WO2019070051A1 - Mold material and manufacturing method therefor, mold and manufacturing method therefor, and molding sand regeneration method - Google Patents

Mold material and manufacturing method therefor, mold and manufacturing method therefor, and molding sand regeneration method Download PDF

Info

Publication number
WO2019070051A1
WO2019070051A1 PCT/JP2018/037354 JP2018037354W WO2019070051A1 WO 2019070051 A1 WO2019070051 A1 WO 2019070051A1 JP 2018037354 W JP2018037354 W JP 2018037354W WO 2019070051 A1 WO2019070051 A1 WO 2019070051A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
water
mold material
sand
coating layer
Prior art date
Application number
PCT/JP2018/037354
Other languages
French (fr)
Japanese (ja)
Inventor
文幸 小川
哲也 浦
Original Assignee
旭有機材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭有機材株式会社 filed Critical 旭有機材株式会社
Priority to JP2019547028A priority Critical patent/JP7252897B2/en
Publication of WO2019070051A1 publication Critical patent/WO2019070051A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening

Definitions

  • the present invention relates to a mold material and a method of manufacturing the same, a mold and a method of manufacturing the same, and a method of regenerating casting sand.
  • a target shape is obtained by using a coated sand (mold material) formed by coating a molding sand made of a refractory aggregate with a predetermined binder.
  • the one obtained by molding into is used.
  • inorganic resins such as water glass, phenol resin and the like can be used as a binder in such coated sands.
  • Organic binders made of resins such as furan resin and urethane resin have been clarified, and methods of forming self-hardening molds using these binders have also been clarified.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2012-76115
  • a solid coating layer containing a predetermined water-soluble inorganic compound such as water glass as a caking agent is formed on the surface of a fireproof aggregate (casting sand).
  • a well-flowed, binder-coated refractory (coated sand) that is coated is disclosed.
  • caking agent coated refractory (coated sand) having good fluidity is filled in the molding cavity of a molding die for mold making, and then water vapor is contained in the molding die. It has also been clarified that by aeration, solidification of the binder-coated refractory (coated sand) proceeds, and a target mold is obtained.
  • the coated sand (template material) configured using an inorganic caking agent such as water glass has an organic content compared to the coated sand (template material) using an organic caking agent It is conventionally known that generation of various gases due to heat during molding or casting is advantageously suppressed, and problems such as odor are less likely to occur.
  • casting sand (refractory aggregate) is obtained from the mold after casting ) Is recovered and the recovered sand is to be regenerated by roasting, the inorganic caking agent remaining on the surface of the recovered sand does not burn but it is sintered in reverse and cast sand (refractory aggregate)
  • the problem is that it is difficult to regenerate because it sticks firmly to the surface of.
  • the present invention has been made against the background described above, and the problem to be solved is a mold material which is excellent in the collapsibility of the mold and which facilitates the regeneration of foundry sand. It is to provide. Further, the present invention provides a method capable of advantageously manufacturing a mold material having such excellent properties, a mold using such a mold material, a method of manufacturing the same, and a method of regenerating cast sand. Is the problem to be solved.
  • the present invention can be suitably implemented in various aspects as listed below, and each aspect described below is adopted in any combination. It is possible. It should be noted that aspects or technical features of the present invention can be recognized based on the inventive concept that can be grasped from the description of the entire specification without being limited to the following description. It should be understood.
  • the solid coating layer contains a coupling agent (1 The template material according to any one of the above aspects (6).
  • molding sand is cast from the mold A method of reclaiming foundry sand comprising recovering and subjecting to dry regeneration treatment to obtain reclaimed sand.
  • the recovered sand can be easily regenerated by subjecting it to a dry regeneration treatment having a polishing step and the like.
  • a gas is generated by the thermal decomposition of the organic compound contained in the coating layer, so that the gas prevents the molten metal from invading between particles (sand grains) of casting sand constituting the mold. Layers are advantageously formed between the mold surface and the cast product, resulting in a better cast surface of the final cast product.
  • C In the template material in the wet state according to the present invention, since the organic compound is present in solid form, the problem of odor due to volatilization of the organic compound is less likely to occur.
  • the mold material (coated sand) in the wet state according to the present invention is a cast sand coated with a solid coating layer containing an organic compound covered with a liquid caking agent composition containing a water-soluble inorganic caking agent It is what is done.
  • the foundry sand particles coated with the solid coating layer are covered with a liquid caking agent composition containing a water-soluble inorganic caking agent, From the point of being configured, it is in a wet state (appearance) as a whole, that is, it exhibits a wet state.
  • the mold material in a wet state means a mold material (coated sand) having no cold flowability. More specifically, a mold material (coated sand) for which a measured value can not be obtained when the dynamic repose angle is measured according to the following method is used as a wet mold material (coated sand).
  • a dynamic repose angle is a mold material (coated sand) placed in a cylinder with one side transparent and a flat surface (for example, a mold material (coated diameter up to a half of a volume: 7.2 cm ⁇ height: 10 cm) Sand), rotating at a constant speed (for example, 25 rpm), the slope of the layer of mold material (coated sand) flowing in the cylinder becomes flat, and the angle formed between the slope and the horizontal surface It is measured.
  • the mold material (coated sand) does not flow in the cylinder, the slope of the layer of the mold material (coated sand) is not formed as a flat surface, and therefore the dynamic repose angle can not be measured.
  • the mold material (coated sand) of The wet mold material (coated sand) is superior to the dry mold material (coated sand) in that it is easy and inexpensive to manufacture.
  • a foundry sand constituting a wet mold material is a refractory substance which functions as a mold base, and various kinds of refractory granules or powders conventionally used for molds.
  • Materials such as silica sand, regenerated silica sand, alumina sand, olivine sand, zircon sand, chromite sand, special sand, ferrochrome-based slag, ferronickel-based slag, and Examples thereof include slag-based particles such as furnace slag; artificial particles such as alumina-based particles and mullite-based particles; and regenerated particles thereof; alumina balls and magnesia clinker.
  • Such casting sand is generally used as one having a particle size of about 40 to 130 in the AFS index, and preferably having a particle size of about 60 to 110.
  • the molding sand is preferably spherical, and specifically, it is desirable that the grain shape factor is 1.2 or less, more preferably 1.0 to 1.1.
  • the grain shape factor of the foundry sand used here is generally adopted as one measure indicating the outer shape of the particle, and is also referred to as a grain shape index, and as the value approaches 1 the spherical shape It is meant to approach (true sphere).
  • Such a particle shape factor is represented by a value calculated using the surface area (sand surface area) of the foundry sand measured by various known methods, for example, a sand surface area measuring instrument (The surface area of an actual foundry sand particle (sand grain) per 1 g is measured using George Fisher, and the value is obtained by dividing it by the theoretical surface area.
  • the theoretical surface area is the surface area under the assumption that casting sand particles (sand particles) are all spherical.
  • template material of this invention is that in which the solid-like coating layer containing the organic compound is coat
  • the presence of the predetermined coating layer on the surface of the casting sand prevents the water-soluble inorganic binder described later from being in direct contact with the casting sand.
  • the solid coating layer contains an organic compound
  • a mold formed using the template material of the present invention
  • the organic substance contained in the coating layer The compound is pyrolyzed and gasified, and the generated gas advantageously destroys the solidified or hardened substance of the water-soluble inorganic binder at the joint between the sand particles, and the mold disintegrates It will be excellent.
  • the organic compound contained in the coating layer is pyrolyzed and gasified, the solidified or hardened product of the water-soluble inorganic binder present on the casting sand particles is generated from the inside by the internal pressure of the gas.
  • the solidified or hardened water-soluble inorganic binder is exfoliated from the surface of the foundry sand particle in the polishing step for regenerating the foundry sand recovered from the mold after casting. It becomes easy and the reproduction of casting sand becomes easy.
  • a gas is generated by thermal decomposition of the organic compound contained in the coating layer during casting using a mold, a gas layer that inhibits molten metal from invading between casting sand particles constituting the mold is It is advantageously formed between the mold surface and the cast product, so that the cast surface of the cast product finally obtained is improved.
  • the film thickness of the solid coating layer formed on the casting sand surface is 0.1 to 6 ⁇ m, preferably 0.2 to 5 ⁇ m, more preferably 0.3 to 3 ⁇ m, still more preferably 0.5. It is set to 2 ⁇ m. If the film thickness is less than 0.1 ⁇ m, it may be difficult to form as a coating layer, and it may be difficult to gasify inside the layer composed of a binder composition containing a water-soluble inorganic binder. On the other hand, if it is thicker than 6 ⁇ m, there is a risk that an organic compound may generate an odor.
  • the casting sand particle in which the coating layer was formed is embedded in an epoxy resin etc.
  • the cross section of the casting sand particle which cut using cutting devices, such as an ion cutter The observation can be carried out using an optical machine such as an electron microscope, 10 cross-sectional particles can be randomly selected, and the film thickness of the coating layer can be measured.
  • an optical machine such as an electron microscope
  • 10 cross-sectional particles can be randomly selected, and the film thickness of the coating layer can be measured.
  • a film thickness when a foundry sand particle is spherical, you may calculate from the average particle diameter of a foundry sand particle, and the addition amount of a foundry sand particle and an organic compound.
  • the organic compound used in the present invention can be contained in a solid coating layer as well as those capable of forming a solid coating layer on the surface of casting sand particles. If it is present, it is not particularly limited, but it is preferably at least one selected from the group consisting of a cross-linking curable resin and its cured product, a thermoplastic resin, and a carbohydrate.
  • the crosslinking curing resin is, for example, heating or non-heating in the presence or absence of a curing agent such as hexamethylenetetramine, organic ester, organic acid, carbon dioxide, peroxide, metal ion, amine or curing catalyst (normal temperature (normal temperature) Under these conditions, crosslinking hardenability is developed, and foundry sand particles are mutually attached to form a mold.
  • a crosslinkable curable resin specifically, a phenol resin, a phenol urethane resin, an epoxy resin, a melamine resin, an unsaturated polyester resin, a polyfunctional acrylamide resin (refer to Japanese Patent Publication No.
  • unsaturated alkyd resins unsaturated fatty acid modified alkyd resins, diallyl phthalate resins, and resins obtained by combining these resins as required.
  • particularly preferred are phenolic resins of novolac type and resol type, and phenolic urethane resins used by mixing with polyisocyanate compounds.
  • the cured product of the crosslinkable curable resin is one obtained by increasing the molecular weight of a low molecular weight compound to a polymer compound by curing reaction. After coating the surface of the foundry sand particles with a low molecular weight material with low melt viscosity, hardening by heating or addition of a curing agent prevents alkaline deterioration and has a high molecular weight with good surface stability. A coating layer can be formed, and coexistence of coating property and surface stability is possible.
  • 1) softening of the coating layer due to heat is suppressed and the mold strength is improved, and 2) it is necessary for curing in advance, as compared with the uncured crosslinkable curable resin.
  • thermoplastic resin specifically, polyvinyl alcohol, polyvinyl acetate, polystyrene, styrene acrylonitrile copolymer, styrene butadiene acrylonitrile copolymer, ethylene vinyl acetate copolymer, polymethyl methacrylate, methacryl methacrylate Styrene copolymer, cellulose acetate, polycarbonate, resin comprising polyvinyl chloride and the like can be mentioned.
  • polyvinyl alcohol polyvinyl acetate, polystyrene, ethylene vinyl acetate copolymer, polymethyl methacrylate, cellulose acetate, and polycarbonate are particularly preferable from the viewpoint of solvent solubility (film forming property).
  • carbohydrate examples include those composed of glucose, fructose, galactose, lactose, sucrose, maltose, trehalose, starch, glycogen, cellulose and the like.
  • trehalose, starch and glycogen are particularly preferable from the viewpoint of film formability.
  • organic compounds acrylamide, N-methylol acrylamide, diacrylamidodimethyl ether, methylene bis acrylamide, ethylene bis acrylamide, ethylene glycol diacrylamide and the like can be mentioned.
  • the organic compound contained in the coating layer on the surface of the casting sand is preferably a polymer compound (polymer, polymer) from the viewpoint of the covering property to the casting sand particles.
  • a polymer compound (polymer, multimer) having a weight average molecular weight of 300 or more, preferably 300 to 100,000,000, more preferably 500 to 50,000,000, and still more preferably 800 to 20,000,000 is advantageously used.
  • organic compounds not included in the category of polymer compounds (polymers and polymers) are preferably those having a molecular weight of 300 or more from the viewpoint of surface stability of a solid coating layer, and it is preferable to From the viewpoint of the coatability of the (1), those of 100,000,000 or less are preferable.
  • a poorly water-soluble or water-insoluble organic compound is advantageously used, and a water-insoluble organic compound is particularly preferable as the organic compound contained in the solid coating layer.
  • a water-soluble organic compound is particularly preferable as the organic compound contained in the solid coating layer.
  • the solubility in 100 g of water at 25 ° C.
  • the organic compound which is the following is used as an organic compound contained in a solid coating layer.
  • the solubility means the amount of the organic compound dissolved in the solvent (water) when 100 g of water at 25 ° C. is charged with 10 g of the organic compound, stirred for 1 hour, and allowed to stand still for 1 hour. It is a thing. Further, the water-insoluble organic compound is an organic compound which does not dissolve in water.
  • a coupling agent may be contained in the coating layer provided on the surface of the molding sand.
  • a coupling agent in such a coating layer, the wettability and adhesion of the coating layer can be improved, and the bond between the molding sand and the coating layer can be strengthened.
  • a coupling agent contained in a coating layer a silane coupling agent, a zircon coupling agent, a titanium coupling agent etc. can be mentioned as a suitable thing, for example.
  • the content of the coupling agent in the coating layer is generally 0.5 to 10 parts by mass, preferably 1 to 5 parts by mass, more preferably 1 to 3 parts by mass with respect to 100 parts by mass of the organic compound.
  • casting sand coated with the above-mentioned predetermined coating layer is coated with a liquid caking agent composition containing a water-soluble inorganic caking agent.
  • a water-soluble inorganic binder contained in the liquid binder composition can be used as long as it is conventionally used in a template material (coated sand).
  • Such water-soluble inorganic binders include, for example, water glass, sodium chloride, sodium phosphate, sodium carbonate, sodium vanadate, sodium borate, sodium aluminum oxide, potassium chloride, potassium carbonate and the like, and What has 2 or more types chosen from them as a main component etc. can be mentioned.
  • water glass and water glass as a main component are preferable from the viewpoint of easy handling and the finally obtained mold strength.
  • water glass is an aqueous solution of a soluble silicate compound, and as such a silicate compound, for example, sodium silicate, potassium silicate, sodium metasilicate, potassium metasilicate, lithium silicate, Although ammonium silicate etc. can be mentioned, sodium silicate (sodium silicate) will be used advantageously in the present invention.
  • water glass may be used as the main component, and other water-soluble caking agents such as thermosetting resins, saccharides, proteins, synthetic polymers, salts and inorganic polymers may be blended.
  • the proportion of water glass in the total amount of the binder is 60% by mass or more, preferably 80% by mass or more, and more preferably 90% by mass or more.
  • the water soluble inorganic caking agent mentioned above has a solid thing and a liquid thing as a form handled normally, a solid thing is used in the state of aqueous solution.
  • the viscosity of the liquid caking agent composition containing the water-soluble inorganic caking agent is adjusted to 5 to 2000 cP, preferably 7 to 1200 cP, more preferably 7 to 800 cP at 25 ° C. Be done.
  • it is a liquid water-soluble inorganic binder such as water glass, it is possible to use one diluted with water in order to adjust the viscosity of the binder composition.
  • sodium silicate which is advantageously used in the present invention, is generally classified into the types 1 to 5 according to the molar ratio SiO 2 / Na 2 O. Being used.
  • sodium silicate No. 1 has a SiO 2 / Na 2 O molar ratio of 2.0 to 2.3
  • sodium silicate No. 2 has SiO 2 / Na 2 O 2 The molar ratio is 2.4 to 2.6
  • sodium silicate No. 3 is the one having a molar ratio of SiO 2 / Na 2 O of 2.8 to 3.3
  • sodium silicate No. 4 has a SiO 2 / Na 2 O molar ratio of 3.3 to 3.5, and sodium silicate No.
  • SiO 2 / Na 2 O molar ratio Is 3.6 to 3.8 sodium silicate Nos. 1 to 3 are also defined in JIS-K-1408. Then, sodium These silicate, other uses alone may be used as a mixture, also by mixing more than two kinds, preparing a molar ratio of SiO 2 / Na 2 O Is also possible.
  • Such sodium silicates No. 1 and No. 2 are stable and provide a mold material having good properties even in a wide range of sodium silicate concentration in water glass.
  • the upper limit of the molar ratio of SiO 2 / Na 2 O in such sodium silicate is appropriately selected according to the characteristics of water glass in the form of an aqueous solution, but generally not more than 3.5, It is preferably 3.2 or less, more preferably 2.7 or less.
  • the molar ratio of SiO 2 / Na 2 O is smaller than 1.9, a large amount of alkali is present in the water glass, so the solubility of the water glass in the water increases, and the template material absorbs moisture and deteriorates. There is a risk that it will be easier to do.
  • the water glass used in the present invention means a solution of a silicate compound in a state of being dissolved in water, and when producing the template material of the present invention, it is in the state of a stock solution as purchased in the market. Besides being used, water is added to such a stock solution to be used in a diluted state. And the non volatile matter (water glass component) except the volatilizable substance such as water and solvent from such water glass is referred to as solid content, and this corresponds to the soluble silicate compound such as sodium silicate described above It is a thing. Moreover, the higher the proportion of such solid content, the higher the concentration of the silicate compound in the water glass.
  • the solid content of water glass used in the present invention corresponds to the ratio excluding the amount of water in the stock solution when it is composed only of the stock solution, while the stock solution is water.
  • the ratio excluding the amount of water in the stock solution and the amount of water used for dilution corresponds to the solid content of the water glass used It becomes.
  • sodium chloride which can be used as a water-soluble inorganic binder, is edible as said to be common salt, is harmless to the human body, and can be used inexpensively and easily. It is possible.
  • a mold material using sodium chloride as a binder can produce a mold that is easily disintegrated by water.
  • the amount of sodium chloride dissolved in 100 g of water is 35.9 g (20 ° C.).
  • the melting point of sodium chloride is 1413 ° C. and is relatively high, a mold having high heat resistance can be produced.
  • sodium phosphate monosodium phosphate hydrate (NaH 2 PO 4 .xH 2 O; x is a known integer), disodium phosphate hydrate (Na 2 HPO 4 .x'H 2 O)
  • X ' is a known integer
  • trisodium phosphate hydrate Na 3 PO 4 .x "H 2 O; x" is a known integer or the like.
  • sodium phosphate is soluble in water as represented by that the dissolution amount of trisodium phosphate hydrate in 100 g of water is 25.8 g (20 ° C.), and disodium phosphate water
  • the melting point of sodium phosphate is relatively high, as typified by the melting point of the solvate being 1340 ° C.
  • the template material using sodium phosphate as a water-soluble inorganic binder can be easily disintegrated with water, and a template having high heat resistance can be manufactured.
  • sodium carbonate (Na 2 CO 3 ) has a dissolved amount of 17.4 g (20 ° C.) in 100 g of water, is easily dissolved in water, and is inexpensive. Also, the melting point is relatively high at 851 ° C. For this reason, the mold material using sodium carbonate as a water-soluble inorganic binder can be easily disintegrated with water, and a mold having high heat resistance can be manufactured.
  • sodium vanadate (Na 3 VO 4 ) is soluble in water and has a relatively high melting point of 866 ° C. For this reason, the template material using sodium vanadate as a water-soluble inorganic binder can be easily disintegrated with water, and a template having high heat resistance can be produced.
  • sodium aluminum oxide (NaAlO 2 ) is soluble in water, and has a melting point as high as 1700 ° C. or higher. For this reason, the mold material using sodium aluminum oxide as a water-soluble inorganic binder can be easily disintegrated with water, and a mold having high heat resistance can be produced.
  • potassium chloride is easy to dissolve in water and is inexpensive, as the amount dissolved in 100 g of water is 34.2 g (20 ° C.). Also, the melting point is relatively high at 776 ° C. For this reason, the template material using potassium chloride as a water-soluble inorganic binder easily disintegrates with water, and it is possible to produce a template having high heat resistance.
  • Potassium carbonate (K 2 CO 3 ) is easily dissolved in water so that the amount dissolved in 100 g of water is 111.9 g (20 ° C.), and the melting point is 891 ° C., which is relatively high. For this reason, the mold material using potassium carbonate as a water-soluble inorganic binder can be easily disintegrated with water, and a mold having high heat resistance can be produced.
  • the content rate in the liquid caking agent composition of such a water soluble inorganic caking agent will be made into a suitable rate according to the kind etc. of the water soluble inorganic caking agent used.
  • the solid content of the water-soluble inorganic binder is advantageously 10 to 80% by mass, preferably 15 to 70% by mass, more preferably 20 to 50%, from the viewpoint of molding speed and strength of the finally obtained mold. It is desirable to be contained in a liquid caking agent composition in a proportion by mass.
  • liquid binder composition containing the solid content of the water-soluble inorganic binder in such a proportion, such a casting when mixed (kneaded) with foundry sand particles having a predetermined solid coating layer
  • the sand particles can be coated uniformly and uniformly with the water-soluble inorganic binder component, which makes it possible to advantageously mold the target mold according to the invention.
  • concentration of the water-soluble inorganic caking agent component (solid content) in the liquid caking agent composition is too low, specifically, a liquid caking agent having a solid content of less than 10% by mass.
  • the liquid content is such that the solid content is 80% by mass or less, so that the solvent such as water is 20% by mass or more (the water content is 10% by mass or more). It is desirable to prepare a binder composition.
  • the water-soluble inorganic binder is considered to be only the mass in the case of solid and the solid content in the case of liquid in 100 parts by mass of casting sand in the wet mold material according to the present invention. It is used in a proportion of 0.1 to 5 parts by mass, preferably 0.2 to 2.5 parts by mass, more preferably 0.5 to 2.0 parts by mass in terms of solid content desirable.
  • the surface of the solid coating layer provided on the surface of the foundry sand particles is a liquid caking agent containing a water-soluble inorganic binder.
  • the wet mold material of the present invention coated with the composition is advantageously configured.
  • the measurement of solid content is implemented as follows.
  • Solid content (mass%) ⁇ [Mass of sample pan after drying (g)-mass of sample pan (g)] / [Mass of sample pan (g) before drying-mass of sample pan (g)] ⁇ 100
  • the amount of the water-soluble inorganic binder used when the amount of the water-soluble inorganic binder used is too small, a sufficient amount of the water-soluble inorganic binder does not exist on the solid coating layer provided on the surface of the casting sand, There is a risk that the mold material may not be sufficiently solidified or cured.
  • the amount of the water-soluble inorganic binder used is too large, an excessive amount of the water-soluble inorganic binder is present on the solid coating layer provided on the surface of the casting sand. Foundry sand particles may stick to each other to form agglomerates (composite particle formation), which adversely affects mold physical properties and also makes it difficult to remove core sand after metal casting. It comes to evoke.
  • the mold material according to the present invention it is possible to include a coupling agent in the liquid binder composition containing the water-soluble inorganic binder as described above.
  • a coupling agent in the caking agent composition, the wettability and the adhesion are improved, and the bond between the coating layer on the surface of the casting sand and the water-soluble inorganic caking agent can be strengthened.
  • Such effects can be achieved by incorporating the coupling agent in either the coating layer or the binder composition, but both the coating layer and the binder composition are coupled.
  • the agent the bonding strength between the two is further improved, and the strength is further improved in the finally obtained template, which is further preferable.
  • the content of the coupling agent in the liquid caking agent composition is generally 0.5 to 10 parts by mass, preferably 100 parts by mass of the solid content of the water-soluble inorganic caking agent contained therein.
  • the proportion is 1 to 5 parts by mass, more preferably 1 to 3 parts by mass.
  • the liquid binder composition containing a water-soluble inorganic compound may contain inorganic oxide particles.
  • the inclusion of the inorganic oxide particles in the binder composition is effective in improving the flowability and filling properties of the mold material, and the moisture resistance of the finally obtained mold.
  • the size of the inorganic oxide particles used in the present invention is preferably smaller than the casting sand particles that together constitute the template material, and specifically, the average particle diameter is preferably 0.01 ⁇ m to 300 ⁇ m, more preferably Inorganic oxide particles having a diameter of 0.3 ⁇ m to 200 ⁇ m, particularly preferably 0.5 ⁇ m to 100 ⁇ m, are used.
  • the average particle diameter can be determined from a particle size distribution measured by a laser diffraction type particle size distribution measuring apparatus or the like.
  • the content of the inorganic oxide particles in the binder composition is generally 5 to 200 parts by mass, preferably 10 to 100 parts by mass with respect to 100 parts by mass of the solid content of the water-soluble inorganic binder contained therein. It is considered as a proportion of parts by mass.
  • the inorganic oxide particles used in the present invention may be spherical particles or non-spherical particles, spherical particles are more advantageous in exhibiting the effects of the present invention, and in particular, they have a better cast surface. It is preferable in that it is possible to obtain a cast product having the same. And such a spherical particle should just show the spherical shape of generally recognized degree, and although it is not necessarily required to show a spherical shape, Usually, sphericity is 0.5 or more , Preferably 0.7 or more, more preferably 0.9 or more, is advantageously used.
  • the sphericity is randomly selected from 10 single particles, and the aspect ratio (ratio of the minor axis / major axis) obtained from the projection shape is It means an average value.
  • the aspect ratio ratio of the minor axis / major axis obtained from the projection shape.
  • the material constituting such inorganic oxide particles is not particularly limited, but an inorganic metal oxide is preferable.
  • particles consisting of inorganic metal oxides particles consisting of silicon dioxide, aluminum oxide, titanium oxide etc. are advantageously used, and among them, in particular, silicon dioxide particles are such that strongly alkaline water glass is silicon dioxide. It can react with silanol groups formed on the surface, and upon evaporation of water, a strong bond can be formed between silicon dioxide and solid water glass to improve mold strength. Is preferred. Silicon dioxide is crystalline or amorphous, but amorphous is more preferable.
  • ZrSiO Examples include silica produced by the thermal decomposition of 4 , silicon dioxide produced by oxidation of metallic silicon with a gas containing oxygen, quartz glass powder of spherical particles produced from crystalline quartz by melting and subsequent quenching, etc. . These can be used alone or in combination of two or more. In the present invention, silicon dioxide is treated as an inorganic metal oxide.
  • a moisture resistance improver may be contained in the liquid caking agent composition constituting the present invention.
  • a moisture resistance improver in the binder composition, the moisture resistance of the finally obtained mold can be improved.
  • any agent can be used as long as it does not inhibit the effects of the present invention as long as it is conventionally used in a mold material.
  • particularly basic zinc carbonate, sodium tetraborate, potassium metaborate, lithium sulfate and lithium hydroxide improve moisture resistance more advantageously when water glass is used as a water-soluble inorganic binder. It is possible.
  • the moisture resistance improver including those described above may be used alone or in combination of two or more.
  • the compound which can be used as a water-soluble inorganic caking agent is also contained in the moisture resistance improving agent listed previously, in such a compound, the water-soluble inorganic caking agent different from it is mentioned When used, it can act as a moisture resistance improver.
  • the amount of such a moisture resistance improver used is generally 0.5 to 10 parts by mass of the solid content of the water-soluble inorganic binder in the liquid caking agent composition in the total amount.
  • the amount is preferably about 50 parts by mass, more preferably 1 to 20 parts by mass, and particularly preferably 2 to 15 parts by mass.
  • the use amount be 0.5 parts by mass or more, and on the other hand, if the addition amount is too large, the binding of the water-soluble inorganic caking agent It is desirable that the amount be 50 parts by mass or less, because it may cause problems such as the strength of the finally obtained template being reduced.
  • a surfactant may be contained in the liquid binder composition covering the surface of the foundry sand particles. Due to the fact that the surfactant is contained in the binder composition containing the water-soluble inorganic binder, the wet mold material according to the present invention is prepared 1) in the presence of the surfactant. Allowing the amount of water added during the process to be minimized, and 2) the surface tension of water is suppressed, the flowability of the mold material is improved, and 3) the mold is formed In addition to the fact that the mold is excellent in the releasability from the mold, effects such as exhibiting excellent strength can be advantageously enjoyed.
  • the content of the surfactant in the liquid caking agent composition is 0.1 to 20.0 parts by mass with respect to 100 parts by mass of the solid content of the water-soluble inorganic caking agent contained therein. It is preferably part, particularly preferably 0.5 to 15.0 parts by mass, and particularly preferably 0.75 to 12.5 parts by mass.
  • a cationic surfactant As the surfactant added to the liquid caking agent composition, a cationic surfactant, an anionic surfactant, an amphoteric surfactant, a nonionic surfactant, a silicone-based interface Both activators and fluorosurfactants can be used.
  • a cationic surfactant aliphatic amine salts, aliphatic quaternary ammonium salts, benzalkonium salts, benzethonium chloride, pyridinium salts, imidazolinium salts and the like can be mentioned.
  • anionic surfactants fatty acid soap, N-acyl-N-methylglycine salt, N-acyl-N-methyl- ⁇ -alanine salt, N-acyl glutamate, alkyl ether carboxylate, acyl Peptide, alkyl sulfonate, alkyl benzene sulfonate, alkyl naphthalene sulfonate, dialkyl sulfo borate, alkyl sulfo acetate, ⁇ -olefin sulfonate, N-acyl methyl taurine, sulfated oil, higher alcohol Sulfate ester, secondary higher alcohol sulfate, alkyl ether sulfate, secondary higher alcohol ethoxy sulfate, polyoxyethylene alkyl phenyl ether sulfate, monoglysulfate, fatty acid alkylol amide sulfate, alkyl ether phosphorus Acid A
  • amphoteric surfactant carboxybetaine type, sulfobetaine type, amino carboxylate, imidazolinium betaine and the like can be mentioned.
  • nonionic surfactants polyoxyethylene alkyl ether, polyoxyethylene secondary alcohol ether, polyoxyethylene alkyl phenyl ether (for example, Emulgen 911), polyoxyethylene sterol ether, polyoxyethylene lanolin derivative , Polyoxyethylene polyoxypropylene alkyl ether (eg, Neupol PE-62), polyoxyethylene glycerin fatty acid ester, polyoxyethylene castor oil, hydrogenated castor oil, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, Polyethylene glycol fatty acid ester, fatty acid monoglyceride, polyglycerin fatty acid ester, sorbitan fatty acid ester, propylene glycol fat Esters, sucrose fatty acid esters, fatty acid alkan
  • silicone surfactants those having a siloxane structure as a nonpolar site are called silicone surfactants, and those having a perfluoroalkyl group are called fluorosurfactants.
  • silicone surfactants include polyester-modified silicone, acrylic-terminated polyester-modified silicone, polyether-modified silicone, acrylic-terminated polyether-modified silicone, polyglycerin-modified silicone, aminopropyl-modified silicone and the like.
  • perfluoroalkyl sulfonate perfluoroalkyl carboxylate, perfluoroalkyl phosphate, perfluoroalkyl trimethyl ammonium salt, perfluoroalkyl ethylene oxide adduct, perfluoroalkyl group Included oligomers and the like.
  • various surfactants as described above can be used alone or in combination of two or more.
  • some surfactants react with the water-soluble inorganic binder, and there is a possibility that the surface activity decreases or disappears with the passage of time, so, for example, water glass as the water-soluble inorganic binder
  • anionic surfactants which do not react with water glass, nonionic surfactants and silicone surfactants are particularly advantageously used in the template material of the present invention.
  • a polyhydric alcohol may be contained in the liquid binder composition covering the surface of the foundry sand particle on which the coating layer is formed.
  • the content of polyhydric alcohol in the binder composition is 0.1 to 20.0 parts by mass with respect to 100 parts by mass of the solid content of the water-soluble inorganic binder contained therein. Among them, 0.5 to 15.0 parts by mass is more preferable, and 0.75 to 12.5 parts by mass is most preferable.
  • 1,2-pentanediol, 1,5-pentanediol, 1,2-hexanediol, 2-ethyl-1,3-hexanediol, 1,6-hexanediol, 1,2-heptanediol, 1,2- Octanediol, 1,2,6-hexanetriol, thioglycol, hexylene glycol, glycerin, trimethylolethane, trimethylolpropane and the like can be exemplified.
  • various kinds of publicly known additives may be used alone or together with the above-mentioned coupling agent or the like in the liquid caking agent composition covering the periphery of casting sand particles. It is also possible to optionally contain additives.
  • additives in order to incorporate such an additive into the binder composition, when a liquid binder composition is prepared, it is added to the composition together with a water-soluble inorganic binder etc. A method of mixing or mixing a caking agent composition containing an additive with a foundry sand, or adding a predetermined additive to the foundry sand separately from the caking agent composition A method of uniformly kneading or mixing is adopted.
  • a lubricant which contributes to the improvement of the flowability of the mold material is advantageously used.
  • lubricants usable in the present invention include waxes such as paraffin wax, synthetic polyethylene wax and montanic acid wax; fatty acid amides such as stearic acid amide, oleic acid amide and erucic acid amide; methylenebisstearic acid amide and ethylene bis Alkylene fatty acid amides such as stearic acid amide; stearic acid, stearyl alcohol; lead stearate, zinc stearate, calcium stearate, metal stearate such as magnesium stearate; stearic acid monoglyceride, stearyl stearate, hydrogenated oil etc.
  • paraffin, wax, light oil, machine oil, spindle oil, insulating oil, waste oil, vegetable oil, fatty acid ester, organic acid, graphite fine particles, mica, vermiculite, fluorine-based mold release agent, silicone-based mold release Agents and the like can also be used.
  • These other additives are generally 0.5 to 10 parts by mass, preferably 1 to 100 parts by mass of the solid content of the water-soluble inorganic binder contained in the liquid caking agent composition. It is contained in a proportion of ⁇ 5 parts by mass, more preferably 1 to 3 parts by mass.
  • the mold material in a wet state according to the present invention is 1) first, after forming a solid coating layer containing an organic compound on the surface of casting sand, 2) for casting sand on which such a coating layer is formed. It is possible to produce advantageously by adding and kneading or mixing a liquid caking agent composition containing a water-soluble inorganic caking agent.
  • the wet mold material of the present invention In producing the wet mold material of the present invention according to such a production method, first, as a method of forming a solid coating layer containing an organic compound on the surface of casting sand, among various known methods, From the above, ones according to the characteristics and the like of the organic compound are appropriately selected and adopted. For example, as a method of forming a solid coating layer containing an organic compound on the surface of casting sand, a dry hot coating method, a cold coating method and the like can be exemplified, but a solid coating layer can be formed. If there is, the method is not particularly limited.
  • solid organic compounds are added to and mixed with foundry sand heated to 130 to 180 ° C., and solid organic compounds are melted by the heat of the foundry sand, and the melted organics
  • This is a method of forming a solid coating layer on the surface of casting sand by coating the surface of the refractory aggregate with a compound and then cooling while maintaining this mixture.
  • the organic compound is dissolved as it is or in a solvent such as methanol to make a liquid, the liquid is added to casting sand and mixed, and the solvent is volatilized, etc. Is a method of forming a solid coating layer.
  • crosslinking curable resin when using a crosslinking curable resin as the organic compound, for example, after forming a solid coating layer according to the coating method described above, by further heating, and / or by adding a curing agent or a curing catalyst, The crosslinkable curable resin may be cured to increase the molecular weight of the crosslinkable curable resin contained in the coating layer.
  • the crosslink-curable resin by heating, for example, it is placed in a thermostatic bath of 120 ° C. to 300 ° C. and reaction hardened for about 5 to 60 minutes, or casting sand is heated to 150 ° C. to 300 ° C., 120 ° C.
  • the coating layer is A solid containing an organic compound by kneading or mixing a water-soluble inorganic caking agent in the form of an aqueous solution as a caking agent, if necessary, with additives to the foundry sand, and uniformly mixing it.
  • a wet mold material according to the present invention is obtained, which consists of a mixture of foundry sand provided with the following coating layer and a liquid binder composition containing a water-soluble inorganic binder.
  • the various conditions for mixing are appropriately determined according to the type and water content of the water-soluble inorganic binder in the form of an aqueous solution, and the temperature for mixing is generally room temperature to 40 ° C. It is said that In the production of a moist mold material according to the present invention, the water content thereof is adjusted so that the obtained mold material exhibits an appropriate wet state, but, for example, as a water-soluble inorganic caking agent
  • the water content in the mold material is preferably 70 to 900% by mass, more preferably 95 to 500% by mass so as to be more than 55% by mass of the solid content of waterglass Adjusted to In the wet mold material according to the present invention, the moisture content of which is thus adjusted, the mold air in the wet state is dried and blocked by blow air at the time of filling the mold at the time of mold making.
  • the water content of the mold material can be measured by the weight change when heated by the Karl Fischer method, a drier or the like.
  • the above-mentioned wet mold material (coated sand) is loaded into the mold cavity of the mold which gives the desired mold, while such mold is brought to a temperature of 80-300.degree. C., preferably 100-200.degree. Heat and hold in the mold until the filled mold material (coated sand) is dry. By such heating and holding in the mold, solidification or curing of the filled mold material (coated sand) proceeds.
  • a wet mold material coated sand
  • molding sand particles constituting the mold material are added to the binder composition present in the periphery.
  • Assemblages (bindings) of template materials are formed which are linked and linked to each other through the water-soluble inorganic binder contained, and exhibit an integral template shape.
  • a curing agent may be added into the cavity as an additive for promoting the curing of the water-soluble inorganic binder.
  • the water-soluble inorganic binder usually solidifies by evaporation of water if no additive is added, and hardens when a curing agent is added. is there.
  • the mold consisting of an aggregate (binding body) of the mold material may be any of a mold material (coated sand) simply solidified (solidified material) and a hardened material (hardened material) by a curing agent. It is included.
  • organic acids such as carbon dioxide (carbonated water), sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, oxalic acid, carboxylic acid, para-toluenesulfonic acid, methyl formate, ethyl formate, propyl formate, ⁇ -
  • organic acids such as carbon dioxide (carbonated water), sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, oxalic acid, carboxylic acid, para-toluenesulfonic acid, methyl formate, ethyl formate, propyl formate, ⁇ -
  • esters of butyrolactone, ⁇ -propion lactone ethylene glycol diacetate, diethylene glycol diacetate, glycerin diacetate, triacetin, propylene carbonate, etc.
  • monohydric alcohols such as methanol, ethanol, butanol, hexanol, octanol, etc.
  • the mold material in a wet state (coated sand) in the cavity of the mold it is advantageous to heat the mold in a state of being preheated to a predetermined temperature (preheated) and kept warm at that temperature. It is preferred to prepare and fill the mold material into the cavity of such mold and to heat the mold material. Thus, by heating the mold in advance, it is possible to accelerate the drying of the mold material and shorten the molding time.
  • a predetermined temperature preheated
  • 80 to 300 ° C. preferably 100 to 200 ° C., more preferably 120 to 180 ° C. is employed.
  • the temperature is preferably 80 ° C.
  • the temperature be 80 ° C. or higher.
  • the temperature is preferably 300 ° C. or less from the viewpoint of preventing the occurrence of the problem that the template strength is not developed.
  • hot air or superheated steam is blown into the mold to accelerate the filling phase (mold material) in the mold in order to accelerate the evaporation of water.
  • the method is preferably adopted.
  • hot air or superheated steam aeration it is rapidly dried to the inside of the filling phase consisting of the mold material, and the solidification or curing of such filling phase is more advantageously promoted, whereby the solidification (curing) is achieved.
  • a carrier gas consisting of at least one of carbon dioxide, argon, nitrogen, helium and air is molded.
  • a method of blowing into the mold and venting the filling phase is preferably employed.
  • carbon dioxide acts as a curing agent
  • argon, nitrogen, helium and air act as solidification accelerators.
  • the air is preferably air from which part or all of the water vapor has been removed (dry air), and dry air having a humidity of 50% or less, more preferably dry air having a humidity of 30% or less is used.
  • the carrier gas which is obtained by converting the organic acid, the ester, the monohydric alcohol and the like exemplified above as the curing agent into a gas or mist is inside the mold. You may ventilate.
  • the method of adding the curing agent into the molding die is to cause the curing to proceed by the reaction between the water-soluble inorganic binder and the curing agent.
  • a curing agent is added to the mold material before filling into the mold, and the mold material to which the curing agent is added is filled into the mold, and in the mold. It is possible to add the curing agent to the filled mold material by aerating it as a carrier gas.
  • hot air or superheated steam may be blown into the mold in order to accelerate the evaporation of water.
  • a carrier gas consisting of at least one of carbon dioxide, argon, nitrogen, helium and air may be blown into the mold.
  • heating of the mold is not necessarily required, but in order to accelerate solidification or curing more advantageously, it is preferable to heat the mold.
  • organic acids such as carbon dioxide (carbonated water) listed above as curing agents, esters such as methyl formate, monohydric alcohols such as methanol, and the like are similarly exemplified. I can do it.
  • the mold material filled in the cavity of the mold is dried and solidified by the reduced pressure.
  • a pressure reduction method for example, pressure reduction in the inside of the mold by a known suction means and the like can be mentioned.
  • hot air or superheated steam may be blown into the mold in order to accelerate the evaporation of water.
  • a carrier gas consisting of at least one of carbon dioxide, argon, nitrogen, helium and air may be blown into the mold.
  • any of the molds obtained according to the above-described manufacturing method using the wet mold material according to the present invention and the molds obtained according to other manufacturing methods, the following excellent effects are advantageously enjoyed. It is possible. That is, when casting is carried out using such a mold, the heat produced by the molten metal effectively decomposes the organic compound contained in the solid coating layer on the surface of the foundry sand, and such thermal decomposition generates a gas. From the point of view, the disintegrability of the mold after casting becomes good.
  • the wet mold material of the present invention contains the organic compound in the solid coating layer on the surface of the foundry sand, but in the whole mold material, the content of the organic compound is constituted using the organic caking agent.
  • the amount of gas generation at that time is an organic binder, since it is very small compared to the mold material to be Compared to the case of using a mold made of mold material, there is an advantage that it is much less.
  • the template material is produced such that the amount of gas generated when heating the template finally obtained at 1000 ° C. for 240 seconds is 3 to 30 ml, preferably 4 to 28 ml, more preferably 6 to 20 ml per 1 g of the template It is preferable to prepare
  • casting is carried out using a mold consisting of a wet mold material according to the present invention, and in casting sand (recovered sand) recovered from the casting mold after such casting, an organic compound present on the casting sand surface Since the solidified or hardened material of the water-soluble inorganic binder is in a state of being easily peeled off from the surface of the casting sand by the gas generated by the thermal decomposition of the powder, dry recovery treatment is performed on such recovered sand. It is possible to reproduce easily.
  • the dry regeneration treatment for recovered sand may be any method as long as it is a dry regeneration treatment method conventionally known as a regeneration method for recovered sand.
  • a method of treating recovered sand comprising at least a polishing treatment and optionally including a calcination treatment, a classification treatment and the like is called a dry regeneration treatment.
  • the polishing process in the dry regeneration process the deposit remaining on the surface of the recovered sand is scraped off.
  • the recovered sand is charged into the rotating rotor, where it is broken into single particles of casting sand, and further, deposits on the surface of the casting sand particles (water-soluble inorganic caking agent) The solidified material or hardened material) is scraped off.
  • the polishing method is not particularly limited, and examples thereof include polishing using a rotary reclaimer, a sandflusher, a sand Shiner or the like.
  • various polishing conditions such as polishing time in the polishing process are appropriately determined in accordance with the adhesion state of the deposit on the surface of the recovered sand.
  • the firing treatment is carried out for the purpose of burning and removing organic compounds, dust, impurities, and the like of the coating layer adhering to the recovered sand.
  • a roasting furnace such as a rotary kiln or a tunnel kiln is used, and the recovered sand is fired in the furnace while throwing the recovered sand into the roasting furnace as needed.
  • the firing temperature in the roasting furnace is 200 to 700 ° C., preferably 300 to 700 ° C., more preferably 350 to 650 ° C., and still more preferably 400 to 600 ° C. If the firing temperature is lower than 200 ° C., there is a risk that dust and the like adhering to the recovered sand may not be sufficiently burned.
  • the firing temperature exceeds 700 ° C.
  • the water-soluble inorganic binder remaining on the surface of the recovered sand may be sintered, and it may be difficult to separate from the surface of the sand particles.
  • Such baking treatment may be performed before, after, or before or after the above-mentioned polishing treatment.
  • Classification is generally carried out after the above-mentioned polishing treatment or after the firing treatment if such firing treatment is carried out after the polishing treatment, and the foundry sand taken out from the above-described process step.
  • a process of flowing the treated material by an air flow to remove fine powder contained in such a cast sand process by a dust collector, and a sieving process of removing foreign matter contained in the cast sand process by a sieve have.
  • the dust collection step the cast sand processing product is made to flow by the air flow, and the fine powder such as shavings, dust and fine powder contained in the cast sand processing product can not be removed in the previous steps.
  • the body is removed by a driven dust collector, which effectively removes minute residues from the foundry sand treatment. Further, in the sieving process, by classifying the particle size of the foundry sand processing material using a sieve, the foreign matter contained in such a foundry sand processing material, which could not be removed in the previous steps, is removed. Thereby, sand of appropriate particle diameter is selectively taken out.
  • adopted in this invention is not limited to what has the above-mentioned dust collection process and a sieving process, For example, it has only any one of a dust collection process and a sieving process. However, there is no problem even if the dust collection process is performed after the sieving process is performed. Furthermore, the classification step may adopt any other known method as long as the molding sand can be classified to a predetermined size.
  • the foundry sand regenerated by the method for reclaiming recovered foundry sand according to the present invention is again provided to the manufacturing process of the mold material and the molding process of the mold to provide the foundry sand having excellent properties. It will be used to advantage.
  • Viscosity measurement method with a single cylindrical shape rotary claymeter defined in JIS-Z-8803-2011 "Viscosity measurement method of liquid", using the device of the same principle as the device described there
  • the viscosity (cP) at 25 ° C. of the liquid caking agent composition used in Examples and Comparative Examples is measured.
  • a liquid caking agent composition means water glass aqueous solution or potassium carbonate aqueous solution itself, and CS is used using an additive.
  • it means a liquid obtained by adding an additive to a water glass aqueous solution or the like.
  • the dissolved amount (W3 (g)) of the organic compound is determined from the following equation in consideration of the mass of the evaporating dish.
  • W3 (g) (W2-W1) x 10
  • the solubility of the organic compound in water at 25 ° C. is calculated from the following formula using W3 calculated as described above.
  • each CS a cylindrical test piece of 3 cm in diameter and 5 cm in length is molded, and the test piece is put in a quartz glass tube of 4.5 cm in diameter and 45 cm in length, and attached with a glass tube. Seal with silicone rubber.
  • EOS-3 product name, manufactured by Ozawa Scientific Co., Ltd.
  • the test piece is heated at 1000 ° C. for 4 minutes together with the glass tube.
  • the amount of gas generated is measured every 30 seconds with a wet gas meter W-NK type (product name, manufactured by Shinagawa Co., Ltd.).
  • Gas generation amount (ml / g) [Total gas generation amount (ml) after 4 minutes] / [specimen mass (g)]
  • a half hollow main mold 6 having a pouring inlet 2 at the upper part and a core fixing part 4 of the core at the lower part (cavity diameter: Within 6 cm, height: 6 cm), circular fixed non-air element 10 (diameter: 5 cm, height: 5 cm) with baseboard 8 made using each CS is adhesively fixed with base wood fixing part 4
  • the half mold half molds 6 are bonded and fixed to each other to make a casting test sand mold 12.
  • the bonded main mold is clamped with a vise or wound, or a wire is wound and fixed firmly.
  • molten iron FC150 (temperature 1350 ⁇ 50 ° C.) is poured from the pouring inlet 2 of the sand mold 12 for casting test and solidified, and then the main die 6 is broken, and the cylindrical casting shown in FIG. 16 is taken out, and the round non-aircraft 10 is discharged by striking the casting 16 at room temperature using an air hammer.
  • the chipping pressure is 0.3 MPa, and an impact is applied to the casting 16 every three seconds with an air hammer.
  • the ease of discharging CS (hereinafter, referred to as core CS) constituting the circular non-airspacer 16 from the casting 16 is evaluated in five steps in accordance with the criteria shown below.
  • core CS the ease of discharging CS constituting the circular non-airspacer 16 from the casting 16 is evaluated in five steps in accordance with the criteria shown below.
  • a to C pass.
  • B The amount of fine powder is 1% by mass or more and less than 2% by mass with respect to the mass of casting sand.
  • C The amount of fine powder is 0.5% by mass or more and less than 1% by mass with respect to the mass of casting sand.
  • D The amount of fine powder is 0.25% by mass or more and less than 0.5% by mass with respect to the mass of casting sand.
  • E The amount of fine powder is less than 0.25% by mass with respect to the mass of casting sand.
  • Novolak Type Phenolic Resin In a reaction vessel equipped with a thermometer, a stirrer and a condenser, 940 parts of phenol, 479 parts of 47% formalin and 2.8 parts of oxalic acid were charged. Then, the temperature in the reaction vessel is gradually raised to reach the reflux temperature, and then the reaction is carried out by reflux for 90 minutes, and the reaction solution is heated and concentrated under reduced pressure until the temperature reaches 170 ° C. A novolac phenolic resin having a weight average molecular weight (Mw) of 2900 was obtained.
  • Mw weight average molecular weight
  • Resol type phenolic resin A As the resol type phenol resin A, SP400 (trade name, Mw: 2100) manufactured by Asahi Organic Materials Co., Ltd., which is an ammonia resol type phenol resin, was used.
  • Resol type phenolic resin B In a reaction vessel equipped with a thermometer, a stirrer and a condenser, 940 parts of phenol, 957 parts of 47% formalin and 20 parts of potassium hydroxide were charged. Then, the temperature in the reaction vessel was gradually raised to 75 ° C. in 60 minutes and reacted at that temperature for 5 hours. After that, dehydration was performed to 80 ° C. under reduced pressure to obtain resol-type phenol resin B having a weight average molecular weight (Mw) of 1,500.
  • Mw weight average molecular weight
  • a mixture of the two resins mixed in a ratio of 1: 1 (mass ratio) was used.
  • Polyvinyl acetate As poly (vinyl acetate), a polyvinyl acetate solution of Gohtheil M35-X6 (manufactured by Japan Synthetic Chemical Industry Co., Ltd., 35% solution in methanol) was used.
  • Starch Starch manufactured by Wako Pure Chemical Industries, Ltd. was used as a starch solution (concentration: 25%) obtained by dissolving it in hot water at 70 ° C.
  • water glass which is a water-soluble inorganic binder
  • a commercial product: No. 1 sodium silicate (trade name: manufactured by Fuji Chemical Co., Ltd., a molar ratio of SiO 2 / Na 2 O: 2.0) is prepared.
  • Shinagawa universal stirrer (5DM-r type, manufactured by Dalton Co., Ltd.
  • a wet mold material (CS25) was obtained according to the same procedure as in Production Example 20 except that the step of forming a solid coating layer was not performed in Production Example 20 of wet CS.
  • the water content of the obtained CS25 was calculated from the added amount of the added material, it was an amount corresponding to 100% by mass of the solid content of potassium carbonate.
  • the mold As apparent from Tables 1 to 4, in the mold (Examples 1 to 20) obtained using the wet mold material according to the present invention, the mold has excellent disintegration after casting and is obtained. It is recognized that the casting surface of the cast product is good. In addition, with regard to sand recovered after casting, it has been found that solidified or hardened material of water-soluble inorganic binder adhered thereto can be easily removed by polishing, according to the present invention. It is also confirmed that the wet mold material is easy to regenerate the foundry sand.
  • silicon dioxide particles 971U (trade name, manufactured by Elchem Co., average particle size: 0.15 ⁇ m) as a filling improver are each silicon dioxide particles HS312 (trade name, Nippon Steel Sumikin Materials shares) Same as in Production Example 7 except that aluminum oxide particles AZ-75 (trade name, manufactured by Nippon Steel & Sumikin Materials Co., Ltd., average particle size: 2.5 ⁇ m) are used instead of the company-made average particle size: 9.5 ⁇ m
  • a wet mold material (CS28, CS29) was obtained according to the following procedure. When the water content of the obtained CS28 and CS29 was calculated from the added amount of the added material, it was an amount corresponding to 226% by mass of the solid content of the water glass.
  • wet CS 31- In Production Example 11 of wet CS, the above Production Example 11 except that the borate (sodium tetraborate decahydrate) is replaced with sulfate (lithium sulfate) and carbonate (basic zinc carbonate), respectively.
  • a wet mold material (CS30, CS31) was obtained according to the same procedure as in. When the water content of the obtained CS30 and CS31 was calculated from the added amount of the added material, it was an amount corresponding to 226% by mass of the solid content of the water glass.
  • test piece for width test (width: 1 cm ⁇ height: 1 cm ⁇ length: 8 cm) was produced.
  • the moisture absorption strength retention of the obtained test pieces was calculated according to the following procedure (Examples 21 to 33). The results are shown in Tables 5 and 6 below.
  • Breaking strength (N / cm 2 ) 1.5 ⁇ LW / ab 2 [Wherein L: distance between supporting points (cm), W: breaking load (N), a: width of the test piece (cm), b: thickness of the test piece (cm).
  • test pieces (width: 1 cm ⁇ height: 1 cm ⁇ length: 8 cm) were produced.
  • the bending strength of the obtained test piece was calculated according to the following procedure (Examples 34 to 40). The results are shown in Table 7 below.
  • Breaking strength (N / cm 2 ) 1.5 ⁇ LW / ab 2 [Wherein L: distance between supporting points (cm), W: breaking load (N), a: width of the test piece (cm), b: thickness of the test piece (cm). ]
  • the final state is achieved by including a coupling agent in either or both of the solid coating layer and the water-soluble inorganic binder. It can be seen that the strength is improved in the mold obtained in In particular, it is recognized that the incorporation of the coupling agent into each of the solid coating layer and the water-soluble inorganic binding agent results in a mold which exhibits very high mold strength by synergetic effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

The present invention provides a green molding material that results in an end-product mold exhibiting excellent collapsibility, makes it easy to recycle the sand recovered from a post-casting mold, and is unlikely to cause odor issues. The green molding material is obtained by forming an organic compound-containing solid coating layer on the surface of molding sand and then coating the molding sand, on which the coating layer has been formed, with a liquid binder composition that contains a water-soluble inorganic binder.

Description

鋳型材料及びその製造方法、鋳型及びその製造方法、並びに鋳物砂の再生方法Mold material and method for manufacturing the same, mold and method for manufacturing the same, and method for regenerating casting sand
 本発明は、鋳型材料及びその製造方法、鋳型及びその製造方法、並びに鋳物砂の再生方法に関するものである。 The present invention relates to a mold material and a method of manufacturing the same, a mold and a method of manufacturing the same, and a method of regenerating casting sand.
 従来より、金属溶湯の鋳造に用いられる鋳型の一つとして、耐火性骨材からなる鋳物砂を所定の粘結剤にて被覆してなるコーテッドサンド(鋳型材料)を用いて、目的とする形状に造型して得られたものが、用いられている。具体的には、日本鋳造工学会編の「鋳造工学便覧」第78~90頁には、そのようなコーテッドサンドにおける粘結剤として、水ガラスの如き無機系粘結剤の他、フェノール樹脂やフラン樹脂、ウレタン樹脂等の樹脂を用いた有機系粘結剤が明らかにされており、また、それら粘結剤を用いて自硬性鋳型を造型する手法も、明らかにされている。 Conventionally, as one of the molds used for casting molten metal, a target shape is obtained by using a coated sand (mold material) formed by coating a molding sand made of a refractory aggregate with a predetermined binder. The one obtained by molding into is used. Specifically, in "Casting Engineering Handbook" edited by the Japan Casting Engineering Association, pages 78 to 90, inorganic resins such as water glass, phenol resin and the like can be used as a binder in such coated sands. Organic binders made of resins such as furan resin and urethane resin have been clarified, and methods of forming self-hardening molds using these binders have also been clarified.
 例えば、特許文献1(特開2012-76115号公報)においては、耐火骨材(鋳物砂)の表面に、粘結剤として水ガラス等の所定の水溶性無機化合物を含有する固形のコーティング層が被覆されてなる、流動性が良好な粘結剤コーテッド耐火物(コーテッドサンド)が、明らかにされている。また、同文献には、そのような流動性が良好な粘結剤コーテッド耐火物(コーテッドサンド)を、鋳型造型のための成形型の成形キャビティ内に充填した後、その成形型内に水蒸気を通気せしめることにより、粘結剤コーテッド耐火物(コーテッドサンド)の固化が進行し、目的とする鋳型が得られる手法についても、明らかにされている。 For example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2012-76115), a solid coating layer containing a predetermined water-soluble inorganic compound such as water glass as a caking agent is formed on the surface of a fireproof aggregate (casting sand). A well-flowed, binder-coated refractory (coated sand) that is coated is disclosed. In the same document, such caking agent coated refractory (coated sand) having good fluidity is filled in the molding cavity of a molding die for mold making, and then water vapor is contained in the molding die. It has also been clarified that by aeration, solidification of the binder-coated refractory (coated sand) proceeds, and a target mold is obtained.
 ここで、水ガラス等の無機系粘結剤を用いて構成されるコーテッドサンド(鋳型材料)は、有機系粘結剤を用いたコーテッドサンド(鋳型材料)と比較して、有機分の含有量が少ないため、造型時や鋳造時の熱による種々のガスの発生が有利に抑制され、臭気等の問題を発生し難いものであることが、従来より知られている。しかしながら、特許文献1に開示のものを始めとする、従来の無機系粘結剤を用いて構成されるコーテッドサンド(鋳型材料)にあっては、鋳造後の鋳型から鋳物砂(耐火性骨材)を回収し、その回収砂を焙焼処理によって再生しようとすると、回収砂の表面に残存する無機系粘結剤が燃焼せず、逆に焼結してしまって鋳物砂(耐火性骨材)の表面に硬く張り付くため、再生が困難であるという問題を内在している。特に、無機系粘結剤として水ガラスを用いたコーテッドサンド(鋳型材料)は、鋳造時の熱によって水ガラスがガラス化してしまい、鋳造後に回収した鋳物砂に対して焙焼処理及び研磨処理を実施しても、砂表面のガラス化した水ガラスを除去することが非常に困難であるという問題がある。また、無機系粘結剤を用いた従来のコーテッドサンド(鋳型材料)には、それを用いて得られる鋳型の崩壊性が十分なものではなく、この点においても未だ改善の余地が残されているのである。 Here, the coated sand (template material) configured using an inorganic caking agent such as water glass has an organic content compared to the coated sand (template material) using an organic caking agent It is conventionally known that generation of various gases due to heat during molding or casting is advantageously suppressed, and problems such as odor are less likely to occur. However, in the coated sand (mold material) constructed using a conventional inorganic binder such as that disclosed in Patent Document 1, casting sand (refractory aggregate) is obtained from the mold after casting ) Is recovered and the recovered sand is to be regenerated by roasting, the inorganic caking agent remaining on the surface of the recovered sand does not burn but it is sintered in reverse and cast sand (refractory aggregate) The problem is that it is difficult to regenerate because it sticks firmly to the surface of. In particular, in coated sand (mould material) using water glass as an inorganic caking agent, the water glass becomes vitrified by the heat during casting, and the cast sand collected after casting is roasted and polished Even if implemented, there is a problem that it is very difficult to remove the vitrified water glass on the sand surface. In addition, in the conventional coated sand (template material) using an inorganic binder, the disintegrability of the template obtained using it is not sufficient, and there is still room for improvement in this respect. It is
特開2012-76115号公報JP 2012-76115 A
 ここにおいて、本発明は、かかる事情を背景として為されたものであって、その解決すべき課題とするところは、鋳型の崩壊性に優れていると共に、鋳物砂の再生が容易な鋳型材料を提供することにある。また、本発明は、そのような優れた特性を有する鋳型材料を有利に製造することが出来る方法、かかる鋳型材料を用いた鋳型及びその製造方法、更には、鋳物砂の再生方法を提供することをも、その解決課題とするものである。 Here, the present invention has been made against the background described above, and the problem to be solved is a mold material which is excellent in the collapsibility of the mold and which facilitates the regeneration of foundry sand. It is to provide. Further, the present invention provides a method capable of advantageously manufacturing a mold material having such excellent properties, a mold using such a mold material, a method of manufacturing the same, and a method of regenerating cast sand. Is the problem to be solved.
 そして、本発明は、上記した課題を解決するために、以下に列挙せる如き各種の態様において、好適に実施され得るものであるが、また、以下に記載の各態様は、任意の組合せにおいて採用可能である。なお、本発明の態様乃至は技術的特徴は、以下に記載のものに何等限定されることなく、明細書全体の記載から把握され得る発明思想に基づいて、認識され得るものであることが、理解されるべきである。 And, in order to solve the problems described above, the present invention can be suitably implemented in various aspects as listed below, and each aspect described below is adopted in any combination. It is possible. It should be noted that aspects or technical features of the present invention can be recognized based on the inventive concept that can be grasped from the description of the entire specification without being limited to the following description. It should be understood.
(1) 有機化合物を含む固体状のコーティング層で被覆された鋳物砂が、
   水溶性無機粘結剤を含む液状の粘結剤組成物にて被覆されていること
   を特徴とする湿態の鋳型材料。
(2) 前記固体状のコーティング層の厚さが0.1~6μmである前記態
   様(1)に記載の鋳型材料。
(3) 前記有機化合物が、架橋硬化性樹脂及びその硬化物、熱可塑性樹脂
   、炭水化物からなる群より選ばれる少なくとも一種である前記態様(
   1)又は前記態様(2)に記載の鋳型材料。
(4) 前記架橋硬化性樹脂がフェノール樹脂である前記態様(3)に記載
   の鋳型材料。
(5) 前記有機化合物が、重量平均分子量が300以上の高分子化合物で
   ある前記態様(1)乃至前記態様(4)の何れか1つに記載の鋳型材
   料。
(6) 前記有機化合物の25℃の水100gに対する溶解度が1質量%以
   下である前記態様(1)乃至前記態様(5)の何れか1つに記載の鋳
   型材料。
(7) 前記固体状のコーティング層がカップリング剤を含む前記態様(1
   )乃至前記態様(6)の何れか1つに記載の鋳型材料。
(8) 前記液状の粘結剤組成物における前記水溶性無機粘結剤の固形分量
   が10~80質量%である前記態様(1)乃至前記態様(7)の何れ
   か1つに記載の鋳型材料
(9) 前記液状の粘結剤組成物がカップリング剤を含む前記態様(1)乃
   至前記態様(8)の何れか1つに記載の鋳型材料。
(10) 前記液状の粘結剤組成物が無機酸化物粒子を含む前記態様(1)
    乃至前記態様(9)の何れか1つに記載の鋳型材料。
(11) 前期無機酸化物粒子が二酸化珪素粒子である前記態様(10)に
    記載の鋳型材料。
(12) 前記液状の粘結剤組成物が耐湿性向上剤を含む前記態様(1)乃
    至前記態様(11)の何れか1つに記載の鋳型材料。
(13) 前記水溶性無機粘結剤が水ガラスである前記態様(1)乃至前記
    態様(12)の何れか1つに記載の鋳型材料。
(14) 前記液状の粘結剤組成物が水を含む前記態様(1)乃至前記態様
    (13)の何れか1つに記載の鋳型材料。
(15) 前記態様(1)乃至前記態様(14)の何れか1つに記載の鋳型
    材料を用いて造型された鋳型。
(16) 1000℃で240秒間、加熱した時のガス発生量が、1g当た
    り3~30mlである前記態様(15)に記載の鋳型。
(17) 鋳物砂の表面に、有機化合物を含む固体状のコーティング層を形
    成せしめる工程と、
     前記固体状のコーティング層が形成された鋳物砂に対して、水溶
    性無機粘結剤を含む液状の粘結剤組成物を添加し、混練乃至は混合
    せしめる工程と、
    を有する湿態の鋳型材料の製造方法。
(18) 前記有機化合物が架橋硬化性樹脂であり、前記鋳物砂の表面に前
    記固体状のコーティング層を形成せしめた後に、該固体状のコーテ
    ィング層に含まれる前記架橋硬化性樹脂を硬化せしめる工程を有す
    る前記態様(17)に記載の鋳型材料の製造方法。
(19) 前記水溶性無機粘結剤が水ガラスである前記態様(17)又は前
    記態様(18)に記載の鋳型材料の製造方法。
(20) 前記液状の粘結剤組成物が水を含む前記態様(17)乃至前記態
    様(19)の何れか1つに記載の鋳型材料の製造方法。
(21) 前記態様(1)乃至前記態様(14)の何れか1つに記載の鋳型
    材料を成形型内に充填した後、かかる成形型内で保持し、a)該成
    形型を加熱することにより、b)該成形型内に硬化剤を添加するこ
    とにより、又は、c)該成形型内を減圧することにより、該成形型
    内に充填された鋳型材料を固化乃至は硬化せしめて、目的とする鋳
    型を得ることを特徴とする鋳型の製造方法。
(22) 前記成形型の保持中に、該成形型内に熱風又は過熱水蒸気が通気
    せしめられる前記態様(21)に記載の鋳型の製造方法。
(23) 前記成形型の保持中に、該成形型内に二酸化炭素、アルゴン、窒
    素、ヘリウム、空気のうち少なくとも一種からなるキャリアガスが
    通気せしめられる前記態様(21)又は前記態様(22)に記載の
    鋳型の製造方法。
(24) 前記成形型が、80℃~300℃の温度に加熱される前記態様(
    21)乃至前記態様(23)の何れか1つに記載の鋳型の製造方法
    。
(25) 前記態様(1)乃至前記態様(14)の何れか1つに記載の鋳型
    材料の固化物乃至は硬化物からなる鋳型を用いて、鋳造を行なった
    後、該鋳型から鋳物砂を回収し、乾式再生処理を施して再生砂を得
    ることを特徴とする鋳物砂の再生方法。
(1) Foundry sand coated with a solid coating layer containing an organic compound,
A wet mold material characterized in that it is coated with a liquid caking agent composition containing a water-soluble inorganic caking agent.
(2) The mold material according to the above-mentioned (1), wherein the thickness of the solid coating layer is 0.1 to 6 μm.
(3) The above embodiment (the organic compound is at least one selected from the group consisting of a cross-linking curable resin and a cured product thereof, a thermoplastic resin, and a carbohydrate)
1) or the mold material as described in the said aspect (2).
(4) The mold material according to the above aspect (3), wherein the crosslinkable curable resin is a phenol resin.
(5) The template material according to any one of the aspects (1) to (4), wherein the organic compound is a polymer compound having a weight average molecular weight of 300 or more.
(6) The mold material according to any one of the above aspects (1) to (5), wherein the solubility of the organic compound in 100 g of water at 25 ° C. is 1% by mass or less.
(7) The embodiment wherein the solid coating layer contains a coupling agent (1
The template material according to any one of the above aspects (6).
(8) The mold according to any one of the above aspects (1) to (7), wherein the solid content of the water-soluble inorganic binder in the liquid caking agent composition is 10 to 80% by mass. Material (9) The mold material according to any one of the above embodiments (1) to (8), wherein the liquid binder composition contains a coupling agent.
(10) The embodiment (1), wherein the liquid caking agent composition contains inorganic oxide particles
The mold material according to any one of the above aspects (9).
(11) The template material according to the above aspect (10), wherein the inorganic oxide particles are silicon dioxide particles.
(12) The mold material according to any one of the above aspects (1) to (11), wherein the liquid caking agent composition contains a moisture resistance improver.
(13) The mold material according to any one of the modes (1) to (12), wherein the water-soluble inorganic binder is water glass.
(14) The mold material according to any one of the modes (1) to (13), wherein the liquid binder composition contains water.
(15) A mold formed using the mold material according to any one of the above aspects (1) to (14).
(16) The mold according to the above mode (15), wherein the amount of gas generated when heated at 1000 ° C. for 240 seconds is 3 to 30 ml per 1 g.
(17) forming a solid coating layer containing an organic compound on the surface of the molding sand;
Adding a liquid caking agent composition containing a water-soluble inorganic caking agent to the foundry sand having the solid coating layer formed thereon, and kneading or mixing;
A method of producing a wet mold material having
(18) After the organic compound is a crosslink-curable resin, and the solid coating layer is formed on the surface of the casting sand, the crosslink-curable resin contained in the solid coating layer is cured. The method for producing a mold material as described in the above aspect (17), which comprises the step of:
(19) The method for producing a mold material according to the aspect (17) or the aspect (18), wherein the water-soluble inorganic binder is water glass.
(20) The method for producing a mold material according to any one of the modes (17) to (19), wherein the liquid binder composition contains water.
(21) After the mold material according to any one of the above aspects (1) to (14) is filled in a mold, the mold material is held in the mold, and a) the mold is heated Accordingly, the mold material filled in the mold is solidified or cured by b) adding a curing agent into the mold or c) decompressing the inside of the mold. , A method of producing a mold characterized by obtaining a target mold.
(22) The method for producing a mold according to the above mode (21), wherein hot air or superheated steam is ventilated in the mold while holding the mold.
(23) The mode (21) or the mode (22), wherein a carrier gas consisting of at least one of carbon dioxide, argon, nitrogen, helium and air is allowed to flow into the mold while holding the mold. The method for producing a mold according to.
(24) The embodiment wherein the mold is heated to a temperature of 80 ° C. to 300 ° C.
21) The manufacturing method of the mold as described in any one of the said aspect (23).
(25) After casting is performed using a mold made of a solidified or hardened material of the mold material according to any one of the above-mentioned aspect (1) to the above-mentioned aspect (14), molding sand is cast from the mold A method of reclaiming foundry sand comprising recovering and subjecting to dry regeneration treatment to obtain reclaimed sand.
 このような本発明に従う湿態の鋳型材料によれば、以下に列挙せる如き各種の効果が奏され得ることとなるのである。
(A) 本発明に従う湿態の鋳型材料からなる鋳型(以下、本段落では、単
   に鋳型という)を用いて、鋳造を実施すると、金属溶湯によってもた
   らされる熱によって、鋳物砂表面の固体状のコーティング層に含まれ
   る有機化合物が効果的に熱分解し、以て、鋳造後の鋳型の崩壊性が良
   好なものとなる。また、鋳造後の鋳型より回収される鋳物砂にあって
   は、上記した有機化合物の熱分解によって、水溶性無機粘結剤の固化
   物乃至は硬化物が鋳物砂表面から剥離し易い状態にあることから、回
   収した砂に対して研磨工程等を有する乾式再生処理を施すことにより
   、容易に再生することが可能である。
(B) 鋳型を用いた鋳造時に、コーティング層に含まれる有機化合物の熱
   分解によりガスが発生することから、金属溶湯が鋳型を構成する鋳物
   砂の粒子(砂粒)間への浸入を抑制するガス層が、鋳型表面と鋳造製
   品と間に有利に形成せしめられ、最終的に得られる鋳造製品の鋳肌が
   良好なものとなる。
(C) 本発明に従う湿態の鋳型材料において、有機化合物は固体状にて存
   在していることから、有機化合物の揮発等による臭気の問題が発生し
   難いものとなっている。
(D) 本発明に係る湿態の鋳型材料において、液状の粘結剤組成物中に無
   機酸化物粒子又は耐湿性向上剤を含有せしめると、吸湿した鋳型にお
   ける強度低下が有利に抑制されることから、鋳型の耐湿強度を向上さ
   せることが出来る。
(E) 本発明の鋳型材料において、カップリング剤を、固体状のコーティ
   ング層中に、及び/又は液状の粘結剤組成物中に含有せしめると、濡
   れ性及び接着性が向上し、鋳物砂とコーティング層との間の結合及び
   /又は鋳物砂表面のコーティング層と水溶性無機粘結剤との結合が、
   強固なものとなり、鋳型の強度を向上させることが出来る。
According to such a wet mold material according to the present invention, various effects as listed below can be exhibited.
(A) When casting is carried out using a mold consisting of a mold material in a wet state according to the present invention (hereinafter referred to simply as the mold in this paragraph), heat generated by molten metal causes the cast sand surface to The organic compounds contained in the solid coating layer are effectively pyrolyzed, whereby the disintegrability of the casted mold becomes good. Moreover, in the foundry sand recovered from the mold after casting, the solidified or hardened material of the water-soluble inorganic binder is easily exfoliated from the surface of the foundry sand by the thermal decomposition of the above-mentioned organic compound. Therefore, the recovered sand can be easily regenerated by subjecting it to a dry regeneration treatment having a polishing step and the like.
(B) At the time of casting using a mold, a gas is generated by the thermal decomposition of the organic compound contained in the coating layer, so that the gas prevents the molten metal from invading between particles (sand grains) of casting sand constituting the mold. Layers are advantageously formed between the mold surface and the cast product, resulting in a better cast surface of the final cast product.
(C) In the template material in the wet state according to the present invention, since the organic compound is present in solid form, the problem of odor due to volatilization of the organic compound is less likely to occur.
(D) In the wet mold material according to the present invention, when inorganic oxide particles or a moisture resistance improver is contained in the liquid caking agent composition, strength reduction in the moisture-absorbed mold is advantageously suppressed. Therefore, the moisture resistance of the mold can be improved.
(E) In the mold material of the present invention, when the coupling agent is contained in the solid coating layer and / or in the liquid binder composition, the wettability and the adhesion are improved, The bond between the foundry sand and the coating layer and / or the bond between the coating layer on the foundry sand surface and the water-soluble inorganic binder is
It becomes strong and can improve the strength of the mold.
実施例における崩壊性試験にて用いた鋳造試験用砂型の縦断面説明図である。It is longitudinal cross-sectional explanatory drawing of the sand mold for casting tests used by the disintegration test in an Example. 実施例において廃中子を内包したアルミニウム合金鋳物の縦断面説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is longitudinal cross-section explanatory drawing of the aluminum alloy casting which included the waste core in the Example.
 ところで、本発明に従う湿態の鋳型材料(コーテッドサンド)は、有機化合物を含む固体状のコーティング層で被覆された鋳物砂が、水溶性無機粘結剤を含む液状の粘結剤組成物によって被覆されて、構成されているものである。このように、本発明の鋳型材料(コーテッドサンド)は、固体状のコーティング層にて被覆された鋳物砂粒子が水溶性無機粘結剤を含む液状の粘結剤組成物にて覆われて、構成されているところから、全体として湿った状態(外観)、即ち、湿態状を呈しているのである。 By the way, the mold material (coated sand) in the wet state according to the present invention is a cast sand coated with a solid coating layer containing an organic compound covered with a liquid caking agent composition containing a water-soluble inorganic caking agent It is what is done. Thus, in the mold material (coated sand) of the present invention, the foundry sand particles coated with the solid coating layer are covered with a liquid caking agent composition containing a water-soluble inorganic caking agent, From the point of being configured, it is in a wet state (appearance) as a whole, that is, it exhibits a wet state.
 ここで、本明細書及び特許請求の範囲において、湿態の鋳型材料(コーテッドサンド)とは、常温流動性を有さない鋳型材料(コーテッドサンド)を意味するものである。より具体的には、以下の手法に従って動的安息角を測定した際に、測定値が得られない鋳型材料(コーテッドサンド)を、湿態の鋳型材料(コーテッドサンド)とする。動的安息角とは、片面が透明で平らな面を持つ円筒内に鋳型材料(コーテッドサンド)を入れ(例えば、直径:7.2cm×高さ:10cmの容器に体積半分まで鋳型材料(コーテッドサンド)を入れる)、一定速度(例えば、25rpm)で回転させ、円筒内で流動している鋳型材料(コーテッドサンド)の層の斜面が平面状となり、斜面と水平面との間で形成する角度を測定したものである。かかる測定方法において、鋳型材料(コーテッドサンド)が円筒内で流動せず、鋳型材料(コーテッドサンド)の層の斜面が平面として形成されず、それ故に動的安息角が測定できないものを、湿態の鋳型材料(コーテッドサンド)とする。湿態の鋳型材料(コーテッドサンド)は、乾態の鋳型材料(コーテッドサンド)と比較して、製造に手間がかからず、容易である点において、優位性がある。 Here, in the present specification and claims, the mold material in a wet state (coated sand) means a mold material (coated sand) having no cold flowability. More specifically, a mold material (coated sand) for which a measured value can not be obtained when the dynamic repose angle is measured according to the following method is used as a wet mold material (coated sand). A dynamic repose angle is a mold material (coated sand) placed in a cylinder with one side transparent and a flat surface (for example, a mold material (coated diameter up to a half of a volume: 7.2 cm × height: 10 cm) Sand), rotating at a constant speed (for example, 25 rpm), the slope of the layer of mold material (coated sand) flowing in the cylinder becomes flat, and the angle formed between the slope and the horizontal surface It is measured. In such a measurement method, the mold material (coated sand) does not flow in the cylinder, the slope of the layer of the mold material (coated sand) is not formed as a flat surface, and therefore the dynamic repose angle can not be measured. The mold material (coated sand) of The wet mold material (coated sand) is superior to the dry mold material (coated sand) in that it is easy and inexpensive to manufacture.
 先ず、本発明に従う湿態の鋳型材料を構成する鋳物砂としては、鋳型の基材として機能する耐火性物質であって、従来から鋳型用として利用されている各種の耐火性の粒状乃至は粉状材料が何れも用いられ得、具体的には、ケイ砂、再生ケイ砂をはじめ、アルミナサンド、オリビンサンド、ジルコンサンド、クロマイトサンド等の特殊砂や、フェロクロム系スラグ、フェロニッケル系スラグ、転炉スラグ等のスラグ系粒子;アルミナ系粒子、ムライト系粒子等の人工粒子及びこれらの再生粒子;アルミナボール、マグネシアクリンカー等を挙げることが出来る。なお、これらの鋳物砂は、新砂であっても、或いは、鋳型の造型に一回或いは複数回、使用された再生砂又は回収砂であっても、更には、そのような再生砂や回収砂に新砂を加えて混合せしめてなる混合砂であっても、何ら差支えない。そして、そのような鋳物砂は、一般に、AFS指数で40~130程度の粒度のものとして、好ましくは、60~110程度の粒度のものとして、用いられることとなる。また、鋳物砂は、球状のものであることが好ましく、具体的には粒形係数が1.2以下、より好ましくは1.0~1.1であることが望ましい。この粒形係数が1.2以下である鋳物砂を用いることにより、鋳型製造時の流動性や充填性が良くなって、鋳物砂材同士の接点数が多くなるところから、同じ強度を発現するために必要な粘結剤の量や添加物量を少なくすることが出来る。なお、ここで用いられる鋳物砂の粒形係数は、一般に、粒子の外形形状を示す一つの尺度として採用され、粒形指数とも称されるものであって、その値が1に近付く程、球形(真球)に近付くことを意味しているものである。そして、そのような粒形係数は、公知の各種の手法で測定された鋳物砂の表面積(砂表面積)を用いて算出された値にて表わされるものであって、例えば、砂表面積測定器(ジョージ・フィッシャー社製)を用いて、1gあたりの実際の鋳物砂粒子(砂粒)の表面積を測定し、それを、理論的表面積で除した値を意味するものである。なお、理論的表面積とは、鋳物砂粒子(砂粒)が全て球形であると仮定した場合の表面積である。 First, as a foundry sand constituting a wet mold material according to the present invention, it is a refractory substance which functions as a mold base, and various kinds of refractory granules or powders conventionally used for molds. Materials such as silica sand, regenerated silica sand, alumina sand, olivine sand, zircon sand, chromite sand, special sand, ferrochrome-based slag, ferronickel-based slag, and Examples thereof include slag-based particles such as furnace slag; artificial particles such as alumina-based particles and mullite-based particles; and regenerated particles thereof; alumina balls and magnesia clinker. In addition, even if these casting sands are new sands or regenerated sands or recovered sands used one or more times for molding of molds, furthermore, such reclaimed sands or recovered sands Even if it is mixed sand which is made to add new sand to it and mix it, there is no difference at all. Such casting sand is generally used as one having a particle size of about 40 to 130 in the AFS index, and preferably having a particle size of about 60 to 110. The molding sand is preferably spherical, and specifically, it is desirable that the grain shape factor is 1.2 or less, more preferably 1.0 to 1.1. By using the casting sand having a grain shape factor of 1.2 or less, the flowability and the filling property at the time of mold production are improved, and the same strength is expressed because the number of contacts between casting sand materials is increased. Therefore, the amount of caking agent and the amount of additives required for the preparation can be reduced. In addition, the grain shape factor of the foundry sand used here is generally adopted as one measure indicating the outer shape of the particle, and is also referred to as a grain shape index, and as the value approaches 1 the spherical shape It is meant to approach (true sphere). And such a particle shape factor is represented by a value calculated using the surface area (sand surface area) of the foundry sand measured by various known methods, for example, a sand surface area measuring instrument ( The surface area of an actual foundry sand particle (sand grain) per 1 g is measured using George Fisher, and the value is obtained by dividing it by the theoretical surface area. The theoretical surface area is the surface area under the assumption that casting sand particles (sand particles) are all spherical.
 また、本発明の鋳型材料を構成する鋳物砂は、その表面が、有機化合物を含有する固体状のコーティング層が被覆されているものである。このように、鋳物砂の表面に所定のコーティング層が存在していることにより、後述する水溶性無機粘結剤が直接、鋳物砂に接することはない。また、固体状のコーティング層は有機化合物を含有するものであることから、本発明の鋳型材料を用いてなる鋳型(以下、単に鋳型という)に金属溶湯を注湯すると、コーティング層に含まれる有機化合物が熱分解してガス化し、その発生したガスによって、鋳物砂粒子間の接合部分における水溶性無機粘結剤の固化物乃至は硬化物が有利に破壊されることとなり、鋳型の崩壊性は優れたものとなる。更に、コーティング層に含まれる有機化合物が熱分解してガス化すると、そのガスの内圧によって、鋳物砂粒子上に存在する水溶性無機粘結剤の固化物乃至は硬化物が、内側から(鋳物砂粒子側から)破壊等されるため、例えば、鋳造後の鋳型より回収した鋳物砂を再生する際の研磨工程において、固化乃至は硬化した水溶性無機粘結剤を鋳物砂粒子表面から剥離し易くなり、鋳物砂の再生が容易となる。加えて、鋳型を用いた鋳造時に、コーティング層に含まれる有機化合物の熱分解によりガスが発生することから、金属溶湯が鋳型を構成する鋳物砂粒子間へ浸入することを抑制するガス層が、鋳型表面と鋳造製品との間に有利に形成せしめられ、以て、最終的に得られる鋳造製品の鋳肌が良好なものとなるのである。 Moreover, the molding sand which comprises the casting_mold | template material of this invention is that in which the solid-like coating layer containing the organic compound is coat | covered the surface. As described above, the presence of the predetermined coating layer on the surface of the casting sand prevents the water-soluble inorganic binder described later from being in direct contact with the casting sand. Further, since the solid coating layer contains an organic compound, when molten metal is poured into a mold (hereinafter, simply referred to as a mold) formed using the template material of the present invention, the organic substance contained in the coating layer The compound is pyrolyzed and gasified, and the generated gas advantageously destroys the solidified or hardened substance of the water-soluble inorganic binder at the joint between the sand particles, and the mold disintegrates It will be excellent. Furthermore, when the organic compound contained in the coating layer is pyrolyzed and gasified, the solidified or hardened product of the water-soluble inorganic binder present on the casting sand particles is generated from the inside by the internal pressure of the gas. For example, since it is broken from the sand particle side, the solidified or hardened water-soluble inorganic binder is exfoliated from the surface of the foundry sand particle in the polishing step for regenerating the foundry sand recovered from the mold after casting. It becomes easy and the reproduction of casting sand becomes easy. In addition, since a gas is generated by thermal decomposition of the organic compound contained in the coating layer during casting using a mold, a gas layer that inhibits molten metal from invading between casting sand particles constituting the mold is It is advantageously formed between the mold surface and the cast product, so that the cast surface of the cast product finally obtained is improved.
 本発明において、鋳物砂表面に形成される固体状のコーティング層の膜厚は、0.1~6μm、好ましくは0.2~5μm、より好ましくは0.3~3μm、さらに好ましくは0.5~2μmとされる。膜厚が0.1μmより薄いと、コーティング層として形成することが困難であると共に、水溶性無機粘結剤を含む粘結剤組成物よりなる層の内側においてガス化させるのが困難となる恐れがあり、一方、6μmより厚いと、有機化合物により臭気が発生する恐れがある。なお、コーティング層の膜厚の測定方法としては、コーティング層が形成された鋳物砂粒子をエポキシ樹脂等に埋め込み、イオンカッター等のカッティング装置を用いて切断した鋳物砂粒子の断面を、光学顕微鏡や電子顕微鏡等の光学機械を用いて観察を行ない、断面粒子をランダムに10点選定し、コーティング層の膜厚を計測する方法等を挙げることが出来る。また、膜厚に関しては、鋳物砂粒子が球状である場合は、鋳物砂粒子の平均粒子径と、鋳物砂粒子及び有機化合物の添加量から算出しても良い。 In the present invention, the film thickness of the solid coating layer formed on the casting sand surface is 0.1 to 6 μm, preferably 0.2 to 5 μm, more preferably 0.3 to 3 μm, still more preferably 0.5. It is set to 2 μm. If the film thickness is less than 0.1 μm, it may be difficult to form as a coating layer, and it may be difficult to gasify inside the layer composed of a binder composition containing a water-soluble inorganic binder. On the other hand, if it is thicker than 6 μm, there is a risk that an organic compound may generate an odor. In addition, as a measuring method of the film thickness of a coating layer, the casting sand particle in which the coating layer was formed is embedded in an epoxy resin etc., The cross section of the casting sand particle which cut using cutting devices, such as an ion cutter, The observation can be carried out using an optical machine such as an electron microscope, 10 cross-sectional particles can be randomly selected, and the film thickness of the coating layer can be measured. Moreover, regarding a film thickness, when a foundry sand particle is spherical, you may calculate from the average particle diameter of a foundry sand particle, and the addition amount of a foundry sand particle and an organic compound.
 また、本発明で用いられる有機化合物は、鋳物砂粒子の表面に固体状のコーティング層を形成せしめることが可能なものは勿論のこと、固体状のコーティング層に含有せしめることが可能であるものであれば、特に限定されるものではないが、架橋硬化性樹脂及びその硬化物、熱可塑性樹脂、炭水化物からなる群より選ばれる少なくとも一種であることが好ましい。 Further, the organic compound used in the present invention can be contained in a solid coating layer as well as those capable of forming a solid coating layer on the surface of casting sand particles. If it is present, it is not particularly limited, but it is preferably at least one selected from the group consisting of a cross-linking curable resin and its cured product, a thermoplastic resin, and a carbohydrate.
 架橋硬化性樹脂とは、例えばヘキサメチレンテトラミン、有機エステル、有機酸、炭酸ガス、過酸化物、金属イオン、アミン等の硬化剤若しくは硬化触媒の存在又は非存在の下、加熱若しくは非加熱(常温)下で架橋硬化性を発現し、鋳物砂粒子を相互に結着して鋳型を形成するものである。そのような架橋硬化性樹脂としては、具体的には、フェノール系樹脂、フェノールウレタン系樹脂、エポキシ樹脂、メラミン樹脂、不飽和ポリエステル樹脂、多官能性アクリルアミド系樹脂(特公平7-106421号公報参照)、不飽和アルキッド樹脂、不飽和脂肪酸変性アルキッド樹脂、ジアリルフタレート樹脂や、必要に応じてこれらの樹脂を組み合わせた樹脂等を挙げることが出来る。これらの中でも、本発明の効果をより有利に享受できる観点から、特にノボラック型やレゾール型のフェノール系樹脂や、ポリイソシアネート化合物と混合して用いるフェノールウレタン系樹脂が好ましい。 The crosslinking curing resin is, for example, heating or non-heating in the presence or absence of a curing agent such as hexamethylenetetramine, organic ester, organic acid, carbon dioxide, peroxide, metal ion, amine or curing catalyst (normal temperature (normal temperature) Under these conditions, crosslinking hardenability is developed, and foundry sand particles are mutually attached to form a mold. As such a crosslinkable curable resin, specifically, a phenol resin, a phenol urethane resin, an epoxy resin, a melamine resin, an unsaturated polyester resin, a polyfunctional acrylamide resin (refer to Japanese Patent Publication No. 7-106421) And unsaturated alkyd resins, unsaturated fatty acid modified alkyd resins, diallyl phthalate resins, and resins obtained by combining these resins as required. Among these, from the viewpoint of achieving the effects of the present invention more advantageously, particularly preferred are phenolic resins of novolac type and resol type, and phenolic urethane resins used by mixing with polyisocyanate compounds.
 また、架橋硬化性樹脂の硬化物とは、低分子のものを硬化反応させることによって高分子化合物へ分子量を増加させたものである。溶融粘度の低い低分子の材料を用いて鋳物砂粒子の表面をコーティングした後に、加熱や硬化剤の添加によって硬化させておくことで、アルカリ劣化が防止され、表面安定性の良好な高分子量のコーティング層を形成することが出来、被覆性と表面安定性の両立が可能である。また、架橋硬化性樹脂の硬化物には、未硬化の架橋硬化性樹脂と比較すると、1)熱によるコーティング層の軟化が抑えられて鋳型強度が向上し、また、2)予め硬化に必要な熱量が消費されているため、熱が有効に熱分解に使用され、熱分解が速くなるので、鋳型の崩壊性がより向上し、更には、3)予め硬化に伴うガスが放出されていることから、鋳造時のガスの発生量が抑えられる、という利点もある。 Further, the cured product of the crosslinkable curable resin is one obtained by increasing the molecular weight of a low molecular weight compound to a polymer compound by curing reaction. After coating the surface of the foundry sand particles with a low molecular weight material with low melt viscosity, hardening by heating or addition of a curing agent prevents alkaline deterioration and has a high molecular weight with good surface stability. A coating layer can be formed, and coexistence of coating property and surface stability is possible. In addition, in the cured product of the crosslinkable curable resin, 1) softening of the coating layer due to heat is suppressed and the mold strength is improved, and 2) it is necessary for curing in advance, as compared with the uncured crosslinkable curable resin. Because heat is consumed, heat is effectively used for thermal decomposition and thermal decomposition is accelerated, so that the mold disintegrability is further improved and, furthermore, 3) the gas associated with curing is released in advance. There is also an advantage that the amount of gas generated during casting can be reduced.
 さらに、熱可塑性樹脂としては、具体的には、ポリビニルアルコール、ポリ酢酸ビニル、ポリスチレン、スチレンアクリロニトリル共重合体、スチレン・ブタジエン・アクリロニトリル共重合体、エチレン酢酸ビニル共重合体、ポリメチルメタクリレート、メタクリル・スチレン共重合体、酢酸セルロース、ポリカーボネート、ポリ塩化ビニルからなる樹脂等を、挙げることが出来る。それらの中でも、溶剤溶解性(成膜性)の観点から、特にポリビニルアルコール、ポリ酢酸ビニル、ポリスチレン、エチレン酢酸ビニル共重合体、ポリメチルメタクリレート、酢酸セルロース、ポリカーボネートが好ましい。 Further, as the thermoplastic resin, specifically, polyvinyl alcohol, polyvinyl acetate, polystyrene, styrene acrylonitrile copolymer, styrene butadiene acrylonitrile copolymer, ethylene vinyl acetate copolymer, polymethyl methacrylate, methacryl methacrylate Styrene copolymer, cellulose acetate, polycarbonate, resin comprising polyvinyl chloride and the like can be mentioned. Among them, polyvinyl alcohol, polyvinyl acetate, polystyrene, ethylene vinyl acetate copolymer, polymethyl methacrylate, cellulose acetate, and polycarbonate are particularly preferable from the viewpoint of solvent solubility (film forming property).
 さらにまた、炭水化物としては、具体的には、グルコース、フルクトース、ガラクトース、ラクトース、スクロース、マルトース、トレハロース、澱粉、グリコーゲン、セルロースからなるもの等を、挙げることが出来る。それらの中でも、成膜性の観点から、特にトレハロース、澱粉、グリコーゲンが好ましい。加えて、その他の有機化合物としては、アクリルアミド、N-メチロールアクリルアミド、ジアクリルアミドジメチルエーテル、メチレンビスアクリルアミド、エチレンビスアクリルアミド、エチレングリコールジアクリルアミド等が挙げられる。 Furthermore, specific examples of the carbohydrate include those composed of glucose, fructose, galactose, lactose, sucrose, maltose, trehalose, starch, glycogen, cellulose and the like. Among them, trehalose, starch and glycogen are particularly preferable from the viewpoint of film formability. In addition, as other organic compounds, acrylamide, N-methylol acrylamide, diacrylamidodimethyl ether, methylene bis acrylamide, ethylene bis acrylamide, ethylene glycol diacrylamide and the like can be mentioned.
 本発明において、鋳物砂表面のコーティング層に含まれる有機化合物は、鋳物砂粒子への被覆性の観点より、高分子化合物(重合体、多量体)であることが好ましい。具体的には、重量平均分子量が300以上、好ましくは300~100000000、より好ましくは500~50000000、さらに好ましくは800~20000000である高分子化合物(重合体、多量体)が有利に用いられる。高分子化合物(重合体、多量体)の範疇に含まれない有機化合物であっても、固体状のコーティング層の表面安定性の観点より、分子量が300以上であるものが好ましく、鋳物砂粒子への被覆性への観点より、100000000以下のものが好ましい。 In the present invention, the organic compound contained in the coating layer on the surface of the casting sand is preferably a polymer compound (polymer, polymer) from the viewpoint of the covering property to the casting sand particles. Specifically, a polymer compound (polymer, multimer) having a weight average molecular weight of 300 or more, preferably 300 to 100,000,000, more preferably 500 to 50,000,000, and still more preferably 800 to 20,000,000 is advantageously used. Even organic compounds not included in the category of polymer compounds (polymers and polymers) are preferably those having a molecular weight of 300 or more from the viewpoint of surface stability of a solid coating layer, and it is preferable to From the viewpoint of the coatability of the (1), those of 100,000,000 or less are preferable.
 また、本発明においては、難水溶性乃至不水溶性の有機化合物が有利に用いられ、特に不水溶性の有機化合物が、固体状のコーティング層に含まれる有機化合物として好適である。何故ならば、易水溶性の有機化合物を用いると、コーティング層の表面に被覆される水溶性無機化合物を含有する液状の粘結剤組成物に含まれる水分中に溶け出してしまい、固体状のコーティング層が維持できなくなる恐れがあるからである。具体的に、本発明においては、25℃の水100gに対する溶解度が、1質量%以下、好ましくは0.5質量%以下、より好ましくは0.3質量%以下、さらに好ましくは0.1質量%以下である有機化合物が、固体状のコーティング層に含まれる有機化合物として用いられる。なお、溶解度とは、有機化合物の10gを25℃の水100gを投入し、1時間撹拌し、更に1時間静置させた時の、溶媒(水)に溶けている有機化合物の量を意味するものである。また、不水溶性の有機化合物とは、水に溶解しない有機化合物である。 In the present invention, a poorly water-soluble or water-insoluble organic compound is advantageously used, and a water-insoluble organic compound is particularly preferable as the organic compound contained in the solid coating layer. The reason is that when a water-soluble organic compound is used, it dissolves in the water contained in the liquid binder composition containing the water-soluble inorganic compound coated on the surface of the coating layer, and is solid This is because there is a risk that the coating layer can not be maintained. Specifically, in the present invention, the solubility in 100 g of water at 25 ° C. is 1% by mass or less, preferably 0.5% by mass or less, more preferably 0.3% by mass or less, still more preferably 0.1% by mass The organic compound which is the following is used as an organic compound contained in a solid coating layer. The solubility means the amount of the organic compound dissolved in the solvent (water) when 100 g of water at 25 ° C. is charged with 10 g of the organic compound, stirred for 1 hour, and allowed to stand still for 1 hour. It is a thing. Further, the water-insoluble organic compound is an organic compound which does not dissolve in water.
 さらに、本発明に従う湿態の鋳型材料においては、鋳物砂の表面に設けられたコーティング層に、カップリング剤を含有せしめても良い。かかるコーティング層にカップリング剤を含有せしめることにより、コーティング層の濡れ性及び接着性を向上させ、鋳物砂とコーティング層との間の結合を強化することが出来る。コーティング層に含有せしめるカップリング剤としては、例えば、シランカップリング剤、ジルコンカップリング剤、チタンカップリング剤等を、好適なものとして挙げることが出来る。尚、コーティング層中のカップリング剤の含有量は、有機化合物の100質量部に対して、一般に、0.5~10質量部、好ましくは1~5質量部、より好ましくは1~3質量部の割合とされる。 Furthermore, in the wet mold material according to the present invention, a coupling agent may be contained in the coating layer provided on the surface of the molding sand. By including a coupling agent in such a coating layer, the wettability and adhesion of the coating layer can be improved, and the bond between the molding sand and the coating layer can be strengthened. As a coupling agent contained in a coating layer, a silane coupling agent, a zircon coupling agent, a titanium coupling agent etc. can be mentioned as a suitable thing, for example. The content of the coupling agent in the coating layer is generally 0.5 to 10 parts by mass, preferably 1 to 5 parts by mass, more preferably 1 to 3 parts by mass with respect to 100 parts by mass of the organic compound. The ratio of
 一方、本発明に従う湿態の鋳型材料は、上述した所定のコーティング層で被覆された鋳物砂が、水溶性無機粘結剤を含む液状の粘結剤組成物によって被覆されて、構成されている。液状の粘結剤組成物に含まれる水溶性無機粘結剤としては、従来より、鋳型材料(コートッドサンド)において使用されているものでれば、如何なるものであっても用いることが可能であり、そのような水溶性無機粘結剤としては、例えば、水ガラス、塩化ナトリウム、リン酸ナトリウム、炭酸ナトリウム、バナジン酸ナトリウム、ホウ酸ナトリウム、酸化アルミニウムナトリウム、塩化カリウム、炭酸カリウム等、及び、それらの中から選ばれる2種以上を主成分とするもの等を、挙げることが出来る。これらの中でも、取扱いの容易性及び最終的に得られる鋳型強度の観点より、水ガラス、及び水ガラスを主成分とするものが好ましい。ここで、水ガラスとは、可溶性のケイ酸化合物の水溶液であって、そのようなケイ酸化合物としては、例えば、ケイ酸ナトリウム、ケイ酸カリウム、メタケイ酸ナトリウム、メタケイ酸カリウム、ケイ酸リチウム、ケイ酸アンモニウム等を挙げることが出来るが、特に、本発明にあっては、ケイ酸ナトリウム(ケイ酸ソーダ)が有利に用いられることとなる。また、水ガラスを主成分として用いて、他に熱硬化性樹脂、糖類、タンパク質、合成高分子、塩類や無機高分子等の水溶性粘結剤を配合しても良い。なお、水ガラスと他の水溶性バインダとを併用する場合、粘結剤の全量における水ガラスの割合は60質量%以上、好ましくは80質量%以上、より好ましくは90%質量以上とされる。 On the other hand, in the wet mold material according to the present invention, casting sand coated with the above-mentioned predetermined coating layer is coated with a liquid caking agent composition containing a water-soluble inorganic caking agent. . Any water-soluble inorganic binder contained in the liquid binder composition can be used as long as it is conventionally used in a template material (coated sand). Such water-soluble inorganic binders include, for example, water glass, sodium chloride, sodium phosphate, sodium carbonate, sodium vanadate, sodium borate, sodium aluminum oxide, potassium chloride, potassium carbonate and the like, and What has 2 or more types chosen from them as a main component etc. can be mentioned. Among them, water glass and water glass as a main component are preferable from the viewpoint of easy handling and the finally obtained mold strength. Here, water glass is an aqueous solution of a soluble silicate compound, and as such a silicate compound, for example, sodium silicate, potassium silicate, sodium metasilicate, potassium metasilicate, lithium silicate, Although ammonium silicate etc. can be mentioned, sodium silicate (sodium silicate) will be used advantageously in the present invention. In addition, water glass may be used as the main component, and other water-soluble caking agents such as thermosetting resins, saccharides, proteins, synthetic polymers, salts and inorganic polymers may be blended. When water glass and another water-soluble binder are used in combination, the proportion of water glass in the total amount of the binder is 60% by mass or more, preferably 80% by mass or more, and more preferably 90% by mass or more.
 また、上述した水溶性無機粘結剤は、通常で取り扱う形態として固体のものと、液体のものとが存在するが、固体のものは水溶液の状態にして用いられる。そして、有利には、水溶性無機粘結剤を含む液状の粘結剤組成物の粘度が、25℃において、5~2000cP、好ましくは7~1200cP、より好ましくは7~800cPとなるように調製される。かかる調製に際しては、水ガラス等の液状の水溶性無機粘結剤にあっても、粘結剤組成物の粘度を調製するために、水に希釈したものを用いることが可能である。また、鋳物砂との混練乃至は混合時に、固体状又は液体状の水溶性無機粘結剤と水とを、耐火性骨材等に対して個別に添加することも可能である。 Moreover, although the water soluble inorganic caking agent mentioned above has a solid thing and a liquid thing as a form handled normally, a solid thing is used in the state of aqueous solution. And, advantageously, the viscosity of the liquid caking agent composition containing the water-soluble inorganic caking agent is adjusted to 5 to 2000 cP, preferably 7 to 1200 cP, more preferably 7 to 800 cP at 25 ° C. Be done. In such preparation, even if it is a liquid water-soluble inorganic binder such as water glass, it is possible to use one diluted with water in order to adjust the viscosity of the binder composition. In addition, it is also possible to separately add a solid or liquid water-soluble inorganic binder and water to the fireproof aggregate or the like at the time of kneading or mixing with foundry sand.
 ここで、本発明において有利に用いられる、水ガラスたるケイ酸ナトリウムについて詳述するに、ケイ酸ナトリウムは、通常、SiO2 /Na2O のモル比により、1号~5号の種類に分類されて、用いられている。具体的には、ケイ酸ナトリウム1号は、SiO2 /Na2O のモル比が2.0~2.3であるものであり、またケイ酸ナトリウム2号は、SiO2 /Na2O のモル比が2.4~2.6であるものであり、更にケイ酸ナトリウム3号は、SiO2 /Na2O のモル比が2.8~3.3であるものである。加えて、ケイ酸ナトリウム4号は、SiO2 /Na2O のモル比が3.3~3.5であるものであり、またケイ酸ナトリウム5号は、SiO2 /Na2O のモル比が3.6~3.8であるものである。これらの中で、ケイ酸ナトリウム1号~3号は、JIS-K-1408にても規定されている。そして、これらのケイ酸ナトリウムは、単独での使用の他、混合して用いられても良く、また2種以上のものを混合することで、SiO2 /Na2O のモル比を調製することも可能である。 Here, sodium silicate, which is advantageously used in the present invention, is generally classified into the types 1 to 5 according to the molar ratio SiO 2 / Na 2 O. Being used. Specifically, sodium silicate No. 1 has a SiO 2 / Na 2 O molar ratio of 2.0 to 2.3, and sodium silicate No. 2 has SiO 2 / Na 2 O 2 The molar ratio is 2.4 to 2.6, and sodium silicate No. 3 is the one having a molar ratio of SiO 2 / Na 2 O of 2.8 to 3.3. In addition, sodium silicate No. 4 has a SiO 2 / Na 2 O molar ratio of 3.3 to 3.5, and sodium silicate No. 5 has a SiO 2 / Na 2 O molar ratio Is 3.6 to 3.8. Among these, sodium silicate Nos. 1 to 3 are also defined in JIS-K-1408. Then, sodium These silicate, other uses alone may be used as a mixture, also by mixing more than two kinds, preparing a molar ratio of SiO 2 / Na 2 O Is also possible.
 なお、本発明に従う湿態の鋳型材料を有利に得るべく、粘結剤として用いられる水ガラスを構成するケイ酸ナトリウムとしては、SiO2 /Na2O のモル比が、一般に1.9以上、好ましくは2.0以上、より好ましくは2.1以上であるものが望ましく、上記したケイ酸ナトリウムの分類において、1号及び2号に相当するケイ酸ナトリウムが、特に有利に用いられることとなる。かかるケイ酸ナトリウム1号及び2号は、それぞれ、水ガラス中のケイ酸ナトリウム濃度が広い範囲においても、安定して、特性の良好な鋳型材料を与えるものである。また、そのようなケイ酸ナトリウムにおけるSiO2 /Na2O のモル比の上限は、水溶液の形態にある水ガラスの特性に応じて適宜に選定されることとなるが、一般に3.5以下、好ましくは3.2以下、より好ましくは2.7以下とされることとなる。ここで、SiO2 /Na2O のモル比が1.9よりも小さくなると、水ガラスに多くのアルカリが存在することとなるため、水に対する水ガラスの溶解性が上がり、鋳型材料が吸湿劣化し易くなる恐れがある。一方、SiO2 /Na2O のモル比が3.5よりも大きいケイ酸ナトリウムでは、水に対する溶解性が低いため、最終的に得られる鋳型において、鋳物砂粒子間における接着面積が稼げず、鋳型強度が低下するという問題を生じる恐れがある。 Incidentally, to obtain advantageously the mold material Shimetai according to the present invention, the sodium silicate which constitutes the water glass used as a binder, the molar ratio of SiO 2 / Na 2 O, generally 1.9 or more, Preferably, it is preferably 2.0 or more, more preferably 2.1 or more, and in the above-mentioned classification of sodium silicate, sodium silicate corresponding to No. 1 and No. 2 is particularly advantageously used. . Such sodium silicates No. 1 and No. 2 are stable and provide a mold material having good properties even in a wide range of sodium silicate concentration in water glass. In addition, the upper limit of the molar ratio of SiO 2 / Na 2 O in such sodium silicate is appropriately selected according to the characteristics of water glass in the form of an aqueous solution, but generally not more than 3.5, It is preferably 3.2 or less, more preferably 2.7 or less. Here, when the molar ratio of SiO 2 / Na 2 O is smaller than 1.9, a large amount of alkali is present in the water glass, so the solubility of the water glass in the water increases, and the template material absorbs moisture and deteriorates. There is a risk that it will be easier to do. On the other hand, with sodium silicate having a SiO 2 / Na 2 O molar ratio of greater than 3.5, the solubility in water is low, so that the bonding area between foundry sand particles can not be obtained in the mold finally obtained. There is a risk that the mold strength may be reduced.
 また、本発明において用いられる水ガラスは、水に溶けた状態のケイ酸化合物の溶液のことを意味し、本発明の鋳型材料を製造するに際しては、市場において購入されたままの原液の状態において用いられる他、そのような原液に水を添加して、希釈した状態において用いられることとなる。そして、そのような水ガラスから、水や溶剤等の揮発する物質を除いた不揮発分(水ガラス成分)を固形分と言い、これが、上記したケイ酸ナトリウム等の可溶性のケイ酸化合物に相当するものである。また、そのような固形分の割合が高い程、水ガラス中のケイ酸化合物濃度は、高くなるものである。従って、本発明において用いられる水ガラスの固形分とは、それが原液のみにて構成される場合においては、かかる原液中の水分量を除いた割合に相当することとなり、一方、原液を水にて希釈して得られる希釈液が用いられる場合にあっては、原液中の水分量と希釈に用いられた水の量とを除いた割合が、使用される水ガラスの固形分に相当することとなる。 In addition, the water glass used in the present invention means a solution of a silicate compound in a state of being dissolved in water, and when producing the template material of the present invention, it is in the state of a stock solution as purchased in the market. Besides being used, water is added to such a stock solution to be used in a diluted state. And the non volatile matter (water glass component) except the volatilizable substance such as water and solvent from such water glass is referred to as solid content, and this corresponds to the soluble silicate compound such as sodium silicate described above It is a thing. Moreover, the higher the proportion of such solid content, the higher the concentration of the silicate compound in the water glass. Therefore, the solid content of water glass used in the present invention corresponds to the ratio excluding the amount of water in the stock solution when it is composed only of the stock solution, while the stock solution is water. When a diluted solution obtained by dilution is used, the ratio excluding the amount of water in the stock solution and the amount of water used for dilution corresponds to the solid content of the water glass used It becomes.
  本発明において、水溶性無機粘結剤として使用可能な塩化ナトリウム(NaCl)は、食塩と言われているように可食性であって、人体に無害であると共に、安価で容易に使用することが出来るものである。また、水に容易に溶解するので、塩化ナトリウムを粘結剤として用いた鋳型材料は、水で容易に崩壊する鋳型を製造することが出来る。水100gに対する塩化ナトリウムの溶解量は35.9g(20℃)である。更に、塩化ナトリウムの融点は1413℃であり、比較的高いため、耐熱性の高い鋳型を製造することが出来るものである。 In the present invention, sodium chloride (NaCl), which can be used as a water-soluble inorganic binder, is edible as said to be common salt, is harmless to the human body, and can be used inexpensively and easily. It is possible. In addition, since it is easily dissolved in water, a mold material using sodium chloride as a binder can produce a mold that is easily disintegrated by water. The amount of sodium chloride dissolved in 100 g of water is 35.9 g (20 ° C.). Furthermore, since the melting point of sodium chloride is 1413 ° C. and is relatively high, a mold having high heat resistance can be produced.
  また、リン酸ナトリウムとしては、リン酸一ナトリウム水和物(NaH2PO4・xH2 O;xは公知の整数)、リン酸二ナトリウム水和物(Na2HPO4・x’H2O ;x’は公知の整数)、リン酸三ナトリウム水和物(Na3PO4・x”H2O ;x”は公知の整数)などを用いることができる。そして、水100gに対するリン酸三ナトリウム水和物の溶解量が25.8g(20℃)であることに代表されるように、リン酸ナトリウムは水に可溶性であり、また、リン酸二ナトリウム水和物の融点が1340℃であることに代表されるように、リン酸ナトリウムの融点は比較的高い。このため、水溶性無機粘結剤としてリン酸ナトリウムを用いた鋳型材料は、水で容易に崩壊し、耐熱性が高い鋳型を製造することが可能である。 Moreover, as sodium phosphate, monosodium phosphate hydrate (NaH 2 PO 4 .xH 2 O; x is a known integer), disodium phosphate hydrate (Na 2 HPO 4 .x'H 2 O) X 'is a known integer, trisodium phosphate hydrate (Na 3 PO 4 .x "H 2 O; x" is a known integer) or the like. And sodium phosphate is soluble in water as represented by that the dissolution amount of trisodium phosphate hydrate in 100 g of water is 25.8 g (20 ° C.), and disodium phosphate water The melting point of sodium phosphate is relatively high, as typified by the melting point of the solvate being 1340 ° C. For this reason, the template material using sodium phosphate as a water-soluble inorganic binder can be easily disintegrated with water, and a template having high heat resistance can be manufactured.
  さらに、炭酸ナトリウム(Na2CO3)は、水100gに対する溶解量が17.4g(20℃)であり、水に溶解し易く、しかも安価である。また、融点は851℃と比較的高い。このため、水溶性無機粘結剤として炭酸ナトリウムを用いた鋳型材料は、水で容易に崩壊し、耐熱性が高い鋳型を製造することが可能である。 Furthermore, sodium carbonate (Na 2 CO 3 ) has a dissolved amount of 17.4 g (20 ° C.) in 100 g of water, is easily dissolved in water, and is inexpensive. Also, the melting point is relatively high at 851 ° C. For this reason, the mold material using sodium carbonate as a water-soluble inorganic binder can be easily disintegrated with water, and a mold having high heat resistance can be manufactured.
  また、バナジン酸ナトリウム(Na3VO4)は、水に可溶であり、融点は866℃と比較的高い。このため、水溶性無機粘結剤としてバナジン酸ナトリウムを用いた鋳型材料は、水で容易に崩壊し、耐熱性が高い鋳型を製造することが可能である。 In addition, sodium vanadate (Na 3 VO 4 ) is soluble in water and has a relatively high melting point of 866 ° C. For this reason, the template material using sodium vanadate as a water-soluble inorganic binder can be easily disintegrated with water, and a template having high heat resistance can be produced.
  さらにまた、酸化アルミニウムナトリウム(NaAlO2 )は、水に可溶であり、また、融点が1700℃以上と高いものである。このため、水溶性無機粘結剤として酸化アルミニウムナトリウムを用いた鋳型材料は、水で容易に崩壊し、耐熱性が高い鋳型を製造することが可能である。 Furthermore, sodium aluminum oxide (NaAlO 2 ) is soluble in water, and has a melting point as high as 1700 ° C. or higher. For this reason, the mold material using sodium aluminum oxide as a water-soluble inorganic binder can be easily disintegrated with water, and a mold having high heat resistance can be produced.
  加えて、塩化カリウム(KCl)は、水100gに対する溶解量が34.2g(20℃)であるように、水に溶解し易く、しかも安価である。また、融点は776℃と比較的高い。このため、水溶性無機粘結剤として塩化カリウムを用いた鋳型材料は、水で容易に崩壊し、耐熱性が高い鋳型を製造することが可能である。 In addition, potassium chloride (KCl) is easy to dissolve in water and is inexpensive, as the amount dissolved in 100 g of water is 34.2 g (20 ° C.). Also, the melting point is relatively high at 776 ° C. For this reason, the template material using potassium chloride as a water-soluble inorganic binder easily disintegrates with water, and it is possible to produce a template having high heat resistance.
  また、炭酸カリウム(K2CO3)は、水100gに対する溶解量が111.9g(20℃)であるように、水に溶解し易く、また、融点が891℃であり、比較的高い。このため、水溶性無機粘結剤として炭酸カリウムを用いた鋳型材料は、水で容易に崩壊し、耐熱性が高い鋳型を製造することが可能である。 Potassium carbonate (K 2 CO 3 ) is easily dissolved in water so that the amount dissolved in 100 g of water is 111.9 g (20 ° C.), and the melting point is 891 ° C., which is relatively high. For this reason, the mold material using potassium carbonate as a water-soluble inorganic binder can be easily disintegrated with water, and a mold having high heat resistance can be produced.
 そして、そのような水溶性無機粘結剤の、液状の粘結剤組成物中における含有割合は、用いられる水溶性無機粘結剤の種類等に応じて適宜の割合とされることとなる。造型スピード及び最終的に得られる鋳型の強度の観点より、有利には、水溶性無機粘結剤の固形分が、10~80質量%、好ましくは15~70質量%、より好ましくは20~50質量%の割合において、液状の粘結剤組成物中に含有せしめられていることが望ましい。そのような割合において水溶性無機粘結剤の固形分を含む液状の粘結剤組成物を用いることによって、所定の固体状のコーティング層を有する鋳物砂粒子との混合(混練)時に、かかる鋳物砂粒子に対して、ムラなく、均一に、水溶性無機粘結剤成分を被覆させることが出来、それによって、目的とする鋳型を、本発明に従って、有利に造型することが可能となるのである。なお、液状の粘結剤組成物中における水溶性無機粘結剤成分(固形分)の濃度が低すぎるもの、具体的には、固形分の量が10質量%未満である液状の粘結剤組成物を用いると、造型の際に、鋳型材料の乾燥のために加熱温度を高くしたり、加熱時間を長くしたりする必要があり、そのために、エネルギーロス等の問題が惹起されるようになる。一方、固形分の割合が高すぎる液状の粘結剤組成物を用いると、鋳物砂粒子の表面を、粘結剤組成物にて均一に被覆することが困難となり、鋳型において特性上の問題を惹起する恐れがあるところから、かかる固形分が80質量%以下となるように、従って、水等の溶媒が20質量%以上(水分量が10質量%以上)の割合となるように、液状の粘結剤組成物を調製することが望ましい。 And the content rate in the liquid caking agent composition of such a water soluble inorganic caking agent will be made into a suitable rate according to the kind etc. of the water soluble inorganic caking agent used. The solid content of the water-soluble inorganic binder is advantageously 10 to 80% by mass, preferably 15 to 70% by mass, more preferably 20 to 50%, from the viewpoint of molding speed and strength of the finally obtained mold. It is desirable to be contained in a liquid caking agent composition in a proportion by mass. By using a liquid binder composition containing the solid content of the water-soluble inorganic binder in such a proportion, such a casting when mixed (kneaded) with foundry sand particles having a predetermined solid coating layer The sand particles can be coated uniformly and uniformly with the water-soluble inorganic binder component, which makes it possible to advantageously mold the target mold according to the invention. . In addition, the concentration of the water-soluble inorganic caking agent component (solid content) in the liquid caking agent composition is too low, specifically, a liquid caking agent having a solid content of less than 10% by mass. When the composition is used, it is necessary to raise the heating temperature or to prolong the heating time for drying of the mold material during molding, which causes problems such as energy loss. Become. On the other hand, when a liquid caking agent composition having too high a solid content ratio is used, it becomes difficult to uniformly coat the surface of the foundry sand particles with the caking agent composition, and the characteristic problem in the mold Since there is a risk of causing the problem, the liquid content is such that the solid content is 80% by mass or less, so that the solvent such as water is 20% by mass or more (the water content is 10% by mass or more). It is desirable to prepare a binder composition.
 また、水溶性無機粘結剤は、本発明に従う湿態の鋳型材料中において、鋳物砂の100質量部に対して、固体の場合はその質量、液体の場合は固形分のみとして考えた場合の固形分換算で、0.1~5質量部、好ましくは0.2~2.5質量部、より好ましくは0.5~2.0質量部の割合において用いられて、構成されていることが望ましい。そのような量的割合において水溶性無機粘結剤が用いられることにより、鋳物砂粒子の表面に設けられた固体状のコーティング層の表面が、水溶性無機粘結剤を含む液状の粘結剤組成物にて被覆されてなる本発明の湿態の鋳型材料が有利に構成されることとなる。なお、固形分の測定は、以下のようにして実施される。即ち、アルミ箔製の試料皿(縦:9cm、横:9cm、高さ:1.5cm)内に、試料10gを収容して秤量し、180±1℃に保持した加熱板上に置き、20分間放置した後、かかる試料皿を、反転させて、更に20分間、上記加熱板上に放置する。次いで、かかる試料皿を、加熱板上から取り出して、デシケータ中で放冷した後、秤量を行なって、次式により、固形分(質量%)が算出される。
  固形分(質量%)
  ={[乾燥後の試料皿の質量(g)-試料皿の質量(g)]
   /[乾燥前の試料皿の質量(g)-試料皿の質量(g)]}×100
The water-soluble inorganic binder is considered to be only the mass in the case of solid and the solid content in the case of liquid in 100 parts by mass of casting sand in the wet mold material according to the present invention. It is used in a proportion of 0.1 to 5 parts by mass, preferably 0.2 to 2.5 parts by mass, more preferably 0.5 to 2.0 parts by mass in terms of solid content desirable. By using a water-soluble inorganic binder in such a quantitative ratio, the surface of the solid coating layer provided on the surface of the foundry sand particles is a liquid caking agent containing a water-soluble inorganic binder. The wet mold material of the present invention coated with the composition is advantageously configured. In addition, the measurement of solid content is implemented as follows. That is, 10 g of the sample is accommodated in an aluminum foil sample plate (length: 9 cm, width: 9 cm, height: 1.5 cm), weighed, and placed on a heating plate maintained at 180 ± 1 ° C. After standing for a minute, the sample pan is inverted and left on the heating plate for a further 20 minutes. Then, the sample plate is taken out from the heating plate, allowed to cool in a desiccator, and weighed, and the solid content (% by mass) is calculated by the following equation.
Solid content (mass%)
= {[Mass of sample pan after drying (g)-mass of sample pan (g)]
/ [Mass of sample pan (g) before drying-mass of sample pan (g)] × 100
 なお、本発明において、水溶性無機粘結剤の使用量が少な過ぎると、鋳物砂の表面に設けられた固体状のコーティング層上に十分な量の水溶性無機粘結剤が存在せず、鋳型材料の固化乃至は硬化が充分に行われ難くなる問題を生じる恐れがある。また、水溶性無機粘結剤の使用量が多くなり過ぎても、鋳物砂の表面に設けられた固体状のコーティング層上に、過剰な量の水溶性無機粘結剤が存在することとなり、鋳物砂粒子が相互に固着して団塊化(複合粒子化)する恐れがあり、そのために、鋳型物性に悪影響をもたらし、また金属を鋳込んだ後の中子の砂落としを難しくする問題をも惹起するようになる。 In the present invention, when the amount of the water-soluble inorganic binder used is too small, a sufficient amount of the water-soluble inorganic binder does not exist on the solid coating layer provided on the surface of the casting sand, There is a risk that the mold material may not be sufficiently solidified or cured. In addition, even if the amount of the water-soluble inorganic binder used is too large, an excessive amount of the water-soluble inorganic binder is present on the solid coating layer provided on the surface of the casting sand. Foundry sand particles may stick to each other to form agglomerates (composite particle formation), which adversely affects mold physical properties and also makes it difficult to remove core sand after metal casting. It comes to evoke.
 ここで、本発明に従う鋳型材料においては、上述した水溶性無機粘結剤を含む液状の粘結剤組成物中に、カップリング剤を含有せしめることが可能である。かかる粘結剤組成物にカップリング剤を含有せしめることにより、濡れ性と接着性とが向上し、鋳物砂表面のコーティング層と水溶性無機粘結剤との結合を強化することが出来る。なお、かかる効果は、カップリング剤をコーティング層又は粘結剤組成物の何れか一方に含有せしめることにより、享受することが可能であるが、コーティング層及び粘結剤組成物の両者がカップリング剤を含有していることにより、それら両者間の結合力がより向上し、最終的に得られる鋳型においても強度がより向上することとなるため、さらに好ましい。液状の粘結剤組成物に含有せしめるカップリング剤としては、コーティング層に含有可能なカップリング剤として先に列記したものを、例示することが出来る。また、液状の粘結剤組成物におけるカップリング剤の含有量は、そこに含まれる水溶性無機粘結剤の固形分100質量部に対して、一般に、0.5~10質量部、好ましくは1~5質量部、より好ましくは1~3質量部の割合とされる。 Here, in the mold material according to the present invention, it is possible to include a coupling agent in the liquid binder composition containing the water-soluble inorganic binder as described above. By incorporating a coupling agent into the caking agent composition, the wettability and the adhesion are improved, and the bond between the coating layer on the surface of the casting sand and the water-soluble inorganic caking agent can be strengthened. Such effects can be achieved by incorporating the coupling agent in either the coating layer or the binder composition, but both the coating layer and the binder composition are coupled. By including the agent, the bonding strength between the two is further improved, and the strength is further improved in the finally obtained template, which is further preferable. As a coupling agent contained in a liquid caking agent composition, what was previously listed as a coupling agent which can be contained in a coating layer can be illustrated. The content of the coupling agent in the liquid caking agent composition is generally 0.5 to 10 parts by mass, preferably 100 parts by mass of the solid content of the water-soluble inorganic caking agent contained therein. The proportion is 1 to 5 parts by mass, more preferably 1 to 3 parts by mass.
 また、水溶性無機化合物を含有する液状の粘結剤組成物は、無機酸化物粒子を含有していても良い。粘結剤組成物が無機酸化物粒子を含有していることにより、鋳型材料の流動性や充填性、更には最終的に得られる鋳型の耐湿性向上に効果がある。本発明において用いられる無機酸化物粒子の大きさは、共に鋳型材料を構成する鋳物砂粒子より小さいものであることが好ましく、具体的には、平均粒子径が0.01μm以上300μm以下、より好適には0.3μm以上200μm以下、特に好適には0.5μm以上100μm以下である無機酸化物粒子が用いられる。なお、この平均粒子径は、レーザ回折式の粒度分布測定装置等によって測定される粒度分布より、求めることが可能である。また、粘結剤組成物における無機酸化物粒子の含有量は、そこに含まれる水溶性無機粘結剤の固形分100質量部に対して、一般に、5~200質量部、好ましくは10~100質量部の割合とされる。 In addition, the liquid binder composition containing a water-soluble inorganic compound may contain inorganic oxide particles. The inclusion of the inorganic oxide particles in the binder composition is effective in improving the flowability and filling properties of the mold material, and the moisture resistance of the finally obtained mold. The size of the inorganic oxide particles used in the present invention is preferably smaller than the casting sand particles that together constitute the template material, and specifically, the average particle diameter is preferably 0.01 μm to 300 μm, more preferably Inorganic oxide particles having a diameter of 0.3 μm to 200 μm, particularly preferably 0.5 μm to 100 μm, are used. The average particle diameter can be determined from a particle size distribution measured by a laser diffraction type particle size distribution measuring apparatus or the like. The content of the inorganic oxide particles in the binder composition is generally 5 to 200 parts by mass, preferably 10 to 100 parts by mass with respect to 100 parts by mass of the solid content of the water-soluble inorganic binder contained therein. It is considered as a proportion of parts by mass.
 なお、本発明において用いられる無機酸化物粒子は、球状粒子でも、非球状粒子でも良いが、球状粒子である方が、本発明の効果がより有利に発揮され、特に、より良好な鋳肌を有する鋳造製品を得ることが可能ならしめられる点において、好ましい。そして、そのような球状粒子は、一般に認識される程度の球状を呈するものであればよく、必ずしも真球状を呈することが必要とされるものではないが、通常、真球度が0.5以上であるものが、好ましくは0.7以上であるものが、更に好ましくは0.9以上であるものが、有利に用いられることとなる。ここで、真球度とは、走査型電子顕微鏡を用いた観察において、単粒子のものを無作為に10個選択し、その投影形状から得られたアスペクト比(短径/長径の比)の平均値を意味するものである。なお、球状ではない無機酸化物粒子を用いた場合、かかる無機酸化物粒子の表面には突起や窪みが存在していることから、例えば、無機酸化物粒子が、供給された水分によって溶液状となった水ガラスと共に鋳物砂粒子間を流動しようとすると、無機酸化物粒子表面の突起等が鋳物砂粒子や他の無機酸化物粒子とぶつかる等して、滑り止め作用が生じてしまい、鋳物砂粒子間への水ガラス及び無機酸化物粒子の流動が妨げられ、その結果、最終的に得られる鋳型の充填性や、その強度を低下させる恐れがある。 In addition, although the inorganic oxide particles used in the present invention may be spherical particles or non-spherical particles, spherical particles are more advantageous in exhibiting the effects of the present invention, and in particular, they have a better cast surface. It is preferable in that it is possible to obtain a cast product having the same. And such a spherical particle should just show the spherical shape of generally recognized degree, and although it is not necessarily required to show a spherical shape, Usually, sphericity is 0.5 or more , Preferably 0.7 or more, more preferably 0.9 or more, is advantageously used. Here, in the observation using a scanning electron microscope, the sphericity is randomly selected from 10 single particles, and the aspect ratio (ratio of the minor axis / major axis) obtained from the projection shape is It means an average value. In the case where inorganic oxide particles that are not spherical are used, protrusions and depressions are present on the surface of the inorganic oxide particles, so that, for example, the inorganic oxide particles form a solution by the supplied water. If it tries to flow between casting sand particles together with the water glass, the projections on the surface of the inorganic oxide particles collide with the casting sand particles and other inorganic oxide particles, etc., resulting in an anti-slip effect, resulting in casting sand The flow of the water glass and the inorganic oxide particles between the particles is impeded, and as a result, the fillability of the finally obtained mold and the strength thereof may be reduced.
 また、かかる無機酸化物粒子を構成する材質については、特に限定されるものではないが、無機金属酸化物であることが好ましい。無機金属酸化物からなる粒子としては、二酸化珪素、酸化アルミニウム、酸化チタン等からなる粒子が有利に用いられるのであり、それらの中でも、特に、二酸化珪素粒子は、強アルカリ性の水ガラスが二酸化珪素の表面上に形成されたシラノール基との反応することが出来、また水の蒸発に際して、二酸化珪素と固形となった水ガラスとの間に強固な結合が形成されて、鋳型強度を向上させ得る点において、好ましい。なお、二酸化珪素には晶質と非晶質とがあるが、非晶質の方が望ましく、非晶質二酸化珪素としては、沈殿シリカ、電気アーク中又は火炎加水分解で生成した焼成シリカ、ZrSiO4 の熱分解により生成したシリカ、酸素を含むガスで金属珪素の酸化により生成した二酸化珪素、溶融及びその後の急冷により結晶石英から生成された球状粒子の石英ガラス粉末等を、例示することが出来る。これらは、単独で用いられ得ることは勿論のこと、2種以上のものを混合して用いることも可能である。なお、本発明において、二酸化珪素は無機金属酸化物として扱うものとする。 Further, the material constituting such inorganic oxide particles is not particularly limited, but an inorganic metal oxide is preferable. As particles consisting of inorganic metal oxides, particles consisting of silicon dioxide, aluminum oxide, titanium oxide etc. are advantageously used, and among them, in particular, silicon dioxide particles are such that strongly alkaline water glass is silicon dioxide. It can react with silanol groups formed on the surface, and upon evaporation of water, a strong bond can be formed between silicon dioxide and solid water glass to improve mold strength. Is preferred. Silicon dioxide is crystalline or amorphous, but amorphous is more preferable. As amorphous silicon dioxide, precipitated silica, pyrogenic silica formed in an electric arc or by flame hydrolysis, ZrSiO Examples include silica produced by the thermal decomposition of 4 , silicon dioxide produced by oxidation of metallic silicon with a gas containing oxygen, quartz glass powder of spherical particles produced from crystalline quartz by melting and subsequent quenching, etc. . These can be used alone or in combination of two or more. In the present invention, silicon dioxide is treated as an inorganic metal oxide.
 さらに、本発明を構成する液状の粘結剤組成物には、耐湿性向上剤を含有せしめても良い。粘結剤組成物に耐湿性向上剤を含有せしめることにより、最終的に得られる鋳型の耐湿性の向上を図ることが出来る。本発明において用いられる耐湿性向上剤としては、鋳型材料において従来より用いられているものであれば、本発明の効果を阻害しないものであり限り、如何なるものであっても使用可能である。具体的には、炭酸亜鉛、塩基性炭酸亜鉛、炭酸鉄、炭酸マンガン、炭酸銅、炭酸アルミニウム、炭酸バリウム、炭酸マグネシウム、炭酸カルシウム、炭酸リチウム、炭酸カリウム、炭酸ナトリウム等の炭酸塩、四ホウ酸ナトリウム、四ホウ酸カリウム、四ホウ酸リチウム、四ホウ酸アンモニウム、四ホウ酸カルシウム、四ホウ酸ストロンチウム、四ホウ酸銀、メタホウ酸ナトリウム、メタホウ酸カリウム、メタホウ酸リチウム、メタホウ酸アンモニウム、メタホウ酸カルシウム、メタホウ酸銀 メタホウ酸銅、メタホウ酸鉛、メタホウ酸マグネシウム等のホウ酸塩、硫酸ナトリウム、硫酸カリウム、硫酸リチウム、硫酸マグネシウム、硫酸カルシウム、硫酸ストロンチウム、硫酸バリウム、硫酸チタン、硫酸アルミニウム、硫酸亜鉛、硫酸銅等の硫酸塩、リン酸ナトリウム、リン酸水素ナトリウム、リン酸カリウム、リン酸水素カリウム、リン酸リチウム、リン酸水素リチウム、リン酸マグネシウム、リン酸カルシウム、リン酸チタン、リン酸アルミニウム、リン酸亜鉛等のリン酸塩、水酸化リチウム、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム、水酸化アルミニウム、水酸化亜鉛等の水酸化物、珪素、亜鉛、マグネシウム、アルミニウム、カルシウム、リチウム、銅、鉄、ホウ素、ジルコニウム等の酸化物等を、例示することが出来る。それらの中でも、特に塩基性炭酸亜鉛、四ホウ酸ナトリウム、メタホウ酸カリウム、硫酸リチウム、水酸化リチウムは、水溶性無機粘結剤として水ガラスを用いた場合に、より有利に耐湿性を向上させることが可能である。上記したものを始めとする耐湿性向上剤は、単独で用いられ得ることは勿論のこと、2種以上のものを併用することも可能である。なお、先に列記した耐湿性向上剤の中には、水溶性無機粘結剤として使用可能な化合物も含まれているが、かかる化合物にあっては、それとは異なる水溶性無機粘結剤を用いる場合に、耐湿性向上剤として作用させることが可能である。 Furthermore, a moisture resistance improver may be contained in the liquid caking agent composition constituting the present invention. By incorporating a moisture resistance improver in the binder composition, the moisture resistance of the finally obtained mold can be improved. As the moisture resistance improver used in the present invention, any agent can be used as long as it does not inhibit the effects of the present invention as long as it is conventionally used in a mold material. Specifically, zinc carbonate, basic zinc carbonate, iron carbonate, manganese carbonate, copper carbonate, aluminum carbonate, barium carbonate, magnesium carbonate, calcium carbonate, lithium carbonate, potassium carbonate, carbonates such as sodium carbonate, tetraboric acid Sodium, potassium tetraborate, lithium tetraborate, ammonium tetraborate, calcium tetraborate, strontium tetraborate, silver tetraborate, sodium metaborate, potassium metaborate, lithium metaborate, ammonium metaborate, metaborate Calcium, silver metaborate Copper metaborate, lead metaborate, magnesium metaborate and other borates, sodium sulfate, potassium sulfate, lithium sulfate, lithium sulfate, magnesium sulfate, calcium sulfate, strontium sulfate, barium sulfate, titanium sulfate, aluminum sulfate, sulfate Zinc, copper sulfate Sulfate, sodium phosphate, sodium hydrogen phosphate, potassium phosphate, potassium hydrogen phosphate, lithium phosphate, lithium hydrogen phosphate, magnesium hydrogen phosphate, calcium phosphate, calcium phosphate, titanium phosphate, aluminum phosphate, zinc phosphate etc. Phosphate, lithium hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, aluminum hydroxide, hydroxides such as zinc hydroxide, silicon, zinc, magnesium, aluminum, calcium, lithium, copper Examples of such oxides include iron, boron, and zirconium. Among them, particularly basic zinc carbonate, sodium tetraborate, potassium metaborate, lithium sulfate and lithium hydroxide improve moisture resistance more advantageously when water glass is used as a water-soluble inorganic binder. It is possible. The moisture resistance improver including those described above may be used alone or in combination of two or more. In addition, although the compound which can be used as a water-soluble inorganic caking agent is also contained in the moisture resistance improving agent listed previously, in such a compound, the water-soluble inorganic caking agent different from it is mentioned When used, it can act as a moisture resistance improver.
 なお、そのような耐湿性向上剤の使用量としては、その総量において、液状の粘結剤組成物中の水溶性無機粘結剤の固形分100質量部に対して、一般に、0.5~50質量部程度であることが好ましく、中でも、1~20質量部がより好ましく、特に、2~15質量部が更に好ましい。耐湿性向上剤の添加効果を有利に享受するために、0.5質量部以上の使用量であることが望ましいのであり、一方、その添加量が多すぎると、水溶性無機粘結剤の結合を阻害し、最終的に得られる鋳型の強度が低下する等の問題を惹起する恐れがあるところから、50質量部以下とされることが望ましいのである。 The amount of such a moisture resistance improver used is generally 0.5 to 10 parts by mass of the solid content of the water-soluble inorganic binder in the liquid caking agent composition in the total amount. The amount is preferably about 50 parts by mass, more preferably 1 to 20 parts by mass, and particularly preferably 2 to 15 parts by mass. In order to advantageously enjoy the addition effect of the moisture resistance improver, it is desirable that the use amount be 0.5 parts by mass or more, and on the other hand, if the addition amount is too large, the binding of the water-soluble inorganic caking agent It is desirable that the amount be 50 parts by mass or less, because it may cause problems such as the strength of the finally obtained template being reduced.
 さらにまた、本発明に従う鋳型材料においては、鋳物砂粒子の表面を覆う、液状の粘結剤組成物中に、界面活性剤を含有せしめても良い。水溶性無機粘結剤を含む粘結剤組成物中に界面活性剤が含有せしめられていることにより、本発明に従う湿態の鋳型材料は、1)界面活性剤の存在により、その調製(製造)の際に添加される水分量を必要最低限に抑えることが可能ならしめられ、また、2)水の表面張力が抑制され、鋳型材料の流動性が向上し、更に、3)造型された鋳型が、成形型からの離型性に優れていることに加えて、優れた強度をも発揮する、等の効果を、有利に享受することが出来る。本発明において、液状の粘結剤組成物中の界面活性剤の含有量は、そこに含まれる水溶性無機粘結剤の固形分の100質量部に対して、0.1~20.0質量部であることが望ましく、中でも0.5~15.0質量部が好ましく、特に0.75~12.5質量部であることが好ましい。 Furthermore, in the mold material according to the present invention, a surfactant may be contained in the liquid binder composition covering the surface of the foundry sand particles. Due to the fact that the surfactant is contained in the binder composition containing the water-soluble inorganic binder, the wet mold material according to the present invention is prepared 1) in the presence of the surfactant. Allowing the amount of water added during the process to be minimized, and 2) the surface tension of water is suppressed, the flowability of the mold material is improved, and 3) the mold is formed In addition to the fact that the mold is excellent in the releasability from the mold, effects such as exhibiting excellent strength can be advantageously enjoyed. In the present invention, the content of the surfactant in the liquid caking agent composition is 0.1 to 20.0 parts by mass with respect to 100 parts by mass of the solid content of the water-soluble inorganic caking agent contained therein. It is preferably part, particularly preferably 0.5 to 15.0 parts by mass, and particularly preferably 0.75 to 12.5 parts by mass.
 本発明において、液状の粘結剤組成物に添加される界面活性剤としては、陽イオン性界面活性剤、陰イオン性界面活性剤、両性界面活性剤、非イオン性界面活性剤、シリコーン系界面活性剤及びフッ素系界面活性剤の何れをも、用いることが出来る。具体的に、陽イオン性界面活性剤としては、脂肪族アミン塩、脂肪族4級アンモニウム塩、ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、イミダゾリニウム塩等が挙げられる。また、陰イオン性界面活性剤としては、脂肪酸石鹸、N-アシル-N-メチルグリシン塩、N-アシル-N-メチル-β-アラニン塩、N-アシルグルタミン酸塩、アルキルエーテルカルボン酸塩、アシル化ペプチド、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホ琥珀酸エステル塩、アルキルスルホ酢酸塩、α-オレフィンスルホン酸塩、N-アシルメチルタウリン、硫酸化油、高級アルコール硫酸エステル塩、第2級高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩、第2級高級アルコールエトキシサルフェート、ポリオキシエチレンアルキルフェニルエーテル硫酸塩、モノグリサルフェート、脂肪酸アルキロールアミド硫酸エステル塩、アルキルエーテルリン酸エステル塩、アルキルリン酸エステル塩等が挙げられる。更に、両性界面活性剤としては、カルボキシベタイン型、スルホベタイン型、アミノカルボン酸塩、イミダゾリニウムベタイン等が挙げられる。加えて、非イオン性界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン2級アルコールエーテル、ポリオキシエチレンアルキルフェニルエーテル(例えば、エマルゲン911)、ポリオキシエチレンステロールエーテル、ポリオキシエチレンラノリン誘導体、ポリオキシエチレンポリオキシプロピレンアルキルエーテル(例えば、ニューポールPE-62)、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレンヒマシ油、硬化ヒマシ油、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリエチレングリコール脂肪酸エステル、脂肪酸モノグリセリド、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ショ糖脂肪酸エステル、脂肪酸アルカノールアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミン、アルキルアミンオキサイド、アセチレングリコール、アセチレンアルコール等が挙げられる。 In the present invention, as the surfactant added to the liquid caking agent composition, a cationic surfactant, an anionic surfactant, an amphoteric surfactant, a nonionic surfactant, a silicone-based interface Both activators and fluorosurfactants can be used. Specifically, as the cationic surfactant, aliphatic amine salts, aliphatic quaternary ammonium salts, benzalkonium salts, benzethonium chloride, pyridinium salts, imidazolinium salts and the like can be mentioned. Further, as anionic surfactants, fatty acid soap, N-acyl-N-methylglycine salt, N-acyl-N-methyl-β-alanine salt, N-acyl glutamate, alkyl ether carboxylate, acyl Peptide, alkyl sulfonate, alkyl benzene sulfonate, alkyl naphthalene sulfonate, dialkyl sulfo borate, alkyl sulfo acetate, α-olefin sulfonate, N-acyl methyl taurine, sulfated oil, higher alcohol Sulfate ester, secondary higher alcohol sulfate, alkyl ether sulfate, secondary higher alcohol ethoxy sulfate, polyoxyethylene alkyl phenyl ether sulfate, monoglysulfate, fatty acid alkylol amide sulfate, alkyl ether phosphorus Acid A stell salt, an alkyl phosphate ester salt etc. are mentioned. Furthermore, as the amphoteric surfactant, carboxybetaine type, sulfobetaine type, amino carboxylate, imidazolinium betaine and the like can be mentioned. In addition, as nonionic surfactants, polyoxyethylene alkyl ether, polyoxyethylene secondary alcohol ether, polyoxyethylene alkyl phenyl ether (for example, Emulgen 911), polyoxyethylene sterol ether, polyoxyethylene lanolin derivative , Polyoxyethylene polyoxypropylene alkyl ether (eg, Neupol PE-62), polyoxyethylene glycerin fatty acid ester, polyoxyethylene castor oil, hydrogenated castor oil, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, Polyethylene glycol fatty acid ester, fatty acid monoglyceride, polyglycerin fatty acid ester, sorbitan fatty acid ester, propylene glycol fat Esters, sucrose fatty acid esters, fatty acid alkanolamides, polyoxyethylene fatty acid amides, polyoxyethylene alkyl amines, alkyl amine oxides, acetylene glycol, acetylene alcohol, and the like.
 また、種々の界面活性剤のうち、特に、非極性部位としてシロキサン構造を有するものをシリコーン系界面活性剤といい、パーフルオロアルキル基を有するものをフッ素系界面活性剤という。シリコーン系界面活性剤としては、ポリエステル変性シリコーン、アクリル末端ポリエステル変性シリコーン、ポリエーテル変性シリコーン、アクリル末端ポリエーテル変性シリコーン、ポリグリセリン変性シリコーン、アミノプロピル変性シリコーン等が挙げられる。また、フッ素系界面活性剤としては、パーフルオロアルキルスルフォン酸塩、パーフルオロアルキルカルボン酸塩、パーフルオロアルキルリン酸エステル、パーフルオロアルキルトリメチルアンモニウム塩、パーフルオロアルキルエチレンオキサイド付加物、パーフルオロアルキル基含有オリゴマー等が挙げられる。 Further, among various surfactants, in particular, those having a siloxane structure as a nonpolar site are called silicone surfactants, and those having a perfluoroalkyl group are called fluorosurfactants. Examples of silicone surfactants include polyester-modified silicone, acrylic-terminated polyester-modified silicone, polyether-modified silicone, acrylic-terminated polyether-modified silicone, polyglycerin-modified silicone, aminopropyl-modified silicone and the like. Moreover, as a fluorochemical surfactant, perfluoroalkyl sulfonate, perfluoroalkyl carboxylate, perfluoroalkyl phosphate, perfluoroalkyl trimethyl ammonium salt, perfluoroalkyl ethylene oxide adduct, perfluoroalkyl group Included oligomers and the like.
 本発明においては、上述の如き各種の界面活性剤を、単独で、又は2種類以上を混合して、用いることが可能である。尤も、界面活性剤によっては、水溶性無機粘結剤と反応し、時間の経過と共に界面活性能が低下乃至は消失する恐れがあるものがあるため、例えば、水溶性無機粘結剤として水ガラスを用いる場合には、かかる水ガラスと反応しない陰イオン性界面活性剤、非イオン性界面活性剤及びシリコーン系界面活性剤が、本発明の鋳型材料においては特に有利に使用される。 In the present invention, various surfactants as described above can be used alone or in combination of two or more. However, some surfactants react with the water-soluble inorganic binder, and there is a possibility that the surface activity decreases or disappears with the passage of time, so, for example, water glass as the water-soluble inorganic binder Such anionic surfactants which do not react with water glass, nonionic surfactants and silicone surfactants are particularly advantageously used in the template material of the present invention.
 加えて、本発明に従う湿態の鋳型材料においては、コーティング層が形成された鋳物砂粒子の表面を覆う液状の粘結剤組成物中に、多価アルコールを含有せしめても良い。このように、水溶性無機粘結剤を含む粘結剤組成物中に多価アルコールが含有せしめられていることにより、鋳型造型の際に、湿態状態にある鋳型材料の膨潤性を、加熱によって固化又は硬化されるまで、安定して維持することが可能となる。本発明において、粘結剤組成物中の多価アルコールの含有量は、そこに含まれる水溶性無機粘結剤の固形分100質量部に対して、0.1~20.0質量部であることが望ましく、中でも0.5~15.0質量部がより望ましく、0.75~12.5質量部であることが最も望ましい。 In addition, in the wet mold material according to the present invention, a polyhydric alcohol may be contained in the liquid binder composition covering the surface of the foundry sand particle on which the coating layer is formed. As described above, since the polyhydric alcohol is contained in the binder composition containing the water-soluble inorganic binder, the swelling property of the mold material in the wet state during heating of the mold is heated. It can be stably maintained until solidified or cured. In the present invention, the content of polyhydric alcohol in the binder composition is 0.1 to 20.0 parts by mass with respect to 100 parts by mass of the solid content of the water-soluble inorganic binder contained therein. Among them, 0.5 to 15.0 parts by mass is more preferable, and 0.75 to 12.5 parts by mass is most preferable.
 なお、本発明において用いられ得る多価アルコールとしては、具体的に、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ジプロピレングリコール、プロピレングリコール、ブチレングリコール、1,2-ブタンジオール、1,2-ペンタンジオール、1,5-ペンタンジオール、1,2-ヘキサンジオール、2-エチル-1,3-ヘキサンジオール、1,6-ヘキサンジオール、1,2-ヘプタンジオール、1,2-オクタンジオール、1,2,6-ヘキサントリオール、チオグリコール、ヘキシレングリコール、グリセリン、トリメチロールエタン、トリメチロールプロパン等を、例示することが出来る。 Specific examples of polyhydric alcohols that can be used in the present invention include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, dipropylene glycol, propylene glycol, butylene glycol, and 1,2-butanediol. 1,2-pentanediol, 1,5-pentanediol, 1,2-hexanediol, 2-ethyl-1,3-hexanediol, 1,6-hexanediol, 1,2-heptanediol, 1,2- Octanediol, 1,2,6-hexanetriol, thioglycol, hexylene glycol, glycerin, trimethylolethane, trimethylolpropane and the like can be exemplified.
 さらにまた、本発明に従う湿態の鋳型材料においては、鋳物砂粒子の周囲を覆う液状の粘結剤組成物中に、上述したカップリング剤等と共に、或いは単独で、必要に応じて公知の各種添加剤を適宜に含有せしめることも可能である。なお、そのような添加剤を粘結剤組成物に含有せしめるには、液状の粘結剤組成物を調製する際に、水溶性無機粘結剤等と共に組成物内に添加し、その調製された、添加剤を含む粘結剤組成物を、鋳物砂と混練又は混合せしめる方法や、粘結剤組成物とは別個に、所定の添加剤を、鋳物砂に対して添加して、全体を均一に混練乃至は混合せしめる方法等が、採用される。 Furthermore, in the wet-type mold material according to the present invention, various kinds of publicly known additives may be used alone or together with the above-mentioned coupling agent or the like in the liquid caking agent composition covering the periphery of casting sand particles. It is also possible to optionally contain additives. Incidentally, in order to incorporate such an additive into the binder composition, when a liquid binder composition is prepared, it is added to the composition together with a water-soluble inorganic binder etc. A method of mixing or mixing a caking agent composition containing an additive with a foundry sand, or adding a predetermined additive to the foundry sand separately from the caking agent composition A method of uniformly kneading or mixing is adopted.
 そのような添加剤の一つとして、本発明においては、鋳型材料の流動性の向上に寄与する滑剤が有利に用いられる。本発明において使用可能な滑剤としては、パラフィンワックス、合成ポリエチレンワックス、モンタン酸ワックス等のワックス類;ステアリン酸アマイド、オレイン酸アマイド、エルカ酸アマイド等の脂肪酸アマイド類;メチレンビスステアリン酸アマイド、エチレンビスステアリン酸アマイド等のアルキレン脂肪酸アマイド類;ステアリン酸、ステアリルアルコール;ステアリン酸鉛、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム等のステアリン酸金属塩;ステアリン酸モノグリセリド、ステアリルステアレート、硬化油等を例示することが出来る。また、離型剤として、パラフィン、ワックス、軽油、マシン油、スピンドル油、絶縁油、廃油、植物油、脂肪酸エステル、有機酸、黒鉛微粒子、雲母、蛭石、フッ素系離型剤、シリコーン系離型剤等も使用可能である。そして、これらその他の添加剤は、それぞれ、液状の粘結剤組成物に含まれる水溶性無機粘結剤の固形分100質量部に対して、一般に、0.5~10質量部、好ましくは1~5質量部、より好ましくは1~3質量部の割合において、含有せしめられる。 As one of such additives, in the present invention, a lubricant which contributes to the improvement of the flowability of the mold material is advantageously used. Examples of lubricants usable in the present invention include waxes such as paraffin wax, synthetic polyethylene wax and montanic acid wax; fatty acid amides such as stearic acid amide, oleic acid amide and erucic acid amide; methylenebisstearic acid amide and ethylene bis Alkylene fatty acid amides such as stearic acid amide; stearic acid, stearyl alcohol; lead stearate, zinc stearate, calcium stearate, metal stearate such as magnesium stearate; stearic acid monoglyceride, stearyl stearate, hydrogenated oil etc. You can do it. Further, as a mold release agent, paraffin, wax, light oil, machine oil, spindle oil, insulating oil, waste oil, vegetable oil, fatty acid ester, organic acid, graphite fine particles, mica, vermiculite, fluorine-based mold release agent, silicone-based mold release Agents and the like can also be used. These other additives are generally 0.5 to 10 parts by mass, preferably 1 to 100 parts by mass of the solid content of the water-soluble inorganic binder contained in the liquid caking agent composition. It is contained in a proportion of ̃5 parts by mass, more preferably 1 to 3 parts by mass.
 ところで、本発明に従う湿態の鋳型材料は、1)先ず、鋳物砂の表面に、有機化合物を含む固体状のコーティング層を形成せしめた後、2)かかるコーティング層が形成された鋳物砂に対して、水溶性無機粘結剤を含む液状の粘結剤組成物を添加し、混練乃至は混合せしめることにより、有利に製造することが可能である。 By the way, the mold material in a wet state according to the present invention is 1) first, after forming a solid coating layer containing an organic compound on the surface of casting sand, 2) for casting sand on which such a coating layer is formed. It is possible to produce advantageously by adding and kneading or mixing a liquid caking agent composition containing a water-soluble inorganic caking agent.
 そのような製造方法に従い、本発明の湿態の鋳型材料を製造するに当たり、先ず、鋳物砂の表面に、有機化合物を含む固体状のコーティング層を形成する方法としては、公知の各種手法の中から、有機化合物の特性等に応じたものが適宜に選択されて、採用される。例えば、鋳物砂の表面に有機化合物を含有する固体状のコーティング層を形成する手法としては、ドライホットコート法やコールドコート法等を例示することが出来るが、固体状のコーティング層を形成できるのであれば、その方法は、特に限定されるものではない。 In producing the wet mold material of the present invention according to such a production method, first, as a method of forming a solid coating layer containing an organic compound on the surface of casting sand, among various known methods, From the above, ones according to the characteristics and the like of the organic compound are appropriately selected and adopted. For example, as a method of forming a solid coating layer containing an organic compound on the surface of casting sand, a dry hot coating method, a cold coating method and the like can be exemplified, but a solid coating layer can be formed. If there is, the method is not particularly limited.
 なお、ドライホットコート法とは、固体状の有機化合物を、130~180℃に加熱した鋳物砂に添加して混合し、鋳物砂の熱によって固体状の有機化合物を溶融させ、その溶融した有機化合物で耐火性骨材の表面を被覆させて、しかる後にこの混合を保持したまま冷却することによって、鋳物砂表面に固体状のコーティング層を形成する方法である。また、コールドコート法とは、有機化合物をそのままで、あるいはメタノールなどの溶剤に溶解して液状とし、その液状物を鋳物砂に添加して混合し、溶剤を揮発させること等によって、鋳物砂表面に固体状のコーティング層を形成する方法である。 In the dry hot coating method, solid organic compounds are added to and mixed with foundry sand heated to 130 to 180 ° C., and solid organic compounds are melted by the heat of the foundry sand, and the melted organics This is a method of forming a solid coating layer on the surface of casting sand by coating the surface of the refractory aggregate with a compound and then cooling while maintaining this mixture. In the cold coating method, the organic compound is dissolved as it is or in a solvent such as methanol to make a liquid, the liquid is added to casting sand and mixed, and the solvent is volatilized, etc. Is a method of forming a solid coating layer.
 また、有機化合物として架橋硬化性樹脂を用いる場合は、例えば、上記したコート法に従って固体状のコーティング層を形成した後、更なる加熱により、及び/又は硬化剤若しくは硬化触媒を添加することにより、架橋硬化性樹脂を硬化させ、コーティング層に含まれる架橋性硬化樹脂の分子量を増大させても良い。加熱によって架橋硬化性樹脂を硬化させる場合には、例えば、120℃~300℃の恒温槽に入れて5~60分ほど反応硬化させたり、鋳物砂を150℃~300℃に加熱し、120℃~300℃に加熱した混練機で5~60分間ほど混練して反応硬化させたりする方法等がある。なお、コーティング層に含まれる架橋硬化性樹脂が硬化した鋳型材料は、鋳物砂粒子(砂粒)間に強固なネックが存在し、一体塊状化したり、複合粒子を作る可能性があるので、コーティング層で被覆された鋳物砂の表面状態を良好なものとするために、練り込みがあり回転数の速い速練機(スピードマラー)で反応硬化させることが好ましい。また、長時間混練すると剥離が起こり、微粉が発生する可能性があるので、高温でかつ短時間で反応させる方が好ましい。一方、硬化剤又は硬化触媒を用いて架橋硬化性樹脂を硬化させる場合には、かかる硬化剤又は硬化触媒として、例えばヘキサメチレンテトラミン、有機エステル、有機酸、炭酸ガス、過酸化物、金属イオン、アミン等が用いられる。また、架橋性硬化樹脂がフェノールウレタン系樹脂である場合には、フェノール樹脂とポリイソシアネート樹脂とを混合することにより、硬化させることも可能である。硬化剤を用いて架橋硬化性樹脂を硬化させる場合にあっても、混練機で混練させながら反応硬化させることが望ましい。 Moreover, when using a crosslinking curable resin as the organic compound, for example, after forming a solid coating layer according to the coating method described above, by further heating, and / or by adding a curing agent or a curing catalyst, The crosslinkable curable resin may be cured to increase the molecular weight of the crosslinkable curable resin contained in the coating layer. In the case of curing the crosslink-curable resin by heating, for example, it is placed in a thermostatic bath of 120 ° C. to 300 ° C. and reaction hardened for about 5 to 60 minutes, or casting sand is heated to 150 ° C. to 300 ° C., 120 ° C. There is a method of kneading for 5 to 60 minutes with a kneader heated to 300 ° C. for reaction hardening. In addition, since the mold material in which the crosslink-curable resin contained in the coating layer is cured has a strong neck between casting sand particles (sand particles), there is a possibility of forming an integrated block or forming composite particles, so the coating layer In order to improve the surface condition of the casting sand coated with the above, it is preferable to carry out reaction hardening with a quick kneader (speed muller) which has kneading and has a high rotational speed. Further, if kneading is performed for a long time, peeling may occur and fine powder may be generated. Therefore, it is preferable to react at high temperature for a short time. On the other hand, in the case of curing the crosslinkable curable resin using a curing agent or curing catalyst, for example, hexamethylenetetramine, organic ester, organic acid, carbon dioxide gas, peroxide, metal ion, etc. as the curing agent or curing catalyst. An amine or the like is used. In addition, when the crosslinkable curing resin is a phenol urethane resin, it is also possible to cure by mixing a phenol resin and a polyisocyanate resin. Even in the case of curing the crosslink-curable resin using a curing agent, it is desirable to carry out reaction curing while kneading with a kneader.
 次いで、その表面に、有機化合物を含む固体状のコーティング層が設けられた鋳物砂を、水溶性無機粘結剤を含む液状の粘結剤組成物にて被覆せしめるに際しては、例えば、コーティング層が設けられた鋳物砂に対して、粘結剤として水溶液状の水溶性無機粘結剤を、必要に応じて添加剤と共に、混練乃至は混合せしめて均一に混和することにより、有機化合物を含む固体状のコーティング層が設けられた鋳物砂と、水溶性無機粘結剤を含む液状の粘結剤組成物との混和物からなる、本発明に従う湿態の鋳型材料が得られるのである。なお、混和の際の種々の条件は、水溶液状の水溶性無機粘結剤の種類や水分量等に応じて適宜に決定され、また、混和の際の温度としては、一般に、常温~40℃程度とされる。本発明に従う湿態の鋳型材料を製造するに際しては、得られる鋳型材料が適度な湿態状を呈するように、その含水分量が調整されることとなるが、例えば、水溶性無機粘結剤として水ガラスを用いた場合には、鋳型材料における含水分量は、水ガラスの固形分量の55質量%より多くなるように、好ましくは70~900質量%、より好ましくは95~500質量%となるように調整される。このように含水分量が調整された、本発明に従う湿態の鋳型材料にあっては、鋳型造型時に成形型に充填する際のブローエアーによって、湿態の鋳型材料が乾燥し、ブロックするのを防ぎ、湿態の鋳型材料の湿潤性を保つことが可能ならしめられることに加えて、そのような鋳型材料を用いて造型された鋳型においても、優れた特性が付与されたものとなるのである。なお、鋳型材料の含水分量は、カールフィッシャー法や、乾燥器等で加熱した時の重量変化によって、測定可能である。 Then, when a casting sand provided with a solid coating layer containing an organic compound on its surface is coated with a liquid caking agent composition containing a water-soluble inorganic caking agent, for example, the coating layer is A solid containing an organic compound by kneading or mixing a water-soluble inorganic caking agent in the form of an aqueous solution as a caking agent, if necessary, with additives to the foundry sand, and uniformly mixing it. A wet mold material according to the present invention is obtained, which consists of a mixture of foundry sand provided with the following coating layer and a liquid binder composition containing a water-soluble inorganic binder. The various conditions for mixing are appropriately determined according to the type and water content of the water-soluble inorganic binder in the form of an aqueous solution, and the temperature for mixing is generally room temperature to 40 ° C. It is said that In the production of a moist mold material according to the present invention, the water content thereof is adjusted so that the obtained mold material exhibits an appropriate wet state, but, for example, as a water-soluble inorganic caking agent When water glass is used, the water content in the mold material is preferably 70 to 900% by mass, more preferably 95 to 500% by mass so as to be more than 55% by mass of the solid content of waterglass Adjusted to In the wet mold material according to the present invention, the moisture content of which is thus adjusted, the mold air in the wet state is dried and blocked by blow air at the time of filling the mold at the time of mold making. In addition to being able to prevent and maintain the wettability of the wet mold material, excellent properties are also imparted to molds molded using such mold material . The water content of the mold material can be measured by the weight change when heated by the Karl Fischer method, a drier or the like.
 かくして得られた、本発明に従う湿態の鋳型材料(コーテッドサンド)を用いて、目的とする鋳型を造型するに際しては、従来より公知の各種手法を採用することが出来る。例えば、上述した湿態の鋳型材料(コーテッドサンド)を、目的とする鋳型を与える成形型の成形キャビティ内に充填する一方、かかる成形型を80~300℃、好ましくは100~200℃の温度に加熱して、充填された鋳型材料(コーテッドサンド)が乾燥するまで、成形型内で保持する。このような成形型内での加熱保持により、充填された湿態の鋳型材料(コーテッドサンド)の固化乃至は硬化が進行することとなる。 When molding the target mold using the wet mold material (coated sand) according to the present invention thus obtained, various conventionally known methods can be employed. For example, the above-mentioned wet mold material (coated sand) is loaded into the mold cavity of the mold which gives the desired mold, while such mold is brought to a temperature of 80-300.degree. C., preferably 100-200.degree. Heat and hold in the mold until the filled mold material (coated sand) is dry. By such heating and holding in the mold, solidification or curing of the filled mold material (coated sand) proceeds.
 すなわち、加熱された成形型のキャビティ内に、湿態の鋳型材料(コーテッドサンド)を充填し、保持することにより、鋳型材料を構成する鋳物砂粒子が、周囲に存在する粘結剤組成物に含まれる水溶性無機粘結剤を介して相互に結合して連結し、一体的な鋳型形状を呈する鋳型材料の集合体(結合物)が、形成されるのである。このとき、水溶性無機粘結剤の硬化を促進させるための添加剤として、キャビティ内に硬化剤を添加しても良い。なお、水溶性無機粘結剤は、通常、何の添加剤も加えられていなければ、水の蒸発乾固により固化し、また硬化剤が加えられている場合には、硬化することとなるのである。本発明において、鋳型材料の集合体(結合体)からなる鋳型は、鋳型材料(コーテッドサンド)が、単に固化したもの(固化物)、及び硬化剤によって硬化したもの(硬化物)の何れをも含むものである。 That is, by filling and holding a wet mold material (coated sand) in the cavity of the heated mold, molding sand particles constituting the mold material are added to the binder composition present in the periphery. Assemblages (bindings) of template materials are formed which are linked and linked to each other through the water-soluble inorganic binder contained, and exhibit an integral template shape. At this time, a curing agent may be added into the cavity as an additive for promoting the curing of the water-soluble inorganic binder. The water-soluble inorganic binder usually solidifies by evaporation of water if no additive is added, and hardens when a curing agent is added. is there. In the present invention, the mold consisting of an aggregate (binding body) of the mold material may be any of a mold material (coated sand) simply solidified (solidified material) and a hardened material (hardened material) by a curing agent. It is included.
 なお、硬化剤としては、二酸化炭素(炭酸水)、硫酸、塩酸、硝酸、リン酸、シュウ酸、カルボン酸、パラトルエンスルホン酸等の有機酸や、ギ酸メチル、ギ酸エチル、ギ酸プロピル、γ-ブチロラクトン、γ-プロピオンラクトン、エチレングリコールジアセテート、ジエチレングリコールジアセテート、グリセリンジアセテート、トリアセチン、プロピレンカーボネート等のエステルや、メタノール、エタノール、ブタノール、ヘキサノール、オクタノール等の一価のアルコール等を、例示することが出来る。これら硬化剤は、単独で用いられ得ることは勿論のこと、2種以上のものを混合して、使用することも可能である。 In addition, as a curing agent, organic acids such as carbon dioxide (carbonated water), sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, oxalic acid, carboxylic acid, para-toluenesulfonic acid, methyl formate, ethyl formate, propyl formate, γ- Examples include esters of butyrolactone, γ-propion lactone, ethylene glycol diacetate, diethylene glycol diacetate, glycerin diacetate, triacetin, propylene carbonate, etc., and monohydric alcohols such as methanol, ethanol, butanol, hexanol, octanol, etc. Can do. These curing agents can be used alone or in combination of two or more.
 また、湿態の鋳型材料(コーテッドサンド)を成形型のキャビティ内で加熱するに際しては、有利には、予め所定の温度に加熱(予熱)され、その温度にて保温された状態の成形型を準備し、かかる成形型のキャビティ内に鋳型材料を充填し、鋳型材料を加熱することが好ましい。このように、成形型を予め加熱しておくことにより、鋳型材料の乾燥を速め、造型時間の短縮化を図ることが可能である。この予熱による保温温度としては、80~300℃、好ましくは100~200℃、より好ましくは120~180℃が採用される。乾燥を速め、造型時間を短縮する理由と、添加剤による耐湿強度の向上を図る観点より、80℃以上であることが好ましく、鋳物砂粒子間の結合が十分に形成される前に水分が蒸発し、鋳型強度が発現しなくなるという問題の発生を防止する観点より、300℃以下であることが好ましい。このような温度範囲内の温度にて成形型を加熱することにより、最終的に得られる鋳型の耐湿強度を向上せしめ得ると共に、鋳型材料の乾燥が、有利に進行せしめられ得るのである。 Further, when heating the mold material in a wet state (coated sand) in the cavity of the mold, it is advantageous to heat the mold in a state of being preheated to a predetermined temperature (preheated) and kept warm at that temperature. It is preferred to prepare and fill the mold material into the cavity of such mold and to heat the mold material. Thus, by heating the mold in advance, it is possible to accelerate the drying of the mold material and shorten the molding time. As the temperature for keeping warm by this preheating, 80 to 300 ° C., preferably 100 to 200 ° C., more preferably 120 to 180 ° C. is employed. The temperature is preferably 80 ° C. or higher from the viewpoint of accelerating the drying and shortening the molding time and from the viewpoint of improving the moisture resistance by the additive, it is preferable that the temperature be 80 ° C. or higher. The temperature is preferably 300 ° C. or less from the viewpoint of preventing the occurrence of the problem that the template strength is not developed. By heating the mold at a temperature within such a temperature range, the moisture resistance of the finally obtained mold can be improved, and drying of the mold material can be advantageously advanced.
 さらに、鋳型材料の成形型内での保持中に、水の蒸発を促進させるために、成形型内に熱風又は過熱水蒸気を吹き込み、成形型内の充填相(鋳型材料)に通気せしめるようにする手法が、好適に採用される。このような熱風又は過熱水蒸気の通気によって、鋳型材料からなる充填相の内部にまで迅速に乾燥させて、かかる充填相の固化乃至は硬化をより一層有利に促進せしめ、以て、固化(硬化)速度を有利に高めると共に、得られる鋳型の抗折強度等の特性をも有利に高め得ることとなる他、鋳型の造型時間の短縮にも、有利に寄与し得るのである。また、鋳型材料の成形型内での保持中に、鋳型材料の固化乃至は硬化をより有利に促進させるため、二酸化炭素、アルゴン、窒素、ヘリウム、空気のうち少なくとも1種からなるキャリアガスを成形型内に吹き込み、その充填相に通気せしめるようにする手法が、好適に採用される。その際、二酸化炭素は硬化剤として、また、アルゴン、窒素、ヘリウム及び空気は固化促進剤として、それぞれ作用する。なお、空気は、一部又は全部の水蒸気が除去された空気(乾燥空気)が好ましく、湿度が50%以下の乾燥空気が、より好ましくは湿度が30%以下の乾燥空気が、使用される。キャリアガスで水溶性無機粘結剤を中和することにより、鋳型材料の固化乃至は硬化をより促進させることが可能である。なお、熱風又は過熱水蒸気の通気と、キャリアガスの通気は、何れか一方のみを実施しても良いが、両者を実施することも可能であり、熱風又は過熱水蒸気の通気とキャリアガスの通気を同時に実施すること、熱風又は過熱水蒸気の通気の後にキャリアガスを通気すること、キャリアガスの通気の後に熱風又は過熱水蒸気を通気することの何れにあっても可能である。また、成形型のキャビティ内に湿態の鋳型材料を充填せしめた後、成形型内での保持中であれば、どのタイミングで熱風等及び/又はキャリアガスの通気を実施しても何等、差し支えない。 Furthermore, during the retention of the mold material in the mold, hot air or superheated steam is blown into the mold to accelerate the filling phase (mold material) in the mold in order to accelerate the evaporation of water. The method is preferably adopted. By such hot air or superheated steam aeration, it is rapidly dried to the inside of the filling phase consisting of the mold material, and the solidification or curing of such filling phase is more advantageously promoted, whereby the solidification (curing) is achieved. In addition to advantageously increasing the speed, it is possible not only to advantageously improve the properties such as the die strength of the resulting mold, but also to advantageously contribute to the shortening of the molding time of the mold. In addition, in order to promote the solidification or hardening of the mold material more advantageously during the holding of the mold material in the mold, a carrier gas consisting of at least one of carbon dioxide, argon, nitrogen, helium and air is molded. A method of blowing into the mold and venting the filling phase is preferably employed. At this time, carbon dioxide acts as a curing agent, and argon, nitrogen, helium and air act as solidification accelerators. The air is preferably air from which part or all of the water vapor has been removed (dry air), and dry air having a humidity of 50% or less, more preferably dry air having a humidity of 30% or less is used. By neutralizing the water-soluble inorganic binder with a carrier gas, it is possible to further accelerate the solidification or curing of the mold material. In addition, although ventilation of hot air or superheated steam and ventilation of carrier gas may be performed only one or the other, it is also possible to implement both, and ventilation of hot air or superheated steam and ventilation of carrier gas are also possible. It is possible to carry out simultaneously, ventilating the carrier gas after ventilating hot air or superheated steam, or ventilating hot air or superheated steam after ventilating the carrier gas. In addition, after the mold material in a wet state is filled in the cavity of the molding die, if it is during holding in the molding die, it does not matter whether the hot air or the like and / or the carrier gas is ventilated at any timing. Absent.
 なお、加熱による固化乃至は硬化をより促進させるために、キャリアガスとして、先に硬化剤として例示した有機酸、エステル、一価のアルコール等をガス状又は霧状にしたものを、成形型内に通気しても良い。 In addition, in order to accelerate the solidification or curing by heating, the carrier gas which is obtained by converting the organic acid, the ester, the monohydric alcohol and the like exemplified above as the curing agent into a gas or mist is inside the mold. You may ventilate.
 一方、本発明に従う湿態の鋳型材料(コーテッドサンド)を用いた鋳型の造型については、上述の如き、成形型内において加熱する方法以外にも、成形型内に硬化剤を添加することによって、鋳型材料を固化乃至は硬化せしめる方法や、鋳型材料が充填された成形型内を減圧することによって鋳型材料を固化乃至は硬化せしめる方法も、採用することが可能である。 On the other hand, with regard to the molding of a mold using a wet mold material (coated sand) according to the present invention, by adding a curing agent in the mold other than the method of heating in the mold as described above, A method of solidifying or curing the mold material, or a method of solidifying or curing the mold material by depressurizing the inside of the mold filled with the mold material can also be employed.
 成形型内に硬化剤を添加する方法は、水溶性無機粘結剤と硬化剤との反応によって、硬化を進行させるものである。硬化剤の添加方法としては、成形型へ充填する前の鋳型材料に対して硬化剤を添加し、かかる硬化剤が添加された鋳型材料を成形型内に充填すること、並びに、成形型内に充填された鋳型材料に対して、硬化剤をキャリアガスとして通気することによって添加すること、の何れも可能である。また、成形型内で保持している間に、硬化剤による硬化が進行するが、その際に水の蒸発を促進させるために、成形型内に熱風又は過熱水蒸気を吹き込んでも良い。更には、鋳型材料の固化乃至は硬化をより有利に促進させるために、二酸化炭素、アルゴン、窒素、ヘリウム、空気のうち少なくとも1種からなるキャリアガスを成形型内に吹き込んでも良い。なお、硬化剤の添加を行なう場合、成形型の加熱は必ずしも必要とされるものではないが、固化乃至は硬化をより有利に促進させるために、成形型を加熱することが好ましい。また、ここで使用可能な硬化剤としては、先に硬化剤として列記した二酸化炭素(炭酸水)等の有機酸、ギ酸メチル等のエステル、メタノール等の一価のアルコール等を、同様に例示することが出来る。 The method of adding the curing agent into the molding die is to cause the curing to proceed by the reaction between the water-soluble inorganic binder and the curing agent. As a method of adding the curing agent, a curing agent is added to the mold material before filling into the mold, and the mold material to which the curing agent is added is filled into the mold, and in the mold. It is possible to add the curing agent to the filled mold material by aerating it as a carrier gas. In addition, while curing by the curing agent proceeds while holding in the mold, hot air or superheated steam may be blown into the mold in order to accelerate the evaporation of water. Furthermore, in order to accelerate the solidification or curing of the mold material more advantageously, a carrier gas consisting of at least one of carbon dioxide, argon, nitrogen, helium and air may be blown into the mold. When the addition of the curing agent is performed, heating of the mold is not necessarily required, but in order to accelerate solidification or curing more advantageously, it is preferable to heat the mold. In addition, as a curing agent that can be used here, organic acids such as carbon dioxide (carbonated water) listed above as curing agents, esters such as methyl formate, monohydric alcohols such as methanol, and the like are similarly exemplified. I can do it.
 一方、成形型内を減圧する方法は、かかる減圧によって、成形型のキャビティ内に充填された鋳型材料を乾燥固化させるものである。減圧方法としては、例えば、公知の吸引手段によって成形型内を減圧すること等が挙げられる。また、成形型内を減圧する際に、水の蒸発を促進させるべく、成形型内に熱風又は過熱水蒸気を吹き込んでも良い。更には、鋳型材料の固化乃至は硬化をより有利に促進させるために、二酸化炭素、アルゴン、窒素、ヘリウム、空気のうち少なくとも1種からなるキャリアガスを成形型内に吹き込んでも良い。なお、成形型の減圧を行なう場合、成形型の加熱は必ずしも必要とされるものではないが、固化乃至は硬化をより有利に促進させるために、成形型を加熱することが好ましい。 On the other hand, in the method of reducing the pressure in the mold, the mold material filled in the cavity of the mold is dried and solidified by the reduced pressure. As a pressure reduction method, for example, pressure reduction in the inside of the mold by a known suction means and the like can be mentioned. Further, when the pressure in the mold is reduced, hot air or superheated steam may be blown into the mold in order to accelerate the evaporation of water. Furthermore, in order to accelerate the solidification or curing of the mold material more advantageously, a carrier gas consisting of at least one of carbon dioxide, argon, nitrogen, helium and air may be blown into the mold. When the pressure of the mold is reduced, heating of the mold is not always required, but in order to accelerate solidification or curing more advantageously, it is preferable to heat the mold.
 そして、本発明に従う湿態の鋳型材料を用いて、上記した製造方法に従って得られる鋳型、並びに、その他の製造方法に従って得られる鋳型の何れにあっても、以下に述べる優れた効果を有利に享受することが可能である。即ち、かかる鋳型を用いて鋳造を実施すると、金属溶湯によってもたらされる熱によって、鋳物砂表面の固体状のコーティング層に含まれる有機化合物が効果的に熱分解し、かかる熱分解によってガスが発生するところから、鋳造後の鋳型の崩壊性が良好なものとなるのである。本発明の湿態の鋳型材料は、鋳物砂表面の固体状のコーティング層内に有機化合物を含むものであるものの、鋳型材料全体においては、有機化合物の含有量が、有機系粘結剤を用いて構成される鋳型材料と比較すると非常に少量であるところから、本発明の湿態の鋳型材料からなる鋳型を用いて鋳造を実施すると、その際のガス発生量は、有機系粘結剤を用いた鋳型材料からなる鋳型を使用する場合と比較すると、格段に少なくなるという利点がある。特に、最終的に得られる鋳型を1000℃で240秒間、加熱した時のガス発生量が、鋳型1g当たり3~30ml、好ましくは4~28ml、より好ましくは6~20mlとなるように、鋳型材料を調製することが好ましいのである。 And, in any of the molds obtained according to the above-described manufacturing method using the wet mold material according to the present invention, and the molds obtained according to other manufacturing methods, the following excellent effects are advantageously enjoyed. It is possible. That is, when casting is carried out using such a mold, the heat produced by the molten metal effectively decomposes the organic compound contained in the solid coating layer on the surface of the foundry sand, and such thermal decomposition generates a gas. From the point of view, the disintegrability of the mold after casting becomes good. The wet mold material of the present invention contains the organic compound in the solid coating layer on the surface of the foundry sand, but in the whole mold material, the content of the organic compound is constituted using the organic caking agent. When casting is carried out using a mold consisting of the wet mold material of the present invention, the amount of gas generation at that time is an organic binder, since it is very small compared to the mold material to be Compared to the case of using a mold made of mold material, there is an advantage that it is much less. In particular, the template material is produced such that the amount of gas generated when heating the template finally obtained at 1000 ° C. for 240 seconds is 3 to 30 ml, preferably 4 to 28 ml, more preferably 6 to 20 ml per 1 g of the template It is preferable to prepare
 また、本発明に従う湿態の鋳型材料からなる鋳型を用いて、鋳造を実施し、かかる鋳造後の鋳型より回収される鋳物砂(回収砂)にあっては、鋳物砂表面に存在する有機化合物の熱分解により発生したガスによって、水溶性無機粘結剤の固化物乃至は硬化物が鋳物砂表面から剥離し易い状態にあることから、そのような回収砂に対して乾式再生処理を施すことにより、容易に再生することが可能である。 In addition, casting is carried out using a mold consisting of a wet mold material according to the present invention, and in casting sand (recovered sand) recovered from the casting mold after such casting, an organic compound present on the casting sand surface Since the solidified or hardened material of the water-soluble inorganic binder is in a state of being easily peeled off from the surface of the casting sand by the gas generated by the thermal decomposition of the powder, dry recovery treatment is performed on such recovered sand. It is possible to reproduce easily.
 ここで、回収砂に対する乾式再生処理とは、回収砂の再生方法として従来より公知の乾式再生処理方法であれば、如何なる方法であっても採用することが出来る。一般に、少なくとも研磨処理を含み、必要に応じて、焼成処理や分級処理等をも含んで構成される回収砂の処理方法が、乾式再生処理と称されている。 Here, the dry regeneration treatment for recovered sand may be any method as long as it is a dry regeneration treatment method conventionally known as a regeneration method for recovered sand. In general, a method of treating recovered sand comprising at least a polishing treatment and optionally including a calcination treatment, a classification treatment and the like is called a dry regeneration treatment.
 乾式再生処理における研磨処理では、回収砂の粒子表面に残存する付着物が削り取られる。具体的には、回収砂を回転するロータ内に投入することにより、そこにおいて鋳物砂の一粒一粒に解砕し、更には、鋳物砂粒子の表面の付着物(水溶性無機粘結剤の固化物乃至は硬化物)が削り落とされることとなる。なお、研磨方法としては、特に限定されるものではないが、例えば、ロータリーリクレーマー、サンドフレッシャー、サンドシャイナー等を用いた研磨を挙げることが出来る。また、研磨処理における、研磨時間等の各種研磨条件は、回収砂表面における付着物の付着状況に応じて、適宜に決定される。 In the polishing process in the dry regeneration process, the deposit remaining on the surface of the recovered sand is scraped off. Specifically, the recovered sand is charged into the rotating rotor, where it is broken into single particles of casting sand, and further, deposits on the surface of the casting sand particles (water-soluble inorganic caking agent) The solidified material or hardened material) is scraped off. The polishing method is not particularly limited, and examples thereof include polishing using a rotary reclaimer, a sandflusher, a sand Shiner or the like. In addition, various polishing conditions such as polishing time in the polishing process are appropriately determined in accordance with the adhesion state of the deposit on the surface of the recovered sand.
 また、焼成処理は、回収砂に付着しているコーティング層の有機化合物、ゴミや不純物等を燃焼させて除去することを目的として実施されるものである。かかる焼成処理は、例えばロータリーキルンやトンネルキルン等の焙焼炉が用いられ、回収砂を焙焼炉内に随時、投入しながら、炉内にて回収砂が焼成される。なお、焙焼炉内の焼成温度は、200~700℃、好ましくは300~700℃、より好ましくは350~650℃、さらに好ましくは400~600℃とされる。焼成温度が200℃より低いと、回収砂に付着しているゴミ等が十分に燃焼しない恐れがある。その一方、焼成温度が700℃を超えると、回収砂表面に残存している水溶性無機粘結剤が焼結し、砂粒子の表面から剥がれ難くなる恐れがある。このような焼成処理は、上述した研磨処理よりも前に行なっても良く、後に行なっても良く、研磨処理の前後において行なっても良い。 In addition, the firing treatment is carried out for the purpose of burning and removing organic compounds, dust, impurities, and the like of the coating layer adhering to the recovered sand. In the firing process, for example, a roasting furnace such as a rotary kiln or a tunnel kiln is used, and the recovered sand is fired in the furnace while throwing the recovered sand into the roasting furnace as needed. The firing temperature in the roasting furnace is 200 to 700 ° C., preferably 300 to 700 ° C., more preferably 350 to 650 ° C., and still more preferably 400 to 600 ° C. If the firing temperature is lower than 200 ° C., there is a risk that dust and the like adhering to the recovered sand may not be sufficiently burned. On the other hand, when the firing temperature exceeds 700 ° C., the water-soluble inorganic binder remaining on the surface of the recovered sand may be sintered, and it may be difficult to separate from the surface of the sand particles. Such baking treatment may be performed before, after, or before or after the above-mentioned polishing treatment.
 分級処理は、一般に、上記した研磨処理の後に、或いは、研磨処理後に焼成処理が実施された場合にはかかる焼成処理後に、実施されるものであり、上記した処理の工程から取り出された鋳物砂処理物を、空気流により流動させて、集塵装置によって、そのような鋳物砂処理物に含まれる微粉体を取り除く集塵工程と、ふるいにより鋳物砂処理物に含まれる異物を取り除くふるい工程とを有している。具体的には、集塵工程では、空気流により鋳物砂処理物を流動させて、かかる鋳物砂処理物に含まれている、それまでの工程では取り除けなかった削りかす、塵及び微粉等の微粉体を、駆動状態の集塵装置で除去するものであり、これによって、鋳物砂処理物から微小な残留物が効果的に取り除かれることとなる。また、ふるい工程では、ふるいを用いて鋳物砂処理物の粒子径を分級することで、そのような鋳物砂処理物に含まれる、これまでの工程では取り除けなかった異物が取り除かれる。これにより、適切な粒子径の砂が選択的に取り出されるのである。 Classification is generally carried out after the above-mentioned polishing treatment or after the firing treatment if such firing treatment is carried out after the polishing treatment, and the foundry sand taken out from the above-described process step. A process of flowing the treated material by an air flow to remove fine powder contained in such a cast sand process by a dust collector, and a sieving process of removing foreign matter contained in the cast sand process by a sieve have. Specifically, in the dust collection step, the cast sand processing product is made to flow by the air flow, and the fine powder such as shavings, dust and fine powder contained in the cast sand processing product can not be removed in the previous steps. The body is removed by a driven dust collector, which effectively removes minute residues from the foundry sand treatment. Further, in the sieving process, by classifying the particle size of the foundry sand processing material using a sieve, the foreign matter contained in such a foundry sand processing material, which could not be removed in the previous steps, is removed. Thereby, sand of appropriate particle diameter is selectively taken out.
 なお、本発明において採用される分級処理は、上述の如き集塵工程及びふるい工程を有するものに限定されるものではなく、例えば、集塵工程及びふるい工程の何れか一方のみを有するものであっても何等差し支えなく、また、ふるい工程を実施した後に集塵工程を実施するものであっても何等差し支えない。更に、分級工程は、鋳物砂を所定の大きさで分級することが出来る手法であれば、他の如何なる公知の手法をも採用可能である。 In addition, the classification process employ | adopted in this invention is not limited to what has the above-mentioned dust collection process and a sieving process, For example, it has only any one of a dust collection process and a sieving process. However, there is no problem even if the dust collection process is performed after the sieving process is performed. Furthermore, the classification step may adopt any other known method as long as the molding sand can be classified to a predetermined size.
 そして、上述の如くして、本発明に従う回収鋳物砂の再生方法によって再生された鋳物砂は、再び、鋳型材料の製造工程や鋳型の造型工程に提供され、特性の優れた鋳型を与える鋳物砂として、有利に用いられることとなるのである。 And, as described above, the foundry sand regenerated by the method for reclaiming recovered foundry sand according to the present invention is again provided to the manufacturing process of the mold material and the molding process of the mold to provide the foundry sand having excellent properties. It will be used to advantage.
 以下に、幾つかの実施例を用いて、本発明を更に具体的に明らかにすることとするが、本発明が、そのような実施例の記載によって、何等限定的に解釈されるものでないことが理解されるべきである。なお、以下の実施例や比較例において、「%」及び「部」は、特に断りのない限りにおいて、何れも、質量基準にて示されている。また、液状の粘結剤組成物の粘度の測定、有機化合物の水に対する溶解度の測定、実施例や比較例で得られた鋳型材料(コーテッドサンド:CS)からなる鋳型のガス発生量の測定、鋳肌、崩壊性及び研磨剥離性の評価は、それぞれ、以下のようにして行なった。 Hereinafter, the present invention will be more specifically clarified using some examples, but the present invention should not be construed as limiting in any way by the description of such examples. Should be understood. In the following examples and comparative examples, “%” and “parts” are all indicated on a mass basis unless otherwise noted. In addition, measurement of viscosity of liquid caking agent composition, measurement of solubility of organic compound in water, measurement of gas generation amount of mold made of mold material (coated sand: CS) obtained in Examples and Comparative Examples, The evaluation of the cast surface, the disintegratability and the abrasive removability was performed as follows.
-液状の粘結剤組成物の粘度の測定-
 JIS-Z-8803-2011「液体の粘度測定方法」において規定されている「9.単一円筒形回転粘土度計による粘度測定方法」に従い、そこに記載された装置と同等原理の装置を用いて、実施例や比較例で用いられる液状の粘結剤組成物についての、25℃における粘度(cP)を測定する。なお、液状の粘結剤組成物とは、CSの製造の際に二酸化珪素粒子等の添加剤を用いない場合は、水ガラス水溶液又は炭酸カリウム水溶液そのものを意味し、添加剤を用いてCSを製造する場合は、水ガラス水溶液等に添加剤を加えてなる液状物を意味するものである。
-Measurement of viscosity of liquid caking agent composition-
According to "9. Viscosity measurement method with a single cylindrical shape rotary claymeter" defined in JIS-Z-8803-2011 "Viscosity measurement method of liquid", using the device of the same principle as the device described there The viscosity (cP) at 25 ° C. of the liquid caking agent composition used in Examples and Comparative Examples is measured. In addition, when not using additives, such as a silicon dioxide particle in the case of manufacture of CS, a liquid caking agent composition means water glass aqueous solution or potassium carbonate aqueous solution itself, and CS is used using an additive. When manufacturing, it means a liquid obtained by adding an additive to a water glass aqueous solution or the like.
-有機化合物の水に対する溶解度の測定-
 有機化合物の10gをフラスコに入れ、更に25℃の水100gをフラスコ内に投入し、1時間撹拌する。その後、1時間静置させる。静置後のフラスコ内の上澄み液をホールピペット等で正確に10ml採取し、質量既知の蒸発皿(質量:W1(g))に移す。突沸しない様に、ガスバーナー等で蒸発乾燥固化させる。次いで、乾燥固化させた試料を、蒸発皿ごと110℃の乾燥機で3時間以上、十分に乾燥させ、質量(W2(g))を測定する。蒸発皿質量を考慮し、下記式より有機化合物の溶解量(W3(g))を求める。
  W3(g) =(W2-W1)×10
以上より算出されたW3を用いて、下記式より、25℃の水に対する有機化合物の溶解度を算出する。
  溶解度(質量%)
   ={溶解量/水量}×100={W3/100}×100
-Measurement of water solubility of organic compounds-
10 g of the organic compound is placed in a flask, and 100 g of water at 25 ° C. is further charged into the flask and stirred for 1 hour. Then let it stand for 1 hour. The supernatant in the flask after standing is precisely collected in 10 ml with a hole pipet etc. and transferred to an evaporation dish of known mass (mass: W1 (g)). Evaporate, dry, and solidify with a gas burner or the like so as not to bump. Next, the dried and solidified sample is thoroughly dried in a drier at 110 ° C. for 3 hours or more together with an evaporation pan, and the mass (W2 (g)) is measured. The dissolved amount (W3 (g)) of the organic compound is determined from the following equation in consideration of the mass of the evaporating dish.
W3 (g) = (W2-W1) x 10
The solubility of the organic compound in water at 25 ° C. is calculated from the following formula using W3 calculated as described above.
Solubility (mass%)
= {Dissolved amount / water amount} x 100 = {W3 / 100} x 100
-ガス発生量の測定-
 各CSを用いて、直径:3cm×長さ:5cmの円筒形の試験片を成型し、かかる試験片を、直径:4.5cm×長さ45cmの石英ガラス管内に入れて、ガラス管の付いたシリコンゴムにて密閉する。横型鋳物砂膨張計EOS-3(製品名、オザワ科学株式会社製)を用いて、ガラス管ごと試験片を1000℃で4分間、曝熱する。発生するガス量を、湿式ガスメーターW―NK型(製品名、株式会社シナガワ製)にて30秒毎に測定する。曝熱開始から4分が経過するまでに発生したガスの総量(トータルガス発生量)を試験片の質量で割って、ガス発生量とした。
  ガス発生量(ml/g)
   =[4分後トータルガス発生量(ml)]/[試験片質量(g)]
-Measurement of gas generation-
Using each CS, a cylindrical test piece of 3 cm in diameter and 5 cm in length is molded, and the test piece is put in a quartz glass tube of 4.5 cm in diameter and 45 cm in length, and attached with a glass tube. Seal with silicone rubber. Using a horizontal casting sand dilatometer EOS-3 (product name, manufactured by Ozawa Scientific Co., Ltd.), the test piece is heated at 1000 ° C. for 4 minutes together with the glass tube. The amount of gas generated is measured every 30 seconds with a wet gas meter W-NK type (product name, manufactured by Shinagawa Co., Ltd.). The total amount of gas generated (total gas generation amount) generated 4 minutes after the start of heat exposure was divided by the mass of the test piece to obtain the gas generation amount.
Gas generation amount (ml / g)
= [Total gas generation amount (ml) after 4 minutes] / [specimen mass (g)]
-崩壊性試験-
 まず、図1に示される様に、予め常温自硬性砂で作成された、上部に注湯注入口2と下部に中子の幅木固定部4を有する半割れ中空主型6(キャビティ直径:6cm、高さ:6cm)の内に、各々のCSを用いて作成した幅木部8を有する円形無空中子10(直径:5cm、高さ:5cm)を、幅木固定部4で接着固定した後、更に半割れ中空主型6を相互に接着固定して、鋳造試験用砂型12を作製する。尚、鋳造時の湯漏れを防ぐために、接着した主型を万力等でクランプするか、針金を巻いてしっかりと固定する。次に、この鋳造試験用砂型12の注湯注入口2から鉄溶湯FC150(温度1350±50℃)を注湯し、凝固せしめた後、主型6を壊して、図2に示す円筒の鋳物16を取り出す、そして室温になった鋳物16に対して、エアハンマを用いて打撃を加えることにより、円形無空中子10を排出する。かかる排出に際しては、チッピング圧は0.3MPaとし、鋳物16に対して3秒毎にエアハンマで打撃を加える。そして、鋳物16からの、円形無空中子16を構成するCS(以下、中子CSという)の排出のし易さを、以下に示す基準に従い、5段階で評価する。本発明においては、A~Cを合格とする。
  A:打撃回数10回以内で、全ての中子CSが排出。
  B:打撃回数30回以内で、全ての中子CSが排出。
  C:打撃回数60回以内で、全ての中子CSが排出。
  D:打撃回数60回で、50%以上~100%未満の量の中子CSが排
    出。
  E:打撃回数60回で、0~50%未満の量の中子CSが排出。
-Collapse test-
First, as shown in FIG. 1, a half hollow main mold 6 having a pouring inlet 2 at the upper part and a core fixing part 4 of the core at the lower part (cavity diameter: Within 6 cm, height: 6 cm), circular fixed non-air element 10 (diameter: 5 cm, height: 5 cm) with baseboard 8 made using each CS is adhesively fixed with base wood fixing part 4 After that, the half mold half molds 6 are bonded and fixed to each other to make a casting test sand mold 12. In order to prevent leakage of the molten metal at the time of casting, the bonded main mold is clamped with a vise or wound, or a wire is wound and fixed firmly. Next, molten iron FC150 (temperature 1350 ± 50 ° C.) is poured from the pouring inlet 2 of the sand mold 12 for casting test and solidified, and then the main die 6 is broken, and the cylindrical casting shown in FIG. 16 is taken out, and the round non-aircraft 10 is discharged by striking the casting 16 at room temperature using an air hammer. At the time of such discharge, the chipping pressure is 0.3 MPa, and an impact is applied to the casting 16 every three seconds with an air hammer. Then, the ease of discharging CS (hereinafter, referred to as core CS) constituting the circular non-airspacer 16 from the casting 16 is evaluated in five steps in accordance with the criteria shown below. In the present invention, A to C pass.
A: All core CS are discharged within 10 strikes.
B: All core CSs were discharged within 30 hits.
C: All core CSs are discharged within 60 hits.
D: The core CS is discharged in an amount of 50% to less than 100% after 60 hits.
E: The core CS is discharged in an amount of 0 to less than 50% after 60 impacts.
-鋳肌の評価-
 前述の崩壊性試験にて得られた鋳物を半分に切断し、鋳肌(鋳物の肌)の状況を目視及び手触りにて確認し、以下に示す基準に従って4段階で評価する。本発明においては◎及び○を合格とする。
  ◎:焼き付きが認められず、且つ、表面も滑らかである。
  ○:焼き付きは認められないものの、表面にザラツキが認められる。
  △:鋳肌の一部に焼き付きが認められ、表面にザラツキも認められる。
  ×:鋳肌の全面に焼き付きが認められ、表面にザラツキも認められる。
-Evaluation of casting surface-
The cast obtained in the above-mentioned disintegration test is cut in half, the condition of the cast surface (skin of the cast) is checked visually and by hand, and evaluated in four stages according to the criteria shown below. In the present invention, ◎ and を are passed.
◎: No sticking was observed, and the surface was smooth.
○: Although burn-in is not observed, roughness is observed on the surface.
Δ: A part of the cast surface is seized and a rough surface is also observed.
X: Burn-in is observed on the entire surface of the cast surface, and roughness is also observed on the surface.
-研磨剥離性試験-
 前述の崩壊性試験にて取り出した、円形無空中子を構成していた砂(回収砂)の100gを、ボールミルに入れて1時間、研磨した。その後、200メッシュで1分間の篩分けを行い、鋳物砂と剥離した微粉とに分離し、得られた微粉量を測定し、回収砂における剥離のし易さを、以下に示す基準に従って5段階で評価する。本発明においてはA~Cを合格とする。
  A:鋳物砂の質量に対して、微粉量が2質量%以上である。
  B:鋳物砂の質量に対して、微粉量が1質量%以上、2質量%未満であ
    る。
  C:鋳物砂の質量に対して、微粉量が0.5質量%以上、1質量%未満
    である。
  D:鋳物砂の質量に対して、微粉量が0.25質量%以上、0.5質量
    %未満である。
  E:鋳物砂の質量に対して、微粉量が0.25質量%未満である。
-Abrasive peelability test-
100 g of the sand (recovered sand) which was taken out in the above-mentioned disintegration test and which was a circular non-air-core was put into a ball mill and polished for 1 hour. Thereafter, sieving is carried out with 200 mesh for 1 minute to separate into foundry sand and exfoliated fine powder, the amount of obtained fine powder is measured, and the ease of exfoliation in recovered sand is determined in 5 stages according to the criteria shown below. Evaluate. In the present invention, A to C are accepted.
A: The amount of fine powder is 2% by mass or more with respect to the mass of casting sand.
B: The amount of fine powder is 1% by mass or more and less than 2% by mass with respect to the mass of casting sand.
C: The amount of fine powder is 0.5% by mass or more and less than 1% by mass with respect to the mass of casting sand.
D: The amount of fine powder is 0.25% by mass or more and less than 0.5% by mass with respect to the mass of casting sand.
E: The amount of fine powder is less than 0.25% by mass with respect to the mass of casting sand.
 また、各CSを製造する際に用いたノボラック型フェノール樹脂等については、各々、以下の手順に従って製造したもの又は市販品を準備した。 Moreover, about the novolak-type phenol resin etc. which were used when manufacturing each CS, what was manufactured according to the following procedures, or the commercial item was prepared, respectively.
(1)ノボラック型フェノール樹脂
 温度計、撹拌装置及びコンデンサを備えた反応容器に、フェノールの940部、47%ホルマリンの479部、シュウ酸の2.8部を投入した。次いで、反応容器内を徐々に昇温して、還流温度に到達せしめた後、90分間還流して反応させ、更に、反応液の温度が170℃になるまで、加熱及び減圧濃縮することにより、重量平均分子量(Mw)が2900のノボラック型フェノール樹脂を得た。
(1) Novolak Type Phenolic Resin In a reaction vessel equipped with a thermometer, a stirrer and a condenser, 940 parts of phenol, 479 parts of 47% formalin and 2.8 parts of oxalic acid were charged. Then, the temperature in the reaction vessel is gradually raised to reach the reflux temperature, and then the reaction is carried out by reflux for 90 minutes, and the reaction solution is heated and concentrated under reduced pressure until the temperature reaches 170 ° C. A novolac phenolic resin having a weight average molecular weight (Mw) of 2900 was obtained.
(2)レゾール型フェノール樹脂A
 レゾール型フェノール樹脂Aとして、アンモニアレゾール型フェノール樹脂である旭有機材株式会社製のSP400(商品名、Mw:2100)を用いた。
(2) Resol type phenolic resin A
As the resol type phenol resin A, SP400 (trade name, Mw: 2100) manufactured by Asahi Organic Materials Co., Ltd., which is an ammonia resol type phenol resin, was used.
(3)レゾール型フェノール樹脂B
 温度計、撹拌装置及びコンデンサを備えた反応容器に、フェノールの940部、47%ホルマリンの957部、水酸化カリウム20部を投入した。次いで、反応容器内を徐々に昇温して、60分で75℃まで昇温し、5時間、その温度で反応させた。その後、減圧下で80℃まで脱水することにより、重量平均分子量(Mw)が1500のレゾール型フェノール樹脂Bを得た。
(3) Resol type phenolic resin B
In a reaction vessel equipped with a thermometer, a stirrer and a condenser, 940 parts of phenol, 957 parts of 47% formalin and 20 parts of potassium hydroxide were charged. Then, the temperature in the reaction vessel was gradually raised to 75 ° C. in 60 minutes and reacted at that temperature for 5 hours. After that, dehydration was performed to 80 ° C. under reduced pressure to obtain resol-type phenol resin B having a weight average molecular weight (Mw) of 1,500.
(4)フェノールウレタン樹脂
 ベンジリックエーテル型フェノール樹脂(旭有機材株式会社製、商品名:CBP‐160EH、Mw:1200)と、ポリイソシアネート樹脂として、ポリメリックMDI(旭有機材株式会社製;CB‐MT3)と準備し、鋳物砂の表面にコーティング層を形成せしめる際に、それら2種の樹脂を1:1(質量比)の割合で混合した混合物を用いた。
(4) Phenolic Urethane Resin A benzylic ether type phenol resin (Asahi Organic Material Co., Ltd., trade name: CBP-160EH, Mw: 1200) and a polyisocyanate resin, polymeric MDI (Asahi Organic Material Co., Ltd .; CB-) In preparing MT3) and forming a coating layer on the surface of molding sand, a mixture of the two resins mixed in a ratio of 1: 1 (mass ratio) was used.
(5)ポリ酢酸ビニル
 ポリ酢酸ビニルとして、ゴーセニールM35-X6(日本合成化学工業株式会社製、メタノール35%溶液)のポリ酢酸ビニル溶液を用いた。
(5) Polyvinyl acetate As poly (vinyl acetate), a polyvinyl acetate solution of Gohtheil M35-X6 (manufactured by Japan Synthetic Chemical Industry Co., Ltd., 35% solution in methanol) was used.
(6)澱粉
 和光純薬工業株式会社製の澱粉を、70℃のお湯に溶かしてなる澱粉溶液(濃度:25%)として用いた。
(6) Starch Starch manufactured by Wako Pure Chemical Industries, Ltd. was used as a starch solution (concentration: 25%) obtained by dissolving it in hot water at 70 ° C.
-湿態CSの製造例1-
 鋳物砂として、市販の鋳造用人工砂であるルナモス#60(商品名、花王クエーカー株式会社製)を準備すると共に、有機化合物としてノボラック型フェノール樹脂を準備した。そして、ルナモス#60を約130℃の温度に加熱した後、ワールミキサー(遠州鉄工製)に投入し、更に、ノボラック型フェノール樹脂を、ルナモス#60の100部に対して0.3部の割合において添加して、3分間の混練を行ない、水分を蒸発せしめる一方、砂粒塊が崩壊するまで撹拌、混合せしめた後に取り出すことにより、鋳物砂粒子の表面に、ノボラック型フェノール樹脂からなる固体状のコーティング層を形成した。形成された固体状のコーティング層の膜厚は、鋳物砂粒子を球状とした平均粒子径と、鋳物砂及び有機化合物(ノボラック型フェノール樹脂)の添加量より、0.2μmと算出された。
-Production example 1 of wet condition CS-
As cast sand, Lunamos # 60 (trade name, manufactured by Kao Quaker Co., Ltd.), which is a commercially available artificial sand for casting, was prepared, and a novolac phenolic resin was prepared as an organic compound. Then, after heating Lunamos # 60 to a temperature of about 130 ° C., it is introduced into a whirl mixer (manufactured by Enshu Iron Works), and further, a ratio of 0.3 part of novolac type phenolic resin to 100 parts of Lunamos # 60 The mixture is added for 3 minutes and the water is evaporated, while stirring and mixing until the sand lumps are disintegrated and then taken out, a solid of novolak-type phenolic resin is formed on the surface of the foundry sand particles. A coating layer was formed. The film thickness of the formed solid coating layer was calculated to be 0.2 μm from the average particle diameter of spherical foundry sand particles and the addition amount of the foundry sand and the organic compound (novolak-type phenolic resin).
 次いで、水溶性無機粘結剤たる水ガラスとして、市販品:1号ケイ酸ナトリウム(商品名:富士化学株式会社製、SiO2 /Na2O のモル比:2.0)を準備し、これを用いて、固形成分(濃度)が31%であり、25℃における粘度が11cPである水ガラス水溶液を準備した。そして、先に準備した、表面に固体状のコーティング層が設けられた鋳物砂を、常温のまま品川式万能攪拌機(5DM-r型、株式会社ダルトン製)に投入し、更に、水ガラス水溶液を、ルナモス#60の100部に対して2.5部(固形成分:0.775部)の割合にて添加して、3分間の混練を行ない、均一になるまで撹拌、混合せしめた後に取り出すことにより、表面にコーティング層が設けられた鋳物砂と水ガラス水溶液との混和物にて構成される、湿態の鋳型材料(CS1)を得た。かかるCS1の含水分量を添加した材料の添加量から算出したところ、水ガラスの固形分量の223質量%に相当する量であった。 Then, as water glass which is a water-soluble inorganic binder, a commercial product: No. 1 sodium silicate (trade name: manufactured by Fuji Chemical Co., Ltd., a molar ratio of SiO 2 / Na 2 O: 2.0) is prepared. A water glass aqueous solution having a solid component (concentration) of 31% and a viscosity at 25 ° C. of 11 cP was prepared using Then, the casting sand provided with a solid coating layer on the surface is charged into a Shinagawa universal stirrer (5DM-r type, manufactured by Dalton Co., Ltd.) at normal temperature, and a water glass aqueous solution is further added. Add 2.5 parts (solid component: 0.775 parts) to 100 parts of Lunamos # 60, perform kneading for 3 minutes, stir until it becomes uniform, take out, and then take out. Thus, a wet mold material (CS1) composed of a mixture of a molding sand and a water glass aqueous solution provided with a coating layer on the surface was obtained. When the water content of CS1 was calculated from the added amount of the added material, it was an amount corresponding to 223% by mass of the solid content of water glass.
-湿態CSの製造例2~5-
 湿態CSの製造例1において、コーティング層形成時のノボラック型フェノール樹脂の使用量を、それぞれ0.5部、1部、2部、5.5部としたこと以外は、上記製造例1と同様の手順に従って、湿態の鋳型材料(CS2~CS5)を得た。得られたCS2~CS5の含水分量を添加した材料の添加量から算出したところ、何れも、水ガラスの固形分量の223質量%に相当する量であった。
-Production examples 2 to 5 of wet state CS
In Production Example 1 of the wet CS, the above Production Example 1 was used except that the use amount of novolac type phenol resin at the time of forming the coating layer was 0.5 parts, 1 part, 2 parts, 5.5 parts, respectively. A wet mold material (CS2-CS5) was obtained according to the same procedure. The obtained water content of CS2 to CS5 was calculated from the addition amount of the added material, and all corresponded to 223% by mass of the solid content of water glass.
-湿態CSの製造例6-
 湿態CSの製造例4において、水ガラスの添加量を3.5部(固形成分:1.085部)としたこと以外は、上記製造例4と同様の手順に従って、湿態の鋳型材料(CS6)を得た。得られたCS6の含水分量を添加した材料の添加量から算出したところ、水ガラスの固形分量の223質量%に相当する量であった。
-Production example 6 of wet condition CS-
In the same manner as in the above-mentioned Production Example 4 except that the amount of water glass added is 3.5 parts (solid component: 1.085 parts) in Production Example 4 of the wet CS, a wet mold material ( Got CS6). When the water content of CS 6 obtained was calculated from the added amount of the added material, it was an amount corresponding to 223% by mass of the solid content of water glass.
-湿態CSの製造例7-
 湿態CSの製造例1において、コーティング層形成時のノボラック型フェノール樹脂の使用量を0.8部とし、充填向上剤としての二酸化珪素粒子971U(商品名、エルケム社製、平均粒子径:0.15μm)の1部を水ガラス水溶液に添加したこと以外は、上記製造例1と同様の手順に従って、湿態の鋳型材料(CS7)を得た。得られたCS7の含水分量を添加した材料の添加量から算出したところ、水ガラスの固形分量の223質量%に相当する量であった。
-Production example 7 of wet condition CS-
In Production Example 1 of wet CS, the amount of novolac type phenol resin used at the time of forming a coating layer is 0.8 parts, and silicon dioxide particles 971U (trade name, manufactured by Elchem Co., average particle diameter: 0) A wet mold material (CS7) was obtained according to the same procedure as in Production Example 1 except that 1 part of .15 μm) was added to the aqueous solution of water glass. It was the quantity corresponded to 223 mass% of solid content of water glass when computed from the addition amount of the added material of the water content of obtained CS7.
-湿態CSの製造例8-
 湿態CSの製造例3において、コーティング層形成時に、シランカップリング剤たるKBE903(商品名、信越化学工業株式会社製)の0.01部をノボラック型フェノール樹脂に添加したこと以外は、上記製造例3と同様の手順に従って、湿態の鋳型材料(CS8)を得た。得られたCS8の含水分量を添加した材料の添加量から算出したところ、水ガラスの固形分量の223質量%に相当する量であった。
-Production example of wet CS
The above production is performed in Production Example 3 of wet CS, except that 0.01 part of a silane coupling agent KBE 903 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) is added to the novolac phenol resin at the time of forming a coating layer. Following the same procedure as in Example 3, a wet mold material (CS8) was obtained. It was the quantity corresponded to 223 mass% of solid content of water glass when computed from the addition amount of the added material of the water content of obtained CS8.
-湿態CSの製造例9-
 湿態CSの製造例3において、シランカップリング剤たるKBE903(商品名、信越化学工業株式会社製)の0.025部を水ガラス水溶液に添加したこと以外は、上記製造例3と同様の手順に従って、湿態の鋳型材料(CS9)を得た。得られたCS9の含水分量を添加した材料の添加量から算出したところ、水ガラスの固形分量の223質量%に相当する量であった。
-Production example 9 of wet condition CS-
The same procedure as in Production Example 3 above, except that 0.025 parts of KBE 903 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), which is a silane coupling agent, is added to a water glass aqueous solution in Production Example 3 of wet CS. A wet mold material (CS9) was obtained according to When the obtained water content of CS9 was calculated from the addition amount of the added material, it was an amount corresponding to 223% by mass of the solid content of water glass.
-湿態CSの製造例10-
 湿態CSの製造例8において、シランカップリング剤たるKBE903(商品名、信越化学工業株式会社製)の0.025部を水ガラス水溶液に添加したこと以外は、上記製造例8と同様の手順に従って、湿態の鋳型材料(CS10)を得た。得られたCS10の含水分量を添加した材料の添加量から算出したところ、水ガラスの固形分量の223質量%に相当する量であった。
-Production example 10 of wet condition CS-
The same procedure as in Production Example 8 except that 0.025 parts of KBE 903 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), which is a silane coupling agent, is added to the aqueous solution of water glass in Production Example 8 of wet CS. A wet mold material (CS10) was obtained according to When the obtained water content of CS10 was calculated from the addition amount of the added material, it was an amount corresponding to 223% by mass of the solid content of water glass.
-湿態CSの製造例11-
 湿態CSの製造例3において、水ガラス水溶液に、耐湿性向上剤としてのホウ酸塩(四ホウ酸ナトリウム十水和物)の0.075部を添加したこと以外は、上記製造例3と同様の手順に従って、湿態の鋳型材料(CS11)を得た。得られたCS11の含水分量を添加した材料の添加量から算出したところ、水ガラスの固形分量の223質量%に相当する量であった。
-Production example 11 of wet condition CS-
In the above Preparation Example 3 except that in the Preparation Example 3 of the wet CS, 0.075 parts of a borate (sodium tetraborate decahydrate) as a moisture resistance improver is added to the water glass aqueous solution. A wet mold material (CS11) was obtained according to the same procedure. When the obtained water content of CS11 was calculated from the addition amount of the added material, it was an amount corresponding to 223% by mass of the solid content of water glass.
-湿態CSの製造例12-
 湿態CSの製造例3において、ノボラック型フェノール樹脂に代えてレゾール型フェノール樹脂Aを用いてコーティング層を形成したこと以外は、上記製造例3と同様の手順に従って、湿態の鋳型材料(CS12)を得た。得られたCS12の含水分量を添加した材料の添加量から算出したところ、水ガラスの固形分量の223質量%に相当する量であった。
-Production example 12 of wet condition CS-
A wet mold material (CS12) was prepared according to the same procedure as in Production Example 3 above, except that a coating layer was formed using Resol type phenolic resin A instead of the novolak type phenolic resin in Production Example 3 of wet CS. Got). When the water content of the obtained CS12 was calculated from the added amount of the added material, it was an amount corresponding to 223% by mass of the solid content of the water glass.
-湿態CSの製造例13-
 湿態CSの製造例3において、ノボラック型フェノール樹脂に代えてレゾール型フェノール樹脂Bを用いて、その使用量を1.6部(固形分:1.0部)としてコーティング層を形成したこと以外は、上記製造例3と同様の手順に従って、湿態の鋳型材料(CS13)を得た。得られたCS13の含水分量を添加した材料の添加量から算出したところ、水ガラスの固形分量の223質量%に相当する量であった。
-Production example 13 of wet condition CS-
In Production Example 3 of wet CS, the coating layer is formed using the resol-type phenol resin B instead of the novolak-type phenol resin and setting the amount to 1.6 parts (solid content: 1.0 part) In the same manner as in Production Example 3 above, a wet mold material (CS13) was obtained. When the obtained water content of CS13 was calculated from the added amount of the added material, it was an amount corresponding to 223% by mass of the solid content of the water glass.
-湿態CSの製造例14-
 湿態CSの製造例3において、コーティング層を形成する有機化合物をノボラック型フェノール樹脂からフェノールウレタン樹脂に代えるべく、以下の手順に従ってコーティング層を形成したこと以外は上記製造例3と同様の手順に従って、湿態の鋳型材料(CS14)を得た。即ち、ルナモス#60を130℃でワールミキサー(遠州鉄工製)に投入し、更に、フェノールウレタン樹脂を構成するためのベンジリックエーテル型フェノール樹脂とポリイソシアネート樹脂とを、質量比1:1で、それらの合計量が1.4部となる量において添加して、ミキサー中で混練を行ない、ベンジリックエーテル型フェノール樹脂とポリイソシアネート樹脂とが反応してフェノールウレタン樹脂(固形分:1.0部)となって硬化、固体化するまで撹拌、混合せしめた後に取り出した。得られたCS14の含水分量を添加した材料の添加量から算出したところ、水ガラスの固形分量の223質量%に相当する量であった。
-Production example 14 of wet state CS-
The procedure of Production Example 3 is repeated except that the coating layer is formed according to the following procedure in order to replace the organic compound forming the coating layer from the novolak type phenol resin with the phenol urethane resin in Production Example 3 of wet CS. The wet mold material (CS14) was obtained. That is, Lunamus # 60 is introduced into a whirl mixer (manufactured by Enshu Iron Works) at 130 ° C., and a benzylic ether type phenol resin and a polyisocyanate resin for constituting a phenol urethane resin are further added at a mass ratio of 1: 1, The total amount of them is added in an amount of 1.4 parts and kneading is carried out in a mixer, and a benzylic ether type phenol resin and a polyisocyanate resin are reacted to obtain a phenol urethane resin (solid content: 1.0 part) ), Cured and solidified until it was stirred and mixed, then taken out. When the obtained water content of CS14 was calculated from the addition amount of the added material, it was an amount corresponding to 223% by mass of the solid content of water glass.
-湿態CSの製造例15-
 湿態CSの製造例3において、ノボラック型フェノール樹脂をポリ酢酸ビニル溶液(メタノール35%溶液)に代え、その使用量を1.54部(固形分:1.0部)とし、コーティング層形成時に溶剤を蒸発させたこと以外は、上記製造例3と同様の手順に従って、湿態の鋳型材料(CS15)を得た。得られたCS15の含水分量を添加した材料の添加量から算出したところ、水ガラスの固形分量の223質量%に相当する量であった。
-Production example 15 of wet condition CS-
In Production Example 3 of wet CS, the novolak type phenol resin is replaced with a polyvinyl acetate solution (methanol 35% solution), the amount used is 1.54 parts (solid content: 1.0 part), and a coating layer is formed A wet mold material (CS15) was obtained according to the same procedure as in Production Example 3 except that the solvent was evaporated. When the water content of the obtained CS15 was calculated from the added amount of the added material, it was an amount corresponding to 223% by mass of the solid content of the water glass.
-湿態CSの製造例16-
 湿態CSの製造例3において、ノボラック型フェノール樹脂に代えて、70℃のお湯に澱粉を溶かしてなる澱粉溶液(濃度:25%)を用いて、その使用量を4部(固形分:1.0部)としたこと以外は、上記製造例3と同様の手順に従って、湿態の鋳型材料(CS16)を得た。得られたCS16の含水分量を添加した材料の添加量から算出したところ、水ガラスの固形分量の223質量%に相当する量であった。
-Production example of wet condition CS-
In Production Example 3 of wet CS, using a starch solution (concentration: 25%) prepared by dissolving starch in hot water at 70 ° C. instead of novolak-type phenolic resin, the amount used is 4 parts (solid content: 1 A wet mold material (CS16) was obtained according to the same procedure as in the above Production Example 3 except that the content was changed to .0 part). When the water content of the obtained CS16 was calculated from the added amount of the added material, it was an amount corresponding to 223% by mass of the solid content of the water glass.
-湿態CSの製造例17-
 湿態CSの製造例3において、水ガラス水溶液として、市販品:1号ケイ酸ナトリウム(商品名:富士化学株式会社製、SiO2 /Na2O のモル比:2.0)を用いて、固形成分(濃度)が46%であり、25℃における粘度が1050cPとなるように調製した水ガラス水溶液を用いたこと以外は、上記製造例3と同様の手順に従って、湿態の鋳型材料(CS17)を得た。得られたCS17の含水分量を添加した材料の添加量から算出したところ、水ガラスの固形分量の117質量%に相当する量であった。
-Production example 17 of wet condition CS-
In Production Example 3 of wet CS, a commercially available product No. 1 sodium silicate (trade name: Fuji Chemical Co., Ltd., molar ratio of SiO 2 / Na 2 O: 2.0) is used as a water glass aqueous solution. The wet mold material (CS17) was prepared according to the same procedure as in Production Example 3 except that a water glass aqueous solution was prepared so that the solid component (concentration) was 46% and the viscosity at 25 ° C was 1050 cP. Got). When the water content of the obtained CS17 was calculated from the added amount of the added material, it was an amount corresponding to 117% by mass of the solid content of the water glass.
-湿態CSの製造例18-
 湿態CSの製造例3において、混練時にヘキサメチレンテトラミンの0.15部を加え、鋳物砂表面に、ノボラック型フェノール樹脂からなる固体状のコーティング層を形成した後、かかるコーティング層が形成された鋳物砂を180℃の恒温槽に30分間入れて、ノボラック型フェノール樹脂の硬化を促進させたこと以外は、上記製造例3と同様の手順に従って、湿態の鋳型材料(CS18)を得た。得られたCS18の含水分量を添加した材料の添加量から算出したところ、水ガラスの固形分量の223質量%に相当する量であった。
-Production example 18 of wet condition CS-
In Production Example 3 of the wet CS, 0.15 parts of hexamethylenetetramine was added at the time of kneading to form a solid coating layer made of novolac-type phenolic resin on the casting sand surface, and then this coating layer was formed. A casting mold material (CS18) in a wet state was obtained according to the same procedure as in Production Example 3 except that casting sand was placed in a thermostat at 180 ° C. for 30 minutes to accelerate the curing of the novolak-type phenolic resin. It was the quantity corresponded to 223 mass% of solid content of water glass when computed from the addition amount of the added material of the water content of obtained CS18.
-湿態CSの製造例19-
 湿態CSの製造例12において、鋳物砂表面に、レゾール型フェノール樹脂Aからなる固体状のコーティング層を形成した後、かかるコーティング層が形成された鋳物砂を180℃の恒温槽に30分間入れて、レゾール型フェノール樹脂Aの硬化を促進させたこと以外は、上記製造例12と同様の手順に従って、湿態の鋳型材料(CS19)を得た。得られたCS19の含水分量を添加した材料の添加量から算出したところ、水ガラスの固形分量の223質量%に相当する量であった。
-Production example 19 of wet condition CS-
In Production Example 12 of wet CS, after forming a solid coating layer of resol type phenolic resin A on the surface of casting sand, casting sand on which such a coating layer is formed is placed in a thermostat at 180 ° C. for 30 minutes. Then, a wet mold material (CS19) was obtained according to the same procedure as in Production Example 12 except that the curing of resol type phenol resin A was promoted. When the obtained water content of CS19 was calculated from the added amount of the added material, it was an amount corresponding to 223% by mass of the solid content of water glass.
-湿態CSの製造例20-
 湿態CSの製造例3において、水ガラス水溶液に代えて、炭酸カリウムの固形成分(濃度)が50%であり、25℃の粘度が8cPとなるように調製した炭酸カリウム水溶液を用いて、その使用量を3部にしたこと以外は、上記製造例3と同様の手順に従って、湿態の鋳型材料(CS20)を得た。得られたCS20の含水分量を添加した材料の添加量から算出したところ、炭酸カリウムの固形分量の100質量%に相当する量であった。
-Production example 20 of wet condition CS-
In Production Example 3 of wet CS, using a potassium carbonate aqueous solution prepared so that the solid component (concentration) of potassium carbonate is 50% and the viscosity at 25 ° C. is 8 cP, instead of the water glass aqueous solution. A wet mold material (CS20) was obtained according to the same procedure as in Production Example 3 except that the amount used was 3 parts. When the obtained water content of CS20 was calculated from the addition amount of the added material, it was an amount corresponding to 100% by mass of the solid content of potassium carbonate.
-湿態CSの製造例21~24-
 湿態CSの製造例1、7、8、11において、固体状のコーティング層を形成する工程を実施しなかったこと以外は、上記製造例1、7、8、11と同様の手順に従って、湿態の鋳型材料(CS21~CS24)を得た。得られたCS21~CS24の含水分量を添加した材料の添加量から算出したところ、何れも、水ガラスの固形分量の223質量%に相当する量であった。
-Production example 21 to 24 of wet condition CS
In the production examples 1, 7, 8 and 11 of the wet CS, the procedure similar to the above production examples 1, 7, 8 and 11 is carried out except that the step of forming a solid coating layer is not carried out. The mold material (CS21 to CS24) was obtained. The water content of the obtained CS21 to CS24 was calculated from the added amount of the added material, and all corresponded to 223% by mass of the solid content of the water glass.
-湿態CSの製造例25-
 湿態CSの製造例20において、固体状のコーティング層を形成する工程を実施しなかったこと以外は、上記製造例20と同様の手順に従って、湿態の鋳型材料(CS25)を得た。得られたCS25の含水分量を添加した材料の添加量から算出したところ、炭酸カリウムの固形分量の100質量%に相当する量であった。
-Production example of wet CS
A wet mold material (CS25) was obtained according to the same procedure as in Production Example 20 except that the step of forming a solid coating layer was not performed in Production Example 20 of wet CS. When the water content of the obtained CS25 was calculated from the added amount of the added material, it was an amount corresponding to 100% by mass of the solid content of potassium carbonate.
-湿態CSの製造例26-
 湿態CSの製造例25において、炭酸カリウム水溶液にシランカップリング剤たるKBE903(商品名、信越化学工業株式会社製)の0.03部を添加したこと以外は、上記製造例25と同様の手順に従って、湿態の鋳型材料(CS26)を得た。得られたCS26の含水分量を添加した材料の添加量から算出したところ、炭酸カリウムの固形分量の100質量%に相当する量であった。
-Production example 26 of wet state CS-
The same procedure as in Production Example 25 above, except that 0.03 part of KBE 903 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), which is a silane coupling agent, is added to a potassium carbonate aqueous solution in Production Example 25 of wet CS. A wet mold material (CS26) was obtained according to When the obtained water content of CS26 was calculated from the addition amount of the added material, it was an amount corresponding to 100% by mass of the solid content of potassium carbonate.
-湿態CSの製造例27-
 湿態CSの製造例25において、炭酸カリウム水溶液に耐湿性向上剤としての四ホウ酸ナトリウム十水和物の0.09部を添加したこと以外は、上記製造例25と同様の手順に従って、湿態の鋳型材料(CS27)を得た。得られたCS27の含水分量を添加した材料の添加量から算出したところ、炭酸カリウムの固形分量の100質量%に相当する量であった。
-Production example 27 of wet condition CS-
A wet CS preparation example 25 was carried out according to the same procedure as in the above-mentioned preparation example 25 except that 0.09 part of sodium tetraborate decahydrate as a moisture resistance improver was added to the aqueous solution of potassium carbonate. The mold material (CS27) was obtained. When the obtained water content of CS27 was calculated from the addition amount of the added material, it was an amount corresponding to 100% by mass of the solid content of potassium carbonate.
-鋳型の造型例(実施例1~20、比較例1~7)-
 上記した各手順に従って製造されたCS1~27を、150℃に加熱された成形金型内に充填した後、成形金型内で保持し、かかる成形型内に充填されたCSを各々、硬化させることにより、円形無空中子の試験片(直径:5cm×高さ:5cm)として用いられる鋳型を、作製した。なお、実施例1~20、比較例1~7の各々に係る鋳型(試験片)を作製する際に使用したCSは、下記表1乃至表4に示す通りである。
-Example of mold formation (Examples 1 to 20, Comparative Examples 1 to 7)-
After filling CS 1 to 27 manufactured according to the above-described procedures into a molding die heated to 150 ° C., the CS 1 to 27 are held in the molding die, and each CS filled in such a molding die is cured Thus, a mold was produced which was used as a circular non-air-filled test piece (diameter: 5 cm × height: 5 cm). The CSs used for producing the molds (test pieces) according to each of Examples 1 to 20 and Comparative Examples 1 to 7 are as shown in Tables 1 to 4 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1乃至表4より明らかなように、本発明に従う湿態の鋳型材料を用いて得られた鋳型(実施例1~20)にあっては、鋳造後の崩壊性に優れていると共に、得られる鋳造製品の鋳肌も良好であることが認められる。また、鋳造後に回収した砂については、そこに付着している水溶性無機粘結剤の固化物乃至は硬化物を、研磨処理によって容易に除去可能であることが認められるところから、本発明に従う湿態の鋳型材料が、鋳物砂の再生が容易であることも、確認されるのである。 As apparent from Tables 1 to 4, in the mold (Examples 1 to 20) obtained using the wet mold material according to the present invention, the mold has excellent disintegration after casting and is obtained. It is recognized that the casting surface of the cast product is good. In addition, with regard to sand recovered after casting, it has been found that solidified or hardened material of water-soluble inorganic binder adhered thereto can be easily removed by polishing, according to the present invention. It is also confirmed that the wet mold material is easy to regenerate the foundry sand.
-湿態CSの製造例28、29-
 湿態CSの製造例7において、充填向上剤としての二酸化珪素粒子971U(商品名、エルケム社製、平均粒子径:0.15μm)を、それぞれ二酸化珪素粒子HS312(商品名、新日鉄住金マテリアルズ株式会社製、平均粒子径:9.5μm)、酸化アルミニウム粒子AZ-75(商品名、新日鉄住金マテリアルズ株式会社製、平均粒子径:2.5μm)に代えたこと以外は上記製造例7と同様の手順に従って、湿態の鋳型材料(CS28、CS29)を得た。得られたCS28、CS29の含水分量を添加した材料の添加量から算出したところ、水ガラスの固形分量の226質量%に相当する量であった。
-Production example of wet CS, 29-
In Production Example 7 of wet CS, silicon dioxide particles 971U (trade name, manufactured by Elchem Co., average particle size: 0.15 μm) as a filling improver are each silicon dioxide particles HS312 (trade name, Nippon Steel Sumikin Materials shares) Same as in Production Example 7 except that aluminum oxide particles AZ-75 (trade name, manufactured by Nippon Steel & Sumikin Materials Co., Ltd., average particle size: 2.5 μm) are used instead of the company-made average particle size: 9.5 μm A wet mold material (CS28, CS29) was obtained according to the following procedure. When the water content of the obtained CS28 and CS29 was calculated from the added amount of the added material, it was an amount corresponding to 226% by mass of the solid content of the water glass.
-湿態CSの製造例30、31-
 湿態CSの製造例11において、ホウ酸塩(四ホウ酸ナトリウム十水和物)を、それぞれ硫酸塩(硫酸リチウム)、炭酸塩(塩基性炭酸亜鉛)に代えたこと以外は上記製造例11と同様の手順に従って、湿態の鋳型材料(CS30、CS31)を得た。得られたCS30、CS31の含水分量を添加した材料の添加量から算出したところ、水ガラスの固形分量の226質量%に相当する量であった。
-Production example of wet CS, 31-
In Production Example 11 of wet CS, the above Production Example 11 except that the borate (sodium tetraborate decahydrate) is replaced with sulfate (lithium sulfate) and carbonate (basic zinc carbonate), respectively. A wet mold material (CS30, CS31) was obtained according to the same procedure as in. When the water content of the obtained CS30 and CS31 was calculated from the added amount of the added material, it was an amount corresponding to 226% by mass of the solid content of the water glass.
-湿態CSの製造例32-
 湿態CSの製造例11において、充填向上剤としての二酸化珪素粒子971U(商品名、エルケム社製、平均粒子径:0.15μm)の1部を水ガラス水溶液に添加したこと以外は、上記製造例11と同様の手順に従って、湿態の鋳型材料(CS32)を得た。得られたCS32の含水分量を添加した材料の添加量から算出したところ、水ガラスの固形分量の226質量%に相当する量であった。
-Production example of wet CS
In the above Production Example 11 of Wet CS, the above-mentioned production is performed except that 1 part of silicon dioxide particles 971U (trade name, manufactured by Elchem, average particle size: 0.15 μm) as a filling improver is added to a water glass aqueous solution. Following the same procedure as in Example 11, a wet mold material (CS32) was obtained. When the water content of CS32 obtained was calculated from the added amount of the added material, it was an amount corresponding to 226% by mass of the solid content of water glass.
-湿態CSの製造例33-
 湿態CSの製造例30において、充填向上剤としての二酸化珪素粒子971U(商品名、エルケム社製、平均粒子径:0.15μm)の1部を水ガラス水溶液に添加したこと以外は、上記製造例30と同様の手順に従って、湿態の鋳型材料(CS33)を得た。得られたCS33の含水分量を添加した材料の添加量から算出したところ、水ガラスの固形分量の226質量%に相当する量であった。
-Production example of wet CS
In the above Production Example 30 of the wet CS, except that 1 part of silicon dioxide particles 971 U (trade name, manufactured by Elchem, average particle size: 0.15 μm) as a filling improver is added to an aqueous solution of water glass, Following the same procedure as in Example 30, a wet mold material (CS33) was obtained. When the obtained water content of CS33 was calculated from the addition amount of the added material, it was an amount corresponding to 226% by mass of the solid content of the water glass.
-湿態CSの製造例34-
 湿態CSの製造例31において、充填向上剤としての二酸化珪素粒子971U(商品名、エルケム社製、平均粒子径:0.15μm)の1部を水ガラス水溶液に添加したこと以外は、上記製造例31と同様の手順に従って、湿態の鋳型材料(CS34)を得た。得られたCS34の含水分量を添加した材料の添加量から算出したところ、水ガラスの固形分量の226質量%に相当する量であった。
-Production example 34 of wet condition CS-
In the above Production Example 31 of the wet CS, except that 1 part of silicon dioxide particles 971 U (trade name, manufactured by Elchem, average particle size: 0.15 μm) as a filling improver is added to an aqueous solution of water glass, Following the same procedure as in Example 31, a wet mold material (CS34) was obtained. When the obtained water content of CS34 was calculated from the addition amount of the added material, it was an amount corresponding to 226% by mass of the solid content of the water glass.
 CS3、CS7、CS8、CS9、CS10、CS11及びCS28~CS34の各々を用いて、各CSを150℃に加熱した成形型内に、0.3MPaのゲージ圧力にて、吹き込んで充填した後、90秒間、保持することにより、強度試験用の試験片(幅:1cm×高さ:1cm×長さ:8cm)を作製した。得られた試験片について、以下の示す手順に従い、吸湿強度保持率を算出した(実施例21~33)。その結果を下記表5及び表6に示す。 90, after blowing and filling each CS into a mold heated to 150 ° C. at a gauge pressure of 0.3 MPa using each of CS3, CS7, CS8, CS9, CS10, CS11 and CS28 to CS34 By holding for second, a test piece for width test (width: 1 cm × height: 1 cm × length: 8 cm) was produced. The moisture absorption strength retention of the obtained test pieces was calculated according to the following procedure (Examples 21 to 33). The results are shown in Tables 5 and 6 below.
-吸湿強度保持率-
 各CSを用いて得られた試験片について、その破壊荷重を、測定器(高千穂精機株式会社製、デジタル鋳物砂強度試験機)を用いて測定し、次いで、この測定された破壊荷重を用いて、抗折強度を、下記の式により算出した。なお、破壊荷重の測定は、成形後1時間が経過した常温の試験片を用いて行った。
  抗折強度(N/cm2 )=1.5×LW/ab2
  [但し、L:支点間距離(cm)、W:破壊荷重(N)、a:試験片の
   幅(cm)、b:試験片の厚み(cm)、である。]
次いで、容器に水、グリセロール混合溶液及び4点の下駄付き金網を入れ、各試験片を金網上に載置して、試験片が水及びグリセロール混合溶液(20%濃度)に触れない状態として、かかる容器ごと温調器に入れて、40℃で24時間保持し、各試験片を吸湿劣化させた。その吸湿劣化後の各試験片の抗折強度を上記と同様に測定を行った。吸湿前の抗折強度と、吸湿後の抗折強度から、下記式に基づいて、吸湿強度保持率を算出した。
  吸湿強度保持率(%)=(吸湿後抗折強度/吸湿前抗折強度)×100
-Moisture absorption strength retention rate-
The breaking load of the test piece obtained using each CS is measured using a measuring instrument (a digital casting sand strength tester manufactured by Takachiho Seiki Co., Ltd.), and then, using this measured breaking load The bending strength was calculated by the following equation. In addition, the measurement of the breaking load was performed using the test piece of the normal temperature 1 hour after shaping | molding passed.
Breaking strength (N / cm 2 ) = 1.5 × LW / ab 2
[Wherein L: distance between supporting points (cm), W: breaking load (N), a: width of the test piece (cm), b: thickness of the test piece (cm). ]
Next, put water, a glycerol mixed solution and 4 pieces of clogged wire netting in a container, and place each test piece on the metal netting so that the test piece does not touch the water and glycerol mixed solution (20% concentration), The whole container was placed in a temperature controller and kept at 40 ° C. for 24 hours to degrade each test piece by moisture absorption. The flexural strength of each test piece after the moisture absorption deterioration was measured in the same manner as described above. From the flexural strength before moisture absorption and the flexural strength after moisture absorption, the moisture absorption strength retention was calculated based on the following formula.
Moisture absorption strength retention rate (%) = (post-moisture strength after bending / strength before moisture absorption) × 100
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 かかる表5及び表6から明らかなように、粘結剤組成物に、耐湿性向上剤たるホウ酸塩、硫酸塩、炭酸塩などを添加することにより、また、二酸化珪素粒子を添加することにより、最終的に得られる鋳型の吸湿強度保持率が大幅に向上することが認められる。また、固体状のコーティング層及び液状の粘結剤組成物の何れかにカップリング剤を含有せしめることによって、鋳型の吸湿強度保持率が向上することが認められるものの、固体状のコーティング層及び液状の粘結剤組成物の双方にカップリング剤を含有せしめることにより、鋳型の吸湿強度保持率がより向上することが認められるのである。 As apparent from Table 5 and Table 6, by adding a borate, which is a moisture resistance improver, a sulfate, a carbonate or the like to the binder composition, or by adding silicon dioxide particles. It is recognized that the moisture absorption strength retention rate of the finally obtained mold is significantly improved. In addition, although it has been found that the retention of moisture absorption strength of the mold is improved by incorporating the coupling agent in any of the solid coating layer and the liquid binder composition, the solid coating layer and the liquid It is recognized that the moisture absorption strength retention rate of the mold is further improved by incorporating the coupling agent into both of the binder compositions of the present invention.
-湿態CSの製造例35-
 湿態CSの製造例8において、ノボラック型フェノール樹脂に添加したシランカップリング剤の添加量を0.03部としたこと以外は、上記製造例8と同様の手順に従って、湿態の鋳型材料(CS35)を得た。得られたCS35の含水分量を添加した材料の添加量から算出したところ、水ガラスの固形分量の223質量%に相当する量であった。
-Production example of wet CS
In the same manner as in the above-mentioned Production Example 8 except that the amount of the silane coupling agent added to the novolak-type phenolic resin is 0.03 part in Production Example 8 of the wet CS, a wet mold material ( Got CS 35). When the obtained water content of CS35 was calculated from the addition amount of the added material, it was an amount corresponding to 223% by mass of the solid content of water glass.
-湿態CSの製造例36-
 湿態CSの製造例9において、水ガラス水溶液に添加したシランカップリング剤の添加量を0.075部としたこと以外は、上記製造例9と同様の手順に従って、湿態の鋳型材料(CS36)を得た。得られたCS36の含水分量を添加した材料の添加量から算出したところ、水ガラスの固形分量の223質量%に相当する量であった。
-Production example 36 of wet condition CS-
The wet mold material (CS36) was prepared according to the same procedure as in Production Example 9 except that the addition amount of the silane coupling agent added to the aqueous solution of water glass was changed to 0.075 parts in Production Example 9 of wet CS. Got). When the obtained water content of CS36 was calculated from the addition amount of the added material, it was an amount corresponding to 223% by mass of the solid content of water glass.
-湿態CSの製造例37-
 湿態CSの製造例10において、ノボラック型フェノール樹脂に添加したシランカップリング剤の添加量を0.03部、水ガラス水溶液に添加したシランカップリング剤の添加量を0.075部としたこと以外は、上記製造例10と同様の手順に従って、湿態の鋳型材料(CS37)を得た。得られたCS37の含水分量を添加した材料の添加量から算出したところ、水ガラスの固形分量の223質量%に相当する量であった。
-Production example 37 of wet state CS-
In Production Example 10 of wet CS, 0.03 parts of the addition amount of the silane coupling agent added to the novolak-type phenol resin and 0.075 parts of the addition amount of the silane coupling agent added to the water glass aqueous solution A wet mold material (CS37) was obtained according to the same procedure as in Production Example 10 except for the above. When the obtained water content of CS37 was calculated from the addition amount of the added material, it was an amount corresponding to 223% by mass of the solid content of water glass.
 CS3、CS8、CS9、CS10及びCS35~CS37の各々を用いて、各CSを150℃に加熱した成形型内に、0.3MPaのゲージ圧力にて、吹き込んで充填した後、90秒間、保持することにより、強度試験用の試験片(幅:1cm×高さ:1cm×長さ:8cm)を作製した。得られた試験片について、以下の示す手順に従い、抗折強度を算出した(実施例34~40)。その結果を下記表7に示す。 Using each of CS3, CS8, CS9, CS10 and CS35 to CS37, after blowing and filling each CS at a gauge pressure of 0.3 MPa in a mold heated to 150 ° C., hold for 90 seconds Test pieces (width: 1 cm × height: 1 cm × length: 8 cm) were produced. The bending strength of the obtained test piece was calculated according to the following procedure (Examples 34 to 40). The results are shown in Table 7 below.
-抗折強度-
 各CSを用いて得られた試験片について、その破壊荷重を、測定器(高千穂精機株式会社製、デジタル鋳物砂強度試験機)を用いて測定し、次いで、この測定された破壊荷重を用いて、抗折強度を、下記の式により算出した。なお、破壊荷重の測定は、成形後1時間が経過した常温の試験片を用いて行った。
  抗折強度(N/cm2 )=1.5×LW/ab2
  [但し、L:支点間距離(cm)、W:破壊荷重(N)、a:試験片の
   幅(cm)、b:試験片の厚み(cm)、である。]
-Break strength-
The breaking load of the test piece obtained using each CS is measured using a measuring instrument (a digital casting sand strength tester manufactured by Takachiho Seiki Co., Ltd.), and then, using this measured breaking load The bending strength was calculated by the following equation. In addition, the measurement of the breaking load was performed using the test piece of the normal temperature 1 hour after shaping | molding passed.
Breaking strength (N / cm 2 ) = 1.5 × LW / ab 2
[Wherein L: distance between supporting points (cm), W: breaking load (N), a: width of the test piece (cm), b: thickness of the test piece (cm). ]
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 かかる表7から明らかなように、本発明に従う鋳型材料において、固体状のコーティング層及び水溶性無機粘結剤のうちの何れか一方、若しくはそれらの両者にカップリング剤を含有せしめることにより、最終的に得られる鋳型において強度が向上することが認められる。特に、固体状のコーティング層及び水溶性無機粘結剤の各々にカップリング剤を含有せしめることにより、相乗効果によって非常に高い鋳型強度を発揮する鋳型が得られることが、認められるのである。 As apparent from Table 7 above, in the template material according to the present invention, the final state is achieved by including a coupling agent in either or both of the solid coating layer and the water-soluble inorganic binder. It can be seen that the strength is improved in the mold obtained in In particular, it is recognized that the incorporation of the coupling agent into each of the solid coating layer and the water-soluble inorganic binding agent results in a mold which exhibits very high mold strength by synergetic effect.
   2    溶湯注入口                      4    幅木固定部
   6    主型                            8    幅木部
   10  中子                            12  砂型
   14  廃中子排出口                    16  鋳物
2 Molten metal injection port 4 Baseboard fixing part 6 Main type 8 Baseboard section 10 Core 12 Sand type 14 Waste core outlet 16 Casting

Claims (25)

  1.  有機化合物を含む固体状のコーティング層で被覆された鋳物砂が、水溶性無機粘結剤を含む液状の粘結剤組成物にて被覆されていることを特徴とする湿態の鋳型材料。 1. A wet mold material characterized in that a foundry sand coated with a solid coating layer containing an organic compound is coated with a liquid caking agent composition containing a water-soluble inorganic caking agent.
  2.  前記固体状のコーティング層の厚さが0.1~6μmである請求項1に記載の鋳型材料。 The mold material according to claim 1, wherein the thickness of the solid coating layer is 0.1 to 6 μm.
  3.  前記有機化合物が、架橋硬化性樹脂及びその硬化物、熱可塑性樹脂、炭水化物からなる群より選ばれる少なくとも一種である請求項1又は請求項2に記載の鋳型材料。 The mold material according to claim 1 or 2, wherein the organic compound is at least one selected from the group consisting of a cross-linking curable resin and a cured product thereof, a thermoplastic resin, and a carbohydrate.
  4.  前記架橋硬化性樹脂がフェノール樹脂である請求項3に記載の鋳型材料。 The mold material according to claim 3, wherein the crosslinkable curing resin is a phenol resin.
  5.  前記有機化合物が、重量平均分子量が300以上の高分子化合物である請求項1乃至請求項4の何れか1項に記載の鋳型材料。 The template material according to any one of claims 1 to 4, wherein the organic compound is a polymer compound having a weight average molecular weight of 300 or more.
  6.  前記有機化合物の25℃の水100gに対する溶解度が1質量%以下である請求項1乃至請求項5の何れか1項に記載の鋳型材料。 The mold material according to any one of claims 1 to 5, wherein the solubility of the organic compound in 100 g of water at 25 ° C is 1% by mass or less.
  7.  前記固体状のコーティング層がカップリング剤を含む請求項1乃至請求項6の何れか1項に記載の鋳型材料。 The mold material according to any one of claims 1 to 6, wherein the solid coating layer contains a coupling agent.
  8.  前記液状の粘結剤組成物における前記水溶性無機粘結剤の固形分量が10~80質量%である請求項1乃至請求項7の何れか1項に記載の鋳型材料。 The mold material according to any one of claims 1 to 7, wherein a solid content of the water-soluble inorganic binder in the liquid binder composition is 10 to 80% by mass.
  9.  前記液状の粘結剤組成物がカップリング剤を含む請求項1乃至請求項8の何れか1項に記載の鋳型材料。 The mold material according to any one of claims 1 to 8, wherein the liquid binder composition contains a coupling agent.
  10.  前記液状の粘結剤組成物が無機酸化物粒子を含む請求項1乃至請求項9の何れか1項に記載の鋳型材料。 The mold material according to any one of claims 1 to 9, wherein the liquid binder composition contains inorganic oxide particles.
  11.  前記無機酸化物粒子が二酸化珪素粒子である請求項10に記載の鋳型材料。 11. The template material according to claim 10, wherein the inorganic oxide particles are silicon dioxide particles.
  12.  前記液状の粘結剤組成物が耐湿性向上剤を含む請求項1乃至請求項11の何れか1項に記載の鋳型材料。 The mold material according to any one of claims 1 to 11, wherein the liquid caking agent composition contains a moisture resistance improver.
  13.  前記水溶性無機粘結剤が水ガラスである請求項1乃至請求項12の何れか1項に記載の鋳型材料。 The mold material according to any one of claims 1 to 12, wherein the water-soluble inorganic binder is water glass.
  14.  前記液状の粘結剤組成物が水を含む請求項1乃至請求項13の何れか1項に記載の鋳型材料。 The mold material according to any one of claims 1 to 13, wherein the liquid binder composition comprises water.
  15.  請求項1乃至請求項14の何れか1項に記載の鋳型材料を用いて造型された鋳型。 The mold shape | molded using the mold material in any one of Claims 1-14.
  16.  1000℃で240秒間、加熱した時のガス発生量が、1g当たり3~30mlである請求項15に記載の鋳型。 The mold according to claim 15, wherein a gas generation amount when heated at 1000 ° C for 240 seconds is 3 to 30 ml per 1 g.
  17.  鋳物砂の表面に、有機化合物を含む固体状のコーティング層を形成せしめる工程と、
     前記固体状のコーティング層が形成された鋳物砂に対して、水溶性無機粘結剤を含む液状の粘結剤組成物を添加し、混練乃至は混合せしめる工程と、
    を有する湿態の鋳型材料の製造方法。
    Forming a solid coating layer containing an organic compound on the surface of the casting sand;
    Adding a liquid caking agent composition containing a water-soluble inorganic caking agent to the foundry sand on which the solid coating layer is formed, and kneading or mixing;
    A method of producing a wet mold material having
  18.  前記有機化合物が架橋硬化性樹脂であり、前記鋳物砂の表面に前記固体状のコーティング層を形成せしめた後に、該固体状のコーティング層に含まれる前記架橋硬化性樹脂を硬化せしめる工程を有する請求項17に記載の鋳型材料の製造方法。 The organic compound is a cross-linking curable resin, and the method comprises the step of curing the cross-linking curable resin contained in the solid coating layer after forming the solid coating layer on the surface of the casting sand. Item 18. A method for producing a mold material according to Item 17.
  19.  前記水溶性無機粘結剤が水ガラスである請求項17又は請求項18に記載の鋳型材料の製造方法。 The method for producing a mold material according to claim 17 or 18, wherein the water-soluble inorganic binder is water glass.
  20.  前記液状の粘結剤組成物が水を含む請求項17乃至請求項19の何れか1項に記載の鋳型材料の製造方法。 The method for producing a mold material according to any one of claims 17 to 19, wherein the liquid binder composition contains water.
  21.  請求項1乃至請求項14の何れか1項に記載の鋳型材料を成形型内に充填した後、かかる成形型内で保持し、a)該成形型を加熱することにより、b)該成形型内に硬化剤を添加することにより、又は、c)該成形型内を減圧することにより、該成形型内に充填された鋳型材料を固化乃至は硬化せしめて、目的とする鋳型を得ることを特徴とする鋳型の製造方法。 After filling the mold material according to any one of claims 1 to 14 into a mold, the mold material is held in the mold, and a) the mold is heated by heating the mold; b) the mold The target mold can be obtained by solidifying or curing the mold material filled in the mold by adding a curing agent inside or c) reducing the pressure in the mold. A method for producing a mold characterized by the present invention.
  22.  前記成形型の保持中に、該成形型内に熱風又は過熱水蒸気が通気せしめられる請求項21に記載の鋳型の製造方法。 The method for producing a mold according to claim 21, wherein hot air or superheated steam is ventilated in the mold while holding the mold.
  23.  前記成形型の保持中に、該成形型内に二酸化炭素、アルゴン、窒素、ヘリウム、空気のうち少なくとも一種からなるキャリアガスが通気せしめられる請求項21又は請求項22に記載の鋳型の製造方法。 The method for manufacturing a mold according to claim 21 or 22, wherein a carrier gas consisting of at least one of carbon dioxide, argon, nitrogen, helium and air is allowed to flow into the mold while holding the mold.
  24.  前記成形型が、80℃~300℃の温度に加熱される請求項21乃至請求項23の何れか1項に記載の鋳型の製造方法。 The method for manufacturing a mold according to any one of claims 21 to 23, wherein the mold is heated to a temperature of 80 属 C to 300 属 C.
  25.  請求項1乃至請求項14の何れか1項に記載の鋳型材料の固化物乃至は硬化物からなる鋳型を用いて、鋳造を行なった後、該鋳型から鋳物砂を回収し、乾式再生処理を施して再生砂を得ることを特徴とする鋳物砂の再生方法。
                                                                                    
    After casting is performed using a mold made of a solidified or hardened material of a mold material according to any one of claims 1 to 14, casting sand is recovered from the mold and subjected to dry regeneration treatment. A method of reclaiming foundry sand characterized by applying to obtain reclaimed sand.
PCT/JP2018/037354 2017-10-06 2018-10-05 Mold material and manufacturing method therefor, mold and manufacturing method therefor, and molding sand regeneration method WO2019070051A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019547028A JP7252897B2 (en) 2017-10-06 2018-10-05 Mold material and method for manufacturing the same, mold and method for manufacturing the same, and method for regenerating foundry sand

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017195611 2017-10-06
JP2017-195611 2017-10-06

Publications (1)

Publication Number Publication Date
WO2019070051A1 true WO2019070051A1 (en) 2019-04-11

Family

ID=65995092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037354 WO2019070051A1 (en) 2017-10-06 2018-10-05 Mold material and manufacturing method therefor, mold and manufacturing method therefor, and molding sand regeneration method

Country Status (2)

Country Link
JP (1) JP7252897B2 (en)
WO (1) WO2019070051A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113600740A (en) * 2021-08-31 2021-11-05 江西特欣实业有限公司 Preparation method of high-strength low-gas-evolution precoated sand
CN114453555A (en) * 2022-01-26 2022-05-10 安顺学院 Preparation process of high-temperature-resistant precoated sand
JP7507005B2 (en) 2020-04-30 2024-06-27 旭有機材株式会社 Mold manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50128620A (en) * 1974-03-29 1975-10-09
JPS5435821A (en) * 1977-08-26 1979-03-16 Osamu Madono Resurrection of used cast sand
JPS6096345A (en) * 1983-10-31 1985-05-29 Dainippon Ink & Chem Inc Production of casting mold
JP2012076114A (en) * 2010-10-01 2012-04-19 Lignyte Co Ltd Binder-coated refractory, casting mold, method for producing the casting mold
JP2013094834A (en) * 2011-11-02 2013-05-20 Tsuchiyoshi Industry Co Ltd Mold material, mold and method for manufacturing the same
WO2015194550A1 (en) * 2014-06-20 2015-12-23 旭有機材工業株式会社 Mold manufacturing method and mold

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013046919A (en) * 2011-08-29 2013-03-07 Sumitomo Bakelite Co Ltd Phenolic resin binder for shell mold and resin-coated sand for shell mold
JP6684418B2 (en) * 2015-12-14 2020-04-22 リグナイト株式会社 Mold manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50128620A (en) * 1974-03-29 1975-10-09
JPS5435821A (en) * 1977-08-26 1979-03-16 Osamu Madono Resurrection of used cast sand
JPS6096345A (en) * 1983-10-31 1985-05-29 Dainippon Ink & Chem Inc Production of casting mold
JP2012076114A (en) * 2010-10-01 2012-04-19 Lignyte Co Ltd Binder-coated refractory, casting mold, method for producing the casting mold
JP2013094834A (en) * 2011-11-02 2013-05-20 Tsuchiyoshi Industry Co Ltd Mold material, mold and method for manufacturing the same
WO2015194550A1 (en) * 2014-06-20 2015-12-23 旭有機材工業株式会社 Mold manufacturing method and mold

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7507005B2 (en) 2020-04-30 2024-06-27 旭有機材株式会社 Mold manufacturing method
CN113600740A (en) * 2021-08-31 2021-11-05 江西特欣实业有限公司 Preparation method of high-strength low-gas-evolution precoated sand
CN114453555A (en) * 2022-01-26 2022-05-10 安顺学院 Preparation process of high-temperature-resistant precoated sand
CN114453555B (en) * 2022-01-26 2023-04-28 安顺学院 Preparation process of high-temperature-resistant precoated sand

Also Published As

Publication number Publication date
JP7252897B2 (en) 2023-04-05
JPWO2019070051A1 (en) 2020-09-10

Similar Documents

Publication Publication Date Title
US10507516B2 (en) Method of producing casting mold and casting mold
JP6978366B2 (en) Method of manufacturing coated sand and mold using it, and method of recycling cast sand
JP7345596B2 (en) Mold material composition and mold manufacturing method using the same
CN109982786B (en) Precoated sand, method for producing same, and method for producing mold using same
JP6193884B2 (en) Coated sand, method for producing the same, and method for producing a mold
JP7312883B2 (en) Mold material and method for manufacturing same, method for manufacturing mold, and method for recycling recovered refractory aggregate
JP7060519B2 (en) Coated sand and its manufacturing method and mold manufacturing method using it
WO2018043412A1 (en) Casting mold manufacturing method
WO2019070051A1 (en) Mold material and manufacturing method therefor, mold and manufacturing method therefor, and molding sand regeneration method
JP7055752B2 (en) Coated sand and its manufacturing method and mold manufacturing method using it
JP7202238B2 (en) Coated sand and mold manufacturing method using the same
JP7418279B2 (en) Mold manufacturing method
JP7223098B2 (en) How to make coated sand
JP6983098B2 (en) Aggregate for mold and its manufacturing method
WO2020203752A1 (en) Mold material composition and method for manufacturing mold using same
JP7467221B2 (en) Mold making method
JP7202237B2 (en) Coated sand and mold manufacturing method using the same
JP7507005B2 (en) Mold manufacturing method
CN115461171A (en) Method for manufacturing casting mold

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18864675

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019547028

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18864675

Country of ref document: EP

Kind code of ref document: A1