(縦断面)においては、p電極21gとn電極21cとの間にピークを持ち(p電極とn電極との間が急峻に立ち上がり)、p電極21gから縦方向に離れるにつれ徐々に減少する輝度分布(図15(c)参照)が形成され、LED素子21の発光面(横断面)においては、一定の輝度分布が形成される。
したがって、本変形例のLED素子21の発光面を覆うように波長変換層22を配置することで、縦断面においてはp電極21gとn電極21cとの間にピークを持ち(p電極とn電極との間が急峻に立ち上がり)、p電極21gから縦方向に離れるにつれ徐々に減少する輝度分布(図15(c)参照)が形成され、横断面においては一定の輝度分布が形成される、ヘッドランプ用配光パターンの形成に適した輝度分布の光源20を構成することが可能となる。
また、本変形例のLED素子21を含む光源20は上記実施形態の光源20と同様、p電極21g側とn電極21cとの間にピークを持つ輝度分布であるため、本変形例のLED素子21を含む光源20を用いて、車両用灯具10(図1参照)、変形例1−1〜1−4の車両用灯具10(図10〜図13参照)を構成することが可能である。
例えば、p電極21g側とn電極21cとの間(輝度がピークの部分)を車両前方側に位置させ、n電極から遠い方の長辺を車両後方側(すなわち反射面31側)に位置させ、かつ、照射方向(すなわち発光面)が下向きとなるように光源20を配置することで、図1に示すのと同様の車両用灯具10を構成することが可能となる。図10〜図13に示す車両用灯具10についても同様に構成することが可能となる。
また、本変形例によれば、n電極21cとp電極21gとの間隔H3(図15(a)参照)を調整することで、LED素子21(光源20)の縦断面における輝度分布(ピークの位置、ピークの幅等)を目的の輝度分布に調整することが可能となる。
ここで、ヘッドランプ用配光パターンは、発光素子(LED素子)光源の上下方向の拡散よりも、左右方向への拡散が大きいため、発光素子(LED素子)の輝度分布において、横縞が生じるよりも、縦縞が生じるほうが配光ムラへの影響が少ない(図21参照)。なお、本願における横縞は、上方の端部から下方の端部へ輝度が低下する輝度分布ではなく、縦断面において山(ピーク)、谷、山(ピーク)・・・が連続する輝度分布(図21参照)のことを示す。
そのため、各電極21c、21f、21gの面積、幅、厚み、両電極21c、21gの間隔等を調整し、横縞が生じないような輝度分布を形成することが好ましい。
[変形例2−3]
次に、LED素子21の構造(変形例2−3)について図面を参照しながら説明する。図16(a)はLED素子21(変形例2−3)の正面図(上面図)、図16(b)はLED素子21(変形例2−3)の断面図(側面図)、図16(c)は図16(a)中D−D断面におけるLED素子21(変形例2−3)の輝度分布の例である。
図16(a)、図16(b)に示すように、p電極21gは当該p電極21gからn電極21cに向かって延びる複数の付加電極21g2を含んでおり、n電極21cは当該n電極21cからp電極21gに向かって延びる複数の付加電極21c2を含んでいてもよい。
本変形例によれば、p電極21gへ供給された電流は、p電極21g(及びその複数の付加電極21g2)が電流拡散しやすい金属製であるため、p電極21g(及びその複数の付加電極21g2)においては均一に拡散するが、透明電極21fにおいては当該透明電極21fの抵抗率との関係で均一には拡散せず、p電極21gの付加電極21g2の先端とn電極21cの付加電極21c2の先端との間に集中し(p電極21gの付加電極21g2の先端とn電極21cの付加電極21c2の先端との間にピークを持ち)、その先端から縦方向に離れるにつれ徐々に減少する電流分布(図16(c)と略同一の分布)を形成する。一方、p電極21gへ供給された電流は、透明電極21f(横断面)においては、n電極21cとp電極21gとが互いに平行に配置されているため(図16(a)参照)、略一定の電流分布を形成する。
このように分布した電流により活性層21dが発光することで、LED素子21(の発光面)には、上記電流分布と同様の輝度分布、すなわち、LED素子21の発光面(縦断面)においては、p電極21gの付加電極21g2の先端とn電極21cの付加電極21c2の先端との間にピークを持ち(p電極21gの複数の付加電極21g1の先端とn電極21cの複数の付加電極21c1の先端との間が急峻に立ち上がり)、その先端から縦方向に離れるにつれ徐々に減少する輝度分布(図16(c)参照)が形成され、LED素子21の発光面(横断面)においては、略一定の輝度分布が形成される。
したがって、本変形例のLED素子21の発光面を覆うように波長変換層22を配置することで、縦断面においてはp電極21gの付加電極21g2の先端とn電極21cの付加電極21c2の先端との間にピークを持ち(p電極21gの複数の付加電極21g1の先端とn電極21cの複数の付加電極21c1の先端との間が急峻に立ち上がり)、その先端から縦方向に離れるにつれ徐々に減少する輝度分布(図16(c)参照)が形成され、横断面においては略一定の輝度分布が形成される、ヘッドランプ用配光パターンの形成に適した輝度分布の光源20を構成することが可能となる。
また、本変形例のLED素子21を含む光源20は上記実施形態の光源20と同様、p電極21gの付加電極21g2の先端とn電極21cの付加電極21c2の先端との間にピークを持つ輝度分布であるため、本変形例のLED素子21を含む光源20を用いて、車両用灯具10(図14参照)、変形例1−1〜1−4の車両用灯具10(図1、図10〜図13参照)を構成することが可能である。
例えば、p電極21gの付加電極21g2の先端とn電極21cの付加電極21c2の先端との間(輝度がピークの部分)を車両前方側に位置させ、かつ、照射方向(すなわち発光面)が下向きとなるように光源20を配置することで、図1に示すのと同様の車両用灯具10を構成することが可能となる。図10〜図13に示す車両用灯具10についても同様に構成することが可能となる。
また、本変形例によれば、p電極21gの付加電極21g2とn電極21cの付加電極21c2との縦方向の重なり量H2(図16(a)参照)を調整することで、LED素子21(光源20)の縦断面における輝度分布(ピークの位置、ピークの幅等)を目的の輝度分布に調整することが可能となる。
[変形例2−4]
図17(a)はLED素子21(変形例2−4)の正面図(上面図)、図17(b)はLED素子21(変形例2−4)の断面図(側面図)、図17(c)は図17(a)中E−E断面におけるLED素子21(変形例2−4)の輝度分布の例である。
上記実施形態及び各変形例では、活性層21d、p型半導体層21e、及び、透明電極21fからなる1つの素子部21hを用いた例(図3等参照)について説明したが、本発明はこれに限定されない。
例えば、図17(a)、図17(b)に示すように、複数(例えば2つ)の素子部21hを用いてもよい。例えば、n電極21cと同一方向に延び、p型半導体層21e表面からn型半導体層21bに達する少なくとも一つの溝部G1をドライエッチング等により形成することでp型半導体層21e等を上下に区画し、当該区画された上下のp型半導体層21e表面それぞれに透明電極21f、p電極21gを形成することで、並列に配置された複数の素子部21h(図17(a)、図17(b)参照)を形成することが可能である。
上の素子部21h(n電極21cから遠い方)及び下の素子部21h(n電極21cから近い方)にはそれぞれ、DC−DCコンバータ等により制御された定電流(順電流:1〜5A、電流密度:35〜70A/cm)を供給するための回路(例えば定電流回路)が接続されている。この回路は、例えば、上の素子部21hに対し下の素子部21hよりも電流密度が大きくなるように電流を供給する。この回路としては、例えば、図18(a)に示すものを用いることが可能である。
本変形例によれば、上の素子部21hに対し下の素子部21hよりも大きな電流を供給することで、縦断面においては、上のp電極21g側にピークを持ち、上のp電極21gからn電極21cに向かうにつれ徐々に減少する電流分布(図17(c)と略同一の分布)を形成することが可能となる。つまり、上の素子部21iの電流密度は、下の素子部21iの電流密度より大きい。
このように分布した電流により上下の活性層21dが発光することで、LED素子21(の発光面)には、上記電流分布と同様の輝度分布、すなわち、LED素子21の発光面(縦断面)においては、上のp電極21g側にピークを持ち、上のp電極21gからn電極21cに向かうにつれ徐々に減少する輝度分布(図17(c)参照)が形成され、LED素子21の発光面(横断面)においては、一定の輝度分布が形成される。
したがって、本変形例のLED素子21の発光面を覆うように波長変換層22を配置することで、縦断面においては上のp電極21g側にピークを持ち、上のp電極21g(n電極21cから遠い方)からn電極21cに向かうにつれ徐々に減少する輝度分布(図17(c)参照)が形成され、横断面においては一定の輝度分布が形成される、ヘッドランプ用配光パターンの形成に適した輝度分布の光源20を構成することが可能となる。
また、本変形例のLED素子21を含む光源20は上記実施形態の光源20と同様、上のp電極21g側にピークを持つ(上のp電極21g側が急峻に立ち上がる)輝度分布であるため、本変形例のLED素子21を含む光源20を用いて、車両用灯具10(図1参照)、変形例1−1〜1−4の車両用灯具10(図10〜図13参照)を構成することが可能である。
例えば、上のp電極21g側(輝度が高い方)のピークの部分を車両前方側に位置させ、n電極21cを車両後方側(すなわち反射面31側)に位置させ、かつ、照射方向(すなわち発光面)が下向きとなるように光源20を配置することで、図1に示すのと同様の車両用灯具10を構成することが可能となる。図10〜図13に示す車両用灯具10についても同様に構成することが可能となる。
また、本変形例によれば、上の素子部21h及び下の素子部21hへ供給する電流、電流密度を個別に調整することで、LED素子21(光源20)の縦断面における輝度分布(ピークの位置、ピークの幅等)を目的の輝度分布に調整することが可能となる。
この場合も、各電極21c、21f、21gの面積、幅、厚み、両電極21c、21gの間隔、溝部G1の位置、幅等を調整し、横縞が生じないような輝度分布を形成することが好ましい。
また、本変形例2−4によれば、変形例2−5と比べ、除去される活性層21dの量が少なくて済むため(図17(b)、図20(b)参照)、より明るいLED素子21(光源20)を構成することが可能となる。
本変形例においては、例えば、LED素子21に供給される電流量の変化を検出する回路(図示せず)等を設け、図19に示すように、LED素子21におけるワイヤーW等の断線、短絡を検出し(ステップS10、S12)、当該断線、短絡が検出された場合には(ステップS10:Yes、S12:Yes)、その旨の異常信号を車両側装置へ送出する(ステップS14)ことも可能である。この場合、車両側装置においては、当該異常信号に基づきその旨の表示等が行われる。
[変形例2−5]
図20(a)はLED素子21(変形例2−5)の正面図(上面図)、図20(b)はLED素子21(変形例2−5)の断面図(側面図)、図25(c)は図25(a)中F−F断面におけるLED素子21(変形例2−5)の輝度分布の例である。
上記実施形態及び各変形例では、n型半導体層21b、n電極21c、活性層21d、p型半導体層21e、透明電極21f、及び、p電極21gからなる1つの素子部21iを用いた例(図3(a)等参照)について説明したが、本発明はこれに限定されない。
例えば、図20(a)、図20(b)に示すように、複数(例えば2つ)の素子部21iを用いてもよい。例えば、n電極21cと同一方向に延び、p型半導体層21e表面から基板21aに達する少なくとも一つの溝部G2をドライエッチング等により形成することでp型半導体層21e等を上下に区画し、当該区画された上下のp型半導体層21e表面それぞれにn電極21c、透明電極21f、p電極21gを形成することで、並列に配置された複数の素子部21i(図20(a)、図20(b)参照)を形成することが可能である。または、単純に、複数のLED素子21を並列に配置することによっても、複数の素子部21iを形成することが可能である。
上の素子部21i及び下の素子部21iにはそれぞれ、DC−DCコンバータ等により制御された定電流(順電流:1〜5A、電流密度:35〜70A/cm)を供給するための回路(例えば定電流回路)が接続されている。この回路は、例えば、上の素子部21iに対し下の素子部21iよりも電流密度が大きくなるように電流を供給する。この回路としては、例えば、図18(b)に示すものを用いることが可能である。
本変形例によれば、上の素子部21i(LED素子の長辺に近いp電極21gを備える素子部)に対し下の素子部21iよりも大きな電流を供給することで、縦断面においては、上のp電極21g(p電極のうちLED素子の長辺に最も近接しているp電極21g)側にピークを持ち、上のp電極21gから下のn電極21cに向かうにつれ徐々に減少する電流分布(図20(c)と略同一の分布)を形成することが可能となる。つまり、上の素子部21iの電流密度は、下の素子部21iの電流密度より大きい。
このように分布した電流により上下の活性層21dが発光することで、LED素子21(の発光面)には、上記電流分布と同様の輝度分布、すなわち、LED素子21の発光面(縦断面)においては、上のp電極21g側にピークを持ち、上のp電極21gから下のn電極21cに向かうにつれ徐々に減少する輝度分布(図20(c)参照)が形成され、LED素子21の発光面(横断面)においては、一定の輝度分布が形成される。
したがって、本変形例のLED素子21の発光面を覆うように波長変換層22を配置することで、縦断面においては上のp電極21g側にピークを持ち、上のp電極21gから下のn電極21cに向かうにつれ徐々に減少する輝度分布(図20(c)参照)が形成され、横断面においては一定の輝度分布が形成される、ヘッドランプ用配光パターンの形成に適した輝度分布の光源20を構成することが可能となる。
また、本変形例のLED素子21を含む光源20は上記実施形態の光源20と同様、上のp電極21g側にピークを持つ(上のp電極21g側が急峻に立ち上がる)輝度分布であるため、本変形例のLED素子21を含む光源20を用いて、車両用灯具10(図1参照)、変形例1−1〜1−4の車両用灯具10(図10〜図13参照)を構成することが可能である。
例えば、上のp電極21g側(輝度がピークの部分)を車両前方側に位置させ、下のn電極を車両後方側(すなわち反射面31側)に位置させ、かつ、照射方向(すなわち発光面)が下向きとなるように光源20を配置することで、図1に示すのと同様の車両用灯具10を構成することが可能となる。図10〜図13に示す車両用灯具10についても同様に構成することが可能となる。
また、本変形例によれば、上の素子部21i及び下の素子部21iへ供給する電流、電流密度を個別に調整することで、LED素子21(光源20)の縦断面における輝度分布(ピークの位置、ピークの幅等)を目的の輝度分布に調整することが可能となる。
この場合も、各電極21c、21f、21gの面積、幅、厚み、両電極21c、21gの間隔、溝部G2の位置、幅等を調整し、横縞が生じないような輝度分布を形成することが好ましい。
本変形例においては、例えば、LED素子21に供給される電流量の変化を検出する回路(図示せず)等を設け、図19に示すように、LED素子21におけるワイヤーW等の断線、短絡を検出し(ステップS10、S12)、当該断線、短絡が検出された場合には(ステップS10:Yes、S12:Yes)、その旨の異常信号を車両側装置へ送出する(ステップS14)ことも可能である。この場合、車両側装置においては、当該異常信号に基づきその旨の表示等が行われる。
なお、上記実施形態及び各変形例では、LED素子21が青色光を発光するLED素子であり、波長変換層22がLED素子21からの青色光で励起されて黄色光を発光する波長変換層であるように説明したが本発明はこれに限定されない。LED素子21としては青色光以外の波長の光を発光するLED素子を用いることが可能であり、波長変換層22としては黄色以外の波長の光を発光する波長変換層を用いることが可能である。
上記実施形態はあらゆる点で単なる例示にすぎない。これらの記載によって本発明は限定的に解釈されるものではない。本発明はその精神または主要な特徴から逸脱することなく他の様々な形で実施することができる。
10…車両用灯具、20…光源、21…LED素子、21a…基板(サファイア基板)、21b…n型半導体層、21b1…細幅領域、21c…n電極、21c1…パッド、21c2…付加電極、21d…活性層、21e…p型半導体層、21f…透明電極、21f…透明電極、21f1…細幅領域、21g…n電極、21g1…パッド、21g2…付加電極、21h…素子部、21i…素子部、22…波長変換層(蛍光体)、30…投影光学系

Claims (5)

  1. LED素子と前記LED素子の発光面を覆うように配置された波長変換層とを含み、前記LED素子からの光のうち前記波長変換層を透過した光と前記LED素子からの光で励起されて発光した前記波長変換層からの光とを含む白色光を発光するように構成された光源と、
    前記光源の光源像を車両前方に投影することにより、車両前端部に正対した仮想鉛直スクリーン上にヘッドランプ用配光パターンを形成するように構成された投影光学系と、
    を備えた車両用灯具において、
    前記LED素子は、
    矩形の基板と、
    前記基板の片面に積層されたn型半導体層と、
    前記n型半導体層表面のうち一方の長辺を含む細幅領域に形成された長辺方向に延びるn電極と、
    前記n型半導体層表面に積層された活性層と、
    前記活性層表面に積層されたp型半導体層と、
    前記p型半導体層表面に形成された透明電極と、
    前記透明電極表面のうち前記n電極から遠い方の長辺を含む細幅領域に形成された、前記n電極と同一方向に延びるp電極と、
    を備えたフェイスアップ型のLED素子であり、
    前記光源の発光面における輝度分布は、前記p電極側にピークを有し、
    前記投影光学系は、前記p電極に対応する像部分が上方に位置するように前記光源の複数の光源像を車両前方に投影し、車両前端部に正対した仮想鉛直スクリーン上に、前記光源の複数の光源像それぞれの前記p電極に対応する像部分により形成されるカットオフラインを含むヘッドランプ用配光パターンを形成するように構成されていることを特徴とする車両用灯具。
  2. 前記透明電極は、前記p型半導体層表面のうち一方の長辺から他方の長辺にかけての略全領域に形成されていることを特徴とする請求項1に記載の車両用灯具。
  3. 前記透明電極は、前記p型半導体層表面のうち前記n電極から遠い方の長辺から、当該長辺と他方の長辺との中間において長辺方向に延びる中間ラインにかけての領域に形成されていることを特徴とする請求項1に記載の車両用灯具。
  4. LED素子と前記LED素子の発光面を覆うように配置された波長変換層とを含み、前記LED素子からの光のうち前記波長変換層を透過した光と前記LED素子からの光で励起されて発光した前記波長変換層からの光とを含む白色光を発光するように構成された光源と、
    前記光源の光源像を車両前方に投影することにより、車両前端部に正対した仮想鉛直スクリーン上にヘッドランプ用配光パターンを形成するように構成された投影光学系と、
    を備えた車両用灯具において、
    前記LED素子は、
    矩形の基板と、
    前記基板の片面に積層されたn型半導体層と、
    前記n型半導体層表面のうち一方の長辺を含む細幅領域に形成された長辺方向に延びるn電極と、
    前記n型半導体層表面に積層された活性層と、
    前記活性層表面に積層されたp型半導体層と、
    前記p型半導体層表面に形成された透明電極と、
    前記透明電極表面のうち前記n電極から遠い方の長辺を含む細幅領域に形成された、前記n電極と同一方向に延びるp電極と、
    を備えたフェイスアップ型のLED素子であり、
    前記透明電極は、前記p型半導体層表面のうち一方の長辺から他方の長辺にかけての略全領域に形成されており、
    前記p電極は、前記透明電極表面のうち一方の長辺と他方の長辺との中間に形成されており、
    前記投影光学系は、前記n電極に対応する像部分が上方に位置するように前記光源の複数の光源像を車両前方に投影し、車両前端部に正対した仮想鉛直スクリーン上に、前記光源の複数の光源像それぞれの前記n電極に対応する像部分により形成されるカットオフラインを含むヘッドランプ用配光パターンを形成するように構成されていることを特徴とする車両用灯具。
  5. LED素子と前記LED素子の発光面を覆うように配置された波長変換層とを含み、前記LED素子からの光のうち前記波長変換層を透過した光と前記LED素子からの光で励起されて発光した前記波長変換層からの光とを含む白色光を発光するように構成された光源と、
    前記光源の光源像を車両前方に投影することにより、車両前端部に正対した仮想鉛直スクリーン上にヘッドランプ用配光パターンを形成するように構成された投影光学系と、
    を備えた車両用灯具において、
    前記LED素子は、
    矩形の基板と、
    前記基板の片面に積層されたn型半導体層と、
    前記n型半導体層表面のうち一方の長辺を含む細幅領域に形成された長辺方向に延びるn電極と、
    前記n型半導体層表面に積層された活性層と、
    前記活性層表面に積層されたp型半導体層と、
    前記p型半導体層表面に形成された透明電極と、
    前記透明電極表面のうち前記n電極から遠い方の長辺を含む細幅領域に形成された、前記n電極と同一方向に延びるp電極と、
    を備えたフェイスアップ型のLED素子であり、
    前記p電極は、当該p電極から前記n電極に向かって延びる複数の付加電極を含んでおり、
    前記n電極は、当該n電極から前記p電極に向かって延びる複数の付加電極を含んでおり、
    前記投影光学系は、前記p電極の複数の付加電極の先端と前記n電極の複数の付加電極の先端との間に対応する像部分が上方に位置するように前記光源の複数の光源像を車両前方に投影し、車両前端部に正対した仮想鉛直スクリーン上に、前記光源の複数の光源像それぞれの、前記p電極の複数の付加電極の先端と前記n電極の複数の付加電極の先端との間に対応する像部分により形成されるカットオフラインを含むヘッドランプ用配光パターンを形成するように構成されていることを特徴とする車両用灯具。
JP2010187585A 2010-08-24 2010-08-24 車両用灯具 Expired - Fee Related JP5585829B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010187585A JP5585829B2 (ja) 2010-08-24 2010-08-24 車両用灯具
CN201110243505.7A CN102374466B (zh) 2010-08-24 2011-08-23 灯具
US13/217,231 US8686636B2 (en) 2010-08-24 2011-08-24 Lamp assembly having light source with luminance peak portion at one of the long sides of the light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010187585A JP5585829B2 (ja) 2010-08-24 2010-08-24 車両用灯具

Publications (2)

Publication Number Publication Date
JP2012048861A JP2012048861A (ja) 2012-03-08
JP5585829B2 true JP5585829B2 (ja) 2014-09-10

Family

ID=45903527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010187585A Expired - Fee Related JP5585829B2 (ja) 2010-08-24 2010-08-24 車両用灯具

Country Status (1)

Country Link
JP (1) JP5585829B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6243222B2 (ja) * 2013-12-26 2017-12-06 株式会社小糸製作所 車両用ランプ
JP6570312B2 (ja) * 2015-05-22 2019-09-04 スタンレー電気株式会社 半導体発光素子及び半導体発光装置
JP6935536B2 (ja) * 2015-12-18 2021-09-15 スタンレー電気株式会社 車両用灯具

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3713100B2 (ja) * 1996-05-23 2005-11-02 ローム株式会社 半導体発光素子の製法
JP4118371B2 (ja) * 1997-12-15 2008-07-16 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー 電極に銀を有する窒化物半導体発光装置およびその製造方法ならびに半導体光電子装置
JP4431932B2 (ja) * 2001-07-16 2010-03-17 スタンレー電気株式会社 灯具
JP2007042668A (ja) * 2005-07-29 2007-02-15 Toyoda Gosei Co Ltd Led発光装置
KR100818451B1 (ko) * 2006-07-03 2008-04-01 삼성전기주식회사 편광성을 갖는 반도체 발광 소자
JP4781451B2 (ja) * 2009-05-19 2011-09-28 スタンレー電気株式会社 車両用灯具のled光源

Also Published As

Publication number Publication date
JP2012048861A (ja) 2012-03-08

Similar Documents

Publication Publication Date Title
JP5784939B2 (ja) 発光素子、発光素子モジュールおよび車両用灯具
KR102197082B1 (ko) 발광 소자 및 이를 포함하는 발광소자 패키지
CN107690713B (zh) 发光元件
US8076690B2 (en) Semiconductor light emitting apparatus having a non-light emitting corner area
CN102374466B (zh) 灯具
US9246067B2 (en) Semiconductor light emitting device and vehicle lamp
JP2014056984A (ja) 半導体発光素子、車両用灯具及び半導体発光素子の製造方法
KR101711673B1 (ko) 발광다이오드칩
JP6537883B2 (ja) 半導体発光素子および半導体発光素子アレイ
JP5585829B2 (ja) 車両用灯具
JP5605626B2 (ja) 車両用灯具
JP2013055187A (ja) 半導体発光素子アレイ及び車両用灯具
KR102540645B1 (ko) 발광소자
JP5533470B2 (ja) 車両用灯具
JP5585830B2 (ja) 車両用灯具
US8643033B2 (en) Light emitting device array
JP2013062279A (ja) 半導体発光素子アレイ及び車両用灯具
TW202113274A (zh) 照明裝置
KR102486031B1 (ko) 광학렌즈 및 이를 포함하는 발광소자 패키지
KR102357825B1 (ko) 발광소자 및 그 제조방법
KR101609767B1 (ko) 반도체 발광소자 및 이를 사용한 혼색광을 만드는 방법
JP2023161470A (ja) 車両用発光素子、車両用発光素子パッケージ、車両用光源ユニット、車両用灯具ユニット、車両用灯具
JP5751983B2 (ja) 半導体発光素子アレイ及び車両用灯具
KR20120088047A (ko) 발광 소자
KR20130064429A (ko) 광원 모듈 및 이를 포함한 조명 시스템

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140709

R150 Certificate of patent or registration of utility model

Ref document number: 5585829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees