JP2011041973A - Method for molding water soluble mold - Google Patents

Method for molding water soluble mold Download PDF

Info

Publication number
JP2011041973A
JP2011041973A JP2009193520A JP2009193520A JP2011041973A JP 2011041973 A JP2011041973 A JP 2011041973A JP 2009193520 A JP2009193520 A JP 2009193520A JP 2009193520 A JP2009193520 A JP 2009193520A JP 2011041973 A JP2011041973 A JP 2011041973A
Authority
JP
Japan
Prior art keywords
mold
water
core
sand
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009193520A
Other languages
Japanese (ja)
Other versions
JP5393344B2 (en
Inventor
Katsuhiro Takahashi
克坦 高橋
Masataka Kaji
正隆 梶
Kosaku Sakurai
耕作 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daito Kogyo Co Ltd
Original Assignee
Daito Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daito Kogyo Co Ltd filed Critical Daito Kogyo Co Ltd
Priority to JP2009193520A priority Critical patent/JP5393344B2/en
Publication of JP2011041973A publication Critical patent/JP2011041973A/en
Application granted granted Critical
Publication of JP5393344B2 publication Critical patent/JP5393344B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for molding a water soluble mold, in a recycle molding method for a core, which can achieve the further improvement of productivity, concretely, can satisfy the requirements of (1) the reduction of molding time, (2) the reduction of heat cost, (3) the improvement of mold releasability or the like. <P>SOLUTION: In the method for molding a water soluble mold, kneaded casting sand obtained by adding a water-soluble inorganic salt to casting sand is blown and filled into a molding mold so as to mold a mold, after the use of the mold, it is collapsed by water contact, and the reutilization of the casting sand is made possible. The drying and curing of the mold before mold releasing is performed in such a manner that the temperature of the mold before the mold releasing is made higher than the boiling point of water under the reduced pressure, and is also made lower than the boiling point of water under the atmospheric pressure, and also in such a manner that the mold for molding is placed under the reduced pressure, thus, e.g., the water is evaporated. In this way, the mold can be dried in a short time till it reaches a dry strength at which treatable strength or above is obtained. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、鋳物砂に水溶性無機塩が添加された混練鋳物砂を造型用型に吹き込み充填して鋳型を造型し、該鋳型を使用済後、水接触(水洗浄)により崩壊させて、少なくとも鋳物砂の再利用が可能とされている水溶性鋳型の造型法に関する。   The present invention blows and fills the molding sand with the water-soluble inorganic salt added to the molding sand to form a mold, and after the mold is used, it is disintegrated by water contact (water washing), The present invention relates to a method for forming a water-soluble mold that enables at least reuse of foundry sand.

ここでは、鋳型として、主として中子を例に採り説明するが、外型にも本発明は適用可能である。   Here, a core is mainly described as an example of the mold, but the present invention can be applied to an outer mold.

特許文献1の段落0002には、中子に関して、「鋳型に溶湯を圧入し,急冷凝固させて鋳物を製造する精密鋳造技術においては、機械部品等の精密鋳造品の内部に空間を設けるために、中子が広く利用されている。例えば、アルミ合金を使ったシリンダの内部空間、エグゾースト内部の冷却媒体通路の作製に中子は不可欠なものである。」と記載されている。   Paragraph 0002 of Patent Document 1 relates to the core: “In precision casting technology in which a molten metal is press-fitted into a mold and rapidly solidified to produce a casting, a space is provided inside a precision casting such as a machine part. For example, the core is indispensable for the production of the inner space of the cylinder using the aluminum alloy and the cooling medium passage inside the exhaust.

上記のような中子のリサイクル造型法、即ち、水溶性中子の砂落とし後、回収した鋳物砂及び水溶性無機塩バインダー(無機結合剤)を再生利用するリサイクル造型法は、産業廃棄物を大量発生させないため、昨今、環境的見地から着目されている。   The recycling molding method of the core as described above, that is, the recycling molding method of recycling the recovered foundry sand and the water-soluble inorganic salt binder (inorganic binder) after the sand removal of the water-soluble core, In recent years, it has attracted attention from an environmental standpoint because it does not generate a large amount.

このような水溶性中子を用いたリサイクル造型法を記載した特許文献として、特許文献1や特許文献2がある。以下に、特許文献1における水溶性中子に関する記載を一部編集上の変更を加えて引用する(段落0007〜0015)。なお、下記引用文中における、[特許文献2・3・4]は、明細書本文中の特許文献3・4・2にそれぞれ対応する。   Patent documents 1 and 2 are patent documents describing a recycling molding method using such a water-soluble core. The description relating to the water-soluble core in Patent Document 1 is cited below with some editorial changes (paragraphs 0007 to 0015). [Patent Documents 2, 3 and 4] in the following quotations correspond to Patent Documents 3, 4 and 2 in the text of the specification.

「一方、中子バインダーとして無機塩を用いることにより、鋳造時のガス発生量を低減させ、鋳造後は中子砂落しを水で行うことのできる水溶性中子が考えられている。しかしながら、非水溶性中子と同様に水溶性中子では、大量に発生する鋳物砂と無機バインダーの処理を如何にするかという問題があった。   “On the other hand, by using an inorganic salt as a core binder, a water-soluble core that can reduce the amount of gas generated at the time of casting and can perform core sand removal with water after casting is considered. Similar to the water-insoluble core, the water-soluble core has a problem of how to treat a large amount of foundry sand and inorganic binder.

一方、水溶性中子バインダーとしては、硫酸マグネシウム(MgSO4)が知られている。しかながら、硫酸マグネシウム(MgSO4)水溶液は、以下の欠点を有している。1)粘着力が弱く、中子強度が充分ではない。2)バインダー必要量が多くなり(水の量も増加する)、鋳物砂の流動性が悪化し、中子造型時にブロー充填性が不十分である。 On the other hand, magnesium sulfate (MgSO 4 ) is known as a water-soluble core binder. However, the magnesium sulfate (MgSO 4 ) aqueous solution has the following drawbacks. 1) Adhesive strength is weak and core strength is not sufficient. 2) The required amount of binder increases (the amount of water also increases), the fluidity of the foundry sand deteriorates, and the blow filling property is insufficient during core molding.

そこで、本発明者らは、十分な中子強度と可溶性を併せ持つ水溶性中子バインダーを提供することを目的として、Mg2+、Na+、Ca2+から選択されるカチオンと、SO4 2-、CO3 2-、HCO3 -、B47 2-から選択されるアニオンとの組み合わせからなる水溶性無機塩の1種以上(但し、硫酸マグネシウム(MgSO4)のみの場合を除く)から成る水溶性中子バインダーを発明した(下記特許文献2)。特に、硫酸マグネシウム(MgSO4)0〜99.9質量%と、炭酸ナトリウム(Na2CO3)、四ホウ酸ナトリウム(Na247)、硫酸ナトリウム(Na2SO4)から選択される1種以上100〜0.1質量%から成る水溶性中子バインダーが好適であることを見出した。 In view of the above, the present inventors aim to provide a water-soluble core binder having both sufficient core strength and solubility, and a cation selected from Mg 2+ , Na + and Ca 2+ , SO 4 2 -, CO 3 2-, HCO 3 -, B 4 O 7 1 or more water-soluble inorganic salt comprising a combination of anion selected from 2- (except when only magnesium sulfate (MgSO 4)) A water-soluble core binder comprising the following was invented (Patent Document 2 below). In particular, magnesium sulfate (MgSO 4 ) 0 to 99.9% by mass, 1 selected from sodium carbonate (Na 2 CO 3 ), sodium tetraborate (Na 2 B 4 O 7 ), and sodium sulfate (Na 2 SO 4 ) It has been found that a water-soluble core binder composed of 100 to 0.1% by mass of seeds or more is suitable.

同じく、本発明者らは、高温強度と、砂落しの容易性の目安となる水可溶性を併せ持つ水溶性中子を提供することを目的として、鋳物砂粒子の表面が水溶性無機塩バインダーで被覆された水溶性中子において、該水溶性無機塩バインダーに、珪砂(珪粉)、アルミナ、チタン酸カリウム、炭化珪素、珪酸ジルコン、繊維状チタン酸カリウム、酸化チタン、酸化亜鉛、酸化鉄、酸化マグネシウムから選択される無機フィラーの1種以上が添加されている高強度水溶性中子を発明した(下記特許文献3)。   Similarly, the present inventors have coated the surfaces of foundry sand particles with a water-soluble inorganic salt binder for the purpose of providing a water-soluble core having both high-temperature strength and water-solubility, which is a measure of ease of sand removal. In the water-soluble core, the water-soluble inorganic salt binder includes silica sand (silica powder), alumina, potassium titanate, silicon carbide, zircon silicate, fibrous potassium titanate, titanium oxide, zinc oxide, iron oxide, oxidation Invented a high-strength water-soluble core to which one or more inorganic fillers selected from magnesium are added (Patent Document 3 below).

公知の水溶性バインダーを添加した水溶性無機中子砂(水分換算で2〜10%対砂、以下ウェットサンドと称す)によるプロセスは鋳造製品内の中子を水(又は、塩水溶液)で洗い流す。洗い流された砂は多量の塩溶液を含んでいる(以下スラリー砂と称す)。従って中子砂作製には遠心機などによる脱水工程及び塩溶液微調製のための混練工程が必要である。   A process using a water-soluble inorganic core sand to which a known water-soluble binder is added (2 to 10% of sand in terms of moisture, hereinafter referred to as wet sand) is used to wash the core in the cast product with water (or a salt solution). . The washed sand contains a large amount of salt solution (hereinafter referred to as slurry sand). Therefore, core sand production requires a dehydration step using a centrifuge and a kneading step for fine preparation of a salt solution.

そこで、本発明者らは、特許文献2及び特許文献3の、砂落しが容易な水溶性無機バインダーの開発に基づいて、使用後の鋳物砂及び無機バインダーの両者をほぼ完全に再生・リサイクルする方法を提供し、水溶性中子を更に実用性のあるものとするとともに、環境性に優れたものとすることを目的として、水溶性中子から鋳物砂及び水溶性無機塩バインダーをほぼ完全に再利用する方法を提供することを目的として、鋳物砂粒子の表面が水溶性無機塩バインダーで被覆された水溶性中子を用いた鋳造品から後記水溶性無機塩バインダー及び水からなる上澄み液の水圧を用いて該鋳物砂を除去する工程と、該除去された鋳物砂、水溶性無機塩バインダー及び水からなる混合物を貯蔵して、水溶性無機塩バインダー及び水からなる上澄み液と、主として鋳物砂からなり少量の水溶性無機塩バインダー及び水からなるスラリーに分離する沈殿工程と、該スラリーの水分を所定濃度まで脱水する工程と、該所定濃度まで脱水されたスラリーを再利用する工程を含む鋳物砂及び水溶性無機塩バインダーの再利用方法を発明した(下記特許文献4)。   Accordingly, the present inventors almost completely regenerate and recycle both the foundry sand and the inorganic binder after use based on the development of the water-soluble inorganic binder that can be easily removed from the sand in Patent Document 2 and Patent Document 3. In order to provide a method and make the water-soluble core more practical and environmentally friendly, the casting sand and the water-soluble inorganic salt binder are almost completely removed from the water-soluble core. For the purpose of providing a method of reusing, the supernatant liquid consisting of a water-soluble inorganic salt binder and water, which is described later, from a cast product using a water-soluble core in which the surface of the molding sand particles is coated with a water-soluble inorganic salt binder. Removing the foundry sand using water pressure, storing the removed foundry sand, a water-soluble inorganic salt binder, and a mixture of water, and a supernatant consisting of the water-soluble inorganic salt binder and water; A precipitation step of separating into a slurry consisting of a small amount of water-soluble inorganic salt binder and water, a step of dehydrating the water of the slurry to a predetermined concentration, and a step of reusing the slurry dehydrated to the predetermined concentration Invented a method of reusing foundry sand and water-soluble inorganic salt binder (Patent Document 4 below).

従来の再利用技術(中子砂がウェットサンド)の問題点としては下記の事項が挙げられる。   The following matters can be cited as problems of conventional reuse technology (core sand is wet sand).

1)スラリー砂からウェットサンド状態の中子砂を作製する脱水工程及び混練工程が必要。   1) A dehydration step and a kneading step for producing wet sand core sand from slurry sand are required.

2)脱水工程は砂中の塩溶液(水分)を遠心効果の制御によりほぼ調製できるが精度的に難しい。   2) Although the salt solution (water | moisture content) in sand can be prepared almost by control of the centrifugal effect, the dehydration process is difficult in accuracy.

3)脱水した砂はホッパー等、保管中の自然乾燥を防ぐために密閉等の構造が必要で設備が複雑になる。   3) Dehydrated sand requires a structure such as a hopper to prevent natural drying during storage, which complicates equipment.

4)目標の塩溶液(水分)の中子砂を作製するには、脱水砂の砂中の塩溶液(水分)量、及び砂量制御など計測を備えた混練工程が必要。   4) In order to produce the core salt of the target salt solution (moisture), a kneading step with measurements such as the amount of salt solution (water) in the sand of dehydrated sand and the control of the amount of sand is required.

これらの問題点が発生する理由は、砂落し後のスラリー砂(砂含有液)と中子砂(ウェットサンド)で、組成的に大きな差があることに起因する。例えば、砂/塩溶液の重量比において、スラリー砂は1/0.3〜50に対し、ウェットサンドは1/0.03〜0.10と大きく相違している。」   The reason why these problems occur is that there is a large difference in composition between slurry sand after sand removal (sand-containing liquid) and core sand (wet sand). For example, in the weight ratio of sand / salt solution, slurry sand is significantly different from 1 / 0.3 to 50, whereas wet sand is significantly different from 1 / 0.03 to 0.10. "

なお、上記砂落としで発生したスラリー砂から回収したウェットサンド状態の中子砂(スラリー)は、混練されて造型用中子砂とされる工程で調製されて、通常、無機バインダー水溶液/鋳物砂(容積比)≧1の造型用スラリー砂とされる(特許文献1請求項4等)。   The core sand (slurry) in a wet sand state recovered from the slurry sand generated by the above sand removal is prepared in a process of being kneaded and used as a molding core sand. Usually, an aqueous inorganic binder solution / cast sand (Volume ratio) ≧ 1 slurry sand for molding (Patent Document 1, Claim 4 etc.).

このため、特許文献1では、下記構成の鋳物砂および水溶性無機塩バインダーの再利用方法(中子のリサイクル造型法)が提案されている(請求項1)。   For this reason, Patent Document 1 proposes a recycling method (core recycling method) of foundry sand and water-soluble inorganic salt binder having the following configuration (claim 1).

「鋳物砂粒子の表面が水溶性無機塩バインダーで被覆された水溶性中子を用いた鋳造品から鋳物砂と水溶性無機塩バインダーからなるスラリー状鋳物砂を回収する工程と、該鋳物砂と水溶性無機塩バインダーからなるスラリー状鋳物砂を鋳物型内のキャビティと連接したスラリーボックス中に入れる工程と、該スラリーボックス中のスラリー状鋳物砂にスラリー流動用エアを吹き込んでスラリー状鋳物砂を流動化する工程と、該流動化されたスラリー状鋳物砂を新たな中子砂として型内のキャビティに充填する工程と、該キャビティ内に充填された中子砂を乾燥する工程とを含むことを特徴とする鋳物砂及び水溶性無機塩バインダーの再利用方法。」   “Recovering slurry foundry sand composed of foundry sand and a water-soluble inorganic salt binder from a cast product using a water-soluble core in which the surface of the foundry sand particles is coated with a water-soluble inorganic salt binder; Slurry foundry sand composed of a water-soluble inorganic salt binder is placed in a slurry box connected to a cavity in a casting mold, and slurry-flowing air is blown into the slurry-like foundry sand in the slurry box to obtain slurry-like foundry sand. Including a step of fluidizing, a step of filling the fluidized slurry-like foundry sand into a cavity in a mold as a new core sand, and a step of drying the core sand filled in the cavity. And a method for reusing the foundry sand and water-soluble inorganic salt binder. "

特開2007−152368号公報JP 2007-152368 A 特開2005−138141号公報JP 2005-138141 A 特開2005−066634号公報Japanese Patent Laying-Open No. 2005-066664 特開2005−059081号公報JP 2005-059081 A

上記特許文献1・2に記載の中子のリサイクル造型法において、更なる生産性の向上、具体的には、1)造型時間の短縮、2)熱コストの低減、3)離型性の向上、4)寸法精度の向上等が要求されるようになってきている。   In the core recycling molding method described in Patent Documents 1 and 2 above, further improvement in productivity, specifically 1) reduction in molding time, 2) reduction in heat cost, and 3) improvement in mold release 4) Improvement of dimensional accuracy is required.

本発明は、上記課題のうち1)造型時間の短縮、2)熱コストの低減、3)離型性の向上を図ることのできる、新規な構成の水溶性鋳型の造型法を提供することを目的(課題)とする。   The present invention provides a method for molding a water-soluble mold having a novel configuration capable of 1) shortening molding time, 2) reducing thermal cost, and 3) improving mold releasability. The purpose (problem).

本発明者らは、上記課題を解決するために鋭意開発に努力をする過程で、離型前鋳型の乾燥処理を、所定の減圧下の水沸点より高く、かつ、大気圧下水沸点より低い温度で行なえば(望ましくは、鋳物砂等を加熱しておく。)、乾燥時間が大幅に短縮でき、離型性も向上することを知見して、下記構成の水溶性鋳型の造型法に想到した。   In the process of diligently developing to solve the above-mentioned problems, the present inventors performed the drying treatment of the mold before mold release at a temperature higher than the water boiling point under a predetermined reduced pressure and lower than the water boiling point under atmospheric pressure. (Desirably, the casting sand is heated), the drying time can be greatly shortened and the releasability is improved. .

鋳物砂に水溶性無機塩が添加された混練鋳物砂を造型用型に吹き込み充填して鋳型を造型し、該鋳型を使用済後、水接触させて崩壊させて、鋳物砂の再利用が可能とされている水溶性鋳型の造型法であって、
離型前鋳型の乾燥処理を、該離型前鋳型の温度が、後記減圧下水沸点より高く、かつ、大気圧下水沸点より低い温度にある状態として、造型用型を減圧下に置いて、押出離型可能又は取り扱い可能な強度以上になる乾燥強度になるまで水分蒸発させることにより行うことを特徴とする。
Casting sand containing water-soluble inorganic salt added to foundry sand is blown into a mold and filled to form a mold. After the mold is used, it can be collapsed by contact with water, allowing the foundry sand to be reused. It is said to be a water-soluble mold making method,
Drying of the mold before mold release is carried out by placing the mold for molding under reduced pressure in a state where the temperature of the mold before mold release is higher than the boiling point of water under reduced pressure and lower than the boiling point of water under atmospheric pressure. It is characterized in that it is carried out by evaporating the water until the dry strength becomes such that it can be released or handled.

本発明を適用する水溶性鋳型(中子)の造型法における、リサイクル工程も含めた流れ図である。It is a flowchart including the recycling process in the molding method of the water-soluble mold (core) to which the present invention is applied. 本発明で使用する中子造型装置の概略断面図である。It is a schematic sectional drawing of the core molding apparatus used by this invention. 中子砂水分(X)と流動化率(Y)との関係グラフ図である。It is a relationship graph figure of core sand moisture (X) and fluidization rate (Y). 砂加熱・混練工程(A)および吹き込み充填工程(B)の説明用流れ図である。It is a flowchart for explanation of a sand heating and kneading process (A) and a blow filling process (B). 水の飽和蒸気圧/温度曲線図である。It is a saturated vapor pressure / temperature curve diagram of water. 前乾燥(減圧乾燥)および押出離型工程の説明用流れ図である。It is a flowchart for description of a pre-drying (vacuum drying) and an extrusion mold release process. 離型完了および後乾燥(大気圧加熱乾燥)工程の説明用流れ図である。It is a flowchart for explanation of a mold release completion and a post-drying (atmospheric pressure heat drying) process. 特許文献1図7からの引用図(中子の洗浄工程の説明図)である。FIG. 9 of Patent Document 1 is a citation from FIG. 7 (an explanatory diagram of a core cleaning process). 離型前中子を減圧乾燥(減圧度63hPa)した実験における混練砂温度と水分蒸発率との関係を示すグラフ図である。It is a graph which shows the relationship between the kneading sand temperature and the water | moisture-content evaporation rate in the experiment which dried the core before mold release under reduced pressure (decompression degree 63hPa).

以下、本発明の望ましい実施形態について、水溶性鋳型(中子)の造型法において、図1に示す如く、中子のリサイクル造型をする場合について説明する。   In the following, a preferred embodiment of the present invention will be described in the case of recycling molding of a core as shown in FIG. 1 in the method of molding a water-soluble mold (core).

即ち、中子のリサイクル造型は、1)砂加熱・混練→2)吹込み充填→3)前乾燥(減圧乾燥;離型前乾燥)→4)離型→5)後乾燥(加熱乾燥;離型後燥硬化)→6)鋳型組み付け→7)注湯→8)水洗浄(型崩壊)→9)再利用作業(分離・再調製)→1)砂加熱・混練の各工程を繰り返すものである。   That is, the core recycle molding consists of 1) sand heating and kneading 2) blow-filling 3) pre-drying (vacuum drying; pre-release drying) 4) release → 5) post-drying (heat drying; release) After mold drying) → 6) Assembling mold → 7) Pouring → 8) Water washing (collapse of mold) → 9) Reuse work (separation / repreparation) → 1) Repeated steps of sand heating and kneading is there.

以下、各工程について説明する。なお、以下の説明で、配合単位を示す「%」は、特に断らない限り「質量%」を意味する。   Hereinafter, each step will be described. In the following description, “%” indicating a blending unit means “% by mass” unless otherwise specified.

なお、本実施形態に使用する中子造型装置としては、特に限定されないが、例えば、図2に示すものを使用できる。本発明は、基本的に特許文献1を従来例とする改良発明であり、特許文献1の記載から多くを、適宜、変更を加えて引用してある。特許文献1の対応箇所は、必要に応じて記載してある。なお、特許文献1における「流動用エア」と「充填用エア」に関する記載は、逆と考えるので、そのように訂正引用してある。   In addition, as a core molding apparatus used for this embodiment, although it does not specifically limit, For example, what is shown in FIG. 2 can be used. The present invention is basically an improved invention using Patent Document 1 as a conventional example, and many of the descriptions from Patent Document 1 are cited with appropriate modifications. Corresponding portions of Patent Document 1 are described as necessary. In addition, since the description regarding the "flowing air" and the "filling air" in Patent Document 1 is considered to be reversed, the correction is cited as such.

この中子造型装置は、中子砂混練槽1と中子砂ホッパー2と中子型7とからなる。中子砂混練槽1は、内部に混練用攪拌機1aを備えているとともに、その底部には中子砂ホッパー2と中子砂送り管1bを備えている。中子砂ホッパー2は、中子型7の砂充填口7cと連接した砂充填用開閉弁6と、該中子砂ホッパー2内の中子砂Sに充填用エアA1を吹き込む充填用エア吹込み弁3と、該充填用エアを排気する充填用エア排気弁4とを備えている。また、中子型7は、内部にキャビティ8と、該キャビティ8内を排気するための主ベント(排気ベント)9とを有し、さらには、キャビティ8の附形面には、中子型7の表面に連通する多数の通気兼脱水孔(副ベント:図示せず)を有する。なお、キャビティ8から充填砂が排出されないように、主ベント9は中子砂粒子より小さい構造のスリット構造とされ、通気兼脱水孔は中子砂粒子が通過したり詰まったりしない小径とされている。   The core molding apparatus includes a core sand kneading tank 1, a core sand hopper 2, and a core mold 7. The core sand kneading tank 1 is provided with a kneading stirrer 1a inside, and at the bottom thereof is provided with a core sand hopper 2 and a core sand feed pipe 1b. The core sand hopper 2 includes a sand filling on-off valve 6 connected to the sand filling port 7c of the core mold 7, and a filling air blow for blowing the filling air A1 into the core sand S in the core sand hopper 2. And a filling air exhaust valve 4 for exhausting the filling air. Further, the core mold 7 has a cavity 8 inside and a main vent (exhaust vent) 9 for exhausting the inside of the cavity 8. 7 has a large number of ventilating and dewatering holes (sub vents: not shown) communicating with the surface. The main vent 9 has a slit structure smaller than the core sand particles so that the filled sand is not discharged from the cavity 8, and the ventilation / dehydration hole has a small diameter that prevents the core sand particles from passing through or clogging. Yes.

1)砂加熱・混練工程(図4(A)):
なお、図4は、図2の中子造型装置において、混練槽と混練ホッパーとを一緒にして図示してある。このため、以下、中子造型装置に関連する図符号は、図2におけるものを指す。
1) Sand heating / kneading step (FIG. 4A):
4 shows the kneading tank and the kneading hopper together in the core molding apparatus of FIG. For this reason, hereinafter, the reference numerals related to the core molding apparatus refer to those in FIG.

水溶性中子の中子砂(混練鋳物砂)の組成は、鋳物砂に水溶性無機塩が添加された混練鋳物砂を造型用型に吹き込み充填して鋳型を造型し、該鋳型を使用済後、水洗浄(水接触)により崩壊されて、鋳物砂の再利用が可能とされているものであれば、特に限定されない。   The composition of water-soluble core core sand (kneaded foundry sand) is made by blowing and filling kneaded foundry sand in which water-soluble inorganic salt is added to the foundry sand into the mold for molding, and the mold is used. After that, it is not particularly limited as long as it is disintegrated by washing with water (water contact) and the foundry sand can be reused.

しかし、下記組成とすることが、吹き込み充填性及び離型性に優れており、望ましい。   However, the following composition is desirable because it is excellent in blow filling and releasing properties.

即ち、中子砂の組成を、所定のエア流動化実験を行なったとき、図3に示す中子砂水分(X)と流動化率(Y)との関係グラフ図において、Yが極小値を示すXより中子砂水分が高く、且つ、必要強度を確保できる量の結合剤水溶液(水溶性無機塩からなる結合剤の水溶液)が添加されているものとする。   That is, when a predetermined air fluidization experiment is performed on the composition of the core sand, in the graph of the relationship between the core sand moisture (X) and the fluidization rate (Y) shown in FIG. It is assumed that a binder aqueous solution (an aqueous solution of a binder made of a water-soluble inorganic salt) in an amount capable of ensuring the necessary strength is added to the core sand moisture higher than X shown.

上記水溶性無機塩として、Mg2+、Na+、Ca2+から選択されるカチオンと、SO4 2-、CO3 2-、HCO3 -、B47 2-から選択されるアニオンとの組み合わせの1種以上からなり、かつ、常温で結晶水を有するものを主成分として使用することが望ましい。代表的には、MgSO4・7H2Oを挙げることができる。 As the water-soluble inorganic salt, a cation selected from Mg 2+ , Na + and Ca 2+ , and an anion selected from SO 4 2− , CO 3 2− , HCO 3 and B 4 O 7 2− It is desirable to use as a main component what consists of 1 or more types of these, and has crystallization water at normal temperature. A typical example is MgSO 4 .7H 2 O.

そして、中子砂水分:2〜13%、さらには3〜8%の範囲で設定することが望ましい。また、乾燥中子における水溶性無機塩(結合剤)添加量:1〜6%、さらには、1.5〜4%となるような範囲で設定することが望ましい。   And it is desirable to set in the range of core sand moisture: 2 to 13%, and further 3 to 8%. Further, the amount of water-soluble inorganic salt (binder) added to the dry core is preferably set in a range of 1 to 6%, more preferably 1.5 to 4%.

水分が過少であると、流動性は向上するが、造型中子中に含まれる結合剤添加率が過少となって、中子強度(抗折強度)を確保し難くなる。結合剤水溶液の比率が過多となると、実用的な流動性を確保し難くなるとともに、本発明の効果(造型サイクルの短縮等)を得難くなる。   If the water content is too low, the fluidity is improved, but the binder addition rate contained in the molded core becomes too low to ensure the core strength (bending strength). If the ratio of the aqueous binder solution is excessive, it is difficult to ensure practical fluidity and it is difficult to obtain the effects of the present invention (such as shortening of the molding cycle).

具体的な上記水溶性無機塩としては、前述の如く、硫酸マグネシウム(MgSO4・7H2O)が好ましく、硫酸マグネシウム(MgSO4)50〜98%と、炭酸ナトリウム(Na2CO3)、四ホウ酸ナトリウム(Na247)、硫酸ナトリウム(Na2SO4)から選択される1種以上2〜50%の混合系が、より好ましい。硫酸マグネシウム(MgSO4)50〜90%と、炭酸ナトリウム(Na2CO3)、四ホウ酸ナトリウム(Na247)、硫酸ナトリウム(Na2SO4)から選択される1種以上10〜50%からなる混合系が、さらに好ましい。これらの水溶性中子を用いることで、鋳造時に型崩れせず、鋳造後の砂落しが水圧で容易に行うことができる(特許文献1段落0042から一部変更して引用)。 As the specific water-soluble inorganic salt, magnesium sulfate (MgSO 4 .7H 2 O) is preferable as described above, magnesium sulfate (MgSO 4 ) 50 to 98%, sodium carbonate (Na 2 CO 3 ), A mixed system of 1 to 2% selected from sodium borate (Na 2 B 4 O 7 ) and sodium sulfate (Na 2 SO 4 ) is more preferable. Magnesium sulfate (MgSO 4 ) 50-90%, one or more selected from sodium carbonate (Na 2 CO 3 ), sodium tetraborate (Na 2 B 4 O 7 ), sodium sulfate (Na 2 SO 4 ) 10 More preferred is a mixed system consisting of ˜50%. By using these water-soluble cores, the mold does not lose its shape during casting, and sand removal after casting can be easily performed with water pressure (partly changed from Patent Document 1, paragraph 0042).

そして、このときの結合剤水溶液の塩濃度は、中子強度確保の見地から、飽和、又はそれに近い濃度、例えば、上記硫酸マグネシウム系の場合、通常20〜35%、望ましくは25〜32%とする。   And the salt concentration of the binder aqueous solution at this time is saturated or close to the concentration from the viewpoint of securing the core strength, for example, in the case of the magnesium sulfate system, usually 20 to 35%, preferably 25 to 32%. To do.

そして、結合剤添加量(含有率)は、乾燥中子において、通常、1〜6%、望ましくは、1.5〜4%となる量とする。本発明においては、中子砂に補強のためのフィラーを添加しないため、上記結合剤添加量は、通常、鋳物砂と結合剤(無水換算)の合計量、さらには、無機微粉末を添加する場合は、それも加えた合計量(100%)に対する比率となる。   The binder addition amount (content ratio) is usually 1 to 6%, preferably 1.5 to 4% in the dry core. In the present invention, since no reinforcing filler is added to the core sand, the amount of binder added is usually the total amount of foundry sand and binder (anhydrous equivalent), and further, inorganic fine powder is added. In this case, it is a ratio to the total amount (100%).

なお、無機微粉末は、鋳物砂の粒子間隙間を埋めて、中子強度を向上させると考えられ、添加することが好ましい。例えば、カオリン、タルクを使用できる。   The inorganic fine powder is considered to improve the core strength by filling the gaps between the particles of the foundry sand, and is preferably added. For example, kaolin and talc can be used.

前記結合剤添加量は、従来におけるそれ「4〜7%」(特許文献1段落0043)より低く、結合剤使用量が少なくて済むとともに、従来の如く、結合剤を過剰添加する問題点、中子型への張り付きが発生しない。したがって、離型剤も特殊なものを使用せず、且つ、少量で済むとともに、離型抵抗も小さい。よって、離型時の中子に要求される強度も大きなものが要求されず、中子砂にフィラーの添加も不要となる。   The amount of the binder added is lower than the conventional “4-7%” (paragraph 0043 of Patent Document 1), and the amount of the binder used can be reduced. There is no sticking to the child mold. Therefore, a special release agent is not used and a small amount is sufficient, and the release resistance is small. Therefore, the core required at the time of mold release is not required to have a large strength, and the addition of a filler to the core sand is not necessary.

本発明で用いられる鋳物砂は、従来知られたものを用いることができる。具体的には、SiC、アルミナ、ムライト、シリカ、ジルコン等を用いることが好ましい。これらは、優れた強度、低熱膨張率を有するとともに入手が比較的容易であり、強度、寸法精度等に優れた水溶性中子を製造することができる。   Conventionally known sand can be used as the foundry sand used in the present invention. Specifically, it is preferable to use SiC, alumina, mullite, silica, zircon or the like. These have excellent strength and low thermal expansion coefficient and are relatively easily available, and can produce a water-soluble core excellent in strength, dimensional accuracy, and the like.

上記鋳物砂と結合剤水溶液(塩溶液)からなる中子砂Sを、中子砂混練槽1に投入し、混練攪拌する。   The core sand S composed of the foundry sand and the binder aqueous solution (salt solution) is put into the core sand kneading tank 1 and kneaded and stirred.

2)吹込み充填工程(図4(B))
上記のようにして調製した混練中子砂は、下記の如く充填する(図2参照)。
2) Blow filling process (Fig. 4 (B))
The kneaded core sand prepared as described above is filled as follows (see FIG. 2).

混練中子砂を所定量、送り管1bを介してホッパー2に、自重落下により送入する。この状態で、充填用エアA1をエア吹込み用開閉弁3を介して吹込むと、中子砂Sは砂充填用開閉弁6を介して鋳物型7内のキャビティ8に充填される。なお、該中子砂Sの充填完了後、充填用エアA1は充填用エア排気弁4により排気する。   A predetermined amount of the kneaded core sand is fed into the hopper 2 through its own feed pipe 1b by its own weight drop. In this state, when the filling air A1 is blown through the air blowing on / off valve 3, the core sand S is filled into the cavity 8 in the casting mold 7 through the sand filling on / off valve 6. After the filling of the core sand S, the filling air A1 is exhausted by the filling air exhaust valve 4.

ここで、混練前の鋳物砂又は混練中子砂Sは、離型前の中子型(造型用型)7が減圧下に置かれたとき、該減圧下水沸点よりも高い温度で、かつ、大気圧下水沸点(100℃)未満の温度を有するものであれば、特に限定されない。例えば、減圧下水沸点より、通常、20℃以上、望ましくは30℃、さらに望ましくは40℃高い温度とする。したがって、例えば、減圧度が63hPa(沸点約37℃)としたとき、混練・充填工程による温度低下を平均3℃とすると、60℃以上、望ましくは70℃以上、さらに望ましくは80℃以上とする。上限は大気圧下水沸点(100℃)未満、望ましくは、95℃未満とする。なお、減圧度と沸点の関係は、図5に示すような飽和蒸気圧/温度曲線図から求めることができる。   Here, the casting sand before kneading or the kneading core sand S has a temperature higher than the boiling point of water under reduced pressure when the core mold (molding mold) 7 before release is placed under reduced pressure, and There is no particular limitation as long as it has a temperature below the boiling point of water at atmospheric pressure (100 ° C.). For example, the temperature is usually 20 ° C. or higher, preferably 30 ° C., more preferably 40 ° C. higher than the boiling point of water under reduced pressure. Therefore, for example, when the degree of vacuum is 63 hPa (boiling point: about 37 ° C.), assuming that the average temperature drop by the kneading / filling process is 3 ° C., it is 60 ° C. or higher, preferably 70 ° C. or higher, more preferably 80 ° C. or higher. . The upper limit is less than the boiling point of water under atmospheric pressure (100 ° C), preferably less than 95 ° C. The relationship between the degree of vacuum and the boiling point can be obtained from a saturated vapor pressure / temperature curve diagram as shown in FIG.

通常、鋳物砂を加熱しておく。加熱態様としては、棚段で乾燥炉や加熱炉で加熱したり、シーズドヒータを差し込んで加熱したりする態様が考えられる。   Usually, the foundry sand is heated. As a heating aspect, the aspect which heats with a drying furnace or a heating furnace by a shelf, or inserts a sheathed heater and can heat is considered.

そして、キャビティ8に充填された中子砂Sは、充填用エアA1の充填圧により圧縮されると同時に、主ベント9や副ベントから排気脱水される(図2参照)。このときの脱水量は通常、数%である。   The core sand S filled in the cavity 8 is compressed by the filling pressure of the filling air A1, and at the same time exhausted and dehydrated from the main vent 9 and the sub vent (see FIG. 2). The amount of dehydration at this time is usually several percent.

3・4)前乾燥(減圧乾燥)・離型工程(図6・7)
こうして脱水された離型前の造型中子(鋳型)12は、中子型7とともに連続的に減圧室11へ搬送されて、減圧乾燥される。このときの混練砂の水分が蒸発率略75%以上、望ましくは蒸発率略80%以上に脱水(乾燥)されると押出し離型可能乃至取り扱い可能な強度になることを確認している。また、その脱水時間は、鋳型が小さい場合(1350cc)、10秒〜2分で、離型後取り扱い可能な強度以上に乾燥できることも確認している(実験例参照)。なお、鋳型が大きい場合(例えば、10L以上)は、乾燥時間が長くなり、数分〜10分必要となると考えられる。
3.4) Pre-drying (vacuum drying), mold release process (Figs. 6 and 7)
The molded core (mold) 12 before demolding thus dehydrated is continuously transported to the decompression chamber 11 together with the core mold 7 and dried under reduced pressure. It has been confirmed that when the water content of the kneaded sand at this time is dehydrated (dried) to an evaporation rate of about 75% or more, preferably about 80% or more, the strength is such that it can be extruded and handled. In addition, when the mold is small (1350 cc), the dehydration time is 10 seconds to 2 minutes, and it has been confirmed that the mold can be dried beyond the strength that can be handled after mold release (see Experimental Examples). In addition, when a casting_mold | template is large (for example, 10L or more), it is thought that drying time becomes long and several minutes-10 minutes are needed.

このときの減圧度(真空度)は、32hPa(水沸点25℃)〜699hPa(水沸点90℃)、の範囲から適宜選択し、望ましくは、56hPa(水沸点35℃)〜199hPa(水沸点60℃)、さらに望ましくは、74hPa(水沸点40℃)〜123hPa(水沸点50℃)の範囲が好適である。   The degree of vacuum (degree of vacuum) at this time is appropriately selected from the range of 32 hPa (water boiling point 25 ° C.) to 699 hPa (water boiling point 90 ° C.), preferably 56 hPa (water boiling point 35 ° C.) to 199 hPa (water boiling point 60 C.), and more desirably in the range of 74 hPa (water boiling point 40 ° C.) to 123 hPa (water boiling point 50 ° C.).

減圧度(真空度)が高いと、減圧室に高シール性を要求されるが、減圧度対応水沸点を低くでき乾燥効率が向上する(より短時間乾燥が可能となる)。他方、減圧度が低いと、減圧室11に高シール性を要求されないが、減圧度対応水沸点が相対的に高くなり短時間乾燥および熱効率の向上が期待できなくなる。   When the degree of vacuum (degree of vacuum) is high, the vacuum chamber is required to have high sealing performance, but the water boiling point corresponding to the degree of vacuum can be lowered and the drying efficiency can be improved (drying can be performed in a shorter time). On the other hand, if the degree of vacuum is low, the vacuum chamber 11 is not required to have high sealing performance, but the water boiling point corresponding to the degree of vacuum is relatively high, and drying and heat efficiency cannot be expected for a short time.

中子12の離型(取り出し)は、下記の如く行なう。   The core 12 is released (taken out) as follows.

中子型(造型用型)7を開く。このとき、中子12は、上型7bから離脱するが、下型7bとは接したままである。次に、図示の如く、下型7b上で、中子12を部分押し出しする。そして、この部分押し出しした状態を2分以上維持(通常、2〜3分)する。これにより、さらに、中子12の強度が増大することも確認している。その理由は、下記の如くであると推定される。   Open the core mold (molding mold) 7. At this time, the core 12 is detached from the upper mold 7b, but remains in contact with the lower mold 7b. Next, as shown in the drawing, the core 12 is partially extruded on the lower mold 7b. Then, this partially extruded state is maintained for 2 minutes or longer (usually 2 to 3 minutes). As a result, it has been confirmed that the strength of the core 12 is further increased. The reason is estimated as follows.

減圧乾燥時に結合剤の主成分であるMgSO4・7H2Oは、結晶水も全部又は一部飛んだ状態となる(一水塩)。なお、飽和水溶液からは、硫酸マグネシウム(MgSO4)は、1.8〜48.1℃(常温)では七水塩が、48.1〜67.5℃では六水塩、67.5℃以上からは一水塩が析出するとされている(大木他編「化学辞典第1版」東京化学同人)。 At the time of drying under reduced pressure, MgSO 4 .7H 2 O, which is the main component of the binder, is in a state where all or part of the crystal water has been removed (monohydrate). In addition, from saturated aqueous solution, magnesium sulfate (MgSO 4 ) is precipitated as heptahydrate at 1.8-48.1 ° C (room temperature), hexahydrate at 48.1-67.5 ° C, and monohydrate from 67.5 ° C or higher. (Oki et al. "Chemical Dictionary 1st edition" Tokyo Chemical Doujin).

大気中に中子12を放置することにより、結合剤成分である硫酸マグネシウム(MgSO4)が、水和して六水塩乃至七水塩に戻ることにより、膨張して中子の固化強度が増大する。 By leaving the core 12 in the atmosphere, the magnesium sulfate (MgSO 4 ), which is a binder component, hydrates and returns to the hexahydrate or heptahydrate, thereby expanding and solidifying the core. Increase.

そして、押出ピン等を用いて中子12を下型7bから離脱させて中子12の離型を完了する(図7の左側)。この離型工程の離型抵抗は低く、脱水工程を経たのみの中子締結力で離型が可能である。その理由は、余剰の結合剤を使用しないためと推定される。   Then, the core 12 is detached from the lower mold 7b using an extrusion pin or the like to complete the mold release of the core 12 (left side in FIG. 7). The mold release resistance of the mold release process is low, and the mold release is possible with the core fastening force only after the dehydration process. The reason is presumed to be because no excess binder is used.

5)後乾燥(加熱乾燥:離型後乾燥)工程(図7)
離型した中子12は、従来と同様、後乾燥工程を経て、中子製品とする。該乾燥方法は、後乾燥をマイクロ波加熱(図7(A))、又は熱風加熱(図7(B))により行なう。後乾燥は、従来の如く、200℃×1hの如く高温乾燥する必要はなく、100℃以上、例えば、150℃×1〜2分で処理すれば、十分であることを確認している。この乾燥処理は、結晶水(配位水、陰イオン水)以外の、中子の強度増大に寄与していない余分な付着水を飛ばすことを目的とするものであり、従来の如く、焼結を予定しておらず、短時間の加熱乾燥で、又は時間はある程度かかるが常温(放置)乾燥で十分であると考えられる。
5) Post-drying (heat drying: drying after mold release) step (FIG. 7)
The released core 12 is processed into a core product through a post-drying step as in the conventional case. In the drying method, post-drying is performed by microwave heating (FIG. 7A) or hot air heating (FIG. 7B). The post-drying does not need to be performed at a high temperature of 200 ° C. × 1 h as in the prior art, and it has been confirmed that a treatment at 100 ° C. or higher, for example, 150 ° C. × 1-2 minutes is sufficient. The purpose of this drying treatment is to blow off the extra adhering water that does not contribute to the increase in core strength other than crystal water (coordination water, anion water). However, it is considered that drying at room temperature (standing) is sufficient with short-time heat drying or although it takes some time.

6・7・8)組み付け・注湯・水洗浄工程(図1参照)
そして、当該中子を使用して鋳造後、中子の砂落としを、洗浄液を用いて行なう。
6 ・ 7 ・ 8) Assembly, pouring, water washing process (see Fig. 1)
And after casting using the said core, sand removal of a core is performed using a washing | cleaning liquid.

例えば、図8に示す如く、鋳物14内の中子12は洗浄液13を循環させることにより、中子12の結晶塩が融解し、洗い流される。洗浄液13は真水から結合剤の飽和濃度以下(34.3%)の塩溶液であればよく、例えば28%のものが使用できる。結晶塩は、融解し、洗い流すことができる。洗い流される砂と結合剤水溶液(塩溶液)は、液槽15に貯蔵される。液槽15内は鋳物砂16と、希釈された結合剤水溶液17とからなる。   For example, as shown in FIG. 8, the core 12 in the casting 14 is circulated through the cleaning liquid 13 so that the crystal salt of the core 12 is melted and washed away. The cleaning liquid 13 may be a salt solution from fresh water to a saturation concentration of the binder or less (34.3%), for example, 28%. The crystalline salt can be melted and washed away. The sand to be washed away and the binder aqueous solution (salt solution) are stored in the liquid tank 15. The liquid tank 15 is composed of foundry sand 16 and a diluted binder aqueous solution 17.

そして、沈降分離操作および溢流分離操作を経て、鋳物砂16を結合剤水溶液17から分離させる。鋳物砂16が分離された結合剤水溶液17は、適宜、加熱濃縮(脱水)して、鋳物砂への添加結合剤水溶液として再使用する。   Then, the foundry sand 16 is separated from the binder aqueous solution 17 through a sedimentation separation operation and an overflow separation operation. The aqueous binder solution 17 from which the foundry sand 16 has been separated is appropriately heated and concentrated (dehydrated) and reused as an added aqueous binder solution to the foundry sand.

なお、特許文献1の如く、沈降分離操作後の、上澄み液(砂を含まない結合剤水溶液)を洗浄液13として繰り返し循環・使用することもできる。   In addition, like patent document 1, the supernatant liquid (binder aqueous solution which does not contain sand) after sedimentation operation can be repeatedly circulated and used as the cleaning liquid 13.

洗い流される中子12内の結合剤は、洗浄液13に溶解するので液槽の結合剤水溶液の塩濃度は処理製品数に応じてほぼ比例的に変化する。当該塩濃度が、溶解度(飽和濃度)以下であれば洗浄液として使用できる。なお、溶解度以上に結合剤が含まれている場合は、結晶が生成し沈殿するが、溶解度以下になるように加熱攪拌すれば結合剤が溶けるため洗浄液として使用できる。しかし、その操作を不要とするため、結合剤濃度は、常温(工場内温度)の溶解度以下とすることが望ましい。   Since the binder in the core 12 to be washed away is dissolved in the cleaning liquid 13, the salt concentration of the aqueous binder solution in the liquid tank changes approximately proportionally according to the number of processed products. If the said salt concentration is below solubility (saturation concentration), it can be used as a washing | cleaning liquid. In addition, when the binder is contained in the solubility or higher, crystals are formed and precipitated. However, the binder is dissolved by heating and stirring so that the solubility is lower than the solubility, so that it can be used as a cleaning liquid. However, in order to eliminate the need for the operation, it is desirable that the binder concentration is not more than the solubility at room temperature (factory temperature).

上記分離した鋳物砂(ウエット砂)と結合剤水溶液(適宜濃縮して)とを、設定混合比率で混合して再生中子砂の調製を行なう。   The separated foundry sand (wet sand) and binder aqueous solution (concentrated as appropriate) are mixed at a set mixing ratio to prepare regenerated core sand.

再生中子砂の調製は、結合剤水溶液の組成が一定であれば水溶性無機塩濃度と糖度及び比重がほぼ比例関係にあることを利用して行なう。即ち、鋳物砂付着結合剤水溶液の糖度を測定するとともに、前記結合剤水溶液の比重を測定することにより、鋳物砂(ウエット砂)と結合剤水溶液との混合比率を容易に求めることができる。   The regenerated core sand is prepared by utilizing the fact that the concentration of the water-soluble inorganic salt, the sugar content and the specific gravity are approximately proportional if the composition of the binder aqueous solution is constant. That is, the mixing ratio of the foundry sand (wet sand) and the binder aqueous solution can be easily obtained by measuring the sugar content of the foundry sand adhesion binder aqueous solution and measuring the specific gravity of the binder aqueous solution.

そして、再生中子砂を用いて中子を造型する。こうして、中子のリサイクル造型が可能となる。   Then, the core is formed using the regenerated core sand. In this way, the core can be recycled.

こうして、中子の砂落としで発生した、砂含有液から鋳物砂および結合剤水溶液を中子造型で使用でき、しかも、造型時間の短縮も可能となるのでので、水溶性中子を更に実用性のあるものとすることができるとともに、環境性に優れたものとすることができる。   In this way, casting sand and aqueous binder solution can be used in core molding from the sand-containing liquid generated by core sand removal, and the molding time can be shortened. In addition to the above, it can be made environmentally friendly.

以下、本発明の実施例に基づいて、さらに、詳細に説明する。   Hereinafter, based on the Example of this invention, it demonstrates further in detail.

結合剤水溶液は、添加水と結合剤(2MgSO4・7H2O/Na2SO4)とを等量(1/1)混合して調製した。このとき、質量組成比は、2MgSO4・7H2O/Na2SO4≒2×246/142≒0.776/0.224≒3.64、2MgSO4/Na2SO4≒2×120/142≒0.628/0.372≒1.69となる。また、2MgSO4/Na2SO4質量組成比は、結合剤の見掛け量に対する実質量は、2MgSO4・Na2SO4/2(MgSO4・7H2O)・Na2SO4≒(2×120+142)/(2×246+142)≒0.602倍、結晶水含量は約0.4倍である。結合剤水溶液中の水分合計量は、結合剤水溶液の約0.7倍=(1.0+0.4)/2.0となる。 The aqueous binder solution was prepared by mixing equal amounts (1/1) of the added water and the binder (2MgSO 4 .7H 2 O / Na 2 SO 4 ). At this time, the mass composition ratio is 2MgSO 4 .7H 2 O / Na 2 SO 4 ≈2 × 246 / 142≈0.776 / 0.224≈3.64, 2MgSO 4 / Na 2 SO 4 ≈2 × 120 / 142≈0.628 / 0.372≈ 1.69. Further, 2MgSO 4 / Na 2 SO 4 mass composition ratio, a substantial amount for the apparent weight of the binder, 2MgSO 4 · Na 2 SO 4 /2 (MgSO 4 · 7H 2 O) · Na 2 SO 4 ≒ (2 × 120 + 142) / (2 × 246 + 142) ≈0.602 times, and the crystallization water content is about 0.4 times. The total amount of water in the aqueous binder solution is approximately 0.7 times the aqueous binder solution = (1.0 + 0.4) /2.0.

なお、本発明の実施例における結合剤水溶液の塩濃度(2MgSO4・Na2SO4)は、見掛け結合剤濃度50%であるため、50%×0.602≒約30.1%となる。そして、そのときの結合剤水溶液の比重は、1.33となる。 Note that the salt concentration (2MgSO 4 · Na 2 SO 4 ) of the aqueous binder solution in the example of the present invention is 50% × 0.602≈about 30.1% because the apparent binder concentration is 50%. The specific gravity of the aqueous binder solution at that time is 1.33.

また、鋳物砂は、見掛け比重:1.73、砂真比重:2.7、空隙率:35.93%のものを使用した。   The casting sand having an apparent specific gravity of 1.73, a true sand specific gravity of 2.7, and a porosity of 35.93% was used.

当該結合剤水溶液を使用して、下記の如く中子砂を調製して、中子の造型を行った。   Using the binder aqueous solution, core sand was prepared as follows, and the core was molded.

合計水分が約2%となるように、即ち、結合剤水溶液添加量3.10%(結合剤添加量1.55%、水分:1.55+1.55×0.4=2.17%)の中子砂を調製後、図2に示すような造型装置を用いて、中子造型を行なった。   After preparing core sand so that the total moisture is about 2%, that is, binder aqueous solution addition amount 3.10% (binding agent addition amount 1.55%, moisture: 1.55 + 1.55 × 0.4 = 2.17%), FIG. Using a molding apparatus as shown in FIG.

このとき、原料砂は60〜90℃の範囲で、10℃間隔で予熱したものを使用した。   At this time, the raw material sand used was preheated at intervals of 10 ° C. in the range of 60 to 90 ° C.

中子型としては、ウォータジャケット中子用(キャビティ容量(中子砂充填量):1350cc、キャビティ面積:1400cm2、最小隙間:3mm)を用い、前準備として前記キャビティ面に市販の汎用離型剤を5mL塗布した。なお、中子型は、加温せず、常温とした。 As a core mold, a water jacket core (cavity capacity (filling volume of core sand): 1350 cc, cavity area: 1400 cm 2 , minimum gap: 3 mm) is used. 5 mL of the agent was applied. In addition, the core type was set to room temperature without heating.

充填エア圧は、第一段:200kPa×5秒、第二段:400kPa×5秒とした。   The charging air pressure was set to the first stage: 200 kPa × 5 seconds and the second stage: 400 kPa × 5 seconds.

該充填後、中子型を、減圧度(63hPa:相対圧−0.095MPa、対応水沸点:約42.5℃)に調整した減圧室に、2分間導入した。そして、乾燥中子を離型した。   After the filling, the core mold was introduced for 2 minutes into a vacuum chamber adjusted to a degree of vacuum (63 hPa: relative pressure −0.095 MPa, corresponding water boiling point: about 42.5 ° C.). Then, the dry core was released.

そして、各試料について、それぞれ水分蒸発率(R)を下記式について求めた。   And about each sample, the water | moisture-content evaporation rate (R) was calculated | required about the following formula, respectively.

R=100×(乾燥後試験片重量−乾燥前試験片重量)
/乾燥前試験片重量×結合剤水溶液添加率×0.70
その結果を示す図9から、離型後の取り扱い可能な強度が水分蒸発率75%近くで十分得られ、当該乾燥度は、鋳物砂予熱温度と減圧度対応水沸点の差が25℃(混練砂温度:70℃、減圧度対応水沸点:42.5℃)の場合、減圧乾燥時間、60秒で十分であることが確認できた。したがって、30℃以上であれば、乾燥時間は60秒より遥かに短くてよく(例えば、30秒以内)、15℃の場合でも、60秒余り乾燥すればよいことが推定される。
R = 100 × (Test piece weight after drying−Test piece weight before drying)
/ Test piece weight before drying x Binder aqueous solution addition rate x 0.70
FIG. 9 showing the result shows that the strength that can be handled after mold release is sufficiently obtained when the water evaporation rate is close to 75%, and the dryness is 25 ° C. (difference between the casting sand preheating temperature and the water boiling point corresponding to the pressure reduction degree) In the case of sand temperature: 70 ° C, water boiling point corresponding to the degree of vacuum: 42.5 ° C), it was confirmed that the drying time under reduced pressure and 60 seconds were sufficient. Therefore, if it is 30 ° C. or higher, the drying time may be much shorter than 60 seconds (for example, within 30 seconds), and even in the case of 15 ° C., it is estimated that the drying time may be 60 seconds or more.

本発明により造型サイクルが格段に短縮でき、且つ、造型のためのエネルギーも格段に節約できることが確認できた。   It has been confirmed that the molding cycle can be remarkably shortened according to the present invention, and energy for molding can be significantly saved.

1:混練槽
2:中子砂ホッパー
3:充填用エア吹き込み弁
4:充填用エア排気弁
7:中子型
7a:中子型の上型
7b:中子型の下型
8:キャビティ
11:減圧室
S:中子砂
1: Kneading tank 2: Core sand hopper 3: Filling air blowing valve 4: Filling air exhaust valve 7: Core mold 7a: Core mold upper mold 7b: Core mold lower mold 8: Cavity 11: Decompression chamber S: Core sand

Claims (10)

鋳物砂に水溶性無機塩が添加された混練鋳物砂を造型用型に吹き込み充填して鋳型を造型し、該鋳型を使用済後、水接触により崩壊させて、鋳物砂の再利用が可能とされている水溶性鋳型の造型法であって、
離型前鋳型の乾燥(前乾燥)を、該離型前鋳型の温度を、後記減圧下水沸点より高く、かつ、大気圧下水沸点より低い温度にある状態として、造型用型を減圧下に置いて、押出離型可能又は取り扱い可能な強度以上になる乾燥強度になるまで水分蒸発させることにより行なうことを特徴とする水溶性鋳型の造型法。
Kneaded foundry sand with water-soluble inorganic salt added to the foundry sand is blown and filled into a mold for molding to mold the mold. After the mold has been used, it can be destroyed by contact with water, allowing the foundry sand to be reused. A method for forming a water-soluble mold,
Drying of the mold before mold release (pre-drying) is carried out by placing the mold for molding under reduced pressure, with the temperature of the mold before mold release being higher than the boiling point of water under reduced pressure and lower than the boiling point of water under atmospheric pressure. And then evaporating the water until it has a dry strength that is higher than the extrudable or handleable strength.
充填前の前記鋳物砂又は前記混練鋳物砂の温度を、前記減圧下水沸点より高い温度とすることを特徴とする請求項1記載の水溶性鋳型の造型法。   The method for forming a water-soluble mold according to claim 1, wherein the temperature of the foundry sand or the kneaded foundry sand before filling is set to a temperature higher than the boiling point of the sewage under reduced pressure. 前記減圧下水沸点を、25〜90℃に設定することを特徴とする請求項2記載の水溶性鋳型の造型法。   The method for forming a water-soluble mold according to claim 2, wherein the boiling point of water under reduced pressure is set to 25 to 90 ° C. 前記離型前鋳型の温度と前記減圧下水沸点の温度差を20℃以上に設定することを特徴する請求項3記載の水溶性鋳型の造型法。   4. The method for forming a water-soluble mold according to claim 3, wherein the temperature difference between the temperature of the mold before mold release and the boiling point of the sewage under reduced pressure is set to 20 ° C. or more. 前記造型用型を開き、前記鋳型を部分押し出しした状態を2分以上維持した後に、前記鋳型の離型完了を行なうことを特徴とする請求項1〜4のいずれか一記載の水溶性鋳型の造型法。   5. The water-soluble mold according to claim 1, wherein after the mold is opened and the state where the mold is partially extruded is maintained for 2 minutes or longer, the mold release is completed. Molding method. 前記離型完了後の鋳型を、さらに、大気圧下加熱により後乾燥させることを特徴とする請求項5記載の水溶性鋳型の造型法。   6. The method for forming a water-soluble mold according to claim 5, wherein the mold after completion of the mold release is further post-dried by heating under atmospheric pressure. 前記大気圧下加熱としてマイクロ波加熱又は熱風加熱を選択することを特徴とする請求項6記載の水溶性鋳型の造型法。   The method for molding a water-soluble mold according to claim 6, wherein microwave heating or hot air heating is selected as the heating under atmospheric pressure. 前記水分蒸発の蒸発率を75質量%以上とすることを特徴とする請求項1〜7いずれか一記載の水溶性鋳型の造型法。   The method for forming a water-soluble mold according to any one of claims 1 to 7, wherein an evaporation rate of the water evaporation is 75 mass% or more. 前記水溶性無機塩として、Mg2+、Na+、Ca2+から選択されるカチオンと、SO4 2-、CO3 2-、HCO3 -、B47 2-から選択されるアニオンとの組み合わせからなり、かつ、常温で結晶水を有するものを使用するとともに、
混練鋳物砂水分:2〜13質量%の範囲で設定するとともに、乾燥中子における結合剤添加量:1〜6質量%となるような範囲で設定することを特徴とする請求項1〜8いずれか一記載の水溶性鋳型の造型法。
As the water-soluble inorganic salt, a cation selected from Mg 2+ , Na + and Ca 2+ , and an anion selected from SO 4 2− , CO 3 2− , HCO 3 , and B 4 O 7 2− And having a crystal water at room temperature,
The kneading foundry sand moisture is set in a range of 2 to 13% by mass, and the binder addition amount in the dry core is set in a range of 1 to 6% by mass. A method for forming a water-soluble mold according to claim 1.
請求項9において、前記結合剤水溶液の塩濃度(無水物換算)を、20〜35質量%とすることを特徴とする水溶性鋳型の造型法。
The method for forming a water-soluble mold according to claim 9, wherein the salt concentration (anhydride conversion) of the aqueous binder solution is 20 to 35% by mass.
JP2009193520A 2009-08-24 2009-08-24 Water-soluble mold making method Expired - Fee Related JP5393344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009193520A JP5393344B2 (en) 2009-08-24 2009-08-24 Water-soluble mold making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009193520A JP5393344B2 (en) 2009-08-24 2009-08-24 Water-soluble mold making method

Publications (2)

Publication Number Publication Date
JP2011041973A true JP2011041973A (en) 2011-03-03
JP5393344B2 JP5393344B2 (en) 2014-01-22

Family

ID=43829804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009193520A Expired - Fee Related JP5393344B2 (en) 2009-08-24 2009-08-24 Water-soluble mold making method

Country Status (1)

Country Link
JP (1) JP5393344B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104985139A (en) * 2015-05-06 2015-10-21 丰田工业(昆山)有限公司 Cylinder main body sand core production line
CN106001446A (en) * 2016-08-09 2016-10-12 十堰市泰祥实业股份有限公司 Method and mold for producing passenger car engine single-chip main bearing cover
JPWO2016113879A1 (en) * 2015-01-15 2017-10-12 日産自動車株式会社 Low pressure casting method and low pressure casting apparatus
JP7507005B2 (en) 2020-04-30 2024-06-27 旭有機材株式会社 Mold manufacturing method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044150A (en) * 1983-08-19 1985-03-09 Honda Motor Co Ltd Production of water soluble casting mold
JPS61144234A (en) * 1985-10-02 1986-07-01 Toshiba Corp Manufacture of cast rotor
JPH06501425A (en) * 1990-10-19 1994-02-17 ボーデン(ユーケイ)リミテッド Water-dispersible mold, method for manufacturing the mold, and casting method using the mold
JP2004174598A (en) * 2002-11-23 2004-06-24 Taiyo Machinery Co Ltd Molding sand for water-soluble core and method for making water-soluble core and water-soluble core
JP2005059081A (en) * 2003-08-19 2005-03-10 Toyota Motor Corp High strength water-soluble core and its manufacturing method
JP2005066634A (en) * 2003-08-22 2005-03-17 Toyota Motor Corp Water-soluble core binder, water-soluble core, and method for manufacturing the same
JP2005138141A (en) * 2003-11-06 2005-06-02 Toyota Motor Corp Method and apparatus for reusing molding sand and water-soluble inorganic salt binder
JP2006175510A (en) * 2004-12-24 2006-07-06 Toyota Motor Corp Method and device for molding water-soluble core
JP2007152368A (en) * 2005-12-01 2007-06-21 Toyota Motor Corp Method for reutilizing casting sand and water soluble inorganic salt binder, and core molding device for reutilizing casting sand and water soluble inorganic salt binder

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044150A (en) * 1983-08-19 1985-03-09 Honda Motor Co Ltd Production of water soluble casting mold
JPS61144234A (en) * 1985-10-02 1986-07-01 Toshiba Corp Manufacture of cast rotor
JPH06501425A (en) * 1990-10-19 1994-02-17 ボーデン(ユーケイ)リミテッド Water-dispersible mold, method for manufacturing the mold, and casting method using the mold
JP2004174598A (en) * 2002-11-23 2004-06-24 Taiyo Machinery Co Ltd Molding sand for water-soluble core and method for making water-soluble core and water-soluble core
JP2005059081A (en) * 2003-08-19 2005-03-10 Toyota Motor Corp High strength water-soluble core and its manufacturing method
JP2005066634A (en) * 2003-08-22 2005-03-17 Toyota Motor Corp Water-soluble core binder, water-soluble core, and method for manufacturing the same
JP2005138141A (en) * 2003-11-06 2005-06-02 Toyota Motor Corp Method and apparatus for reusing molding sand and water-soluble inorganic salt binder
JP2006175510A (en) * 2004-12-24 2006-07-06 Toyota Motor Corp Method and device for molding water-soluble core
JP2007152368A (en) * 2005-12-01 2007-06-21 Toyota Motor Corp Method for reutilizing casting sand and water soluble inorganic salt binder, and core molding device for reutilizing casting sand and water soluble inorganic salt binder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016113879A1 (en) * 2015-01-15 2017-10-12 日産自動車株式会社 Low pressure casting method and low pressure casting apparatus
CN104985139A (en) * 2015-05-06 2015-10-21 丰田工业(昆山)有限公司 Cylinder main body sand core production line
CN106001446A (en) * 2016-08-09 2016-10-12 十堰市泰祥实业股份有限公司 Method and mold for producing passenger car engine single-chip main bearing cover
JP7507005B2 (en) 2020-04-30 2024-06-27 旭有機材株式会社 Mold manufacturing method

Also Published As

Publication number Publication date
JP5393344B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
US10507516B2 (en) Method of producing casting mold and casting mold
JP4223830B2 (en) Water-soluble casting mold and manufacturing method thereof
CN109967693B (en) Additive for removing inert film of used casting sand and method for removing inert film of used casting sand
JP5393344B2 (en) Water-soluble mold making method
JP6978366B2 (en) Method of manufacturing coated sand and mold using it, and method of recycling cast sand
JP4408714B2 (en) Casting mold and manufacturing method thereof
JP6188502B2 (en) Casting sand recycling process
JP2007030028A (en) Method and apparatus for forming water soluble core
JP2022145836A (en) Casting sand regeneration method
JP2007030027A (en) Method for forming water soluble core, and method for casting aluminum alloy
US11123789B2 (en) Method for inorganic binder castings
JP4485343B2 (en) Method and apparatus for forming water-soluble core
JP2005138141A (en) Method and apparatus for reusing molding sand and water-soluble inorganic salt binder
JP4223829B2 (en) Method for producing water-soluble casting mold
JP7202238B2 (en) Coated sand and mold manufacturing method using the same
JP5442293B2 (en) Recycling method of core and core sand
JP5451587B2 (en) Recycling method of core and core sand
JP2004174598A (en) Molding sand for water-soluble core and method for making water-soluble core and water-soluble core
CN101347817A (en) Resin-bonded sand for clearing molding for casting mould
JP2006061948A (en) Method for making water soluble core
JP2000271698A (en) Binder for molding sand and manufacture thereof, regenerate-recovering method, molding sand and manufacture thereof and mold and molding method and shake-out method thereof
JP4219720B2 (en) Manufacturing method of casting mold
BRPI1000043B1 (en) process of treating excess casting sand for use in machining and molding
JP7223098B2 (en) How to make coated sand
US20220016694A1 (en) Method for inorganic binder castings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131015

R150 Certificate of patent or registration of utility model

Ref document number: 5393344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees