JPH11217280A - Inorganic acoustic material - Google Patents

Inorganic acoustic material

Info

Publication number
JPH11217280A
JPH11217280A JP2088398A JP2088398A JPH11217280A JP H11217280 A JPH11217280 A JP H11217280A JP 2088398 A JP2088398 A JP 2088398A JP 2088398 A JP2088398 A JP 2088398A JP H11217280 A JPH11217280 A JP H11217280A
Authority
JP
Japan
Prior art keywords
inorganic
weight
inorganic porous
porous material
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2088398A
Other languages
Japanese (ja)
Inventor
Yuzo Yokoyama
祐三 横山
Yoichi Ikemoto
陽一 池本
Kunio Kusano
邦雄 草野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2088398A priority Critical patent/JPH11217280A/en
Publication of JPH11217280A publication Critical patent/JPH11217280A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/27Water resistance, i.e. waterproof or water-repellent materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/52Sound-insulating materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an inorganic acoustic material having excellent freezing and melting resistance (or freezing fracture resistance) besides a porous body and excellent acoustic properties. SOLUTION: This inorganic acoustic material is obtained by coating 0.03-0.1 g/m<2> organic silicon compound of the formula [R1 is a 1-16C alkyl; R2 is a 1-5C alkyl; (n) is a natural number of 1-20] on an inorganic porous body produced from an amorphous SiO2 -Al2 O3 -based powder, an alkali metal silicate and water, and having 0.05-0.3 mm open cell diameter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は不燃性の建築材料と
して好適に使用され、耐凍結融解性に優れた無機質吸音
材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inorganic sound absorbing material which is suitably used as a non-combustible building material and has excellent freeze-thaw resistance.

【0002】[0002]

【従来の技術】従来より、無機質吸音材は数多く提案さ
れている。例えば、特開平4─292482号公報に
は、SiO2 −Al2 3 系粉体、アルカリ金属珪酸塩
水溶液、充填材、発泡剤との混合物に液状シリコーンオ
イルを所定の割合で添加することにより、疎水性を有す
る吸音性に優れた無機質多孔体を得ることができると記
載されている。
2. Description of the Related Art Conventionally, many inorganic sound absorbing materials have been proposed. For example, JP-A-4─292482, SiO 2 -Al 2 O 3 system powder, an alkali metal silicate solution, the filler, the addition of the liquid silicone oil in a predetermined ratio to the mixture of the blowing agent It is described that an inorganic porous material having hydrophobicity and excellent sound absorption can be obtained.

【0003】しかしながら、上述の如き従来の無機質多
孔体は、連続気孔径が大きく、撥水性も不充分で、吸水
率が大きいため、これが冬の凍結期に屋外で使用される
と、吸収した水が膨張収縮を繰り返すため、無機質多孔
体自体が崩壊する‘所謂’凍結破壊が起こるという問題
があった。
However, the conventional inorganic porous material as described above has a large continuous pore diameter, insufficient water repellency, and a large water absorption. Therefore, when it is used outdoors during the winter freezing period, it absorbs water. However, there is a problem that the so-called "freezing fracture" occurs in which the inorganic porous material itself collapses due to repeated expansion and contraction.

【0004】これを防止するためには、高水準の吸水防
止性を多孔体に付与する必要性があり、多量の撥水剤が
塗布されなければならなかった。その結果、連続気孔が
撥水剤によって封鎖されて、吸音性が低下するばかり
か、コストまでも上昇させてしうという欠陥があった。
[0004] In order to prevent this, it is necessary to impart a high level of water absorption prevention to the porous body, and a large amount of water repellent must be applied. As a result, there is a defect that the continuous pores are closed by the water repellent, so that not only the sound absorbing property is reduced, but also the cost is increased.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上述のよう
な問題を解消するためになされたもので、多孔体で高度
の吸音性を有しながら、優れた耐凍結融解性(又は、耐
凍結破壊性)を有する無機質吸音材を提供することを目
的とする。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has excellent freeze-thaw resistance (or high freeze-thaw resistance while being porous and having high sound absorption properties). It is an object of the present invention to provide an inorganic sound absorbing material having freezing destructibility.

【0006】[0006]

【課題を解決するための手段】本願の請求項1に記載の
発明(以下、第1発明という)の無機質吸音材は、非晶
質SiO2 −Al2 3 系粉体、アルカリ金属珪酸塩、
及び、水から製せられ、連続気孔径が0.05〜0.3
mmである無機質多孔体に、下記の一般式〔1〕で示さ
れる有機珪素化合物が0.03〜0.1g/cm2 塗布
されていることを特徴とする。 (R1 は炭素数1〜16のアルキル基、R2 は炭素数1
〜5のアルキル基、nは1〜20の自然数)
The inorganic sound absorbing material according to the first aspect of the present invention (hereinafter referred to as the first invention) is an amorphous SiO 2 -Al 2 O 3 powder, an alkali metal silicate. ,
And made from water, continuous pore size 0.05-0.3
mm, and an organic silicon compound represented by the following general formula [1] is applied to the inorganic porous material having a thickness of 0.03 to 0.1 g / cm 2 . (R 1 is an alkyl group having 1 to 16 carbon atoms, and R 2 is an alkyl group having 1 carbon atom.
To 5 alkyl groups, n is a natural number of 1 to 20)

【0007】本願の請求項2に記載の発明(以下、第2
発明という)の無機質吸音材は、第1発明に於いて、無
機質多孔体を脱アルカリ処理後、一般式〔1〕で示され
る有機珪素化合物が0.01〜0.1g/cm2 塗布さ
れていることを特徴とする。
The invention described in claim 2 of the present application (hereinafter referred to as “second
The inorganic sound absorbing material according to the first aspect of the present invention is obtained by applying the organic silicon compound represented by the general formula [1] in an amount of 0.01 to 0.1 g / cm 2 after the inorganic porous material is dealkalized. It is characterized by being.

【0008】第1発明及び第2発明は、無機質吸音材に
関するもので、相互に緊密な関連性を持っているので、
以後、これらを纏めて、本発明の無機質吸音材と呼んで
説明する。
The first invention and the second invention relate to an inorganic sound absorbing material, and have a close relationship with each other.
Hereinafter, these will be collectively referred to as the inorganic sound absorbing material of the present invention and described.

【0009】非晶質SiO2 −Al2 3 系粉体は、S
iO2 が10〜90重量%、Al23 が90〜10重
量%の組成のものが使用され、具体的に例示すれば、ア
ルミナ系研磨剤を製造する際のダスト、フライアッシ
ュ、フライアッシュの分級品や粉砕品、メタカオリン、
フライアッシュを溶融し気体中に噴霧させて得られる粉
体、シリカアルミナ系粉体からなる粘土を溶融し気体中
に噴霧させて得られる粉体、シリカアルミナ系粉体に機
械的エネルギーを作用させて得られる粉体、粘土鉱物を
500〜900℃で加熱脱水して得られる粉体に機械的
エネルギーを作用させて得られる粉体などが使用できる
が、組成と粒度が適当であれば、これに限定されるもの
ではない。
The amorphous SiO 2 —Al 2 O 3 based powder is S
iO 2 is 10 to 90 wt%, Al 2 O 3 is used as a composition of 90 to 10 wt%, if specifically illustrated, the dust in the production of alumina abrasives, fly ash, fly ash Classified and crushed products, metakaolin,
Powder obtained by melting fly ash and spraying into gas, powder obtained by melting clay made of silica-alumina-based powder and spraying into gas, and applying mechanical energy to silica-alumina-based powder Powder obtained by subjecting clay minerals to heat and dehydration at 500 to 900 ° C. can be used as powder obtained by applying mechanical energy to the powder. However, the present invention is not limited to this.

【0010】アルカリ金属珪酸塩は、一般式がM2 O・
n SiO2 (M=Li、K、Na又それらの混合物)で
表されるもので、nの数は、好ましくは、n=0.05
〜8、さらに好ましくは、n=0.1〜3、最も好まし
くは、n=0.5〜2.5である。nが8を越えると、
アルカリ金属珪酸塩水溶液はゲル化を起こし易く、粘度
が急激に上昇する為、粉体との混合が困難になる。又、
nが0.05未満になると、無機質多孔体の機械的強度
が低下する。尚、アルカリ金属珪酸塩は反応制御の面か
ら、水溶液にして、添加・混合することが好ましい。
The alkali metal silicate has a general formula of M 2 O.
n SiO 2 (M = Li, K, Na or a mixture thereof), wherein the number n is preferably n = 0.05
-8, more preferably n = 0.1-3, and most preferably n = 0.5-2.5. When n exceeds 8,
The aqueous alkali metal silicate solution is liable to gel and the viscosity rises rapidly, making it difficult to mix with the powder. or,
When n is less than 0.05, the mechanical strength of the inorganic porous body decreases. The alkali metal silicate is preferably added and mixed in the form of an aqueous solution from the viewpoint of reaction control.

【0011】アルカリ金属珪酸塩水溶液の濃度は、特に
限定はないが、10〜60重量%が好ましい。アルカリ
金属珪酸塩水溶液の濃度が、60重量%を超えると、無
機質多孔体の製造に適した粘度が得られない。又、10
重量%未満の場合は、水が過剰である為、硬化の際に収
縮が大きく、所定の機械的強度が得られない。
The concentration of the aqueous alkali metal silicate solution is not particularly limited, but is preferably 10 to 60% by weight. If the concentration of the alkali metal silicate aqueous solution exceeds 60% by weight, a viscosity suitable for producing an inorganic porous material cannot be obtained. Also, 10
When the amount is less than% by weight, water is excessive, so that shrinkage is large at the time of curing, and a predetermined mechanical strength cannot be obtained.

【0012】アルカリ金属珪酸塩の添加量は、非晶質S
iO2 −Al2 3 系粉体100重量部に対し、0.2
〜450重量部が好ましく、更に好ましくは、10〜3
50重量部、最も好ましくは、20〜250重量部であ
る。アルカリ金属珪酸塩の添加量が0.2重量部未満の
場合は、反応に必要なアルカリの量が少な過ぎるため
に、硬化不良になる。逆に、450重量部を越えると、
硬化剤が多量となるため、無機質多孔体の耐水性が悪く
なる。
The addition amount of the alkali metal silicate is as follows.
0.2 parts per 100 parts by weight of iO 2 —Al 2 O 3 based powder
To 450 parts by weight, more preferably 10 to 3 parts by weight.
50 parts by weight, most preferably 20 to 250 parts by weight. If the amount of the alkali metal silicate is less than 0.2 parts by weight, the curing will be poor because the amount of alkali required for the reaction is too small. Conversely, if it exceeds 450 parts by weight,
Since the amount of the curing agent is large, the water resistance of the inorganic porous body is deteriorated.

【0013】非晶質SiO2 −Al2 3 系粉体、アル
カリ金属珪酸塩に配合する水の添加量は、非晶質SiO
2 −Al2 3 系粉体100重量部に対して、35〜1
500重量部が好ましく、更に好ましくは、45〜10
00重量部であり、最も好ましくは、50〜500重量
部である。水の添加量が1500重量部を超えると、無
機質多孔体を製造する時の粘度が低下し、発泡安定性が
悪くなり、得られる多孔体の強度も低下する。又、35
重量部が未満の場合は、粘度が高過ぎて、発泡適性に合
わない。
The amount of water to be added to the amorphous SiO 2 —Al 2 O 3 powder and the alkali metal silicate is as follows.
35 to 1 with respect to 100 parts by weight of the 2- Al 2 O 3 powder.
500 parts by weight is preferred, and more preferably 45 to 10 parts by weight.
00 parts by weight, most preferably 50 to 500 parts by weight. If the amount of water exceeds 1500 parts by weight, the viscosity at the time of producing the inorganic porous material decreases, the foaming stability deteriorates, and the strength of the obtained porous material also decreases. Also, 35
If the amount is less than 10 parts by weight, the viscosity is too high, which is not suitable for foaming.

【0014】本発明に於いて、必要に応じて、無機充填
材、補強繊維、発泡助剤、無機質発泡材を、適宜、添加
しても構わない。以下、上記添加物に就いて、逐次、説
明をする。
In the present invention, if necessary, an inorganic filler, a reinforcing fiber, a foaming aid, and an inorganic foaming material may be appropriately added. Hereinafter, the above additives will be described one by one.

【0015】無機充填材は、硬化時の収縮低減、スラリ
ーの流動性の向上、セルの緻密化、気泡の安定化などに
寄与し、例えば、珪砂、珪石粉、フライアッシュ、スラ
グ、シリカヒューム、マイカ、タルク、ウオラストナイ
ト、炭酸カルシウム、エアロジル、シリカゲル、ゼオラ
イト、活性炭、アルミナゲルの多孔体などが挙げられ
る。
The inorganic filler contributes to reduction of shrinkage during curing, improvement of slurry fluidity, densification of cells, stabilization of air bubbles, etc., for example, silica sand, silica powder, fly ash, slag, silica fume, Examples include mica, talc, wollastonite, calcium carbonate, aerosil, silica gel, zeolite, activated carbon, and porous bodies of alumina gel.

【0016】無機充填材の平均粒径は、0.01μm〜
1mmの範囲が好ましく、1mmを超えると、安定した
無機質多孔体が得られず、0.01μm以下になると、
吸着水量が増加して、無機質多孔体の原料の粘度が増加
して、作業性が悪く、発泡性が低下する。
The average particle size of the inorganic filler is from 0.01 μm to
A range of 1 mm is preferable, and if it exceeds 1 mm, a stable inorganic porous body cannot be obtained.
The amount of adsorbed water increases, the viscosity of the raw material of the inorganic porous body increases, the workability deteriorates, and the foaming property decreases.

【0017】無機充填材の添加量は、非晶質SiO2
Al2 3 系粉体100重量部に対し、20〜600重
量部が好ましく、更に好ましくは、40〜400重量部
である。20重量部未満の場合は、充填材を加える意味
がなく、600重量部を超えると、無機質多孔体の強度
が低下する。
The amount of the inorganic filler, an amorphous SiO 2 -
The amount is preferably 20 to 600 parts by weight, more preferably 40 to 400 parts by weight, based on 100 parts by weight of the Al 2 O 3 powder. If the amount is less than 20 parts by weight, it is meaningless to add a filler, and if it exceeds 600 parts by weight, the strength of the inorganic porous material is reduced.

【0018】補強繊維は、無機質多孔体の強度を向上さ
せ、クラック防止に役立ち、例えば、ビニロン、ポリプ
ロピレン、アラミド、アクリル、レーヨン、カーボン、
ガラス、チタン酸カリウム、アルミナ、鋼、スラグウー
ルなどが挙げられる。
The reinforcing fibers improve the strength of the inorganic porous material and help prevent cracks. For example, vinylon, polypropylene, aramid, acrylic, rayon, carbon,
Examples include glass, potassium titanate, alumina, steel, slag wool, and the like.

【0019】補強繊維の長さは、1〜15mmの範囲が
好ましく、長が過ぎると、無機質多孔体原料への補強繊
維の分散性が悪くなり、短か過ぎると、無機質多孔体に
所望の強度が得られない。
The length of the reinforcing fibers is preferably in the range of 1 to 15 mm. If the length is too long, the dispersibility of the reinforcing fibers in the raw material of the inorganic porous material is deteriorated. If the length is too short, the desired strength of the inorganic porous material is obtained. Can not be obtained.

【0020】補強繊維の直径は、1〜500μmが好ま
しく、細すぎると、無機質多孔体原料への混合時に、再
凝集し、ファイバーボールが形成し、多孔体の強度が向
上しない。又、太い場合は、補強の効果が少ない。
The diameter of the reinforcing fibers is preferably from 1 to 500 μm. If the diameter is too small, the fibers are re-agglomerated when mixed with the inorganic porous material, fiber balls are formed, and the strength of the porous material is not improved. When the thickness is large, the effect of reinforcement is small.

【0021】補強繊維の添加量は、非晶質SiO2 −A
2 3 系粉体100重量部に対し、10重量部以下で
ある。添加量が10重量を超えると、無機質多孔体原料
への分散性が低下する。
The addition amount of the reinforcing fiber is amorphous SiO 2 -A
It is 10 parts by weight or less based on 100 parts by weight of l 2 O 3 -based powder. If the addition amount exceeds 10% by weight, the dispersibility in the inorganic porous material decreases.

【0022】発泡助剤は、発泡の安定化と均一、微細化
に寄与し、多孔質粉体や界面活性剤がある。前者として
は、例えば、シリカゲル、ゼオライト、活性炭、アルミ
ナゲルなどが挙げられ、その添加量は5重量部以下が好
ましく、多いと気泡が破れ、多孔体の製造に悪い影響が
でる。後者としては、ステアリン酸金属塩、オレイン酸
金属塩、パルミチン酸金属塩などの脂肪酸金属塩が挙げ
られ、例えば、ステアリン酸亜鉛、ステアリン酸カルシ
ウム、ステアリン酸アルミニウム、オレイン酸ナトリウ
ム、オレイン酸カリウム、パルミチン酸ナトリウム、パ
ルミチン酸カリウム、ラウリルベンゼンスルホン酸ナト
リウム、ラウリル硫酸ナトリウムなどが挙げられる。
The foaming aid contributes to stabilization of foaming, uniformity and fineness, and includes porous powders and surfactants. As the former, for example, silica gel, zeolite, activated carbon, alumina gel and the like can be mentioned. The addition amount is preferably 5 parts by weight or less, and if it is large, bubbles are broken, which adversely affects the production of a porous body. The latter include fatty acid metal salts such as metal stearate, metal oleate and metal palmitate, such as zinc stearate, calcium stearate, aluminum stearate, sodium oleate, potassium oleate, and palmitate. Sodium, potassium palmitate, sodium laurylbenzenesulfonate, sodium lauryl sulfate and the like.

【0023】発泡助剤の添加量は、非晶質SiO2 −A
2 3 系粉体100重量部に対し、0.05〜5重量
部が好ましく、さらに好ましくは0.3〜3.0重量部
である。添加量が5重量部を超えると、多孔体原料の粘
度が上昇して、製造に悪い影響を及ぼし、逆に、0.0
5重量部未満の場合は、気泡が破れて、製造が安定しな
い。
The amount of the foaming aid to be added is amorphous SiO 2 -A
to l 2 O 3 system powder 100 parts by weight, 0.05 to 5 parts by weight is preferred, more preferably from 0.3 to 3.0 parts by weight. When the addition amount exceeds 5 parts by weight, the viscosity of the porous material increases, adversely affecting the production, and conversely, 0.0%.
If the amount is less than 5 parts by weight, the bubbles are broken and the production is not stable.

【0024】無機質発泡材は、無機質多孔体の軽量化に
役立ち、例えば、ガラスバルーン、シラスバルーン、フ
ライアッシュバルーン、シリカバルーン、パーライト、
ヒル石、粒状発泡シリカなどが挙げられ、これらの少な
くとも1種が使用できる。これらの比重は、0.01〜
1が好ましく、更に好ましくは0.03〜0.7であ
る。比重が0.01未満の場合は、無機質多孔体の機械
的強度を低下させ、1を超えると、軽量化に寄与しな
い。無機質発泡体の添加量は、非晶質SiO2 −Al2
3 系粉体100重量部に対して、10〜100重量部
が好ましく、さらに好ましくは、30〜80重量部であ
る。添加量が10重量部未満の場合は、軽量化の効果が
得られず、100重量部を超えると、機械的強度が低下
する。
The inorganic foam material is useful for reducing the weight of the inorganic porous material. Examples thereof include a glass balloon, a shirasu balloon, a fly ash balloon, a silica balloon, a pearlite,
Hill stone, granular expanded silica and the like can be mentioned, and at least one of these can be used. These specific gravities are from 0.01 to
1 is preferable, and 0.03-0.7 is more preferable. When the specific gravity is less than 0.01, the mechanical strength of the inorganic porous material is reduced, and when it exceeds 1, it does not contribute to weight reduction. The amount of the inorganic foam added was amorphous SiO 2 —Al 2
Against O 3 system powder 100 parts by weight, preferably 10 to 100 parts by weight, more preferably 30 to 80 parts by weight. If the amount is less than 10 parts by weight, the effect of weight reduction cannot be obtained, and if it exceeds 100 parts by weight, the mechanical strength decreases.

【0025】上述の無機質多孔体の製造方法は種々あ
り、発泡剤法、起泡剤法、溶出・焼成法などがある。以
下、これらを順次、説明する。
There are various methods for producing the above-mentioned inorganic porous material, including a foaming agent method, a foaming agent method, and an elution / firing method. Hereinafter, these will be sequentially described.

【0026】発泡剤法は、無機質多孔体原料に過酸化物
や金属粉末などの発泡剤を均一に混合し、これを分解・
ガス化させ、内部に気泡を形成・硬化させる方法であ
る。上記の過酸化物としては、例えば、過酸化水素、過
酸化ナトリウム、過酸化カリウム、過酸化ホウ酸ナトリ
ウムなどが挙げられ、アルカリ存在下で、酸素が発生す
る。
In the foaming agent method, a foaming agent such as a peroxide or a metal powder is uniformly mixed with an inorganic porous material, and this is decomposed and decomposed.
This is a method of gasifying and forming and hardening bubbles inside. Examples of the peroxide include hydrogen peroxide, sodium peroxide, potassium peroxide, sodium borate and the like, and oxygen is generated in the presence of an alkali.

【0027】過酸化物水溶液の濃度は、0.5〜35重
量%が好ましく、更に好ましくは、1〜25重量%であ
る。0.5重量%未満の場合は、粘度が低過ぎて、気泡
が破れて製造できなく、35重量%を超えると、発泡速
度が早過ぎて、発泡が不安定になる。又、過酸化物の添
加量は、非晶質SiO2 −Al2 3 系粉体100重量
部に対して、0.01〜10重量部が好ましい。0.0
1重量部未満の場合は、発泡倍率が小さくなり過ぎ、1
0重量部を超えると、発泡ガスが過剰になり、気泡が破
裂してしまう。
The concentration of the aqueous peroxide solution is preferably from 0.5 to 35% by weight, more preferably from 1 to 25% by weight. If the amount is less than 0.5% by weight, the viscosity is too low, and the cells are broken to make it impossible to manufacture. If the amount exceeds 35% by weight, the foaming speed is too fast, and the foaming becomes unstable. The amount of the peroxide is preferably 0.01 to 10 parts by weight based on 100 parts by weight of the amorphous SiO 2 —Al 2 O 3 powder. 0.0
If the amount is less than 1 part by weight, the expansion ratio becomes too small.
If the amount exceeds 0 parts by weight, the foaming gas becomes excessive, and the bubbles burst.

【0028】上記の金属粉末としては、例えば、Mg、
Ca、Cr、Mn、Fe、Co、Ni、Cu、Zn、A
l、Ga、Sn、Si、フェロシリコンなどが挙げら
れ、アルカリと反応して、水素が発生して、無機質多孔
体原料を発泡させる。金属粉末の平均粒径は、1〜20
0μmが好ましく、1μm未満の場合は、反応が激し過
ぎて、発泡ガスの発生が早過ぎ、200μmを超える
と、反応が遅過ぎて、何れも発泡の安定性が悪い。
As the above metal powder, for example, Mg,
Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, A
l, Ga, Sn, Si, ferrosilicon, etc., and reacts with an alkali to generate hydrogen, thereby foaming the inorganic porous material. The average particle size of the metal powder is 1 to 20
0 μm is preferable, and when it is less than 1 μm, the reaction is too vigorous and the generation of foaming gas is too early, and when it exceeds 200 μm, the reaction is too slow and the stability of foaming is poor in any case.

【0029】金属粉末の添加量は、非晶質SiO2 −A
2 3 系粉体100重量部に対して、0.01〜5.
0重量部が好ましい。0.01重量部未満の場合は、無
機質多孔体の密度が大き過ぎて、吸音性が発現せず、
5.0重量部を超えると、発泡ガスが過剰で、無機質多
孔体の製造が安定しない。
The amount of the metal powder to be added is amorphous SiO 2 -A
against l 2 O 3 system powder 100 parts by weight, 0.01 to 5.
0 parts by weight is preferred. If the amount is less than 0.01 parts by weight, the density of the inorganic porous body is too large, and no sound absorbing property is exhibited,
If it exceeds 5.0 parts by weight, the amount of the foaming gas is excessive, and the production of the inorganic porous material is not stable.

【0030】起泡剤法は、メカニカルフロス法とも呼ば
れ、起泡剤を多孔体原料に添加し、所定の起泡装置で攪
拌して、安定した発泡流動体を作り、これを硬化させ
て、多孔体にする方法である。起泡剤としては、例え
ば、カゼイン、にかわ、アルブミンなどの動物蛋白系界
面活性剤、アニオン系界面活性剤、カチオン系界面活性
剤、両性界面活性剤、非イオン系界面活性剤が挙げられ
る。起泡剤の添加量は、非晶質SiO2 −Al2 3
粉体100重量部に対して、0.05〜5重量部が好ま
しく、0.05重量部未満の場合は、起泡性と発泡性が
不足し、5重量部を超えると、起泡力が強過ぎて、多孔
体の密度が低下し、機械的強度が低下する。
The foaming agent method is also called a mechanical floss method, in which a foaming agent is added to a porous material and stirred with a predetermined foaming device to form a stable foamed fluid, which is cured. This is a method of forming a porous body. Examples of the foaming agent include animal protein surfactants such as casein, glue and albumin, anionic surfactants, cationic surfactants, amphoteric surfactants, and nonionic surfactants. The addition amount of the foaming agent is preferably 0.05 to 5 parts by weight based on 100 parts by weight of the amorphous SiO 2 —Al 2 O 3 -based powder, and when less than 0.05 part by weight, the foaming is performed. When the content and the foaming property are insufficient and the content exceeds 5 parts by weight, the foaming power is too strong, the density of the porous body is reduced, and the mechanical strength is reduced.

【0031】溶出・焼成法は、有機発泡体の粉体や粒状
体を、無機質多孔体原料に均一に混合し、硬化させた
後、有機発泡体を溶融温度、焼成温度以上に加熱する
か、又は、有機溶媒で溶解・溶出して、連続気孔構造に
製造する方法である。上記有機発泡体としては、スチレ
ン、エチレン、ポリプロピレン、ウレタン、フェノー
ル、尿素などの発泡体が挙げられ、発泡体の気泡構造は
独立、連続気泡を問わなく、2種類以上を併用しても構
わない。有機発泡体の添加量は、非晶質SiO2 −Al
2 3 系粉体100重量部に対して、10〜100重量
部が好ましく、更に好ましくは、30〜80重量部であ
る。10重量部未満の場合は吸音性が発現しなく、10
0重量部を超えると、無機質多孔体の機械的強度が低下
する。
The elution / firing method is to uniformly mix and cure the organic foam powder or granular material with the inorganic porous material, and then heat the organic foam to a temperature higher than the melting temperature and firing temperature. Alternatively, it is a method of dissolving and eluting with an organic solvent to produce a continuous pore structure. Examples of the organic foam include foams such as styrene, ethylene, polypropylene, urethane, phenol, and urea, and the foam structure of the foam is independent, regardless of open cells, and two or more kinds may be used in combination. . The amount of the organic foam added is amorphous SiO 2 -Al
The amount is preferably from 10 to 100 parts by weight, more preferably from 30 to 80 parts by weight, based on 100 parts by weight of the 2 O 3 powder. When the amount is less than 10 parts by weight, no sound absorbing property is exhibited, and
If the amount exceeds 0 parts by weight, the mechanical strength of the inorganic porous material decreases.

【0032】本発明に於いて、無機質多孔体を製造する
には、非晶質SiO2 −Al2 3系粉体、アルカリ金
属珪酸塩、水の混合物に、多孔化手段として、発泡剤、
起泡剤、有機発泡体の何れかが添加され、場合によって
は、無機充填剤、補強繊維、発泡助剤、無機質発泡材の
少なくとも1種が加えられて、混合機で混合され、均一
なスラリーにされる。しかる後に、所定の容器(成形
型)に該スラリーを流し込み、硬化させる。硬化は常温
でも良いが、50〜100℃で硬化が促進されて、機械
的強度の向上が図られる。硬化時間は2〜24時間が好
ましい。
In the present invention, in order to produce an inorganic porous material, a mixture of an amorphous SiO 2 —Al 2 O 3 powder, an alkali metal silicate and water is mixed with a foaming agent as a porous means.
One of a foaming agent and an organic foam is added, and in some cases, at least one of an inorganic filler, a reinforcing fiber, a foaming aid, and an inorganic foaming material is added, and the mixture is mixed by a mixer to form a uniform slurry. To be. Thereafter, the slurry is poured into a predetermined container (mold) and cured. Although curing may be performed at room temperature, the curing is accelerated at 50 to 100 ° C., and the mechanical strength is improved. The curing time is preferably 2 to 24 hours.

【0033】本発明の無機質吸音材に使用される無機質
多孔体は、上述のようにして得られ、その連続気孔径が
0.05〜0.3mmであることが必要である。連続気
孔径が0.05mm未満の場合は、一般式〔1〕で示さ
れる有機珪素化合物が塗布された時、連続気孔が封鎖さ
れて、吸音性が著しく低下する。又、連続気孔径が0.
3mmを超えると、水が内部まで浸透し易くなり、耐水
性、耐凍結融解性(又は、耐凍結破壊性)が低下する。
尚、上記連続気孔径とは、独立気泡同士が互いに隣接
し、その隣接した気泡膜(セル)が破れた部分の空孔の
直径をいい、その測定方法は、後述の評価方法で説明さ
れている。
The inorganic porous material used for the inorganic sound absorbing material of the present invention is obtained as described above, and it is necessary that the continuous pore diameter is 0.05 to 0.3 mm. When the continuous pore diameter is less than 0.05 mm, when the organosilicon compound represented by the general formula [1] is applied, the continuous pores are closed, and the sound absorbing property is significantly reduced. In addition, the continuous pore diameter is 0.
When it exceeds 3 mm, water easily penetrates into the inside, and water resistance and freeze-thaw resistance (or freeze-break resistance) decrease.
In addition, the said continuous pore diameter means the diameter of the pore of the part where the closed cells are adjacent to each other and the adjacent cell membrane (cell) is broken, and the measuring method is described in the evaluation method described later. I have.

【0034】かくして得られた無機質多孔体は、そのま
ま、又は、脱アルカリ処理されて、一般式〔1〕で示さ
れる有機珪素化合物が塗布されて、本発明の無機質吸音
材にされる。
The inorganic porous material thus obtained is directly or subjected to a dealkalization treatment, and is coated with the organosilicon compound represented by the general formula [1] to obtain the inorganic sound absorbing material of the present invention.

【0035】無機質多孔体を脱アルカリ処理には、種々
の方法があり、例えば、水浸漬法、酸水溶液浸漬法、酸
性ガス接触法などが挙げられる。水浸漬法では、無機質
多孔体を80〜90℃の温水に長時間、洗浄、浸漬し、
これが洗浄が数回繰り返された後、室温又は加熱オーブ
ンで乾燥される。酸水溶液浸漬法は、塩酸、硫酸、硝
酸、炭酸などで酸性にされたpH3〜6の水溶液が用意
され、これに無機質多孔体を重量比で1:5以上の割合
で大容量の酸水溶液に2時間以上浸漬されて、アルカリ
分が中和された後、水で充分洗浄され、室温又は加熱オ
ーブンで乾燥される。酸性ガス接触法は、硫化水素、塩
化水素、炭酸ガスなどの酸性ガスの雰囲気に無機質多孔
体を24時間以上放置する方法であり、脱アルカリされ
た後は、水で充分洗浄して、室温又は加熱オーブンで乾
燥される。
There are various methods for dealkalizing the inorganic porous material, such as a water immersion method, an acid aqueous solution immersion method, and an acid gas contact method. In the water immersion method, the inorganic porous body is washed and immersed in warm water of 80 to 90 ° C. for a long time,
This is repeated several times, and then dried at room temperature or in a heating oven. In the acid aqueous solution immersion method, an aqueous solution of pH 3 to 6 acidified with hydrochloric acid, sulfuric acid, nitric acid, carbonic acid or the like is prepared, and the inorganic porous material is added to a large volume aqueous acid solution at a weight ratio of 1: 5 or more. After being immersed for 2 hours or more to neutralize the alkali content, it is sufficiently washed with water and dried at room temperature or in a heating oven. The acidic gas contact method is a method in which an inorganic porous material is left in an atmosphere of an acidic gas such as hydrogen sulfide, hydrogen chloride, or carbon dioxide for 24 hours or more. Dry in a heating oven.

【0036】一般式〔1〕で示される有機珪素化合物
は、下記の通りである。
The organosilicon compound represented by the general formula [1] is as follows.

【0037】ここに於いて、R1 は炭素数が1〜16の
アルキル基であることが必要であり、疎水性の向上の点
で、4以上が好ましい。炭素が16を超える場合は、有
機溶剤への溶解性が悪くなり、無機質多孔体への均一な
塗布が困難になる場合がある。R2 は炭素数1〜5のア
ルキル基で、炭素数が5を超えると、硬化するときの反
応性が低下する。又、nは1〜20の自然数であること
が必要であり、好ましくは3〜10である。nが20を
超えると、粘度が大きくなって、無機質多孔体の深部へ
の浸透性が低くなり、連続気孔を塞ぎ吸音性が低下す
る。
Here, R 1 must be an alkyl group having 1 to 16 carbon atoms, and is preferably 4 or more from the viewpoint of improving hydrophobicity. When the amount of carbon exceeds 16, the solubility in the organic solvent is deteriorated, and it may be difficult to uniformly coat the inorganic porous material. R 2 is an alkyl group having 1 to 5 carbon atoms. When the number of carbon atoms exceeds 5, the reactivity at the time of curing decreases. Further, n needs to be a natural number of 1 to 20, and is preferably 3 to 10. When n exceeds 20, the viscosity increases, the permeability of the inorganic porous body into the deep part decreases, and the continuous pores are closed, so that the sound absorbing property decreases.

【0038】使用する一般式〔1〕で示される有機珪素
化合物は、無機質多孔体に均一に塗布するため、通常、
有機溶剤で希釈することが好ましい。有機溶剤として
は、上記有機珪素化合物が均一に溶解できるものであれ
ば、特に限定されず、例えば、エチルアルコール、n−
プロパノール、i−プロパノール、t−ブタノールなど
のアルコール類、エチレングリコールモノメチルエーテ
ル、エチレングリコールモノエステルエーテル、エチレ
ングリコールジエチルエーテルなどのエーテル類、アセ
トン、メチルエチルケトンなどのケトン類、脂肪酸ナフ
サ、ミネラルスピリットなどのアルカン類、トルエン、
キシレン、ソルベンナフサ、芳香族ナフサなどの炭化水
素、トリクロロエチレン、パークロロエチレンなどのハ
ロゲン化炭化水素などが挙げられ、これらの少なくとも
1種が使用できる。
The organosilicon compound represented by the general formula [1] to be used is usually applied to an inorganic porous material so that it is usually used.
It is preferable to dilute with an organic solvent. The organic solvent is not particularly limited as long as the organic silicon compound can be uniformly dissolved, and examples thereof include ethyl alcohol and n-
Alcohols such as propanol, i-propanol and t-butanol; ethers such as ethylene glycol monomethyl ether, ethylene glycol monoester ether and ethylene glycol diethyl ether; ketones such as acetone and methyl ethyl ketone; alkanes such as fatty acid naphtha and mineral spirits Kind, toluene,
Examples include hydrocarbons such as xylene, sorbennaphtha and aromatic naphtha, and halogenated hydrocarbons such as trichloroethylene and perchloroethylene, and at least one of these can be used.

【0039】有機溶剤の上記有機珪素化合物の溶液濃度
は、5〜20重量%が好ましく、この濃度範囲にある
と、無機質多孔体に好適に塗布できる。上記溶液には、
縮合反応を促進する目的で、ジブチルチンラウレートの
ような触媒が加えられたり、着色、増量の目的で、顔
料、充填剤などを目的に応じて、適宜、添加されても構
わない。
The concentration of the solution of the organic silicon compound in the organic solvent is preferably 5 to 20% by weight, and when the concentration is within this range, the inorganic porous material can be suitably applied. In the above solution,
A catalyst such as dibutyltin laurate may be added for the purpose of accelerating the condensation reaction, or a pigment or a filler may be appropriately added for the purpose of coloring or increasing the amount of the material depending on the purpose.

【0040】一般式〔1〕で示される有機珪素化合物の
塗布量は、無機質多孔体がアルカリ処理されている場合
と、処理されていない場合とで異なる。無機質多孔体が
無処理の場合は、有機珪素化合物の固形物換算で、0.
03〜0.1g/cm2 が必要であり、0.03g/c
2 未満の場合は、耐水性、耐凍結融解性が不充分とな
り、0.1g/cm2 を超えると、無機質多孔体の連続
気孔が封鎖されて、吸音性が得られなくなる。
The amount of the organosilicon compound represented by the general formula [1] is different depending on whether the inorganic porous material is treated with alkali or not. When the inorganic porous material is untreated, the solid content of the organosilicon compound is 0.
03-0.1 g / cm 2 is required, and 0.03 g / c
If it is less than m 2 , the water resistance and freeze-thaw resistance will be insufficient, and if it exceeds 0.1 g / cm 2 , the continuous pores of the inorganic porous material will be blocked and no sound absorption will be obtained.

【0041】又、無機質多孔体がアルカリ処理されてい
る場合は、有機珪素化合物の固形物換算で、0.01〜
0.1g/cm2 が必要であり、0.01g/cm2
満の場合は、耐水性、耐凍結融解性が不充分となり、
0.1g/cm2 を超えると、無機質多孔体の連続気孔
が封鎖されて、吸音性が得られなくなる。
In the case where the inorganic porous material has been treated with an alkali, the content of the organic silicon compound is preferably from 0.01 to 0.01 in terms of solids.
0.1 g / cm 2 is necessary, and if it is less than 0.01 g / cm 2 , the water resistance, freeze-thaw resistance becomes insufficient,
If it exceeds 0.1 g / cm 2 , the continuous pores of the inorganic porous material are blocked, and no sound absorbing property can be obtained.

【0042】無機質多孔体への塗布方法としては、特に
限定されるものではなく、エアースプレー、ロール、刷
毛、浸漬など公知の手段が適用できる。無機質多孔体へ
の塗布した後は、有機珪素化合物を定着させるため、常
温で、24時間以上放置し、更に50〜110℃で加熱
することが好ましい。
The method for coating the inorganic porous material is not particularly limited, and known means such as air spray, roll, brush, and dipping can be applied. After application to the inorganic porous material, it is preferable to leave at room temperature for 24 hours or more and further heat at 50 to 110 ° C. in order to fix the organic silicon compound.

【0043】[0043]

【作用】本発明の無機質吸音材は、特定された組成と連
続気孔径に作製された無機質多孔体に、特定の有機珪素
化合物が、所定量塗布されている。該有機珪素化合物は
水が存在すると、自然に加水分解して、アルキルシラノ
ールとアルコールになり、アルキルシラノールは無機質
多孔体の表面にある珪素、アルミニウムの水酸基と反応
して、それ自体が縮合し、シロキサン結合形成して硬化
する。それ故、本発明の無機質吸音材は、多孔体で高度
の吸音性を有しながら、上記有機珪素化合物が表面とそ
の近傍に特に高濃度に塗布・硬化されているので、疎水
・撥水性が高度に付与されて水が内部に浸透せず、耐水
性、耐凍結融解性が優れている。
In the inorganic sound absorbing material of the present invention, a predetermined amount of a specific organic silicon compound is applied to an inorganic porous material having a specified composition and a continuous pore diameter. In the presence of water, the organosilicon compound spontaneously hydrolyzes into alkyl silanols and alcohols, and the alkyl silanols react with silicon on the surface of the inorganic porous body, hydroxyl groups of aluminum, and condense themselves, A siloxane bond forms and cures. Therefore, the inorganic sound absorbing material of the present invention has a high sound absorbing property in a porous body, and the organic silicon compound is applied and cured at a particularly high concentration on the surface and in the vicinity thereof. Highly imparted, water does not penetrate inside, and is excellent in water resistance and freeze-thaw resistance.

【0044】[0044]

【発明の実施の形態】本発明を実施例、比較例をもって
更に詳しく説明する。 実施例1〜4、比較例1〜7 (1)非晶質SiO2 −Al2 3 系粉体の用意 非晶質SiO2 −Al2 3 系粉体として、下記の2種
類の無機質粉体1、2を用意した。 無機質粉体1:アルミナ系研磨材を製造する時のダスト
である。その組成と平均粒子径は、表1に示す通りであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail with reference to examples and comparative examples. As Examples 1-4 and Comparative Examples 1-7 (1) amorphous SiO 2 -Al 2 O 3 -based powder of preparing amorphous SiO 2 -Al 2 O 3 -based powder, two kinds of inorganic below Powders 1 and 2 were prepared. Inorganic powder 1: dust when producing an alumina-based abrasive. The composition and average particle size are as shown in Table 1.

【0045】[0045]

【表1】 [Table 1]

【0046】無機質粉体2:フライアッシュ(関電化工
社製、JIS A 6201に準じて測定した平均粒子
径20μm)を分級機(日清エンジニアリング社製、型
式;TC−15)により分級して、平均粒子径が10μ
m以下だけになるようにした。
Inorganic powder 2: Fly ash (manufactured by Kanden Kako Co., Ltd., average particle diameter 20 μm measured according to JIS A 6201) was classified by a classifier (manufactured by Nisshin Engineering Co., Ltd., model: TC-15). Average particle size is 10μ
m or less.

【0047】(2)無機質多孔体の作製 表2に示した配合に基づいて、非晶質SiO2 −Al2
3 系粉体(無機質粉体1、2)、珪酸塩ナトリウム水
溶液、タルク(山陽クレー工業社製、タルク83、平均
粒子径;5μm)、マイカ(レプコ社製、コスコバイト
(白雲母)M−200、平均粒子径;60μm)、酸化
カルシウム(カルシード社製、200メッシュ通過粒
子)、ビニロン繊維(クラレ社製、繊維長;3mm)、
粘度調整水、オレイン酸ナトリウム(和光純薬社製)、
シリコーン系整泡剤(信越化学社製、F345)、ジメ
チルシリコーンオイル(信越化学社製)をハンドミキサ
ーで混合攪拌して、各種配合の均一なペーストを作製し
た。
(2) Preparation of Inorganic Porous Material Based on the composition shown in Table 2, amorphous SiO 2 —Al 2
O 3 powder (inorganic powders 1 and 2), sodium silicate aqueous solution, talc (manufactured by Sanyo Clay Industry Co., Ltd., talc 83, average particle size: 5 μm), mica (manufactured by Repco, cosmecite (muscovite) M -200, average particle diameter; 60 μm), calcium oxide (manufactured by Calcede, particles passing through 200 mesh), vinylon fiber (manufactured by Kuraray, fiber length: 3 mm),
Viscosity adjusting water, sodium oleate (manufactured by Wako Pure Chemical Industries),
A silicone-based foam stabilizer (F345, manufactured by Shin-Etsu Chemical Co., Ltd.) and dimethyl silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd.) were mixed and stirred with a hand mixer to prepare uniform pastes of various formulations.

【0048】しかる後に、該ペーストに、表1に示した
20重量%の過酸化水素水(三菱瓦斯化学社製、35重
量%を20重量%に希釈して使用)を所定量添加して、
約30秒間、混合・攪拌し、成形容器に流し込んで、放
置すると、徐々に発泡が起こり、約3分で発泡が完了し
た。発泡完結後、85℃、12時間、硬化加熱し、更
に、室温で24時間で乾燥し最終的に105℃で24時
間乾燥を行って、5種類の無機質多孔体A、B、C、
D、Eを得た。得られた無機質多孔体は、後述する評価
方法に基づいて、平均連続気孔径、かさ比重を測定し
て、表2に纏めた。
Thereafter, a predetermined amount of a 20% by weight aqueous hydrogen peroxide (manufactured by Mitsubishi Gas Chemical Co., diluted from 35% by weight to 20% by weight) shown in Table 1 was added to the paste.
The mixture was mixed and stirred for about 30 seconds, poured into a molding container, and left to stand. Bubbling gradually occurred, and the bubbling was completed in about 3 minutes. After completion of the foaming, the composition was cured and heated at 85 ° C. for 12 hours, further dried at room temperature for 24 hours, and finally dried at 105 ° C. for 24 hours.
D and E were obtained. The obtained inorganic porous material was measured for average continuous pore diameter and bulk specific gravity based on an evaluation method described later, and the results are summarized in Table 2.

【0049】[0049]

【表2】 [Table 2]

【0050】(3)無機質吸音材の作製と評価 上記(2)で得られた5種類の無機質多孔体A、B、
C、D、Eを直径100mm×高さ60mmの円柱に切
断した。しかる後に、表3、表4に示す様に、種々の有
機珪素化合物をイソプロパノールで10重量%に希釈し
て、その所定量を各無機質多孔体の表面に刷毛で塗布
し、室温で24時間乾燥し、最終的に105℃で24時
間、硬化、乾燥を行って、各種の無機質吸音材を作製し
た。得られた無機質吸音材は、後述する評価方法に基づ
いて、平均連続気孔径、かさ比重、平均吸音率、吸水
率、耐凍結融解性を測定して、表3、4に纏めた。
(3) Preparation and Evaluation of Inorganic Sound Absorbing Material The five types of inorganic porous materials A, B, and
C, D, and E were cut into cylinders having a diameter of 100 mm and a height of 60 mm. Thereafter, as shown in Tables 3 and 4, various organosilicon compounds were diluted to 10% by weight with isopropanol, and a predetermined amount thereof was applied to the surface of each inorganic porous material with a brush, and dried at room temperature for 24 hours. Finally, curing and drying were performed at 105 ° C. for 24 hours to produce various inorganic sound absorbing materials. The obtained inorganic sound absorbing material was measured for the average continuous pore diameter, the bulk specific gravity, the average sound absorption coefficient, the water absorption rate, and the freeze-thaw resistance based on the evaluation method described later, and summarized in Tables 3 and 4.

【0051】[0051]

【表3】 [Table 3]

【0052】[0052]

【表4】 [Table 4]

【0053】実施例5〜8、比較例8〜12 (1)無機質多孔体の脱アルカリ処理 上記の実施例1〜4、比較例1〜7の(2)で得られた
無機質多孔体A、B、C、Dを直径100mm×高さ6
0mmの円柱に切断して、それぞれ、pH4に調整した
塩酸1リッターに攪拌しながら浸漬し、24時間放置し
た。しかる後に、1リッターの純水に浸漬してよく洗浄
し、これを3回繰り返した後、105℃のオーブンで2
4時間放置、乾燥して、脱アルカリ処理を行った。
Examples 5 to 8, Comparative Examples 8 to 12 (1) Alkali treatment of inorganic porous material The inorganic porous material A obtained in the above Examples 1 to 4 and Comparative Examples 1 to 7 (2), B, C, D are 100mm in diameter x 6 height
The pieces were cut into 0 mm cylinders, immersed in 1 liter of hydrochloric acid adjusted to pH 4 with stirring, and left for 24 hours. Thereafter, the plate was immersed in 1 liter of pure water and washed well, and this was repeated three times.
It was left for 4 hours, dried, and subjected to a dealkalization treatment.

【0054】(2)無機質多孔体の作製 上記(1)で脱アルカリ処理された無機質多孔体を用意
し、しかる後に、表5、表6に示す様に、種々の有機珪
素化合物をイソプロパノールで10重量%に希釈して、
その所定量を各無機質多孔体の表面に刷毛で塗布し、室
温で24時間乾燥し、最終的に105℃で24時間、硬
化、乾燥を行って、各種の無機質吸音材を作製した。得
られた無機質吸音材は、後述する評価方法に基づいて、
平均連続気孔径、かさ比重、平均吸音率、吸水率、耐凍
結融解性を測定して、表5、6に纏めた。
(2) Preparation of Inorganic Porous Material The inorganic porous material dealkalized in the above (1) was prepared. Thereafter, as shown in Tables 5 and 6, various organic silicon compounds were treated with isopropanol for 10 minutes. Diluted to weight percent,
A predetermined amount was applied to the surface of each inorganic porous body with a brush, dried at room temperature for 24 hours, and finally cured and dried at 105 ° C. for 24 hours to produce various inorganic sound absorbing materials. The obtained inorganic sound absorbing material is based on an evaluation method described later,
The average continuous pore diameter, bulk specific gravity, average sound absorption, water absorption, and freeze-thaw resistance were measured and summarized in Tables 5 and 6.

【0055】[0055]

【表5】 [Table 5]

【0056】[0056]

【表6】 [Table 6]

【0057】評価方法 (a)連続気孔径 無機質多孔体から一辺が50mmの立方体を切り取り、
平面と両側面とを13倍に拡大した反射型顕微鏡写真を
撮影して行った。上記写真の上で、各面の稜線に平行な
互いに直交する二本の直線を引き、一本の直線に沿っ
て、任意の気孔膜から次の気孔膜を切る点までの距離を
個々に連続して50個測定し、更に、二本目の直線に就
いても同様な操作を行う。距離の合計を個数(100
個)で割つた値をこの面の連続気孔径と定義した。距離
の測定は、反射型顕微鏡のプレパラートに刻印したスケ
ールで測定・換算した。尚、本発明に使用した連続気孔
径の数値は、無機質多孔体の縦、横、高さ方向の連続気
孔径の平均値を使用した。
Evaluation method (a) Continuous pore diameter A cube having a side of 50 mm was cut out from an inorganic porous material,
A reflection type micrograph in which the plane and both sides were magnified 13 times was taken. On the above photo, draw two straight lines that are perpendicular to each other and parallel to the ridge line of each surface, and individually continue the distance from any pore membrane to the point where the next pore membrane is cut along one straight line The same operation is performed for the second straight line. The total distance is counted
) Was defined as the continuous pore diameter of this surface. The distance was measured and converted on a scale stamped on a slide of a reflection microscope. As the numerical value of the continuous pore diameter used in the present invention, the average value of the continuous pore diameter in the vertical, horizontal, and height directions of the inorganic porous body was used.

【0058】(b)かさ比重ρf 無機質多孔体を直径100×肉厚60mmの円柱に切断
して、その重量W0 を測定し、その体積V0 で除して算
出した。即ち、かさ比重ρf =W0 /V0
(B) Bulk Specific Gravity ρf The inorganic porous material was cut into a cylinder having a diameter of 100 × thickness of 60 mm, its weight W 0 was measured, and calculated by dividing it by its volume V 0 . That is, the bulk specific gravity ρf = W 0 / V 0

【0059】(c)吸水率WAR 無機質吸音材から、直径100×60mmの円柱の試料
を切断して、重量W0を測定し、しかる後に、水面下1
0mmに24時間浸漬し、表面に付着した水を濾紙で軽
く拭き取った後、重量Wを測定した。吸水前と吸水後の
重量差(W−W0 )を試料の気孔率Pで除して、体積%
で表示した。尚、試料の気孔率Pは、ヘリウムピクノメ
ーター(島津製作所社製)で、無機質吸音材の真比重ρ
m を測定し、下式より求めた。即ち、気孔率P=1−
(かさ比重ρf /真比重ρm ) 吸水率WAR=(W−W0 )/P
[0059] From (c) water absorption W AR inorganic sound absorbing material, by cutting the sample cylinder diameter 100 × 60 mm, weighed W 0, and thereafter, below the surface 1
After immersion in 0 mm for 24 hours, the water adhering to the surface was lightly wiped off with a filter paper, and then the weight W was measured. The weight difference (W-W 0 ) before and after water absorption was divided by the porosity P of the sample to obtain a volume%
Displayed with. The porosity P of the sample was measured by a helium pycnometer (manufactured by Shimadzu Corporation) and the true specific gravity ρ of the inorganic sound absorbing material was used.
m was measured and determined by the following equation. That is, the porosity P = 1−
(Bulk specific gravity ρf / true specific gravity ρ m) water absorption W AR = (W-W 0 ) / P

【0060】(d)平均吸音率 JIS A 1405に準じて、垂直入射吸音率を測定
し、直径100×高さ60mmの円柱の無機質吸音材試
料を肉厚25mmの鋼鉄の円板に密着させ、空気層がな
い状態で測定した。音の周波数は、400〜4000H
zの範囲で行い、表7に示される各周波数毎の垂直入射
吸音率aj を実測し、各周波数毎の加重kj を乗じて、
平均吸音率を下記の式に従って算出した。 平均吸音率=Σaj j /Σkj
(D) Average sound absorption coefficient The normal incident sound absorption coefficient was measured in accordance with JIS A 1405, and a cylindrical inorganic sound absorbing material sample having a diameter of 100 and a height of 60 mm was closely attached to a steel disk having a thickness of 25 mm. The measurement was performed without an air layer. Sound frequency is 400-4000H
z, the vertical incidence sound absorption coefficient a j for each frequency shown in Table 7 is actually measured, and multiplied by the weight k j for each frequency,
The average sound absorption was calculated according to the following equation. Average sound absorption coefficient = Σa j k j / Σk j

【0061】[0061]

【表7】 [Table 7]

【0062】(e)耐凍結融解性 JIS A 1435に準じて、試料(無機質吸音材)
を空気中で凍結させた後、水中で融解させるテストを5
0サイクル継続して行った。テストを終了した試料を空
気中で乾燥させて、その外観を目視で観察した。
(E) Freezing and thawing resistance Sample (inorganic sound absorbing material) according to JIS A 1435
Was frozen in air and then thawed in water.
Performed continuously for 0 cycles. The sample after the test was dried in the air, and its appearance was visually observed.

【0063】[0063]

【発明の効果】本発明の無機質吸音材は、上記のように
構成されているので、高度の吸音性を有した多孔体であ
りながら、優れた耐水性と耐凍結融解性(又は、耐凍結
破壊性)が付与されているので、建築分野に於いて、不
燃性の内装材、外装材として極めて好適に使用できる。
Since the inorganic sound absorbing material of the present invention is constituted as described above, it is excellent in water resistance and freeze-thaw resistance (or freezing-thaw resistance, even though it is a porous body having a high sound absorption property). (Destructibility), it can be very suitably used as a nonflammable interior material and exterior material in the field of construction.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 非晶質SiO2 −Al2 3 系粉体、ア
ルカリ金属珪酸塩、及び、水から製せられ、連続気孔径
が0.05〜0.3mmである無機質多孔体に、下記の
一般式〔1〕で示される有機珪素化合物が0.03〜
0.1g/cm 2 塗布されていることを特徴とする無機
質吸音材。 (R1 は炭素数1〜16のアルキル基、R2 は炭素数1
〜5のアルキル基、nは1〜20の自然数)
1. Amorphous SiOTwo-AlTwoOThreeSystem powder,
Made from Lucari metal silicate and water, continuous pore size
Is 0.05 to 0.3 mm in the inorganic porous material, the following
When the amount of the organosilicon compound represented by the general formula [1] is 0.03 to
0.1 g / cm TwoInorganic characterized by being applied
Quality sound absorbing material.(R1Is an alkyl group having 1 to 16 carbon atoms, RTwoIs 1 carbon
To 5 alkyl groups, n is a natural number of 1 to 20)
【請求項2】 上記無機質多孔体を脱アルカリ処理後、
一般式〔1〕で示される有機珪素化合物が0.01〜
0.1g/cm2 塗布されていることを特徴とする請求
項1記載の無機質吸音材。
2. After the inorganic porous body is subjected to a dealkalization treatment,
When the organosilicon compound represented by the general formula [1] is 0.01 to
Inorganic sound absorbing material according to claim 1, wherein the 0.1 g / cm 2 is applied.
JP2088398A 1998-02-02 1998-02-02 Inorganic acoustic material Pending JPH11217280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2088398A JPH11217280A (en) 1998-02-02 1998-02-02 Inorganic acoustic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2088398A JPH11217280A (en) 1998-02-02 1998-02-02 Inorganic acoustic material

Publications (1)

Publication Number Publication Date
JPH11217280A true JPH11217280A (en) 1999-08-10

Family

ID=12039606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2088398A Pending JPH11217280A (en) 1998-02-02 1998-02-02 Inorganic acoustic material

Country Status (1)

Country Link
JP (1) JPH11217280A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013163612A (en) * 2012-02-10 2013-08-22 Fuji Kagaku Kk Water resistant sodium silicate foam and method for producing the same
JP2016223269A (en) * 2015-06-04 2016-12-28 旭ビルウォール株式会社 Sound absorption body for the railway
CN115141440A (en) * 2022-08-04 2022-10-04 中塑新材料技术(吉林)有限公司 Preparation method of modified slag composite material
WO2023190909A1 (en) * 2022-03-31 2023-10-05 株式会社ジェイエスピー Method for producing geopolymer foam

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013163612A (en) * 2012-02-10 2013-08-22 Fuji Kagaku Kk Water resistant sodium silicate foam and method for producing the same
JP2016223269A (en) * 2015-06-04 2016-12-28 旭ビルウォール株式会社 Sound absorption body for the railway
WO2023190909A1 (en) * 2022-03-31 2023-10-05 株式会社ジェイエスピー Method for producing geopolymer foam
CN115141440A (en) * 2022-08-04 2022-10-04 中塑新材料技术(吉林)有限公司 Preparation method of modified slag composite material

Similar Documents

Publication Publication Date Title
CA3019760A1 (en) Geopolymer foam formulation
KR20160081947A (en) Geopolymer foam formulation for a non-flammable, sound-absorbing, thermally insulating geopolymer foam element
CN107266115B (en) Aerogel foam concrete heat-insulation fireproof plate with decorative surface and preparation method thereof
Syamsidar The properties of nano TiO2-geopolymer composite as a material for functional surface application
CN109796175A (en) A kind of fire resisting autoclave aerated concrete building block brick
CA2908961A1 (en) Porous masses or shaped bodies of inorganic polymers and production thereof
US8822557B2 (en) Elastic inorganic-organic hybrid foam
JPH11217280A (en) Inorganic acoustic material
Tian et al. Fabrication of integrally hydrophobic self-compacting rubberized mortar with excellent waterproof ability, corrosion resistance and stable mechanical properties
US20200017415A1 (en) High strength porous material
JP2000159581A (en) Production of aluminosilicate slurry and inorganic cured product
CN109761643B (en) Preparation method of ultra-light foam concrete waterproof coating and ultra-light foam concrete with ultra-low water absorption rate
KR102158504B1 (en) Aerogel embedded concrete composition and method for manufacturing aerogel embedded concrete using the same
JP4655326B2 (en) Foam glass and manufacturing method thereof
JPH0859331A (en) Hardenable inorganic composition
JP5576641B2 (en) Powdered sodium silicate granulated product
Feng et al. Investigation on basic properties and durability of metakaolin based geopolymer modified with silane
Hajimohammadi et al. The effect of aluminium reaction on formation mechanism and structural properties of geopolymers
JP2001226156A (en) Inorganic powder, its manufacturing method, inorganic hardenable composition, inorganic hardened body, its manufacturing method, gypsum-base hardened body and cement-base hardened body
JPH09142949A (en) Inorganic sound absorbing material
JPH09133266A (en) Fire resistant pipeline material
JP2000007465A (en) Production of inorganic formed body
JPH08277178A (en) Inorganic laminated body
KR101729737B1 (en) Manufacturing method of concrete by air entring agent
CN115974453A (en) Composite super-hydrophobic agent, preparation method and application thereof