JP5576700B2 - Epoxy resin composition for semiconductor encapsulation and semiconductor device - Google Patents

Epoxy resin composition for semiconductor encapsulation and semiconductor device Download PDF

Info

Publication number
JP5576700B2
JP5576700B2 JP2010100230A JP2010100230A JP5576700B2 JP 5576700 B2 JP5576700 B2 JP 5576700B2 JP 2010100230 A JP2010100230 A JP 2010100230A JP 2010100230 A JP2010100230 A JP 2010100230A JP 5576700 B2 JP5576700 B2 JP 5576700B2
Authority
JP
Japan
Prior art keywords
epoxy resin
phenol
resin
resin composition
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010100230A
Other languages
Japanese (ja)
Other versions
JP2011231153A (en
Inventor
隆行 辻
和人 小川
隆宏 明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2010100230A priority Critical patent/JP5576700B2/en
Publication of JP2011231153A publication Critical patent/JP2011231153A/en
Application granted granted Critical
Publication of JP5576700B2 publication Critical patent/JP5576700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は半導体封止用エポキシ樹脂組成物とこれにより封止された半導体装置に関するものである。   The present invention relates to an epoxy resin composition for semiconductor encapsulation and a semiconductor device encapsulated thereby.

半導体の高集積化により、パッケージ構造の複雑化や、金線の細径・ファインピッチ化が進んでいる。この動向にともなって、半導体封止に用いるエポキシ樹脂組成物には未充填やワイヤ変形を生起させないだけの高い流動性、つまり低粘度化が求められている。また同時に、この低粘度化によって、PBGAやFBGAではパッケージの反りを抑えるために、無機充填材の充填量を増やして成形収縮を小さく抑えることが必要とされている。   Due to the high integration of semiconductors, the package structure is becoming more complex, and the gold wire has a smaller diameter and fine pitch. Along with this trend, the epoxy resin composition used for semiconductor encapsulation is required to have high fluidity, that is, low viscosity that does not cause unfilling or wire deformation. At the same time, in order to suppress warping of the package in PBGA and FBGA by reducing the viscosity, it is necessary to increase the filling amount of the inorganic filler to suppress the molding shrinkage.

そこで、従来より、溶融時の低粘度化を図るための手段として比較的低分子量のフェノール型結晶性エポキシ樹脂として、ビスフェノール型結晶性エポキシ樹脂を用いることや、グリシジルエーテル基の結合隣接位にt−ブチル基等の立体障害炭化水素基を有するフェノール型エポキシ樹脂を用いることが試みられている(例えば特許文献1、2参照)。   Therefore, conventionally, a bisphenol type crystalline epoxy resin has been used as a relatively low molecular weight phenol type crystalline epoxy resin as a means for reducing the viscosity at the time of melting, and t-adjacent positions of the glycidyl ether group are t. An attempt has been made to use a phenol type epoxy resin having a sterically hindered hydrocarbon group such as a butyl group (for example, see Patent Documents 1 and 2).

特許第669526号明細書Japanese Patent No. 669526 特開2002−294036号公報JP 2002-294036 A

しかしながら、前記のビスフェノール型結晶性エポキシ樹脂の場合には、溶融粘度は低いものの、一般的に融点が低くて再結晶化しにくく、混練後の樹脂組成物が軟かく、粉砕しにくく、ブロッキングしやすいという問題点がある。一方、立体障害炭化水素基を有する前記のフェノール型エポキシ樹脂においては、溶融粘度の低い組成物が期待できるものの、融点が高く、およそ80〜120℃の温度での溶融混練時には均一に樹脂組成物に溶融分散しにくいという問題がある。   However, in the case of the above-mentioned bisphenol type crystalline epoxy resin, although the melt viscosity is low, the melting point is generally low and it is difficult to recrystallize, and the resin composition after kneading is soft, difficult to grind, and easy to block. There is a problem. On the other hand, in the above-mentioned phenol type epoxy resin having a sterically hindered hydrocarbon group, a composition having a low melt viscosity can be expected, but the melting point is high, and the resin composition is uniform during melt kneading at a temperature of about 80 to 120 ° C. However, it is difficult to melt and disperse.

本発明は、このような背景から、溶融時に低粘度で高い流動性を示し、未充填、ワイヤ変形等の不具合の発生を抑え、同時に、無機充填材の高充填を可能としてパッケージの反りを小さくすることを可能とするとともに、溶融混練時の均一分散が可能であって、しかも混練後の樹脂組成物は硬くて粉砕機による粉砕が可能で、粉砕後の粉体の付着や打錠後のタブレットの付着というブロッキングを生じにくくすることのできる半導体封止用エポキシ樹脂組成物と、これにより封止された半導体装置を提供することを課題としている。   From this background, the present invention exhibits low viscosity and high fluidity at the time of melting, suppresses the occurrence of defects such as unfilling and wire deformation, and at the same time enables high filling of inorganic fillers and reduces package warpage. It can be uniformly dispersed during melt-kneading, and the resin composition after kneading is hard and can be pulverized by a pulverizer. It is an object of the present invention to provide an epoxy resin composition for semiconductor encapsulation which can make blocking of tablet adhesion difficult to occur, and a semiconductor device encapsulated thereby.

本発明の半導体封止用エポキシ樹脂組成物は、(A)エポキシ樹脂、(B)硬化剤、(C)硬化促進剤および(D)無機充填材が含有されており、
(A)エポキシ樹脂として、各々がその全体量の10〜90質量%の範囲内の(Aa)ビスフェノール型結晶性エポキシ樹脂と(Ab)立体障害炭化水素基を有するフェノール型エポキシ樹脂との溶融混合物が配合され、
(B)硬化剤として、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ジシクロペンタジエン骨格含有フェノール樹脂の群から選ばれた少なくとも1種以上からなるフェノール樹脂系硬化剤のみが配合されるとともに、
(D)無機充填材が組成物全体量に対して85〜92質量%の範囲内で配合されている。
The epoxy resin composition for semiconductor encapsulation of the present invention contains (A) an epoxy resin, (B) a curing agent, (C) a curing accelerator, and (D) an inorganic filler.
(A) Molten mixture of (Aa) bisphenol type crystalline epoxy resin and (Ab) phenol type epoxy resin having a sterically hindered hydrocarbon group, each in the range of 10 to 90% by mass of the total amount as an epoxy resin Is blended,
(B) As a curing agent, only a phenol resin-based curing agent composed of at least one selected from the group consisting of a phenol novolak resin, a cresol novolak resin, a phenol aralkyl resin, a biphenyl aralkyl resin, and a dicyclopentadiene skeleton-containing phenol resin is blended. As
(D) The inorganic filler is blended in the range of 85 to 92% by mass with respect to the total amount of the composition.

また、(Aa)ビスフェノール型結晶性エポキシ樹脂と(Ab)立体障害炭化水素基を有するフェノール型エポキシ樹脂との溶融混合物は、相互の質量比が1:3〜3:1の範囲内にある。 Further, molten mixture of a phenol type epoxy resin having a (Aa) a bisphenol type crystalline epoxy resin and (Ab) sterically hindered hydrocarbon group, the weight ratio of the mutual 1: 3 to 3: 1.

また、(Aa)ビスフェノール型結晶性エポキシ樹脂は、次式(1)   In addition, (Aa) bisphenol type crystalline epoxy resin has the following formula (1):

Figure 0005576700
Figure 0005576700

(式中XはCHまたはC(CHを示す。)
で表わされるものであること、
そして、(Ab)立体障害炭化水素基を有するフェノール型エポキシ樹脂は、次式(2)
(In the formula, X represents CH 2 or C (CH 3 ) 2. )
That is represented by
And (Ab) a phenol type epoxy resin having a sterically hindered hydrocarbon group is represented by the following formula (2):

Figure 0005576700
Figure 0005576700

で表わされるものであることを特徴とする。 It is characterized by being represented by.

また、本発明は、以上いずれかのエポキシ樹脂組成物で封止されている半導体装置も特徴としている。   The present invention also features a semiconductor device sealed with any of the above epoxy resin compositions.

本発明の半導体封止用エポキシ樹脂組成物によれば、溶融時に低粘度で高い流動性を示し、未充填、ワイヤ変形等の不具合の発生を抑え、同時に、無機充填材の高充填を可能としてパッケージの反りを小さくすることを可能とするとともに、溶融混練時の均一分散が可能であって、しかも混練後の樹脂組成物は硬くて粉砕機による粉砕が可能で、粉砕後の粉体の付着や打錠後のタブレットの付着というブロッキングを生じにくくすることができる。   According to the epoxy resin composition for semiconductor encapsulation of the present invention, it exhibits low viscosity and high fluidity when melted, suppresses the occurrence of defects such as unfilling and wire deformation, and at the same time enables high filling of inorganic fillers. It is possible to reduce the warpage of the package, and it is possible to uniformly disperse at the time of melt kneading, and the resin composition after kneading is hard and can be pulverized by a pulverizer. Or blocking of tablet adhesion after tableting can be made difficult to occur.

本発明の半導体封止用エポキシ樹脂組成物においては、(A)エポキシ樹脂として、(Aa)ビスフェノール型結晶性エポキシ樹脂と(Ab)立体障害炭化水素基を有するフェノール型エポキシ樹脂との溶融混合物が添加配合される。溶融混合物における各々の、(A)エポキシ樹脂全量に対しての割合はいずれも10〜90質量%の範囲内である。   In the epoxy resin composition for semiconductor encapsulation of the present invention, as the (A) epoxy resin, a molten mixture of (Aa) a bisphenol type crystalline epoxy resin and (Ab) a phenol type epoxy resin having a sterically hindered hydrocarbon group is used. Addition blended. The ratio of each of the molten mixture to the total amount of (A) epoxy resin is in the range of 10 to 90% by mass.

この溶融混合物が添加配合されて、(B)硬化剤、(C)硬化促進剤、そして組成物全体量に対して85〜92質量%の割合の(D)無機充填材と混練されて半導体封止用のエポキシ樹脂組成物が調製される。このように、必須成分である(A)エポキシ樹脂の少なくとも一部として、(Aa)ビスフェノール型結晶性エポキシ樹脂と(Ab)立体障害炭化水素基を有するフェノール型エポキシ樹脂との溶融混合物を添加配合することが極めて重要であって、欠かせない要件である。   This molten mixture is added and blended, and is kneaded with (B) a curing agent, (C) a curing accelerator, and (D) an inorganic filler in a proportion of 85 to 92% by mass with respect to the total amount of the composition. An epoxy resin composition for stopping is prepared. Thus, as at least a part of the essential component (A) epoxy resin, (Aa) a molten mixture of a bisphenol type crystalline epoxy resin and (Ab) a phenol type epoxy resin having a sterically hindered hydrocarbon group is added and blended It is extremely important to do this, and it is an indispensable requirement.

(Aa)ビスフェノール型結晶性エポキシ樹脂としては、たとえば、4,4’−ビス(2,3−エポキシプロポキシフェニル)メタン、2,4’−ビス(2,3−エポキシプロポキシフェニル)メタン、3,3’,5,5’−テトラメチル−4,4’−ビス(2,3−エポキシポロポキシフェニル)メタン等が挙げられる。これらは、1種以上のものが用いられる。また、(Ab)立体障害炭化水素基を有するフェノール型エポキシ樹脂としては、たとえば、2,5−ジ−tert−ブチル−1,4−ビス(2,3−エポキシプロポキシ)ベンゼン、2,3,5,6−テトラメチル−1,4−ビス(2,3−エポキシプロポキシ)ベンゼン等が挙げられる。これらは、1種以上のものが用いられる。   Examples of (Aa) bisphenol-type crystalline epoxy resins include 4,4′-bis (2,3-epoxypropoxyphenyl) methane, 2,4′-bis (2,3-epoxypropoxyphenyl) methane, 3, Examples include 3 ′, 5,5′-tetramethyl-4,4′-bis (2,3-epoxypropoxyphenyl) methane. One or more of these are used. Examples of the (Ab) phenolic epoxy resin having a sterically hindered hydrocarbon group include 2,5-di-tert-butyl-1,4-bis (2,3-epoxypropoxy) benzene, 2,3, Examples include 5,6-tetramethyl-1,4-bis (2,3-epoxypropoxy) benzene. One or more of these are used.

ただ、(Aa)ビスフェノール型結晶性エポキシ樹脂そのものは、単独では、一般的に融点が低く再結晶化しにくく、混練後の配合組成物は軟く、粉砕しにくく、ブロッキングしやすい。一方、(Ab)立体障害炭化水素基を有するフェノール型エポキシ樹脂そのものは、単独では、一般的に融点が高く、溶融混練(約80〜120℃の温度)時に組成物に溶解分散しにくい。そして、この(Aa)(Ab)のエポキシ樹脂を、それぞれ(B)硬化剤、(C)硬化促進剤、(D)無機充填材に混合して混練しただけでは、以上のような問題は解消されにくい。(Aa)(Ab)両者のエポキシ樹脂が、あらかじめ、事前に溶融混合された後に、得られた溶融混合物を、(B)硬化剤、(C)硬化促進剤、そして(D)無機充填材とともに混合して溶融混練することが必要である。   However, the (Aa) bisphenol-type crystalline epoxy resin itself alone generally has a low melting point and is difficult to recrystallize, and the blended composition after kneading is soft, difficult to grind, and easily blocked. On the other hand, the (Ab) phenol type epoxy resin itself having a sterically hindered hydrocarbon group itself generally has a high melting point and is difficult to dissolve and disperse in the composition during melt-kneading (at a temperature of about 80 to 120 ° C.). The above problems can be solved by simply mixing the (Aa) and (Ab) epoxy resins with the (B) curing agent, (C) curing accelerator, and (D) inorganic filler. It is hard to be done. (Aa) (Ab) Both epoxy resins are melted and mixed in advance, and the resulting molten mixture is combined with (B) a curing agent, (C) a curing accelerator, and (D) an inorganic filler. It is necessary to mix and melt knead.

これによって、溶融時に低粘度で高い流動性を示し、未充填、ワイヤ変形等の不具合の発生を抑え、同時に、無機充填材の高充填を可能としてパッケージの反りを小さくすることを可能とするとともに、溶融混練時の均一分散が可能であって、しかも混練後の樹脂組成物は硬くて粉砕機による粉砕が可能で、粉砕後の粉体の付着や打錠後のタブレットの付着というブロッキングを生じにくくすることができる。   As a result, when melted, it exhibits low viscosity and high fluidity, suppresses the occurrence of defects such as unfilling and wire deformation, and at the same time enables high filling of inorganic fillers and enables reduction of package warpage. The resin composition after kneading can be uniformly dispersed during melt-kneading, and the resin composition after kneading is hard and can be pulverized by a pulverizer, resulting in blocking of powder after pulverization and tablet adhesion after tableting. Can be difficult.

(Aa)ビスフェノール型結晶性エポキシ樹脂と(Ab)立体障害炭化水素基を有するフェノール型エポキシ樹脂との溶融混合物は、その相互の質量比が、(Aa):(Ab)として、1:3〜3:1の範囲内にあることがより好ましい。(Aa)割合が過少で(Ab)割合が過剰な場合には、融点が高くなり混練時に均一溶融しにくくなる。   The molten mixture of (Aa) bisphenol type crystalline epoxy resin and (Ab) phenol type epoxy resin having a sterically hindered hydrocarbon group has a mass ratio of 1: 3 as (Aa) :( Ab). More preferably within the range of 3: 1. When the ratio (Aa) is too small and the ratio (Ab) is excessive, the melting point becomes high and it becomes difficult to melt uniformly during kneading.

他方、逆の場合には、溶融混合物が結晶化しにくくなり粉砕が難しくなりかねない。   On the other hand, in the opposite case, the molten mixture is difficult to crystallize and may be difficult to grind.

溶融混合物の調製は、融点がより高い(Ab)エポキシ樹脂の溶融温度以上において溶融混合することで可能である。均一な溶融混合が可能である。   Preparation of a molten mixture is possible by melt-mixing above the melting temperature of the (Ab) epoxy resin having a higher melting point. Uniform melt mixing is possible.

(Aa)ビスフェノール型結晶性エポキシ樹脂については、入手の容易性や低粘度化効果、そして半導体の封止特性等の観点から、たとえば前記式(1)で表わされるものがより好適なものとして挙げられる。このものは、たとえばジャパンエポキシレジンYL6810(融点45℃)として市販品を利用することができる。また、(Ab)立体障害炭化水素基を有するフェノール型エポキシ樹脂としては、たとえば前記式(2)で表わされるものがより好適なものとして挙げられる。このものは、たとえば東都化成YDC1312(融点142℃)として市販品を利用することができる。   As for (Aa) bisphenol-type crystalline epoxy resin, for example, those represented by the above formula (1) are more preferable from the viewpoints of availability, the effect of reducing the viscosity, and the sealing properties of the semiconductor. It is done. As this product, for example, a commercially available product as Japan Epoxy Resin YL6810 (melting point: 45 ° C.) can be used. Moreover, as (Ab) phenol type epoxy resin which has a sterically hindered hydrocarbon group, what is represented, for example by said Formula (2) is mentioned as a more suitable thing. This can use a commercial item as, for example, Toto Kasei YDC1312 (melting point 142 ° C.).

(A)エポキシ樹脂には、以上の(Aa)(Ab)以外のエポキシ樹脂の配合も可能である。たとえば、ビフェニル型エポキシ樹脂やビフェニルアラルキル型エポキシ樹脂、その他の各種のものの1種以上が含まれていてもよい。   (A) An epoxy resin other than the above (Aa) and (Ab) can be added to the epoxy resin. For example, one or more of a biphenyl type epoxy resin, a biphenyl aralkyl type epoxy resin, and other various types may be included.

(B)硬化剤については、フェノール樹脂系硬化剤の配合が必須である。ここでフェノール樹脂系硬化剤とは、フェノール性水酸基を有しているもののことを意味している。たとえば、具体例としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂などのノボラック樹脂、トリス(ヒドロキシフェニル)メタン、1,1,2−トリス(ヒドロキシフェニル)エタン、1,1,3−トリス(ヒドロキシフェニル)プロパン等のフェノールアラルキル樹脂やビフェニルアラルキル樹脂、あるいはテルペンとフェノールの縮合化合物、ジシクロペンタジエン骨格含有フェノール樹脂、ナフトールアラルキル樹脂などがあげられる。   (B) About a hardening | curing agent, the mixing | blending of a phenol resin type hardening | curing agent is essential. Here, the phenol resin-based curing agent means one having a phenolic hydroxyl group. For example, specific examples include novolak resins such as phenol novolak resin, cresol novolak resin, naphthol novolak resin, tris (hydroxyphenyl) methane, 1,1,2-tris (hydroxyphenyl) ethane, 1,1,3-tris. Examples thereof include phenol aralkyl resins such as (hydroxyphenyl) propane, biphenyl aralkyl resins, terpene and phenol condensation compounds, dicyclopentadiene skeleton-containing phenol resins, and naphthol aralkyl resins.

これら(B)硬化剤の(A)エポキシ樹脂に対しての配合割合については、質量比として、一般的には、(B)/(A)として、0.2〜0.8の範囲とすることが考慮される。   About the compounding ratio with respect to (A) epoxy resin of these (B) hardening | curing agents, it is generally set as the range of 0.2-0.8 as (B) / (A) as mass ratio. It is considered.

また、(C)硬化促進剤については、(A)エポキシ樹脂に対する質量比(C)/(A)として、0.01〜0.1の範囲内とすることが一般的に考慮される。硬化促進剤は各種のものであってよい。たとえば、トリフェニルホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリ(p−メチルフェニル)ホスフィン、トリ(ノニルフェニル)ホスフィン等のホスフィン化合物やそれらの塩、2−メチルイミダゾール、2,4−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2−ヘプタデシルイミダゾール、トリエチルアミン、ベンジルジメチルアミン、ジメチルベンジルメチルアミン、2−(ジメチルアミノメチル)フェノール、2,4,6−トリス(ジメチルアミノメチル)フェノール、1,8−ジアザビシクロ(5,4,0)ウンデセン−7などのアミン系化合物などが成形性、信頼性の点で好ましく用いられるが、硬化反応を促進するものであれば特に限定されない。   Moreover, about (C) hardening accelerator, it is generally considered that it shall be in the range of 0.01-0.1 as mass ratio (C) / (A) with respect to (A) epoxy resin. Various curing accelerators may be used. For example, phosphine compounds such as triphenylphosphine, trimethylphosphine, triethylphosphine, tributylphosphine, tri (p-methylphenyl) phosphine, tri (nonylphenyl) phosphine and their salts, 2-methylimidazole, 2,4-dimethylimidazole 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole, triethylamine, benzyldimethylamine, dimethylbenzylmethylamine, 2- (dimethylaminomethyl) phenol, Amine compounds such as 2,4,6-tris (dimethylaminomethyl) phenol and 1,8-diazabicyclo (5,4,0) undecene-7 are preferably used in terms of moldability and reliability. But it is not particularly limited as long as it promotes the curing reaction.

(D)無機充填材についてもその種類は特に限定されない。たとえば、具体的な種類としては溶融シリカ、結晶性シリカ、炭酸カルシウム、炭酸マグネシウム、アルミナなどを用いることが好ましく、成形性、信頼性の点から溶融シリカ、結晶性シリカがより好ましい。また、用途によっては2種類以上の無機充填材を併用することができ、併用する無機充填材としては、具体的には溶融シリカ、結晶性シリカ、炭酸カルシウム、炭酸マグネシウム、アルミナ、マグネシア、クレー、タルク、ケイ酸カルシウム、酸化チタン、アスベスト、ガラス繊維などがあげられる。無機充填材の平均粒径は、0.5〜40μmが好ましい。   The type of (D) inorganic filler is not particularly limited. For example, as specific types, it is preferable to use fused silica, crystalline silica, calcium carbonate, magnesium carbonate, alumina, and the like, and fused silica and crystalline silica are more preferable from the viewpoint of moldability and reliability. Moreover, two or more types of inorganic fillers can be used in combination depending on the application. Specifically, as the inorganic filler to be used in combination, fused silica, crystalline silica, calcium carbonate, magnesium carbonate, alumina, magnesia, clay, Examples include talc, calcium silicate, titanium oxide, asbestos, and glass fiber. The average particle size of the inorganic filler is preferably 0.5 to 40 μm.

ただ、(D)無機充填材の配合量については、本発明の半導体封止用エポキシ樹脂組成物の全体量に対して、85〜92質量%の範囲内にあるものとする。85質量%未満においては、封止のための特性はもとより、パッケージの反りを抑制することが難しくなる。一方、92質量%を超える場合には組成物の流動性、成形性の確保を難しくする。   However, (D) About the compounding quantity of an inorganic filler, it shall exist in the range of 85-92 mass% with respect to the whole quantity of the epoxy resin composition for semiconductor sealing of this invention. If it is less than 85% by mass, it becomes difficult to suppress the warpage of the package as well as the characteristics for sealing. On the other hand, when it exceeds 92 mass%, it becomes difficult to ensure the fluidity and moldability of the composition.

また、本発明においては、上述以外に必要に応じて、γ−グリシドキシプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシランなどのシランカップリング剤、カルナバワックス、ステアリン酸およびその誘導体、モンタン酸およびその誘導体、カルボキシル基含有剤、染料、変性剤、可塑剤、希釈剤などを配合することが可能である。   In the present invention, in addition to the above, if necessary, silane coupling agents such as γ-glycidoxypropyltrimethoxysilane and γ-mercaptopropyltrimethoxysilane, carnauba wax, stearic acid and its derivatives, montanic acid And derivatives thereof, carboxyl group-containing agents, dyes, modifiers, plasticizers, diluents, and the like.

本発明の半導体封止用エポキシ樹脂組成物は、必須成分およびその他の任意成分を均一に分散混合できる方法であれば、その調製方法に特に制限はないが、一般的な方法として、所定の配合量の成分をミキサー等により十分混合した後、ミキシングロールやニーダーにより、必要に応じて加熱しながら溶融混合させたものを冷却固化して粉砕する方法が挙げられる。この際、粉砕後の組成物は成形条件に合うような大きさおよび重さで打錠機などを用いてタブレットとすることもできる。   The epoxy resin composition for semiconductor encapsulation of the present invention is not particularly limited in its preparation method as long as it can uniformly disperse and mix essential components and other optional components. An example is a method in which an amount of components are sufficiently mixed by a mixer or the like, and then melted and mixed by heating with a mixing roll or kneader as needed to cool and solidify. At this time, the pulverized composition can be made into a tablet with a size and weight suitable for molding conditions using a tableting machine.

本発明の樹脂封止型半導体装置は、集積回路、大規模集積回路、トランジスタ、サイリスタ、ダイオードなどの半導体素子および/または半導体集積回路が、本発明のエポキシ樹脂組成物の硬化物で封止されているものであり、半導体素子および/または半導体集積回路の種類、封止方法、パッケージ形状などには特に限定されない。   In the resin-encapsulated semiconductor device of the present invention, semiconductor elements such as integrated circuits, large-scale integrated circuits, transistors, thyristors, and diodes and / or semiconductor integrated circuits are encapsulated with a cured product of the epoxy resin composition of the present invention. There are no particular limitations on the type of semiconductor element and / or semiconductor integrated circuit, sealing method, package shape, and the like.

封止の一般的な方法としては、低圧トランスファー成形法が挙げられるが、射出成形、圧縮成形、注型、ポッティング等により封止することもできる。成形時および/または成形後の硬化条件は、エポキシ樹脂組成物の各成分の種類や、配合量により異なるが、通常、150〜220℃の温度で30秒から10時間である。   As a general method of sealing, a low-pressure transfer molding method can be mentioned, but sealing can also be performed by injection molding, compression molding, casting, potting or the like. The curing conditions at the time of molding and / or after molding vary depending on the type of each component of the epoxy resin composition and the blending amount, but are usually 30 seconds to 10 hours at a temperature of 150 to 220 ° C.

トランスファー成形などの方法で封止された半導体装置は、そのままあるいは80〜200℃の温度で15秒〜10時間かけて完全硬化させた後、電子機器等に搭載される。   A semiconductor device sealed by a transfer molding method or the like is mounted on an electronic device or the like as it is or after being completely cured at a temperature of 80 to 200 ° C. for 15 seconds to 10 hours.

そこで以下に実施例を示し、さらに詳しく説明する。もちろん以下の例によって本発明が限定されることはない。   Therefore, an example will be shown below and will be described in more detail. Of course, the present invention is not limited to the following examples.

(実施例1〜6)(比較例1〜4)
実施例1〜6において添加配合しているエポキシ樹脂溶融混合物は、前記のエポキシ樹脂(Aa)とエポキシ樹脂(Ab)とを所定の比率(5/5、3/1、1/3)で秤量し、150℃で溶融攪拌した。
(Examples 1-6) (Comparative Examples 1-4)
The epoxy resin melt mixture added and blended in Examples 1 to 6 weighed the epoxy resin (Aa) and the epoxy resin (Ab) at a predetermined ratio (5/5, 3/1, 1/3). The mixture was melted and stirred at 150 ° C.

両者が均一に混合された後、冷却・粉砕した。   After both were uniformly mixed, it was cooled and ground.

実施例1〜6、比較例1〜4のエポキシ樹脂組成物は、各成分を表1に示した割合となるように秤量し、ミキサーを用いて均一に分散した後、ニーダーにて混練し、冷却後粉砕して調製した。   The epoxy resin compositions of Examples 1 to 6 and Comparative Examples 1 to 4 were weighed so that each component had the ratio shown in Table 1, and uniformly dispersed using a mixer, and then kneaded with a kneader. It was prepared by pulverizing after cooling.

なお、表1に示した各成分については以下のものを用いた。   In addition, the following were used about each component shown in Table 1.

(Aa)ビスフェノール型結晶性エポキシ樹脂として、前記式(1)で表わされる、JER製YL6810を用いた。   (Aa) As a bisphenol-type crystalline epoxy resin, YL6810 made by JER represented by the above formula (1) was used.

(Ab)立体障害炭化水素基を有するフェノール型エポキシ樹脂として前記式(2)で表わされる、東都化成製YDC1312を用いた。   (Ab) As a phenol type epoxy resin having a sterically hindered hydrocarbon group, YDC1312 manufactured by Tohto Kasei Co., Ltd. represented by the above formula (2) was used.

比較例のビフェニル型エポキシ樹脂として、JER製YX4000Hを用いた。   As a biphenyl type epoxy resin of a comparative example, YX4000H made by JER was used.

硬化剤のフェノールノボラック樹脂として、明和化成製H−1Mを用いた。   Meiwa Kasei H-1M was used as a phenol novolac resin as a curing agent.

硬化促進剤として、テトラフェニルホスホニウム・テトラフェニルボレート(北興化学製TPP−K)を用いた。   Tetraphenylphosphonium tetraphenylborate (Hokuko Chemical Co., Ltd. TPP-K) was used as a curing accelerator.

球状溶融シリカは、平均粒径15μmのものを用いた。   Spherical fused silica having an average particle size of 15 μm was used.

得られたエポキシ樹脂組成物について、以下の評価を行った。
<溶融粘度>
高化式フローテスターを用い、175℃で測定した。
<ブロッキング性>
混練した樹脂組成物を粉砕後室温に2時間放置し、粒子同士の付着を観察、ほぼ付着の無いものを○、付着の著しいものを×とした。
<タブレット外観不良>
タブレットに打錠した場合の外観不良性を目視評価した。問題のないものを○、エポキシ樹脂成分の未溶融結晶が観察されるものを×とした。
<ワイヤ変形率>
35×35mmのPBGA基板にチップを実装して、径20μm、長さ5mmの金ワイヤをはり、樹脂組成物をトランスファー成形した後の金ワイヤの変形率(最大変形量/ワイヤ長)を測定した。
<パッケージ反り>
上記PBGAの樹脂封止面の反りを表面粗さ計を用いて測定し、対角線の最大反り量の平均値とした。
The following evaluation was performed about the obtained epoxy resin composition.
<Melt viscosity>
It measured at 175 degreeC using the Koka type flow tester.
<Blocking property>
The kneaded resin composition was pulverized and allowed to stand at room temperature for 2 hours. The adhesion between particles was observed.
<Tablet appearance defect>
The appearance defect when tableting on a tablet was visually evaluated. The case where there was no problem was shown as ◯, and the case where unmelted crystals of the epoxy resin component were observed was shown as ×.
<Wire deformation rate>
A chip was mounted on a 35 × 35 mm PBGA substrate, a gold wire having a diameter of 20 μm and a length of 5 mm was applied, and the deformation rate (maximum deformation amount / wire length) of the gold wire after transfer molding of the resin composition was measured. .
<Package warpage>
The warpage of the resin-sealed surface of the PBGA was measured using a surface roughness meter, and the average value of the maximum warpage amount of the diagonal line was obtained.

これらの評価の結果も表1に示した。   The results of these evaluations are also shown in Table 1.

Figure 0005576700
Figure 0005576700

比較例との対比から明らかなように、(Aa)ビスフェノール型結晶性エポキシ樹脂と(Ab)立体障害炭化水素基を有するフェノール型エポキシ樹脂との溶融混合物を添加配合している実施例1〜6においては評価項目のすべてにおいて良好な結果が得られている。溶融粘度は14Pa.s以下の低粘度であって、ブロッキング性、タブレット外観も良好であった。また、ワイヤ変形率も小さく、パッケージ反りも小さいことがわかる。   As is clear from the comparison with the comparative examples, Examples 1 to 6 in which a molten mixture of (Aa) a bisphenol type crystalline epoxy resin and (Ab) a phenol type epoxy resin having a sterically hindered hydrocarbon group is added and blended. Good results were obtained for all of the evaluation items. The melt viscosity is 14 Pa. The viscosity was s or less, and the blocking property and tablet appearance were also good. It can also be seen that the wire deformation rate is small and the package warpage is small.

Claims (2)

(A)エポキシ樹脂、(B)硬化剤、(C)硬化促進剤および(D)無機充填材を含有する半導体封止用エポキシ樹脂組成物であって、
(A)エポキシ樹脂として、各々がその全体量の10〜90質量%の範囲内の(Aa)ビスフェノール型結晶性エポキシ樹脂と(Ab)立体障害炭化水素基を有するフェノール型エポキシ樹脂との溶融混合物が配合され、
前記溶融混合物は、相互の質量比が1:3〜3:1の範囲内にあり、
前記(Aa)ビスフェノール型結晶性エポキシ樹脂は、次式(1)
Figure 0005576700
(式中XはCHまたはC(CHを示す。)
で表わされ、
前記(Ab)立体障害炭化水素基を有するフェノール型エポキシ樹脂は、次式(2)
Figure 0005576700
で表わされ、
(B)硬化剤として、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ジシクロペンタジエン骨格含有フェノール樹脂の群から選ばれた少なくとも1種以上からなるフェノール樹脂系硬化剤のみが配合されるとともに、
(D)無機充填材が組成物全体量に対して85〜92質量%の範囲内で配合されていることを特徴とする半導体封止用エポキシ樹脂組成物。
(A) an epoxy resin, (B) a curing agent, (C) a curing accelerator, and (D) an epoxy resin composition for semiconductor encapsulation containing an inorganic filler,
(A) Molten mixture of (Aa) bisphenol type crystalline epoxy resin and (Ab) phenol type epoxy resin having a sterically hindered hydrocarbon group, each in the range of 10 to 90% by mass of the total amount as an epoxy resin Is blended,
The molten mixture has a mutual mass ratio in the range of 1: 3 to 3: 1;
The (Aa) bisphenol type crystalline epoxy resin has the following formula (1):
Figure 0005576700
(In the formula, X represents CH 2 or C (CH 3 ) 2. )
Represented by
The (Ab) phenol type epoxy resin having a sterically hindered hydrocarbon group is represented by the following formula (2):
Figure 0005576700
Represented by
(B) As a curing agent, only a phenol resin-based curing agent composed of at least one selected from the group consisting of a phenol novolak resin, a cresol novolak resin, a phenol aralkyl resin, a biphenyl aralkyl resin, and a dicyclopentadiene skeleton-containing phenol resin is blended. As
(D) The epoxy resin composition for semiconductor sealing characterized by the inorganic filler being mix | blended within the range of 85-92 mass% with respect to the composition whole quantity.
請求項1に記載のエポキシ樹脂組成物で封止されていることを特徴とする半導体装置。   A semiconductor device which is sealed with the epoxy resin composition according to claim 1.
JP2010100230A 2010-04-23 2010-04-23 Epoxy resin composition for semiconductor encapsulation and semiconductor device Active JP5576700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010100230A JP5576700B2 (en) 2010-04-23 2010-04-23 Epoxy resin composition for semiconductor encapsulation and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010100230A JP5576700B2 (en) 2010-04-23 2010-04-23 Epoxy resin composition for semiconductor encapsulation and semiconductor device

Publications (2)

Publication Number Publication Date
JP2011231153A JP2011231153A (en) 2011-11-17
JP5576700B2 true JP5576700B2 (en) 2014-08-20

Family

ID=45320808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010100230A Active JP5576700B2 (en) 2010-04-23 2010-04-23 Epoxy resin composition for semiconductor encapsulation and semiconductor device

Country Status (1)

Country Link
JP (1) JP5576700B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6025043B2 (en) * 2012-11-07 2016-11-16 パナソニックIpマネジメント株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
EP3136410A1 (en) 2015-08-26 2017-03-01 Evonik Degussa GmbH Use of certain polymers as charge storage
EP3262094B1 (en) 2015-08-26 2018-12-26 Evonik Degussa GmbH Use of certain polymers as charge storage
EP3135704A1 (en) 2015-08-26 2017-03-01 Evonik Degussa GmbH Use of certain polymers as charge storage
US10957907B2 (en) 2015-08-26 2021-03-23 Evonik Operations Gmbh Use of certain polymers as a charge store
CN114929773A (en) * 2019-11-21 2022-08-19 Swimc有限公司 Two-part epoxy composition for adhesive coating of storage articles

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831158A (en) * 1994-07-18 1996-02-02 Funai Electric Co Ltd On-vehicle apparatus
JP3669526B2 (en) * 1995-03-10 2005-07-06 ソマール株式会社 Low melt viscosity solid epoxy resin composition

Also Published As

Publication number Publication date
JP2011231153A (en) 2011-11-17

Similar Documents

Publication Publication Date Title
JP3175979B2 (en) Resin-sealed semiconductor device
KR100997606B1 (en) Epoxy resin composition and semiconductor device
JP5576700B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5357576B2 (en) Epoxy resin composition for semiconductor encapsulation, and semiconductor device
JP6307352B2 (en) Resin composition for optical semiconductor encapsulation and optical semiconductor device
JP5275697B2 (en) Epoxy resin composition for sealing and method for producing the same
JP5379066B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2012251048A (en) Epoxy resin composition for sealing semiconductor, and semiconductor device
JP2003128759A (en) Epoxy resin composition and semiconductor device
JP5547680B2 (en) Epoxy resin composition for sealing and semiconductor device
JP3585615B2 (en) Epoxy resin composition for semiconductor encapsulation
JP4946030B2 (en) Epoxy resin composition and semiconductor device
JP3582771B2 (en) Epoxy resin composition and semiconductor device
JP5226387B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2012072209A (en) Epoxy resin composition for sealing semiconductor, and semiconductor device using the same
JP2006001986A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP2009286841A (en) Epoxy resin composition for encapsulation and semiconductor device
JP2002194064A (en) Resin composition for encapsulating semiconductor and semiconductor device using the same
JP4724947B2 (en) Epoxy resin molding material manufacturing method and semiconductor device
JP2011026501A (en) Epoxy resin composition for sealing semiconductor and semiconductor device having semiconductor element sealed by using the composition
JP2000309678A (en) Epoxy resin composition and semiconductor device
JP5102095B2 (en) Semiconductor-encapsulated epoxy resin composition for compression molding and semiconductor device using the same
JP4850599B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device obtained using the same
JP2010031119A (en) Semiconductor-sealing epoxy resin composition and semiconductor device using it
JP2009275109A (en) Semiconductor-sealing resin composition, method for producing the same and semiconductor device using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140704

R151 Written notification of patent or utility model registration

Ref document number: 5576700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151