JP2005059081A - High strength water-soluble core and its manufacturing method - Google Patents

High strength water-soluble core and its manufacturing method Download PDF

Info

Publication number
JP2005059081A
JP2005059081A JP2003295362A JP2003295362A JP2005059081A JP 2005059081 A JP2005059081 A JP 2005059081A JP 2003295362 A JP2003295362 A JP 2003295362A JP 2003295362 A JP2003295362 A JP 2003295362A JP 2005059081 A JP2005059081 A JP 2005059081A
Authority
JP
Japan
Prior art keywords
water
soluble
core
inorganic salt
soluble core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003295362A
Other languages
Japanese (ja)
Other versions
JP4209286B2 (en
Inventor
Hiromi Tomishige
博美 冨重
Yoji Awano
洋司 粟野
Ginka Jo
銀華 徐
Miki Hara
美樹 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANEI SHIRIKA KK
Toyota Motor Corp
Original Assignee
SANEI SHIRIKA KK
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANEI SHIRIKA KK, Toyota Motor Corp filed Critical SANEI SHIRIKA KK
Priority to JP2003295362A priority Critical patent/JP4209286B2/en
Publication of JP2005059081A publication Critical patent/JP2005059081A/en
Application granted granted Critical
Publication of JP4209286B2 publication Critical patent/JP4209286B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water-soluble core combining high temperature strength with the water solubility giving an indication of the easiness of shaking-out of the molding sand. <P>SOLUTION: The water-soluble core coated with the water-soluble inorganic binder on the surface of the molding sand grain, is characterized in that one or more kinds of the inorganic filler selected from among silica sand, alumina, potassium titanate, silicon carbide, zircon silicate, fibrous potassium titanate, titanium oxide, zinc oxide, iron oxide and magnesium oxide, are added to a water-soluble inorganic salt binder. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、砂落しの容易性の目安となる水溶性を低下させずに、高温強度を向上させた水溶性中子、及びその製造方法に関する。   The present invention relates to a water-soluble core having improved high-temperature strength without reducing water solubility, which is a measure of ease of sand removal, and a method for producing the same.

鋳型に溶湯を圧入し、急冷凝固させて鋳物を製造することができる。このような、精密鋳造技術においては、機械部品等の精密鋳造品の内部に空間を設けるために、中子が広く利用されている。例えば、アルミ合金を使ったシリンダの内部空間、エグゾースト内部の冷却媒体通路の作製に中子は不可欠なものである。   A casting can be manufactured by press-fitting molten metal into a mold and rapidly solidifying it. In such precision casting technology, a core is widely used to provide a space inside a precision casting such as a machine part. For example, the core is indispensable for the production of the internal space of the cylinder using aluminum alloy and the cooling medium passage inside the exhaust.

中子の強度を増加させるためには、樹脂、無機塩等のバインダが使用されている。特に、中子バインダとして無機塩を用いることにより、鋳造時のガス発生量を低減させ、鋳造後は中子砂落しを水で行うことのできる水溶性中子が考えられている。しかしながら、実用化・量産化は困難であるとされている。その理由は、バインダの結合力がないため、必要な中子強度を得ることが困難なことによる。   In order to increase the strength of the core, a binder such as a resin or an inorganic salt is used. In particular, by using an inorganic salt as a core binder, a water-soluble core that can reduce the amount of gas generated during casting and can perform core sand removal with water after casting is considered. However, practical use and mass production are considered difficult. The reason is that it is difficult to obtain the necessary core strength because there is no binding force of the binder.

即ち、中子用鋳物砂に無機塩等のバインダを添加する場合、
1)バインダ量を増加すれば、中子強度が向上する。
2)バインダは、水に溶かして(飽和濃度にして)鋳物砂に添加する。よって、バインダ量の増加は、水の量の増加となる。
3)水の増加は、鋳物砂の流動性低下となり、中子型への鋳物砂の充填性を阻害する。
That is, when adding a binder such as an inorganic salt to the core foundry sand,
1) If the amount of the binder is increased, the core strength is improved.
2) The binder is dissolved in water (saturated concentration) and added to the foundry sand. Therefore, an increase in the amount of binder results in an increase in the amount of water.
3) The increase in water results in a decrease in the fluidity of the foundry sand and hinders the filling property of the foundry sand into the core mold.

このように、鋳物砂に、バインダだけの添加だと、中子強度と鋳物砂の流動性を両立させることができない。そこで、バインダ量を増加させずに、中子強度を向上させる技術が必要となっている。   Thus, if only the binder is added to the foundry sand, the core strength and the fluidity of the foundry sand cannot be made compatible. Therefore, a technique for improving the core strength without increasing the binder amount is required.

下記特許文献1には、流動性、充填性、成形性の改善を目的として、無機粒子に黒鉛をバインダで被覆してなる無機複合粒子であって、黒鉛の被覆量が無機粒子100重量部に対して0.1〜50重量部であり、かつ黒鉛に対するバインダの重量比が0.002〜2である無機複合粒子からなる鋳物用砂の発明が開示されている。しかし、用いられているバインダは、フェノール樹脂、フラン樹脂、ピッチであり、本発明のように、水溶性中子を得るものではない。   The following Patent Document 1 discloses inorganic composite particles obtained by coating inorganic particles with graphite for the purpose of improving fluidity, filling properties, and moldability, and the coating amount of graphite is 100 parts by weight of inorganic particles. On the other hand, there is disclosed an invention of a sand for casting made of inorganic composite particles having a weight ratio of 0.1 to 50 parts by weight and a binder to graphite of 0.002 to 2. However, the binder used is phenol resin, furan resin, or pitch, and does not obtain a water-soluble core as in the present invention.

また、下記特許文献2には、鋳造時に有機バインダより分解ガスが発生することを解消することを目的として、鋳物砂に対して無機材料を成分とするバインダを用いることが開示されている。具体的には、バインダとして硫酸カルシウムと硫酸マグネシウムを成分とする構成とし、硫酸カルシウムと硫酸マグネシウムの混合比率は、硫酸カルシウムを35〜95%とし、残部を硫酸マグネシウムとしている。しかしながら、この方法では、中子強度、特に高温での強度が充分ではなく、造型後、鋳造までの間に、中子形状が崩れてしまい、設計通りの鋳物が得られないという問題がある。   Patent Document 2 below discloses the use of a binder containing an inorganic material as a component with respect to foundry sand for the purpose of eliminating the generation of decomposition gas from the organic binder during casting. Specifically, the binder is composed of calcium sulfate and magnesium sulfate as components, and the mixing ratio of calcium sulfate and magnesium sulfate is 35 to 95% for calcium sulfate and the remainder is magnesium sulfate. However, this method has a problem that the core strength, particularly the strength at high temperature, is not sufficient, and the core shape collapses between molding and casting, and a casting as designed cannot be obtained.

一方、水溶性中子バインダとしては、硫酸マグネシウム(MgSO4)が知られている。しかながら、硫酸マグネシウム(MgSO4)水溶液は、以下の欠点を有している。
1)粘着力が弱く、中子強度が充分ではない。
2)バインダ必要量が多くなり(水の量も増加する)、鋳物砂の流動性が悪化し、中子造型時にブロー充填性が不十分である。
On the other hand, magnesium sulfate (MgSO 4 ) is known as a water-soluble core binder. However, the magnesium sulfate (MgSO 4 ) aqueous solution has the following drawbacks.
1) Adhesive strength is weak and core strength is not sufficient.
2) The required amount of binder increases (the amount of water also increases), the fluidity of the foundry sand deteriorates, and the blow filling property is insufficient during core molding.

そこで、下記特許文献3には、塩化ナトリウムを基材とし、これに硫酸リチウム2〜40%、硫酸マグネシウム2〜20%等を加えた水溶性中子バインダが開示されている。又、下記特許文献4には、硫酸カルシウムと硫酸マグネシウムから成る水溶性中子バインダが開示されている。しかしながら、これら特許文献3及び4に開示された水溶性中子バインダを用いても強度は十分ではなかった。
特開2002−263782号公報 特開平11−285777号公報 特公昭52−10803号公報 特開平11−285777号公報
Therefore, Patent Document 3 below discloses a water-soluble core binder in which sodium chloride is used as a base material and lithium sulfate 2 to 40%, magnesium sulfate 2 to 20% and the like are added thereto. Patent Document 4 below discloses a water-soluble core binder made of calcium sulfate and magnesium sulfate. However, even when the water-soluble core binders disclosed in Patent Documents 3 and 4 are used, the strength is not sufficient.
Japanese Patent Laid-Open No. 2002-263882 JP-A-11-285777 Japanese Patent Publication No.52-10803 JP-A-11-285777

上記問題に鑑み、本発明は、砂落しの容易性の目安となる水溶性を低下させずに、高温強度を向上させた水溶性中子及びその製造方法を提供し、水溶性中子を実用性のあるものとすることを目的とする。   In view of the above problems, the present invention provides a water-soluble core with improved high-temperature strength without reducing water-solubility, which is a measure of ease of sand removal, and a method for producing the same. The purpose is to have a sex.

本発明者らは、多数の化合物について検討した結果、特定のフィラーのみがバインダとして水溶性無機塩と共存でき、砂落しの容易性の目安となる水溶性を有するとともに、中子強度、特に高温強度、充填性等を満たすことを見出し本発明に到達した。   As a result of studying a large number of compounds, the present inventors have found that only a specific filler can coexist with a water-soluble inorganic salt as a binder, has water solubility that is a measure of ease of sand removal, and has core strength, particularly high temperature. The inventors have found that the strength, filling property, and the like are satisfied, and have reached the present invention.

即ち、第1に、本発明は、水溶性中子の発明であり、鋳物砂粒子の表面が水溶性無機塩バインダで被覆された水溶性中子において、該水溶性無機塩バインダに、珪砂(珪粉)、アルミナ、チタン酸カリウム、炭化珪素、珪酸ジルコン、繊維状チタン酸カリウム、酸化チタン、酸化亜鉛、酸化鉄、酸化マグネシウムから選択される無機フィラーの1種以上が添加されていることを特徴とする。   That is, first, the present invention is an invention of a water-soluble core. In the water-soluble core in which the surface of the casting sand particle is coated with a water-soluble inorganic salt binder, the water-soluble inorganic salt binder is coated with silica sand ( Silica powder), alumina, potassium titanate, silicon carbide, zircon silicate, fibrous potassium titanate, titanium oxide, zinc oxide, iron oxide, magnesium oxide, one or more inorganic fillers are added. Features.

本発明の水溶性中子は、流動性、充填性と水溶性が低下することなく、高温強度が向上している。水溶性中子の高温強度が向上することで、造型された中子のハンドリングに優れるという実用性が生じる。   The water-soluble core of the present invention has improved high-temperature strength without lowering fluidity, fillability and water solubility. Improvement in the high-temperature strength of the water-soluble core results in practicality that it is excellent in handling of the molded core.

本発明で用いられる水溶性無機塩としては、マグネシウムイオン(Mg2+)、ナトリウムイオン(Na+)、カルシウムイオン(Ca2+)から選択されるカチオンと、SO4 2-、CO3 2-、HCO3 2-、B47 -から選択されるアニオンとの組み合わせからなる水溶性無機塩の1種以上であることが好ましい。その中でも、硫酸マグネシウム(MgSO4)が好ましい。又、水溶性無機塩として、硫酸マグネシウム(MgSO4)0〜100重量%と、炭酸ナトリウム(Na2CO3)、4ホウ酸ナトリウム(Na247)、硫酸ナトリウム(Na2SO4)から選択される1種以上100〜0重量%から混合系も好ましい。 Examples of the water-soluble inorganic salt used in the present invention include a cation selected from magnesium ion (Mg 2+ ), sodium ion (Na + ), and calcium ion (Ca 2+ ), SO 4 2− , CO 3 2−. , HCO 3 2-, B 4 O 7 - is preferably at least one water-soluble inorganic salt comprising a combination of anion selected from. Among these, magnesium sulfate (MgSO 4 ) is preferable. As water-soluble inorganic salts, magnesium sulfate (MgSO 4 ) 0 to 100% by weight, sodium carbonate (Na 2 CO 3 ), sodium borate (Na 2 B 4 O 7 ), sodium sulfate (Na 2 SO 4) A mixed system is also preferred from 1 to 100% by weight selected from 1).

無機塩バインダと特定の無機フィラーを併用することによって、中子の高温強度が向上する理由は以下のことと考えられる。水溶性中子の鋳物砂に無機塩バインダのみを添加した場合は、鋳物砂の表面に無機塩バインダが被覆され、鋳物砂間の結合力は、鋳物砂間の接点に存在する無機塩バインダ量に依存している。この場合、多量のバインダを添加しても、接点以外の表面に被覆されたバインダは結合に寄与しない。例えば、水溶性無機塩として、硫酸マグネシウム(MgSO4)単味から成るバインダは、造型直後(約100℃〜160℃)の温間強度及び鋳造時(約200℃〜700℃)での高温強度が低い。これは、硫酸マグネシウム(MgSO4)結晶が、加熱により、粘性化して低強度化するためと考えられる。これに対して、本発明のように、水溶性無機塩に特定のフィラーを添加することによって、表面が水溶性無機塩バインダで被覆された鋳物砂粒子同士の接点において、これら特定のフィラーが存在することで、鋳物砂粒子同士の接点が破壊されることを防止するためと考えられる。 The reason why the high temperature strength of the core is improved by using the inorganic salt binder and the specific inorganic filler in combination is considered as follows. When only an inorganic salt binder is added to the water-soluble core foundry sand, the surface of the foundry sand is coated with the inorganic salt binder, and the bonding strength between the foundry sands is the amount of inorganic salt binder present at the contact points between the foundry sands. Depends on. In this case, even if a large amount of binder is added, the binder coated on the surface other than the contact does not contribute to the bonding. For example, as a water-soluble inorganic salt, a binder consisting of magnesium sulfate (MgSO 4 ) has a warm strength immediately after molding (about 100 ° C. to 160 ° C.) and a high temperature strength at the time of casting (about 200 ° C. to 700 ° C.). Is low. This is presumably because magnesium sulfate (MgSO 4 ) crystals become viscous and lower in strength by heating. On the other hand, by adding specific fillers to the water-soluble inorganic salt as in the present invention, these specific fillers are present at the contact points between the molding sand particles whose surfaces are coated with the water-soluble inorganic salt binder. This is considered to prevent breakage of the contacts between the foundry sand particles.

本発明の水溶性中子では、鋳物砂に対する前記無機塩バインダ添加量が0.8〜10重量%であり、前記無機フィラー添加量が0.2〜10重量%であることが好ましい。無機塩バインダ添加量と無機フィラー添加量がこの範囲を外れると、両者を併用する本発明の効果が減少する。   In the water-soluble core of the present invention, the inorganic salt binder is preferably added in an amount of 0.8 to 10% by weight and the inorganic filler is added in an amount of 0.2 to 10% by weight relative to the foundry sand. When the addition amount of the inorganic salt binder and the addition amount of the inorganic filler are out of this range, the effect of the present invention using both of them decreases.

第2に、本発明は、高強度水溶性中子の製造方法の発明であり、鋳物砂粒子と、無機塩バインダの水溶液とを配合・混練し、得られた混練物を中子型で造型する造型工程を含む水溶性中子の製造方法において、水溶性無機塩バインダに、珪砂(珪粉)、アルミナ、チタン酸カリウム、炭化珪素、珪酸ジルコン、繊維状チタン酸カリウム、酸化チタン、酸化亜鉛、酸化鉄、酸化マグネシウムから選択される無機フィラーの1種以上が添加されていることを特徴とする。   2ndly, this invention is invention of the manufacturing method of a high intensity | strength water-soluble core, mix | blends and knead | mixes a casting sand particle and the aqueous solution of an inorganic salt binder, and shape | molds the obtained kneaded material by a core type | mold. In a method for producing a water-soluble core including a molding step, silica-sand (silica powder), alumina, potassium titanate, silicon carbide, zircon silicate, fibrous potassium titanate, titanium oxide, and zinc oxide are added to the water-soluble inorganic salt binder. One or more inorganic fillers selected from iron oxide and magnesium oxide are added.

本発明の方法により、高温強度と、砂落しの容易性の目安となる水溶性を兼ね備えた水溶性中子を製造することが出来る。
好ましい水溶性無機塩の種類、各成分の量比等は上記第1の発明と同様である。
By the method of the present invention, it is possible to produce a water-soluble core having both high-temperature strength and water-solubility that is a measure of ease of sand removal.
The preferable kind of water-soluble inorganic salt, the ratio of each component, and the like are the same as in the first invention.

本発明の方法において、無機フィラーを水に溶解する際には、即溶解性の無機フィラーや僅かな力を加える程度で溶解する無機フィラーの場合は、溶解自体は容易である。本発明で用いられる幾つかの無機フィラーについては、水への溶解時に、超音波処理することは溶解時間を短縮させる上で効果的であり、好ましい。   In the method of the present invention, when the inorganic filler is dissolved in water, the dissolution itself is easy in the case of an inorganic filler that is immediately soluble or an inorganic filler that dissolves with a slight force. For some inorganic fillers used in the present invention, ultrasonic treatment at the time of dissolution in water is effective in shortening the dissolution time and is preferable.

第3に、本発明は、アルミ合金の鋳造方法の発明であり、中子造型工程、鋳造工程、及び砂落し工程を含むアルミ合金鋳造方法において、中子造型工程で請求項1乃至4のいずれかに記載の水溶性中子を用いることを特徴とする。本発明により、例えば、アルミ合金シリンダ等の精密鋳造品を製造することが出来る。
本発明のアルミ合金鋳造方法において、砂落しを効率的に行うためには、砂落し工程で、超音波処理を用いて前記水溶性中子を水に溶解することが好ましい。
3rdly, this invention is invention of the casting method of an aluminum alloy, In the aluminum alloy casting method including a core molding process, a casting process, and a sand removal process, it is any one of Claims 1 thru | or 4 in a core molding process. A water-soluble core as described above is used. According to the present invention, for example, a precision casting such as an aluminum alloy cylinder can be manufactured.
In the aluminum alloy casting method of the present invention, in order to perform sand removal efficiently, it is preferable to dissolve the water-soluble core in water using ultrasonic treatment in the sand removal process.

本発明のように、水溶性無機塩バインダに、珪砂(珪粉)、アルミナ、チタン酸カリウム、炭化珪素、珪酸ジルコン、繊維状チタン酸カリウム、酸化チタン、酸化亜鉛、酸化鉄、酸化マグネシウムから選択される無機フィラーの1種以上を添加することで、高温強度と、砂落しの容易性の目安となる水可溶性を併せ持つ水溶性中子が得られる。   As in the present invention, the water-soluble inorganic salt binder is selected from silica sand (silica powder), alumina, potassium titanate, silicon carbide, zircon silicate, fibrous potassium titanate, titanium oxide, zinc oxide, iron oxide and magnesium oxide. By adding one or more inorganic fillers, a water-soluble core having both high-temperature strength and water-solubility that is a measure for ease of sand removal can be obtained.

特に水溶性無機塩として、マグネシウムイオン(Mg2+)、ナトリウムイオン(Na+)、カルシウムイオン(Ca2+)から選択されるカチオンと、SO4 2-、CO3 2-、HCO3 2-、B47 -から選択されるアニオンとの組み合わせからなる水溶性無機塩の1種以上を用いる水溶性中子バインダを用いることで、十分な中子強度と水可溶性を併せ持つ水溶性中子を得ることができる。また、この水溶性中子を用いることで、鋳造時に型崩れせず、鋳造後の砂落しが容易な鋳造を行うことができる。 In particular, as a water-soluble inorganic salt, a cation selected from magnesium ion (Mg 2+ ), sodium ion (Na + ), and calcium ion (Ca 2+ ), SO 4 2− , CO 3 2− , HCO 3 2− , B 4 O 7 - the use of water-soluble core binder using one or more water-soluble inorganic salt comprising a combination of anion selected from water-soluble core having both adequate core strength and water-soluble Can be obtained. Further, by using this water-soluble core, it is possible to perform casting that does not lose its shape during casting and can easily drop sand after casting.

本発明で用いられる鋳物砂粒子は、従来知られたものを用いることができる。具体的には、SiC,アルミナ,ムライト,シリカ,ジルコン等を用いることが好ましい。これらは、優れた強度,低熱膨張率を有するとともに入手が比較的容易であり、強度,寸法精度等に優れた水溶性中子を製造することができる。
鋳物砂に対する無機塩バインダ添加量の合計量は0.8〜10重量%であることが好ましく、4〜7重量%であることがより好ましい。
As the foundry sand particles used in the present invention, those conventionally known can be used. Specifically, it is preferable to use SiC, alumina, mullite, silica, zircon or the like. These have excellent strength and low thermal expansion coefficient and are relatively easily available, and can produce a water-soluble core excellent in strength, dimensional accuracy, and the like.
The total amount of the inorganic salt binder added to the foundry sand is preferably 0.8 to 10% by weight, and more preferably 4 to 7% by weight.

本発明で用いられる特定の無機フィラーは、表面が無機塩バインダで被覆された鋳物砂粒子の接点付近に存在して、鋳物砂粒子の結合力を高めるものである。その平均粒径は、数μm〜数10μm程度が鋳物砂の接点付近に存在するのに好ましい。
これら、鋳物砂粒子:無機塩バインダ:無機フィラーの量比としては、100:4〜7:1〜7であることが中子強度と鋳物砂の流動性(充填性)を両立させることから好ましい。
The specific inorganic filler used in the present invention is present near the contact point of the foundry sand particles whose surface is coated with the inorganic salt binder, and enhances the binding force of the foundry sand particles. The average particle size is preferably about several μm to several tens of μm in the vicinity of the contact point of the foundry sand.
The amount ratio of these foundry sand particles: inorganic salt binder: inorganic filler is preferably 100: 4 to 7: 1 to 7 because both the core strength and the fluidity (fillability) of the foundry sand are compatible. .

以下、本発明を実施例及び比較例により説明する。
(実施例1〜10)
[配合]
鋳物砂としてムライト系人工砂に、無機塩バインダとして硫酸マグネシウム(MgSO4)を水に溶かした水溶液に、下記表1に記載の各種無機フィラーを添加し、120分間、混練して、硫酸マグネシウム(MgSO4)含有量を2.5%とし、各種無機フィラーの含有量を0.1〜2.5%とした。なお、他の水溶性無機塩、例えばNa塩は併用しなかった。
[中子造型]
断面10mm×10mm(H)、長さ60mmの中子形状を有する金型に、上記配合物を手込めした。上記金型を、恒温炉にて、150℃で30分間放置して乾燥した(JISによる)。同様に丸棒を造型した。
[中子強度測定]
中子をl(50mm)間の支点に置き、中心部へ上部よりP(kgf)加圧した。下記式より、抗折強度σ(kgf/m2)を求めた。
σ = 3/2 × l/a・H2 × P
表1に、上記JISによって造型された中子、丸棒に造型された中子の抗折強度σ(冷間強度、kgf/m2)、JISによって造型された中子を400℃で1分間加熱した場合の抗折強度σ(高温強度、kgf/m2)の結果を示す。同時に、砂落しの容易性の目安となる、700℃で1時間加熱した場合での水可溶性の結果と充填性の結果を示す。
Hereinafter, the present invention will be described with reference to examples and comparative examples.
(Examples 1 to 10)
[Combination]
Various inorganic fillers listed in Table 1 below are added to an aqueous solution in which magnesium sulfate (MgSO 4 ) is dissolved in water as mullite artificial sand as casting sand, and kneaded for 120 minutes. The MgSO 4 ) content was 2.5%, and the contents of various inorganic fillers were 0.1 to 2.5%. Other water-soluble inorganic salts such as Na salt were not used in combination.
[Core molding]
The above composition was prepared in a mold having a core shape having a cross section of 10 mm × 10 mm (H) and a length of 60 mm. The mold was left to dry at 150 ° C. for 30 minutes in a constant temperature oven (according to JIS). Similarly, a round bar was formed.
[Core strength measurement]
The core was placed on a fulcrum between 1 (50 mm), and P (kgf) was pressurized from the top to the center. The bending strength σ (kgf / m 2 ) was determined from the following formula.
σ = 3/2 × l / a · H 2 × P
Table 1 shows the bending strength σ (cold strength, kgf / m 2 ) of the core formed by the above JIS and the core formed by a round bar, and the core formed by JIS at 400 ° C. for 1 minute. The results of the bending strength σ (high temperature strength, kgf / m 2 ) when heated are shown. At the same time, the results of water-solubility and filling properties when heated at 700 ° C. for 1 hour, which is a measure of ease of sand removal, are shown.

(比較例1)
無機塩バインダとして硫酸マグネシウム(MgSO4)のみを用いた他は、実施例1と同様の中子を成型し、強度等を測定した。
(比較例2〜9)
無機フィラーとして表1に記載のものを用いた他は、実施例1と同様の中子を成型し、強度等を測定した。
(Comparative Example 1)
A core similar to that of Example 1 was molded except that only magnesium sulfate (MgSO 4 ) was used as the inorganic salt binder, and the strength and the like were measured.
(Comparative Examples 2-9)
A core similar to that of Example 1 was molded and the strength and the like were measured except that the inorganic fillers listed in Table 1 were used.

Figure 2005059081
Figure 2005059081

表1の結果より、無機バインダに特定の無機フィラーを併用する本発明の実施例1〜10では、いずれも砂落しの容易性の目安となる水可溶性に優れているとともに、その多くは高温での中子の抗折強度σが向上していることが分かる。これに対して、無機バインダとして硫酸マグネシウム(MgSO4)のみを用いた比較例1や、無機バインダに本発明以外の無機フィラーを併用する比較例2〜9では、高温での中子の抗折強度σに改善されたものが見られるもの、比較例1以外は水に不溶であり、砂落しが出来ないことが分かる。即ち、本発明の実施例1〜10の中子はいずれも高温強度と水可溶性の両者に優れていることが分る。 From the results of Table 1, in Examples 1 to 10 of the present invention in which a specific inorganic filler is used in combination with an inorganic binder, all are excellent in water solubility, which is a measure of ease of sand removal, and many of them are at high temperatures. It can be seen that the bending strength σ of the core is improved. On the other hand, in Comparative Example 1 using only magnesium sulfate (MgSO 4 ) as an inorganic binder and Comparative Examples 2 to 9 using an inorganic filler other than the present invention in combination with the inorganic binder, the core is bent at a high temperature. It can be seen that those with improved strength σ are seen, and those other than Comparative Example 1 are insoluble in water and cannot be removed. That is, it can be seen that the cores of Examples 1 to 10 of the present invention are excellent in both high temperature strength and water solubility.

(実施例11〜13)
鋳物砂としてムライト系人工砂に、無機塩バインダとして硫酸マグネシウム(MgSO4)と4ホウ酸ナトリウム(Na247)を併用して水に溶かした水溶液に、下記表2に記載の各種無機フィラーを添加し、120分間、混練して、硫酸マグネシウム(MgSO4)含有量を2.0%又は2.5%とし、4ホウ酸ナトリウム(Na247)含有量を2.0%とし、各種無機フィラーの含有量を2.4〜2.5%とした。
実施例1と同様の中子を成型し、強度等を測定した。表2に、上記JISによって造型された中子、丸棒に造型された中子の抗折強度σ(冷間強度、kgf/m2)、上記JISによって造型された中子の温間抗折強度σ(kgf/m2)、JISによって造型された中子を400℃で1分間加熱した場合の抗折強度σ(高温強度、kgf/m2)の結果を示す。同時に、砂落しの容易性の目安となる、700℃で1時間加熱した場合での水可溶性の結果と充填性の結果を示す。
(Examples 11 to 13)
Various types of water as described in Table 2 below were prepared by using mullite artificial sand as casting sand and magnesium sulfate (MgSO 4 ) and sodium tetraborate (Na 2 B 4 O 7 ) as an inorganic salt binder. An inorganic filler is added and kneaded for 120 minutes to obtain a magnesium sulfate (MgSO 4 ) content of 2.0% or 2.5%, and a sodium tetraborate (Na 2 B 4 O 7 ) content of 2. The content of various inorganic fillers was 2.4 to 2.5%.
The core similar to Example 1 was shape | molded and intensity | strength etc. were measured. Table 2 shows the bending strength σ (cold strength, kgf / m 2 ) of the core formed by the above JIS and the core formed by the round bar, and the warm bending of the core formed by the above JIS. strength σ (kgf / m 2), shows a flexural strength sigma (high-temperature strength, kgf / m 2) of the results obtained by heating for 1 minute at 400 ° C. the molding has been the core by JIS. At the same time, the results of water-solubility and filling properties when heated at 700 ° C. for 1 hour, which is a measure of ease of sand removal, are shown.

(比較例10、11)
無機塩バインダとして硫酸マグネシウム(MgSO4)と4ホウ酸ナトリウム(Na247)を併用し、無機フィラーを添加しなかった他は、実施例1と同様の中子を成型し、強度等を測定した。
(比較例12)
無機フィラーとして表2に記載の塩化ナトリウムを用いた他は、実施例1と同様の中子を成型し、強度等を測定した。
(Comparative Examples 10 and 11)
The same core as in Example 1 was molded, except that magnesium sulfate (MgSO 4 ) and sodium tetraborate (Na 2 B 4 O 7 ) were used in combination as the inorganic salt binder, and no inorganic filler was added. Etc. were measured.
(Comparative Example 12)
A core similar to that of Example 1 was molded and the strength and the like were measured except that sodium chloride shown in Table 2 was used as the inorganic filler.

Figure 2005059081
Figure 2005059081

表2の結果より、無機塩バインダとして硫酸マグネシウム(MgSO4)と4ホウ酸ナトリウム(Na247)を併用する実施例11〜13は、硫酸マグネシウム(MgSO4)のみを用いる比較例1と比べて、冷間強度及び高温強度が大幅に向上している。又、硫酸マグネシウム(MgSO4)と4ホウ酸ナトリウム(Na247)を併用する無機バインダに特定の無機フィラーを併用する本発明の実施例11〜13では、いずれも砂落しの容易性の目安となる水可溶性に優れているとともに、高温での中子の抗折強度σが向上していることが分かる。これに対して、無機バインダとして硫酸マグネシウム(MgSO4)と4ホウ酸ナトリウム(Na247)を併用するのみの比較例10と11や、無機バインダに本発明以外の無機フィラーを併用する比較例12では、高温での中子の抗折強度σに改善が見られるもの、比較例12は水に不溶であり、砂落しが出来ないことが分かる。即ち、本発明の実施例11〜13の中子はいずれも高温強度と水可溶性の両者に優れていることが分る。 From the results of Table 2, Examples 11-13 used in combination with sodium tetraborate magnesium sulfate (MgSO 4) (Na 2 B 4 O 7) as an inorganic salt binder, comparative examples using only magnesium sulfate (MgSO 4) Compared to 1, cold strength and high temperature strength are significantly improved. In Examples 11 to 13 of the present invention in which a specific inorganic filler is used in combination with an inorganic binder using both magnesium sulfate (MgSO 4 ) and sodium tetraborate (Na 2 B 4 O 7 ), sand removal is easy. It can be seen that the water-solubility that is a measure of the property is excellent, and the bending strength σ of the core at high temperature is improved. On the other hand, Comparative Examples 10 and 11 in which only magnesium sulfate (MgSO 4 ) and sodium tetraborate (Na 2 B 4 O 7 ) are used in combination as inorganic binders, and inorganic fillers other than the present invention are used in combination with inorganic binders. It can be seen that Comparative Example 12 shows improvement in the bending strength σ of the core at a high temperature, and Comparative Example 12 is insoluble in water and cannot remove sand. That is, it can be seen that the cores of Examples 11 to 13 of the present invention are excellent in both high temperature strength and water solubility.

(実施例14〜18)
鋳物砂としてムライト系人工砂に、無機塩バインダとして硫酸マグネシウム(MgSO4)と炭酸ナトリウム(Na2CO3)を併用して水に溶かした水溶液に、下記表3に記載の各種無機フィラーを添加し、120分間、混練して、硫酸マグネシウム(MgSO4)含有量を2.0%又は2.5%とし、炭酸ナトリウム(Na2CO3)含有量を2.0%とし、各種無機フィラーの含有量を0.1〜2.5%とした。
(Examples 14 to 18)
Various inorganic fillers listed in Table 3 below are added to an aqueous solution in which magnesium sulfate (MgSO 4 ) and sodium carbonate (Na 2 CO 3 ) are used in combination with mullite artificial sand as casting sand and magnesium carbonate (Na 2 CO 3 ) as inorganic salt binder. And kneading for 120 minutes, the magnesium sulfate (MgSO 4 ) content is 2.0% or 2.5%, the sodium carbonate (Na 2 CO 3 ) content is 2.0%, The content was set to 0.1 to 2.5%.

実施例1と同様の中子を成型し、強度等を測定した。表3に、上記JISによって造型された中子、丸棒に造型された中子の抗折強度σ(冷間強度、kgf/m2)、上記JISによって造型された中子の温間抗折強度σ(kgf/m2)、JISによって造型された中子を400℃で1分間加熱した場合の抗折強度σ(高温強度、kgf/m2)の結果を示す。同時に、砂落しの容易性の目安となる、700℃で1時間加熱した場合での水可溶性の結果と充填性の結果を示す。 The core similar to Example 1 was shape | molded and intensity | strength etc. were measured. Table 3 shows the bending strength σ (cold strength, kgf / m 2 ) of the core formed by the above JIS and the core formed by a round bar, and the warm bending of the core formed by the above JIS. strength σ (kgf / m 2), shows a flexural strength sigma (high-temperature strength, kgf / m 2) of the results obtained by heating for 1 minute at 400 ° C. the molding has been the core by JIS. At the same time, the results of water-solubility and filling properties when heated at 700 ° C. for 1 hour, which is a measure of ease of sand removal, are shown.

(比較例13、14)
無機塩バインダとして硫酸マグネシウム(MgSO4)と炭酸ナトリウム(Na2CO3)を併用し、無機フィラーを添加しなかった他は、実施例1と同様の中子を成型し、強度等を測定した。
(Comparative Examples 13 and 14)
A core similar to that of Example 1 was molded and the strength and the like were measured, except that magnesium sulfate (MgSO 4 ) and sodium carbonate (Na 2 CO 3 ) were used in combination as the inorganic salt binder and no inorganic filler was added. .

Figure 2005059081
Figure 2005059081

表3の結果より、無機塩バインダとして硫酸マグネシウム(MgSO4)と炭酸ナトリウム(Na2CO3)を併用する実施例14〜18は、硫酸マグネシウム(MgSO4)のみを用いる比較例1と比べて、冷間強度及び高温強度が大幅に向上している。又、硫酸マグネシウム(MgSO4)と炭酸ナトリウム(Na2CO3)を併用する無機バインダに特定の無機フィラーを併用する本発明の実施例14〜18では、いずれも砂落しの容易性の目安となる水可溶性に優れているとともに、高温での中子の抗折強度σが向上していることが分かる。これに対して、無機バインダとして硫酸マグネシウム(MgSO4)と炭酸ナトリウム(Na2CO3)を併用するのみの比較例13と14では、高温での中子の抗折強度σの改善も見られないことが分かる。即ち、本発明の実施例14〜18の中子はいずれも高温強度と水可溶性の両者に優れていることが分る。 From the results of Table 3, Examples 14 to 18 used in combination with magnesium sulfate (MgSO 4) and sodium carbonate (Na 2 CO 3) as the inorganic salt binder, as compared with Comparative Example 1 using only magnesium sulfate (MgSO 4) The cold strength and high temperature strength are greatly improved. In Examples 14 to 18 of the present invention in which a specific inorganic filler is used in combination with an inorganic binder using magnesium sulfate (MgSO 4 ) and sodium carbonate (Na 2 CO 3 ), It is understood that the water bending solubility σ of the core at high temperature is improved as well as excellent water solubility. On the other hand, in Comparative Examples 13 and 14 in which only magnesium sulfate (MgSO 4 ) and sodium carbonate (Na 2 CO 3 ) are used in combination as the inorganic binder, improvement in the bending strength σ of the core at high temperature is also seen. I understand that there is no. That is, it can be seen that the cores of Examples 14 to 18 of the present invention are excellent in both high temperature strength and water solubility.

Claims (12)

鋳物砂粒子の表面が水溶性無機塩バインダで被覆された水溶性中子において、該水溶性無機塩バインダに、珪砂(珪粉)、アルミナ、チタン酸カリウム、炭化珪素、珪酸ジルコン、繊維状チタン酸カリウム、酸化チタン、酸化亜鉛、酸化鉄、酸化マグネシウムから選択される無機フィラーの1種以上が添加されていることを特徴とする高強度水溶性中子。   In the water-soluble core in which the surface of the casting sand particles is coated with a water-soluble inorganic salt binder, the water-soluble inorganic salt binder includes silica sand (silica powder), alumina, potassium titanate, silicon carbide, zircon silicate, fibrous titanium A high-strength water-soluble core characterized in that one or more inorganic fillers selected from potassium oxide, titanium oxide, zinc oxide, iron oxide, and magnesium oxide are added. 前記水溶性無機塩が、マグネシウムイオン(Mg2+)、ナトリウムイオン(Na+)、カルシウムイオン(Ca2+)から選択されるカチオンと、SO4 2-、CO3 2-、HCO3 2-、B47 -から選択されるアニオンとの組み合わせからなる水溶性無機塩の1種以上であることを特徴とする請求項1に記載の水溶性中子。 The water-soluble inorganic salt is a cation selected from magnesium ion (Mg 2+ ), sodium ion (Na + ), and calcium ion (Ca 2+ ), SO 4 2− , CO 3 2− , HCO 3 2−. The water-soluble core according to claim 1, wherein the water-soluble core is one or more of water-soluble inorganic salts composed of a combination with an anion selected from B 4 O 7 . 前記水溶性無機塩が、硫酸マグネシウム(MgSO4)であることを特徴とする請求項2に記載の水溶性中子。 The water-soluble core according to claim 2, wherein the water-soluble inorganic salt is magnesium sulfate (MgSO 4 ). 前記水溶性無機塩が、硫酸マグネシウム(MgSO4)0〜100重量%と、炭酸ナトリウム(Na2CO3)、4ホウ酸ナトリウム(Na247)、硫酸ナトリウム(Na2SO4)から選択される1種以上100〜0重量%から成ることを特徴とする請求項2に記載の水溶性中子。 The water-soluble inorganic salt is magnesium sulfate (MgSO 4 ) 0 to 100% by weight, sodium carbonate (Na 2 CO 3 ), sodium borate (Na 2 B 4 O 7 ), sodium sulfate (Na 2 SO 4 ). The water-soluble core according to claim 2, wherein the water-soluble core comprises one or more selected from 100 to 0% by weight. 鋳物砂に対する前記無機塩添加量が0.8〜10重量%であり、前記無機フィラー添加量が0.2〜10重量%であることを特徴とする請求項1乃至4のいずれかに記載の水溶性中子。   The inorganic salt addition amount relative to foundry sand is 0.8 to 10% by weight, and the inorganic filler addition amount is 0.2 to 10% by weight. Water-soluble core. 鋳物砂粒子と、無機塩バインダの水溶液とを配合・混練し、得られた混練物を中子型で造型する造型工程を含む水溶性中子の製造方法において、該水溶性無機塩バインダに、珪砂(珪粉)、アルミナ、チタン酸カリウム、炭化珪素、珪酸ジルコン、繊維状チタン酸カリウム、酸化チタン、酸化亜鉛、酸化鉄、酸化マグネシウムから選択される無機フィラーの1種以上が添加されていることを特徴とする高強度水溶性中子の製造方法。   In a method for producing a water-soluble core including a molding step of blending and kneading foundry sand particles and an aqueous solution of an inorganic salt binder and molding the obtained kneaded material in a core shape, the water-soluble inorganic salt binder includes: One or more inorganic fillers selected from silica sand (silica powder), alumina, potassium titanate, silicon carbide, zircon silicate, fibrous potassium titanate, titanium oxide, zinc oxide, iron oxide, and magnesium oxide are added. A method for producing a high-strength water-soluble core. 前記水溶性無機塩が、マグネシウムイオン(Mg2+)、ナトリウムイオン(Na+)、カルシウムイオン(Ca2+)から選択されるカチオンと、SO4 2-、CO3 2-、HCO3 2-、B47 -から選択されるアニオンとの組み合わせからなる水溶性無機塩の1種以上であることを特徴とする請求項6に記載の水溶性中子の製造方法。 The water-soluble inorganic salt is a cation selected from magnesium ion (Mg 2+ ), sodium ion (Na + ), and calcium ion (Ca 2+ ), SO 4 2− , CO 3 2− , HCO 3 2−. The method for producing a water-soluble core according to claim 6, wherein the water-soluble core is one or more of a water-soluble inorganic salt comprising a combination with an anion selected from B 4 O 7 . 前記水溶性無機塩が、硫酸マグネシウム(MgSO4)であることを特徴とする請求項7に記載の水溶性中子の製造方法。 The method for producing a water-soluble core according to claim 7, wherein the water-soluble inorganic salt is magnesium sulfate (MgSO 4 ). 前記水溶性無機塩が、硫酸マグネシウム(MgSO4)0〜100重量%と、炭酸ナトリウム(Na2CO3)、4ホウ酸ナトリウム(Na247)、硫酸ナトリウム(Na2SO4)から選択される1種以上100〜0重量%から成ることを特徴とする請求項7に記載の水溶性中子の製造方法。 The water-soluble inorganic salt is magnesium sulfate (MgSO 4 ) 0 to 100% by weight, sodium carbonate (Na 2 CO 3 ), sodium borate (Na 2 B 4 O 7 ), sodium sulfate (Na 2 SO 4 ). The method for producing a water-soluble core according to claim 7, comprising one or more selected from 100 to 0% by weight. 鋳物砂に対する前記無機塩添加量が0.8〜10重量%であり、前記無機フィラー添加量が0.2〜10重量%であることを特徴とする請求項6乃至9のいずれかに記載の水溶性中子の製造方法。   The inorganic salt addition amount relative to the foundry sand is 0.8 to 10% by weight, and the inorganic filler addition amount is 0.2 to 10% by weight. A method for producing a water-soluble core. 中子造型工程、鋳造工程、及び砂落し工程を含むアルミ合金鋳造方法において、中子造型工程で請求項1乃至5のいずれかに記載の水溶性中子を用いることを特徴とするアルミ合金鋳造方法。   In the aluminum alloy casting method including a core molding process, a casting process, and a sand removal process, the water-soluble core according to any one of claims 1 to 5 is used in the core molding process. Method. 前記砂落し工程で、超音波処理を用いて前記水溶性中子を水に溶解することを特徴とする請求項11に記載のアルミ合金鋳造方法。   The aluminum alloy casting method according to claim 11, wherein in the sand removal step, the water-soluble core is dissolved in water using ultrasonic treatment.
JP2003295362A 2003-08-19 2003-08-19 High-strength water-soluble core and method for producing the same Expired - Lifetime JP4209286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003295362A JP4209286B2 (en) 2003-08-19 2003-08-19 High-strength water-soluble core and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003295362A JP4209286B2 (en) 2003-08-19 2003-08-19 High-strength water-soluble core and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005059081A true JP2005059081A (en) 2005-03-10
JP4209286B2 JP4209286B2 (en) 2009-01-14

Family

ID=34371641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003295362A Expired - Lifetime JP4209286B2 (en) 2003-08-19 2003-08-19 High-strength water-soluble core and method for producing the same

Country Status (1)

Country Link
JP (1) JP4209286B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007036563A1 (en) * 2005-09-30 2007-04-05 Ceramtec Ag Innovative Ceramic Engineering Core and a method for the production thereof
JP2011041973A (en) * 2009-08-24 2011-03-03 Daito Kogyo Kk Method for molding water soluble mold
DE102010038455A1 (en) 2010-07-27 2012-02-02 Federal-Mogul Nürnberg GmbH Preparing water-soluble salt cores for forming hollow molds in casting processes, comprises adding a metal powder to salt cores and heating the salt cores by magnetic induction to remove moisture
EP2103363A3 (en) * 2008-02-14 2012-03-21 Eisenwerk Hasenclever & Sohn GmbH Method for creating foundry cores with a complex geometry
CN104959542A (en) * 2015-07-25 2015-10-07 江铃汽车股份有限公司 Quick core assembly process for casting sand core
JP2017177149A (en) * 2016-03-29 2017-10-05 株式会社ノダテクニカ System for removing sand of casting product
KR20180056864A (en) * 2016-11-21 2018-05-30 (주)제이앤드씨 Manufacturing method of one-body type caliper housing of aluminium material
WO2022163464A1 (en) * 2021-01-29 2022-08-04 花王株式会社 Inorganic coated sand

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4485343B2 (en) * 2004-12-24 2010-06-23 トヨタ自動車株式会社 Method and apparatus for forming water-soluble core

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101580775B1 (en) 2005-09-30 2015-12-30 세람테크 게엠베하 Core and a method for the production thereof
JP2009509768A (en) * 2005-09-30 2009-03-12 セラムテック アクチエンゲゼルシャフト イノヴェイティヴ セラミック エンジニアリング Core and core manufacturing method
JP2012030289A (en) * 2005-09-30 2012-02-16 Ceramtec Ag Innovative Ceramic Engineering Core
KR20140072149A (en) * 2005-09-30 2014-06-12 세람테크 게엠베하 Core and a method for the production thereof
KR101492786B1 (en) * 2005-09-30 2015-02-12 세람테크 게엠베하 Core and a method for the production thereof
WO2007036563A1 (en) * 2005-09-30 2007-04-05 Ceramtec Ag Innovative Ceramic Engineering Core and a method for the production thereof
EP2103363A3 (en) * 2008-02-14 2012-03-21 Eisenwerk Hasenclever & Sohn GmbH Method for creating foundry cores with a complex geometry
JP2011041973A (en) * 2009-08-24 2011-03-03 Daito Kogyo Kk Method for molding water soluble mold
DE102010038455A1 (en) 2010-07-27 2012-02-02 Federal-Mogul Nürnberg GmbH Preparing water-soluble salt cores for forming hollow molds in casting processes, comprises adding a metal powder to salt cores and heating the salt cores by magnetic induction to remove moisture
CN104959542A (en) * 2015-07-25 2015-10-07 江铃汽车股份有限公司 Quick core assembly process for casting sand core
JP2017177149A (en) * 2016-03-29 2017-10-05 株式会社ノダテクニカ System for removing sand of casting product
KR20180056864A (en) * 2016-11-21 2018-05-30 (주)제이앤드씨 Manufacturing method of one-body type caliper housing of aluminium material
WO2022163464A1 (en) * 2021-01-29 2022-08-04 花王株式会社 Inorganic coated sand

Also Published As

Publication number Publication date
JP4209286B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
US10507516B2 (en) Method of producing casting mold and casting mold
ES2599851T5 (en) Phosphorous-containing molding material mixture for the manufacture of foundry molds for metal processing
CN104903023B (en) The manufacture method of precoated sand and its manufacture method and casting mold
ES2874789T3 (en) Process for the production of casting molds, cores and regenerated mold base materials from them
JPH0734970B2 (en) Water-dispersible mold, method for producing the mold, and casting method using the mold
US4171984A (en) Refractory composition for flow casting
CN109982786A (en) The manufacturing method of precoated sand and its manufacturing method and the casting mold using it
CN110099761A (en) The manufacturing method of precoated sand and its manufacturing method and the casting mold using it
JP4209286B2 (en) High-strength water-soluble core and method for producing the same
JP2020514078A (en) Compositions and methods for casting cores in high pressure die castings
TWI825019B (en) Molding materials, functional agents, molding products and products
JP6572933B2 (en) Casting core and manufacturing method thereof
JP4408714B2 (en) Casting mold and manufacturing method thereof
JP2005066634A (en) Water-soluble core binder, water-soluble core, and method for manufacturing the same
JPH05169184A (en) High siliceous spherical molding sand and its production
WO2019070051A1 (en) Mold material and manufacturing method therefor, mold and manufacturing method therefor, and molding sand regeneration method
WO2009062070A1 (en) Material used to combat thermal expansion related defects in high temperature casting processes
JP2006061948A (en) Method for making water soluble core
JPH0636954B2 (en) Composition for easily disintegrating mold
JP2004283859A (en) Water-soluble core and its manufacturing method
JP7537964B2 (en) Mold-making composition
JP7572970B2 (en) Use of particulate material comprising particulate synthetic amorphous silicon dioxide as an additive to casting material mixtures, corresponding methods, mixtures and kits
RU2148464C1 (en) Mixture for casting form and rod making
WO2022163464A1 (en) Inorganic coated sand
JP7247804B2 (en) Mold-making composition and mold-making method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081022

R151 Written notification of patent or utility model registration

Ref document number: 4209286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term