JP5576641B2 - Powdered sodium silicate granulated product - Google Patents
Powdered sodium silicate granulated product Download PDFInfo
- Publication number
- JP5576641B2 JP5576641B2 JP2009265741A JP2009265741A JP5576641B2 JP 5576641 B2 JP5576641 B2 JP 5576641B2 JP 2009265741 A JP2009265741 A JP 2009265741A JP 2009265741 A JP2009265741 A JP 2009265741A JP 5576641 B2 JP5576641 B2 JP 5576641B2
- Authority
- JP
- Japan
- Prior art keywords
- sodium silicate
- powdered sodium
- granulated product
- silicate
- powdered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 title claims description 86
- 239000004115 Sodium Silicate Substances 0.000 title claims description 80
- 229910052911 sodium silicate Inorganic materials 0.000 title claims description 80
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 32
- 239000002245 particle Substances 0.000 claims description 30
- 239000008187 granular material Substances 0.000 claims description 19
- 239000011248 coating agent Substances 0.000 claims description 18
- 238000000576 coating method Methods 0.000 claims description 18
- 108010025899 gelatin film Proteins 0.000 claims description 13
- 125000004432 carbon atom Chemical group C* 0.000 claims description 9
- 229910001919 chlorite Inorganic materials 0.000 claims description 4
- 229910052619 chlorite group Inorganic materials 0.000 claims description 4
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 3
- 229910021536 Zeolite Inorganic materials 0.000 claims description 3
- 239000000440 bentonite Substances 0.000 claims description 3
- 229910000278 bentonite Inorganic materials 0.000 claims description 3
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 3
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 239000010457 zeolite Substances 0.000 claims description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 28
- 239000000499 gel Substances 0.000 description 20
- 239000004576 sand Substances 0.000 description 12
- 239000000741 silica gel Substances 0.000 description 12
- 229910002027 silica gel Inorganic materials 0.000 description 12
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 230000009257 reactivity Effects 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 235000019353 potassium silicate Nutrition 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 239000001569 carbon dioxide Substances 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 238000005266 casting Methods 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 239000003110 molding sand Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000013112 stability test Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000011361 granulated particle Substances 0.000 description 1
- 229940095686 granule product Drugs 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000003516 soil conditioner Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Silicates, Zeolites, And Molecular Sieves (AREA)
Description
本発明は、粉末珪酸ソーダ造粒品に関する。 The present invention relates to a powdered sodium silicate granule.
近年、多種多様な用途で用いられている珪酸ソーダ水溶液(水ガラス)に対し、輸送する際に取り扱い易く、安価な費用で運送できるなどの利点を有する粉末珪酸ソーダの使用が増加している。この粉末珪酸ソーダは、水ガラスのように水溶液としての用途にも用いることが出来る。 In recent years, sodium silicate aqueous solution (water glass) used in a wide variety of applications is increasing in use of powdered sodium silicate which has advantages such as being easy to handle during transportation and being transported at low cost. This powdered sodium silicate can also be used as an aqueous solution such as water glass.
珪酸ソーダは各種分野で様々な用途に用いられている。古紙・パルプ再生分野においては、古紙やパルプを過酸化水素などで漂白する際の緩衝剤として用いられ、漂白剤の自己分解を抑制し、汚れの分散懸濁を効果的に行うことができる。
洗剤分野においては、金属洗濯槽の表面に珪酸及び金属酸化物よりなる層を形成させ、アルカリによる侵食を防止する腐食防止剤として用いられている。また、石鹸を作る際の添加剤としても使われている。
土木分野においては、珪酸ソーダの硬化性質を利用して、地盤の強化や止水を目的とした土壌改良剤として使われている。また、セメントミルクの硬化促進剤としても使われている。
Sodium silicate is used for various applications in various fields. In the used paper / pulp recycling field, it is used as a buffer when bleaching used paper or pulp with hydrogen peroxide or the like, and can suppress the self-decomposition of the bleach and effectively disperse and suspend dirt.
In the detergent field, a layer made of silicic acid and a metal oxide is formed on the surface of a metal washing tub and is used as a corrosion inhibitor for preventing erosion by alkali. It is also used as an additive in making soap.
In the civil engineering field, it is used as a soil conditioner for the purpose of strengthening the ground and stopping water by utilizing the hardening properties of sodium silicate. It is also used as a hardening accelerator for cement milk.
鋳物分野においては、珪酸ソーダの硬化反応を利用し、鋳物砂の粘結剤として使用されている。珪酸ソーダを鋳物砂に混合し、炭酸ガスによる珪酸ソーダの硬化反応により生成される珪酸ゲルによって鋳物砂同士を強固に結合させ造型させることにより鋳型が得られる。
珪酸ソーダの硬化反応を利用した鋳型作成方法は多数存在し、この方法により作成された鋳型を無機粘結剤自硬性鋳型と呼ぶ。無機粘結剤自硬性鋳型は図1に示すように、計8系統からなり、水ガラス系自硬性鋳型に類別される鋳型には以下の2つが含まれる。
In the casting field, it is used as a binder for foundry sand by utilizing the curing reaction of sodium silicate. A casting mold is obtained by mixing sodium silicate with foundry sand and molding them by firmly bonding the foundry sand with a silica gel produced by a curing reaction of sodium silicate with carbon dioxide gas.
There are many methods for producing a mold using the curing reaction of sodium silicate, and the mold produced by this method is called an inorganic binder self-hardening mold. As shown in FIG. 1, the inorganic binder self-hardening mold is composed of a total of 8 systems, and the molds classified into water glass self-hardening molds include the following two.
(1)水ガラス系ガス硬化鋳型(CO2型)
鋳物砂(珪砂・マグネシア砂・ジルコン砂等)と水ガラスを混合して造型し炭酸ガスを通ガス(通気)して珪酸ゲルを生成し鋳型を硬化させる方法。珪酸ソーダとCO2との反応は次式で表される。
(1) Water glass gas curing mold (CO 2 type)
A method in which casting sand (silica sand, magnesia sand, zircon sand, etc.) and water glass are mixed together to form a mold, and carbon dioxide gas is passed (vented) to form a silicate gel to harden the mold. The reaction between sodium silicate and CO 2 is represented by the following formula.
Na2O・nSiO2・(mn+x)H2O+CO2=Na2CO3・xH2O+n(SiO2・mH2O) Na 2 O.nSiO 2. (Mn + x) H 2 O + CO 2 = Na 2 CO 3 .xH 2 O + n (SiO 2 .mH 2 O)
鋳型強度は珪酸ゲル量、通ガス時間等に影響される。原理的には珪酸ソーダの量が多いほど珪酸ゲルも多くなり、鋳型強度は増加する。しかし、珪酸ソーダの量が多いと通ガス時間も長くしなければならない。通ガス時間が長いと生成した珪酸ゲルに更にCO2が通過するため、多孔質中の結晶水が毛管現象で珪酸ゲルから追い出され、その結果珪酸ゲルが収縮し亀裂が生じて鋳型強度が低下する。また、CO2型ガス硬化鋳型に限定されないが、珪酸ソーダの性質は、SiO2のNa2Oに対するモル比に依存する。このモル比が高い珪酸ソーダは硬化速度が速くなり、鋳型の崩壊性も良い。そのため、気温が低い事により反応性(硬化性)が悪い冬季は高モル比の珪酸ソーダを使用する場合が多く、気温が高い事により反応性が良い夏季は低モル比の珪酸ソーダを使用する場合が多い。
(2)水ガラス系無機自硬性鋳型(硫酸バンド法)
砂と珪酸ソーダ、そして珪酸ゲルを生成するための硬化剤として硫酸バンド(硫酸アルミニウム)を添加して造型する方法。
The mold strength is affected by the amount of silicate gel and the gas passing time. In principle, as the amount of sodium silicate increases, the amount of silicate gel increases and the mold strength increases. However, if the amount of sodium silicate is large, the gas passing time must be lengthened. When the gas passage time is long, CO 2 passes further through the generated silicate gel, so the crystal water in the porous body is expelled from the silicate gel by capillarity, and as a result, the silicate gel contracts and cracks occur, reducing the mold strength. To do. Further, although not limited to the CO 2 gas curing mold, the properties of sodium silicate depend on the molar ratio of SiO 2 to Na 2 O. Sodium silicate having a high molar ratio has a high curing rate and good mold disintegration. For this reason, sodium silicate with a high molar ratio is often used in winter when reactivity (hardness) is poor due to low temperatures, and sodium silicate with low molar ratio is used in summer when reactivity is high due to high temperatures. There are many cases.
(2) Water glass inorganic self-hardening mold (sulfuric acid band method)
A method of molding by adding sulfuric acid band (aluminum sulfate) as a curing agent to produce sand, sodium silicate, and silicate gel.
珪酸ソーダは上記のように様々な分野で取り扱われているが、取り扱うに際して、粉末珪酸ソーダには下記(1)〜(3)等の問題点がある。
(1)粉末珪酸ソーダは粉末であるため、比表面積が大きく保管中に炭酸ガス(CO2)による硬化反応が起こりやすい。このため、大気中で保管した場合、粉末珪酸ソーダの硬化反応が経時的に進行してしまい、使用時に良好な反応性を得られないことがある。
(2)硬化反応により保管中に粉末が固結してしまい、使用が困難になる。
(3)粉末であるため、投入や計量時に飛散し、粘膜等へ付着し刺激を与えることがある。
As described above, sodium silicate is handled in various fields. However, powdered sodium silicate has the following problems (1) to (3).
(1) Since powdered sodium silicate is a powder, the specific surface area is large, and a curing reaction with carbon dioxide (CO 2 ) is likely to occur during storage. For this reason, when stored in the atmosphere, the curing reaction of the powdered sodium silicate proceeds with time, and good reactivity may not be obtained during use.
(2) The powder solidifies during storage due to the curing reaction, making it difficult to use.
(3) Since it is a powder, it may scatter when charged or weighed, and may adhere to the mucous membrane and give irritation.
上記問題点に鑑み、本発明は経時保存安定性、ハンドリング性に優れた粉末珪酸ソーダ造粒品を提供することを課題とする。 In view of the above problems, an object of the present invention is to provide a powdered sodium silicate granule excellent in storage stability with time and handling properties.
上記課題は、下記の手段によって達成された。
(1)珪酸ゲルの被膜を有し、粉末珪酸ソーダ造粒品の粒径x(mm)、該粉末珪酸ソーダ造粒品の表面の炭素原子数の割合C(%)が下記式1を満足する粉末珪酸ソーダ造粒品。
−2.9x+20≧C≧3 ・・・・・式1
(2)前記粒径xが0.5mm〜5mmである(1)記載の粉末珪酸ソーダ造粒品。
(3)層状珪酸塩を含む(1)または(2)に記載の粉末珪酸ソーダ造粒品。
(4)前記層状珪酸塩がベントナイト、クロライト及びゼオライトからなる群から選ばれる少なくとも一種の層状無機鉱物である(3)に記載の粉末珪酸ソーダ造粒品。
(5)ポリビニルアルコールを含む(1)〜(4)のいずれか1項に記載の粉末珪酸ソーダ造粒品。
(6)前記珪酸ゲルの被膜の膜厚を、粒表面と粒中心の平均の割合Cを有する層から表面までと定義した時、前記粒径x(mm)、前記珪酸ゲルの被膜の膜厚T(mm)が、下記式2を満足する(1)〜(5)のいずれか1項に記載の粉末珪酸ソーダ造粒品。
0.2x≧T ・・・・・式2
The above problems have been achieved by the following means.
(1) Having a silicate gel coating, the particle size x (mm) of the powdered sodium silicate granule, and the ratio C (%) of the number of carbon atoms on the surface of the powdered sodium silicate granule satisfy the following
-2.9x + 20 ≧ C ≧ 3
(2) The powdered sodium silicate granule according to (1), wherein the particle size x is 0.5 mm to 5 mm.
(3) Powdered sodium silicate granulated product as described in (1) or (2) containing layered silicate.
(4) The powdered sodium silicate granule according to (3), wherein the layered silicate is at least one layered inorganic mineral selected from the group consisting of bentonite, chlorite and zeolite.
(5) The powdered sodium silicate granule according to any one of (1) to (4), comprising polyvinyl alcohol.
(6) When the film thickness of the silicate gel film is defined as the layer having the average ratio C between the grain surface and the grain center to the surface, the particle diameter x (mm), the film thickness of the silicate gel film The powdered sodium silicate granule according to any one of (1) to (5), wherein T (mm) satisfies the
0.2x ≧
本発明の粉末珪酸ソーダ造粒品は、粉末珪酸ソーダを凝集させた粒子からなり、圧縮強度が高く、また、飛散しにくい。また、あらかじめ珪酸ゲルにより表面が被覆されているため、一定期間保管しても造粒物間で固結が生じることを防止することができる。 The powdered sodium silicate granule of the present invention comprises particles obtained by agglomerating powdered sodium silicate, has a high compressive strength, and is difficult to scatter. Moreover, since the surface is previously coated with silicic acid gel, it is possible to prevent caking between the granulated materials even if stored for a certain period.
本発明の粉末珪酸ソーダ造粒品(以下、単に「造粒品」と称することもある。)は、粉末の粉末珪酸ソーダを造粒して得た造粒物の表面を珪酸ゲルの被膜で被覆したものである。「珪酸ゲルの被膜」は性能発揮のために粉末珪酸ソーダ造粒品の粒径x(mm)において、珪酸ソーダ造粒品表面中に存在する炭素原子数の比率を表す割合C(%)(以下、単に「割合C」と称することもある。)が下記式1を満たす範囲であることが好ましい。
−2.9x+20≧C≧3 ・・・・・式1
前記式1のグラフを図2に示す。図2の斜線部分が割合Cが式1を満足する範囲である。
The powdered sodium silicate granulated product of the present invention (hereinafter sometimes simply referred to as “granulated product”) is obtained by granulating powdered powdered sodium silicate powder with a silicate gel coating on the surface of the granulated product. It is coated. The “silica gel coating” is a ratio C (%) that represents the ratio of the number of carbon atoms present in the surface of the sodium silicate granule product in the particle size x (mm) of the powdered sodium silicate granule for performance. Hereinafter, it may be simply referred to as “ratio C”.
-2.9x + 20 ≧ C ≧ 3
The graph of
また、「珪酸ゲルの被膜」において、被膜が厚すぎると珪酸ソーダの反応性が損なわれてしまう為、一定の被膜厚にする必要がある。造粒品表面と造粒品中心の平均の割合Cを有する層から表面までを被膜とした時、この珪酸ゲルの被膜の厚さT(mm)は、下記式2を満足することが好ましく、下記式3を満足するのがより好ましい。
0.2x≧T ・・・・・式2
0.1x≧T ・・・・・式3
In addition, in the “silica gel coating”, if the coating is too thick, the reactivity of sodium silicate is impaired, so it is necessary to have a constant film thickness. When the film from the layer having the average ratio C of the granulated product surface and the center of the granulated product to the surface is used as the coating, the thickness T (mm) of the silica gel coating preferably satisfies the following
0.2x ≧
0.1x ≧
本発明において、珪酸ソーダは一般にNa2O・nSiO2・mH2Oで表される。本明細書では、nSiO2のNa2Oに対する分子量の比をモル比といい、「粉末珪酸ソーダ」とは、モル比が0.5〜4.0の範囲の珪酸ソーダをいう。 In the present invention, sodium silicate is generally represented by Na 2 O.nSiO 2 .mH 2 O. In this specification, the ratio of the molecular weight of nSiO 2 to Na 2 O is referred to as molar ratio, and “powdered sodium silicate” refers to sodium silicate having a molar ratio in the range of 0.5 to 4.0.
本発明の粉末珪酸ソーダ造粒品は、補強剤及び/または造形助剤として性能を損なわない範囲で少なくとも一種の賦形剤を含む事が好ましい。本発明に用いる賦形剤は、珪酸ソーダの特性を妨げないものであれば特に限定されるものではないが、特にベントナイト、クロライト、ゼオライト等層状無機鉱物が好ましい。添加量は、粉末珪酸ソーダ100質量部に対して、10〜100質量部が好ましく、より好ましくは10〜50質量部である。また、前記賦形剤としてポリビニルアルコールを用いることもできる。その添加量は、前記層状無機鉱物と同様である。 The powdered sodium silicate granule of the present invention preferably contains at least one excipient as long as it does not impair the performance as a reinforcing agent and / or a shaping aid. The excipient used in the present invention is not particularly limited as long as it does not interfere with the characteristics of sodium silicate, but layered inorganic minerals such as bentonite, chlorite, and zeolite are particularly preferable. The added amount is preferably 10 to 100 parts by mass, more preferably 10 to 50 parts by mass with respect to 100 parts by mass of powdered sodium silicate. Moreover, polyvinyl alcohol can also be used as the excipient. The addition amount is the same as that of the layered inorganic mineral.
本発明の粉末珪酸ソーダ造粒品は、表面が珪酸ゲルで被覆されていることにより、経時保存安定性及びハンドリング性が向上している。珪酸ゲルの被覆量が多いほど造粒品の表面及び全体の強度が増加し、粉立ち(飛散)を抑制し、ハンドリング性が向上する。しかし、被覆量が多すぎると粉末珪酸ソーダの反応性が悪くなるので粉末珪酸ソーダの造粒物の粒径に応じて造粒品表面の珪酸ゲル被覆量を定める必要がある。粒径が大きい粉末珪酸ソーダの造粒物は反応性が悪いため、粒径が小さい造粒物に比べ造粒品表面の珪酸ゲル被覆量を少なくすることが好ましい。 The powdered sodium silicate granule of the present invention is improved in storage stability over time and handling properties because the surface is coated with silicate gel. As the amount of the silicate gel is increased, the surface and the entire strength of the granulated product are increased, and powdering (scattering) is suppressed and handling properties are improved. However, if the coating amount is too large, the reactivity of powdered sodium silicate deteriorates, so it is necessary to determine the amount of silicate gel coating on the granulated product surface according to the particle size of the granulated product of powdered sodium silicate. Since the granulated product of powdered sodium silicate having a large particle size has poor reactivity, it is preferable to reduce the amount of silicate gel coating on the surface of the granulated product compared to the granulated product having a small particle size.
珪酸ゲルの被膜は、造粒品表面の炭素原子数を定量することで確認する事が出来る。粉末珪酸ソーダには炭素原子はほとんど含まれていないので、炭素原子数が増加するということは珪酸ゲルが生成されていることを表す。炭素原子数の定量は、SEMで測定した画像データをEDXで造粒品に含まれる全ての元素を分析し、原子数の比率を求める。珪酸ソーダ造粒品に炭素原子を有する材を用いた場合は、珪酸ゲル被覆後の割合Cから被覆前の造粒品の割合Cを引いた値を正式な割合Cとする。珪酸ソーダ造粒品本発明の粉末珪酸ソーダ造粒品は、表面の炭素原子数比である前記割合C(%)が前記式1を満たすことが好ましい。この割合Cが前記式1の規定外である粉末珪酸ソーダ造粒品は、造粒品粒径に合った粒表面の珪酸ゲル被膜ではない為、珪酸ソーダの反応性やハンドリング性が悪くなることがある。
珪酸ゲルの被膜の厚さは、前記と同様の割合Cの求め方を用い、造粒品の粒径に沿った断面を中心から表面まで走査分析して割合Cを求め、造粒品表面と造粒品中心の平均の割合Cを有する層から表面までを被膜層とし、厚さを求めることが出来る。被膜の厚さが前記式2の規定外である粉末珪酸ソーダ造粒品は、造粒品粒径にあった被膜ではない為、珪酸ソーダの反応性が悪くなることがある。
前記式中、xは粉末珪酸ソーダ造粒品の粒径(mm)を表すが、本明細書において、「粒径」とは、造粒品の中心を通る最短直径である。図3(a)、(b)に例示するように中心1を通る最短直径2を粒径とする。
造粒品の粒径は、0.5mm未満となると造粒品の飛散性が大きくなることがあり、0.5mm以上が好ましい。また、使用時の反応性を考慮すると粒径は5mm以下が好ましい。
割合Cが前記式1及び式2を満たすように表面を珪酸ゲルで被覆した粒径0.5〜5mmの粉末珪酸ソーダ造粒品は、ハンドリング性に優れ、かつ、珪酸ソーダとしての性能も十分確保されたものとなる。
Silica gel coating can be confirmed by quantifying the number of carbon atoms on the surface of the granulated product. Since powdered sodium silicate contains almost no carbon atoms, an increase in the number of carbon atoms indicates that a silicate gel is produced. For the determination of the number of carbon atoms, the image data measured by SEM is analyzed by EDX for all elements contained in the granulated product, and the ratio of the number of atoms is obtained. When a material having carbon atoms is used for a sodium silicate granulated product, a value obtained by subtracting the proportion C of the granulated product before coating from the proportion C after coating of the silicate gel is used as the formal proportion C. Sodium silicate granulated product In the powdered sodium silicate granulated product of the present invention, the ratio C (%), which is the ratio of the number of carbon atoms on the surface, preferably satisfies the
The thickness of the silicate gel coating is obtained by using the same method for obtaining the ratio C as described above, and by scanning the section along the particle size of the granulated product from the center to the surface to obtain the proportion C, The thickness from the layer having the average ratio C at the center of the granulated product to the surface can be determined as the coating layer. A powdered sodium silicate granulated product having a coating thickness outside the above-mentioned
In the above formula, x represents the particle size (mm) of the powdered sodium silicate granulated product. In this specification, “particle size” is the shortest diameter passing through the center of the granulated product. As illustrated in FIGS. 3A and 3B, the
When the particle size of the granulated product is less than 0.5 mm, the scattering property of the granulated product may increase, and 0.5 mm or more is preferable. In consideration of reactivity during use, the particle size is preferably 5 mm or less.
Powdered sodium silicate granule having a particle size of 0.5 to 5 mm whose surface is coated with silicate gel so that the ratio C satisfies the
本発明の粉末珪酸ソーダ造粒品は次のようにして調製できる。
本発明の粉末珪酸ソーダ造粒品は、例えば粉末珪酸ソーダ、または粉末珪酸ソーダと前記賦形剤の少なくとも一種と水を加えてニーダー等の混練機により混練したものを攪拌造粒機や押出し造粒機等の造粒機で造粒後、乾燥させて得た造粒物に炭酸ガスを通ガスすることにより製造できる。この通ガスにより、表面近傍の粉末珪酸ソーダに珪酸ゲルの被膜を形成させる。
The powdered sodium silicate granule of the present invention can be prepared as follows.
The powdered sodium silicate granulated product of the present invention is, for example, powdered sodium silicate, or powdered sodium silicate, at least one kind of the above excipients and water and kneaded with a kneader such as a kneader or the like. It can be produced by passing carbon dioxide through a granulated product obtained by granulating with a granulator such as a granulator and then drying. By this gas flow, a silicate gel film is formed on the powdered sodium silicate near the surface.
本発明の粉末珪酸ソーダ造粒品は、水溶液や粉体に加工することで既存の用途にさらに幅広く用いることが可能である。 The powdered sodium silicate granule of the present invention can be used in a wider range of existing applications by processing it into an aqueous solution or powder.
以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれに限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to this.
(実施例1)
粉末珪酸ソーダ(日本化学工業株式会社製、商品名:粉末珪酸ソーダ3号)70質量部、クロライト30質量部に水15質量部を加えてニーダーにより混練し、粒径が0.8mmとなるように縦押し造粒機により造粒後乾燥し、前記式1の割合Cが12.82となるように炭酸ガスを通ガスして造粒品表面を処理し、粒表面を珪酸ゲルの被膜で被覆した造粒品を試料Aとした。割合Cは、SEM(日本電子株式会社製/JSM−6390LA型[測定条件:<加速電圧>15kV <倍率>40〜190倍])で測定した画像データをEDX(日本電子株式会社製/JED−2300型 [測定条件:<スイープ回数>50回 <測定元素>炭素、酸素、水素、鉄、ナトリウム、マグネシウム、アルミニウム、ケイ素])で元素分析し、炭素原子の数の割合Cを求めたところ12.82%であった。また、この試料Aの珪酸ゲルの被膜(被覆層)の厚さは、粒径に沿った断面を中心部から表面にかけて細かく走査分析し、造粒品の表面と中心の割合Cの平均に当たる割合Cを持つ層から表面までを被膜層とした。造粒試料Aの珪酸ゲルの被膜の厚さは0.08mmであった。
Example 1
Powdered sodium silicate (manufactured by Nippon Kagaku Kogyo Co., Ltd., trade name: powdered sodium silicate 3) 70 parts by mass, chlorite 30 parts by mass,
(比較例1)
割合Cを17.81、粒径0.8mmとした以外は実施例1と同様にして造粒試料Bを得た。造粒試料Bの珪酸ゲルの被膜の厚さは0.10mmであった。
(Comparative Example 1)
A granulated sample B was obtained in the same manner as in Example 1 except that the ratio C was 17.81 and the particle size was 0.8 mm. The thickness of the silica gel film of the granulated sample B was 0.10 mm.
(実施例2)
割合Cを13.49、粒径1.5mmとした以外は実施例1と同様にして造粒試料Cを得た。造粒試料Cの珪酸ゲルの被膜の厚さは0.10mmであった。
(Example 2)
A granulated sample C was obtained in the same manner as in Example 1 except that the ratio C was 13.49 and the particle size was 1.5 mm. The thickness of the silica gel film of the granulated sample C was 0.10 mm.
(実施例3)
割合Cを9.49、粒径2.5mmとした以外は実施例1と同様にして造粒試料Dを得た。造粒試料Dの珪酸ゲルの被膜の厚さは0.08mmであった。
(Example 3)
A granulated sample D was obtained in the same manner as in Example 1 except that the ratio C was 9.49 and the particle size was 2.5 mm. The thickness of the silica gel film of the granulated sample D was 0.08 mm.
(実施例4)
割合Cを5.64、粒径4.8mmとした以外は実施例1と同様にして造粒試料Eを得た。造粒試料Eの珪酸ゲルの被膜の厚さは0.13mmであった。
(Example 4)
A granulated sample E was obtained in the same manner as in Example 1 except that the ratio C was 5.64 and the particle size was 4.8 mm. The thickness of the silica gel film of the granulated sample E was 0.13 mm.
(比較例2)
割合Cを7.81、粒径4.8mmとした以外は実施例1と同様にして造粒試料Fを得た。造粒試料Fの珪酸ゲルの被膜の厚さは0.15mmであった。
(Comparative Example 2)
A granulated sample F was obtained in the same manner as in Example 1 except that the ratio C was 7.81 and the particle size was 4.8 mm. The thickness of the silica gel film of the granulated sample F was 0.15 mm.
(比較例3)
割合Cを5.45、粒径5.8mmとした以外は実施例1と同様にして造粒試料Gを得た。造粒試料Gの珪酸ゲルの被膜の厚さは0.12mmであった。
(Comparative Example 3)
A granulated sample G was obtained in the same manner as in Example 1 except that the ratio C was 5.45 and the particle size was 5.8 mm. The thickness of the silica gel film of the granulated sample G was 0.12 mm.
(比較例4)
被膜処理及び造粒していない粉末珪酸ソーダ粉末単体を試料Hとした。
(Comparative Example 4)
Sample H was a powdered sodium silicate powder which was not coated and granulated.
a.鋳物砂圧縮強度試験
(i)試料A
鋳物砂98g(エム・シー砿産株式会社製:商品名フラタリーシリカサンド)、試料Aを21g、硫酸アルミニウム21g(大明化学工業株式会社製、商品名:粉末硫酸アルミニウム)、水21gを混合し、内径5cmの鋳型用の型に詰め、錘5kgのランマで3回付き固めた後、抜型して24時間大気中(室温20℃)に曝露したものの圧縮強度をオートグラフ((株)島津製作所製/AGS−1000A型 [測定条件]<圧縮速度>1mm/min.)で測定した。
(ii)試料B〜G
試料B〜Gについても、試料Aと同様にして鋳物砂圧縮強度を測定した。
b.外観評価試験
前記(i)〜(ii)で作製した24時間放置後の型に亀裂が生じているか目視確認を行った。○:亀裂無し、△:小さな亀裂有り、×:大きな亀裂有りの三段階の判断基準で評価した。
c.経時保存安定性試験
試料B、C、E、F、Hをそれぞれ室温20℃、湿度60%及び90%雰囲気中に11日間保存した時の造粒品の固結状態を複数の粒(又は粉)が1つの塊となっている状態を固結状態とし、目視乃至触感により判断した。
表1に鋳物砂圧縮強度試験結果を示し、表2に経時保存安定性試験結果を示す。
a. Foundry sand compression strength test (i) Sample A
Casting sand 98g (MC Sea Product Co., Ltd .: trade name: Flattery Silica Sand), Sample A 21g, Aluminum sulfate 21g (Daimei Chemical Co., Ltd., trade name: powdered aluminum sulfate) and water 21g are mixed. Autograph (Shimadzu Corp.) shows the compressive strength of a mold with an inner diameter of 5 cm, which was fixed three times with a 5 kg weight rammer, then removed and exposed to the atmosphere (
(Ii) Samples B to G
For the samples B to G, the molding sand compressive strength was measured in the same manner as the sample A.
b. Appearance Evaluation Test Visual confirmation was made as to whether or not cracks had occurred in the mold after standing for 24 hours prepared in (i) to (ii). ◯: No crack, Δ: Small crack, ×: Large crack evaluation
c. Storage stability test over time Samples B, C, E, F, and H were each stored at
Table 1 shows the molding sand compressive strength test results, and Table 2 shows the storage stability test results with time.
型の亀裂に関しても、圧縮強度が3N/cm2以上の試料は亀裂が無く、3N/cm2未満の試料に亀裂が生じていた。
Regarding the mold crack, the sample having a compressive strength of 3 N / cm 2 or more had no crack, and the sample having a compressive strength of less than 3 N / cm 2 had cracks.
以上より、本発明の粉末珪酸ソーダ造粒品が、経時安定性に優れ、且つ珪酸ソーダとしての性能にも優れていることが分かる。
From the above, it can be seen that the powdered sodium silicate granule of the present invention is excellent in stability over time and in performance as sodium silicate.
1 造粒品の中心
2 造粒品粒径(最短直径)
1 Center of
Claims (6)
−2.9x+20≧C≧3 ・・・・・式1 Powdered silicic acid having a silicate gel coating, particle size x (mm) of powdered sodium silicate granulated product, and ratio C (%) of the number of carbon atoms on the surface of the powdered sodium silicate granulated product satisfying the following formula 1. Soda granulated product.
-2.9x + 20 ≧ C ≧ 3 Equation 1
0.2x≧T ・・・・・式2
When the film thickness of the silicate gel film is defined as from the layer having the average ratio C between the grain surface and the grain center to the surface, the particle diameter x (mm), the film thickness T (mm of the silicate gel film) ) Satisfies the following formula 2. The powdered sodium silicate granule according to any one of claims 1 to 5.
0.2x ≧ T Equation 2
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009265741A JP5576641B2 (en) | 2009-11-20 | 2009-11-20 | Powdered sodium silicate granulated product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009265741A JP5576641B2 (en) | 2009-11-20 | 2009-11-20 | Powdered sodium silicate granulated product |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011105578A JP2011105578A (en) | 2011-06-02 |
JP5576641B2 true JP5576641B2 (en) | 2014-08-20 |
Family
ID=44229516
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009265741A Active JP5576641B2 (en) | 2009-11-20 | 2009-11-20 | Powdered sodium silicate granulated product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5576641B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6071229B2 (en) * | 2012-03-30 | 2017-02-01 | クニミネ工業株式会社 | Impermeable granulated material for boring holes |
CN112569877B (en) * | 2020-12-10 | 2023-02-10 | 苏州中材非金属矿工业设计研究院有限公司 | Modified bentonite inorganic gel and preparation method and application thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60171217A (en) * | 1984-02-15 | 1985-09-04 | Kao Corp | Method for granulating powdery sodium silicate |
ES2083690T3 (en) * | 1991-07-02 | 1996-04-16 | Crosfield Joseph & Sons | SILICATES. |
JPH08143309A (en) * | 1994-11-17 | 1996-06-04 | Tokuyama Corp | Method for producing amorphous sodium silicate / sodium carbonate complex |
JPH09142830A (en) * | 1995-11-20 | 1997-06-03 | Lion Corp | Surface-coated water-containing laminar silicate salt and water-softening agent containing the same as active ingredient |
JP2002282685A (en) * | 2001-03-28 | 2002-10-02 | Toshiba Corp | Carbon dioxide absorbent and combustion apparatus |
JP3675753B2 (en) * | 2001-10-26 | 2005-07-27 | 株式会社東芝 | Carbon dioxide absorber, method for using the same and method for regenerating the same |
JP2005013952A (en) * | 2003-06-27 | 2005-01-20 | Toshiba Ceramics Co Ltd | Carbon dioxide absorber |
-
2009
- 2009-11-20 JP JP2009265741A patent/JP5576641B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011105578A (en) | 2011-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2910387C (en) | Inorganic binder composition for casting | |
JP4722988B2 (en) | Materials for modeling, functional agents, modeling products and products | |
JP2011500330A5 (en) | ||
KR20160021856A (en) | Lithium-containing molding material mixture based on an inorganic binder for producing molds and cores for metal casting | |
JPWO2013054833A1 (en) | Materials for modeling, functional agents, modeling products and products | |
JP2010517923A (en) | Coagulation / curing accelerator for hydraulic binder and preparation method thereof | |
WO2018043412A1 (en) | Casting mold manufacturing method | |
JPS58120556A (en) | Composition for light body | |
JP2018002587A (en) | Hydraulic composition for additive manufacturing apparatus, and manufacturing method of mold | |
JP5576641B2 (en) | Powdered sodium silicate granulated product | |
CN108275898A (en) | A kind of magnesia oxychloride cement and preparation method thereof of SILICA FUME filling | |
JP2005059081A (en) | High-strength water-soluble core and method for producing the same | |
JPH10139523A (en) | Hardenable inorganic composition | |
JP6792260B2 (en) | Manufacturing method of solidified body | |
JP6027084B2 (en) | Solidification material and solidification method of ultrafine powder-containing material | |
JP6044133B2 (en) | Glass manufacturing method | |
JPH09124354A (en) | Hardening inorganic composition | |
WO2021019816A1 (en) | Composition for forming casting mold and casting mold forming method | |
US20090230352A1 (en) | Composition with high temperature resistance, high chemical resistance and high abrasion resistance | |
JPH11217280A (en) | Inorganic acoustic material | |
JPS62265159A (en) | High strength cement composition | |
JP2014040332A (en) | Geopolymer composition | |
JP2009155472A (en) | Liquid chemical for soil stabilization | |
JP3854936B2 (en) | Concrete admixture, mortar admixture and mixed cement | |
JP2021137876A (en) | Inorganic mold and core molding method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110418 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130408 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130924 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140610 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140704 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5576641 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |