JP6071229B2 - Impermeable granulated material for boring holes - Google Patents

Impermeable granulated material for boring holes Download PDF

Info

Publication number
JP6071229B2
JP6071229B2 JP2012079691A JP2012079691A JP6071229B2 JP 6071229 B2 JP6071229 B2 JP 6071229B2 JP 2012079691 A JP2012079691 A JP 2012079691A JP 2012079691 A JP2012079691 A JP 2012079691A JP 6071229 B2 JP6071229 B2 JP 6071229B2
Authority
JP
Japan
Prior art keywords
water
swellable
granules
powder
blocking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012079691A
Other languages
Japanese (ja)
Other versions
JP2013209817A (en
Inventor
恵一 黒坂
恵一 黒坂
温知 土屋
温知 土屋
博道 松戸
博道 松戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunimine Industries Co Ltd
Original Assignee
Kunimine Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunimine Industries Co Ltd filed Critical Kunimine Industries Co Ltd
Priority to JP2012079691A priority Critical patent/JP6071229B2/en
Publication of JP2013209817A publication Critical patent/JP2013209817A/en
Application granted granted Critical
Publication of JP6071229B2 publication Critical patent/JP6071229B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ボーリング孔、及び、ボーリング孔内壁とボーリング孔に挿入されるストレーナパイプとの空隙に用いられる遮水材に関する。詳しくは、本発明は、高含水比において低流動性粘土を成形した、ボーリング孔用遮水造粒物に関する。   The present invention relates to a water blocking material used for a bore hole and a gap between a bore hole inner wall and a strainer pipe inserted into the bore hole. More specifically, the present invention relates to a water-blocking granulated product for a borehole formed by molding a low-flowing clay at a high moisture content.

従来、土木分野において、ボーリング孔、及び、ボーリング孔内壁とそのボーリング孔に挿入されるストレーナパイプなどの外壁との空隙に用いられる遮水材は地下水の地表への漏出防止や、雨水のストレーナパイプ内への浸入を防ぐことを目的として使用されてきた。その方法として、(1)水膨張性組成物をストレーナパイプに巻きつけ、水膨張性組成物を膨張させることで体積を増加させ、空隙を閉塞する方法、(2)薬液およびセメントミルクを泥水中に注入し、不透水性の固化体を形成することにより遮水する方法、及び、(3)ベントナイト造粒品をボーリング孔の泥水に投入し、底部に堆積させ遮水層を形成することにより遮水する方法、などが知られている。   Conventionally, in the civil engineering field, the water shielding material used in the gap between the borehole and the outer wall such as the strainer pipe inserted into the borehole and the strainer pipe inserted into the borehole prevents the groundwater from leaking to the ground surface, and the rainwater strainer pipe. It has been used for the purpose of preventing intrusion. As a method for this, (1) a method in which a water-swellable composition is wound around a strainer pipe and the volume is increased by expanding the water-swellable composition to close the gap, and (2) a chemical solution and cement milk are put into muddy water. By impregnating and forming a water-impermeable solidified body, and (3) by introducing bentonite granulated product into the bored mud and depositing it at the bottom to form a water-impervious layer Methods for shielding water are known.

前記(1)の遮水方法では、水膨張性組成物を巻きつけたストレーナパイプをボーリング孔に挿入すると、水膨潤性組成物の膨張が始まり、水膨張性組成物が変形するため、水膨張性組成物の固定が完全でない場合、ストレーナパイプから水膨張性組成物が剥離して落下する恐れがあり、所定箇所の空隙を閉塞出来ない場合がある。
また、リング状などに成形することで、水膨張性組成物が剥離して落下する恐れはなくなる。しかし、ボーリング孔中心とストレーナパイプ中心がずれ、ボーリング孔内壁とストレーナパイプ外壁の間隔が偏り空隙が大きくなると、膨張しても空隙を閉塞することが出来ないという問題がある。
In the water shielding method of (1) above, when a strainer pipe wrapped with a water-swellable composition is inserted into the borehole, the water-swellable composition starts to expand and the water-swellable composition is deformed. If the fixing of the adhesive composition is not complete, the water-swellable composition may be peeled off from the strainer pipe and dropped, and the gap at a predetermined location may not be blocked.
Further, by forming into a ring shape or the like, there is no possibility that the water-swellable composition is peeled off and dropped. However, if the center of the borehole and the center of the strainer pipe are shifted and the gap between the inner wall of the borehole and the outer wall of the strainer pipe is uneven and the gap becomes large, there is a problem that the gap cannot be closed even if it expands.

前記(2)の遮水方法では、薬液およびセメントミルクなどを泥水中に注入する設備が必要である。大規模な装置が必要となることや、注入直後はボーリング孔内壁および挿入するストレーナパイプ外壁と密着した不透水性固化物が、地震などの外力により一旦剥離するとその壁面を容易に通水してしまうため、遮水機能がなくなるという問題がある。   In the water shielding method (2), a facility for injecting a chemical solution and cement milk into the muddy water is necessary. Immediately after injection, the impermeable solidified material that is in close contact with the inner wall of the borehole and the outer wall of the strainer pipe to be inserted can easily pass through the wall once it has been peeled off by an external force such as an earthquake. Therefore, there is a problem that the water shielding function is lost.

前記(3)の遮水方法では、ボーリング孔にベントナイト造粒品を投入し泥水中を落下させ、底部に堆積させることで遮水層を形成する。そのため、特別な装置を必要とせず、ストレーナパイプを挿入後に投入し底部に堆積させるため、ボーリング孔内壁とストレーナパイプ外壁との空隙がどのような場合も対応することが可能である。
しかし、ボーリング孔深度が深い場合(「大深度地下の公共的使用に関する特別措置法」において「大深度地下」と定義されている、地表から40mより深い地下である場合)には、投入したベントナイト造粒品の膨潤した粒表面がボーリング孔底部に到達する前に水中に分散してしまうため、比較的深度の浅いボーリング孔にしか対応出来なかった。
また、粒径を大きくすることで必要量を底部に到達させることは可能であるが、ボーリング孔内壁とストレーナーパイプ間の隙間が狭いため、膨潤した粒表面の粘着性により、ストレーナーパイプ等に付着し、底部に到達せずに、地表からボーリング孔底部までの途中で堆積してしまう場合がある。
In the water shielding method of (3), bentonite granulated product is put into the borehole, the muddy water is dropped and deposited on the bottom to form a water shielding layer. Therefore, since no strainer is required and the strainer pipe is inserted after being inserted and deposited on the bottom, it is possible to cope with any gap between the borehole inner wall and the strainer pipe outer wall.
However, if the depth of the borehole is deep (if it is deep underground, which is defined as “deep underground” in the Law on Special Measures for Public Use of Deep Underground), it will be bentonite that has been introduced. Since the swollen grain surface of the granulated product is dispersed in water before reaching the bottom of the borehole, it can only deal with boreholes with a relatively shallow depth.
In addition, the required amount can be reached to the bottom by increasing the particle size, but because the gap between the borehole inner wall and the strainer pipe is narrow, it adheres to the strainer pipe etc. due to the adhesiveness of the swollen particle surface In some cases, however, it does not reach the bottom but accumulates from the ground surface to the bottom of the borehole.

本発明は、上記問題点に鑑みなされたものであり、大深度のボーリングにおいても使用できる、孔内壁とストレーナパイプ等との空隙を充填する遮水材に関し、泥水中落下時に分散することが無く、且つ、ストレーナパイプ等への付着の無い粘土の造粒物を提供することを課題とする。   The present invention has been made in view of the above problems, and relates to a water shielding material that fills a gap between a hole inner wall and a strainer pipe, which can be used in deep boring, without being dispersed when falling in muddy water. And it is an object to provide a granulated product of clay that does not adhere to a strainer pipe or the like.

本発明者らは鋭意研究により、低流動性粘土を成形した水膨潤性粒体の表面を、疎水性物質により所定の被覆率でコーティングすることにより作製した、ボーリング孔用遮水造粒物は、泥水中落下時の分散が抑制され、かつ、ストレーナパイプ等へ付着せず、更には、ボーリング孔底部到達後、所定時間内に遮水機能を発揮することを見出した。本発明は、この知見に基づき完成されるに至ったものである。   The inventors of the present invention have conducted intensive research to produce a water-impregnated granule for a borehole prepared by coating the surface of a water-swellable granule formed from a low-flowing clay with a hydrophobic material at a predetermined coverage. It was found that dispersion during dropping in muddy water is suppressed and does not adhere to the strainer pipe or the like, and further exhibits a water shielding function within a predetermined time after reaching the bottom of the borehole. The present invention has been completed based on this finding.

本発明の課題は以下の手段により達成された。
(1)水膨潤性粒体が、疎水性の、粉末または薄膜で被覆されていて、前記粉末または前記薄膜による、前記水膨潤性粒体表面の被覆率が70%以上100%未満であり、前記水膨潤性粒体は、液性限界が100〜1,000%の水膨潤性粘土の成形体であることを特徴とするボーリング孔用遮水造粒物
)前記疎水性の粉末の粒径が1mm以下であることを特徴とする(1)記載のボーリング孔用遮水造粒物。
前記水膨潤性粘土がベントナイト、スメクタイト、膨潤性雲母から選ばれる少なくとも1つであることを特徴とする(1)または(2)に記載のボーリング孔用遮水造粒物。
前記水膨潤性粒体の粒径が3〜50mmであることを特徴とする(1)〜(3)のいずれか1項に記載のボーリング孔用遮水造粒物
本願明細書において、「疎水性」とは、水に対する親和性が小さいことをいい、「疎水性の粉末または薄膜」とは、水膨潤性粒体表面を被覆率100%で被覆した場合、ボーリング孔用遮水造粒物が膨潤しないことにより、後述の遮水機能を24時間経過しても発揮させない粉末または薄膜をいう。
「水膨潤性粒体表面の被覆率」は、(被覆面積/水膨潤性粒体表面積)×100(%)により得られる。
水膨潤性粒体表面に、粉末または薄膜を被覆することによりできる層の厚さは好ましくは、0.01〜1mmである。
The object of the present invention has been achieved by the following means.
(1) The water-swellable granules are coated with a hydrophobic powder or thin film, and the coverage of the surface of the water-swellable granules with the powder or the thin film is 70% or more and less than 100%, the water-swellable granules are boreholes for water shield granulate liquid limit is characterized moldings der Rukoto of 100 to 1,000% of the water-swellable clay.
( 2 ) The water-blocking granulated product for boring holes according to (1), wherein the hydrophobic powder has a particle size of 1 mm or less.
( 3 ) The water-impregnated granule for boring holes according to (1) or (2), wherein the water-swellable clay is at least one selected from bentonite, smectite, and swellable mica .
( 4 ) The water- blocking granulated product for boring holes according to any one of (1) to (3), wherein the water-swellable granules have a particle size of 3 to 50 mm .
In the present specification, “hydrophobic” means low affinity for water, and “hydrophobic powder or thin film” means boring when the surface of a water-swellable granule is coated at a coverage of 100%. It refers to a powder or thin film that does not exhibit the water-blocking function described later even after 24 hours because the water-blocking granulated material for holes does not swell.
“The coverage of the surface of the water-swellable granules” is obtained by (coating area / surface area of the water-swellable granules) × 100 (%).
The thickness of the layer formed by coating a powder or thin film on the surface of the water-swellable granules is preferably 0.01 to 1 mm.

本発明のボーリング孔用遮水造粒物は、ボーリング孔の所定深度まで到達し、かつ、到達後、所定時間以内に膨潤し十分な遮水機能を発揮する。   The water-blocking granulated product for boring holes of the present invention reaches a predetermined depth of the boring hole, and swells within a predetermined time after reaching the boring hole and exhibits a sufficient water-blocking function.

図1は、遮水機能時間確認試験を行うための装置の模式図である。FIG. 1 is a schematic diagram of an apparatus for conducting a water shielding function time confirmation test. 図2は、本発明のボーリング孔用遮水造粒物の好ましい使用態様の一例である。FIG. 2 is an example of a preferred usage mode of the water-blocking granulated product for boring holes of the present invention.

以下、本発明の好ましい実施形態について説明する。
本発明において、水膨潤性粒体には、天然もしくは合成の水膨潤性粘土から選ばれた少なくとも1種類の粘土が用いられる。このような粘土としては、未変性のものでも変性したものでもよいが、ベントナイト、ヘクトライト等のスメクタイト系粘土、および膨潤性雲母から選ばれた少なくとも1種が好ましい。
このうち、ベントナイトは天然に産出する無機系の粘土であるため安全性に優れ、かつ土中の微生物に分解されることがなく長期的に安定で、高い止水効果を保持できる。また、低価格であるため、特に好ましい粘土である。本発明において、前記水膨潤性粘土から選ばれた1種の粘土を単独で、または2種以上の粘土を用いることができる。
本発明において水膨潤性粒体の形状は、特に制限するものではないが、球状、円筒状、楕円状、略立方体状、多角体状、円柱状、板状、針状などが挙げられる。これらの中で好ましくは、球状、楕円状、円柱状であり、より好ましくは球状、楕円状などが、最密充填かつ比表面積の減少による残存率の向上に寄与するため、適している。
Hereinafter, preferred embodiments of the present invention will be described.
In the present invention, at least one kind of clay selected from natural or synthetic water-swellable clay is used for the water-swellable granules. Such clay may be unmodified or modified, but is preferably at least one selected from smectite clays such as bentonite and hectorite, and swelling mica.
Among these, bentonite is an inorganic clay that is naturally produced, so it is excellent in safety, is not decomposed by microorganisms in the soil, is stable for a long time, and can maintain a high water-stopping effect. In addition, it is a particularly preferred clay because of its low cost. In the present invention, one kind of clay selected from the water-swellable clays may be used alone, or two or more kinds of clays may be used.
In the present invention, the shape of the water-swellable granule is not particularly limited, and examples thereof include a spherical shape, a cylindrical shape, an elliptical shape, a substantially cubic shape, a polygonal shape, a columnar shape, a plate shape, and a needle shape. Among these, a spherical shape, an elliptical shape, and a cylindrical shape are preferable, and a spherical shape, an elliptical shape, and the like are more preferable because they contribute to an increase in the residual rate due to the closest packing and the reduction of the specific surface area.

水膨潤性を調製する方法は特に制限されない。具体例としては、回転ドラム型や回転皿型などに原料の粘土粉末を投入し、この粘土粉末を転がしながら加液し、粉末を凝集させ造粒する転動造粒法が挙げられる。加液する液体は水、アルコール、糖蜜、ポリエチレングリコール等が挙げられる。また、温度・湿度等の条件はバインダー等の添加物に合せ適宜選択できる。
また、原料の粘土粉末に加液混練し、可塑性を付与した後、多数の孔を持つダイやスクリーン面から押出し成形する押出し造粒する方法が挙げられる。温度・湿度等の製造条件はバインダー等の添加物に合せ適宜選択できる。さらに、原料の粘土粉末を型に充填したり、回転する2個のロール間に供給して、粘土粉末に圧力をかけ成型する圧縮造粒法などの造粒方法が挙げられる。また、数種類の水膨潤性粘土を用いる場合や着色剤などを配合する場合は、事前に均一に混合しておくことが好ましい。
The method for preparing the water swellability is not particularly limited. As a specific example, there is a rolling granulation method in which a raw clay powder is put into a rotating drum mold or a rotating dish mold, the clay powder is added while rolling, and the powder is aggregated and granulated. Examples of the liquid to be added include water, alcohol, molasses, and polyethylene glycol. Moreover, conditions such as temperature and humidity can be appropriately selected according to additives such as a binder.
Further, there is a method in which extrusion granulation is carried out by extruding from a die having a large number of holes or a screen surface after adding and kneading the raw clay powder to give plasticity. Manufacturing conditions such as temperature and humidity can be appropriately selected according to additives such as a binder. Furthermore, a granulation method such as a compression granulation method in which the raw clay powder is filled in a mold or supplied between two rotating rolls to apply pressure to the clay powder and the like can be used. In addition, when several kinds of water-swellable clay are used or when a colorant or the like is blended, it is preferable to uniformly mix in advance.

ボーリング孔用遮水造粒物の粒密度(g/cm)は、1.3以上であることが好ましく、1.5以上であることがより好ましく、1.7以上であることがさらに好ましい。粒密度が1.0より小さい場合は泥水に浮いてしまい底部へ落下させることが出来ない。また、1.0〜1.3程度の粒密度の低い造粒物は泥水中落下時に容易に分散し、粒中心への水浸透性も高いため、粒が崩壊し易い。粒密度の上限に特に制限はないが、5以下であることが実際的である。
また、粒強度は好ましくは10N以上、より好ましくは20N以上である。粒強度が低すぎる場合は輸送中にボーリング孔用遮水造粒物が破損してしまう恐れがある。粒強度の上限に特に制限はないが、300N以下であることが実際的である。
The particle density (g / cm 3 ) of the water-impervious granulated product for boring holes is preferably 1.3 or more, more preferably 1.5 or more, and even more preferably 1.7 or more. . When the particle density is less than 1.0, it floats in muddy water and cannot be dropped to the bottom. In addition, a granulated product having a low particle density of about 1.0 to 1.3 is easily dispersed at the time of dropping in the muddy water and has high water permeability to the center of the particle, so that the particles are likely to collapse. Although there is no restriction | limiting in particular in the upper limit of a grain density, it is practical that it is 5 or less.
The grain strength is preferably 10N or more, more preferably 20N or more. If the grain strength is too low, there is a risk that the water-blocking granulated product for boring holes will be damaged during transportation. Although there is no restriction | limiting in particular in the upper limit of grain strength, it is practical that it is 300 N or less.

水膨潤性粒体の粒径は、小さすぎると底部到達前に泥水中に分散する可能性が高くなり、コーティングを施した際には水膨潤性粒体に対する疎水性物質の割合が増加するため、一定以上の粒径が必要となる。そのため、水膨潤性粒体の粒径は、5mm以上であることが好ましく、7mm以上であることがより好ましく、9mm以上であることが特に好ましい。
水膨潤性粒体の粒径は、水膨潤性粒体の形状が球状以外の、円筒状、略立方体状及び角のとれた略立方体状等である場合は、その粒の中心を通る径の内で最大の径(長径又は粒長)をいうものとする。
If the particle size of the water-swellable granules is too small, there is a high possibility that they will be dispersed in the muddy water before reaching the bottom, and the ratio of hydrophobic substances to the water-swellable granules will increase when coating is applied. , A certain particle size or more is required. Therefore, the particle size of the water-swellable granules is preferably 5 mm or more, more preferably 7 mm or more, and particularly preferably 9 mm or more.
The particle diameter of the water-swellable granules is such that the diameter of the water-swellable granules passes through the center of the grains when the shape of the water-swellable granules is other than spherical, such as a cylindrical shape, a substantially cubic shape, or a substantially cubic shape with a rounded corner. The maximum diameter (major axis or grain length) is said.

また、ボーリング孔とストレーナパイプ等との間隔が狭いことも多く、粒径の大きいボーリング孔用遮水造粒物を使用すると所定深度に到達するまでに詰まってしまう恐れもある。そのため水膨潤性粒体の粒径の上限は、30mm以下であること好ましく、20mm以下であることがより好ましく、15mm以下であることがさらに好ましい。   In addition, the distance between the borehole and the strainer pipe is often narrow, and if a water-blocking granulated product for a borehole having a large particle size is used, the borehole may be clogged before reaching a predetermined depth. Therefore, the upper limit of the particle size of the water-swellable granules is preferably 30 mm or less, more preferably 20 mm or less, and even more preferably 15 mm or less.

水膨潤性粒体の粒径が大きいと、投入するボーリング孔用遮水造粒物の比表面積が減るため、分散抑制効果は高くなるが、充填時の粒子間空隙が広くなるため、所定深度に到達した後、膨潤により粒子間の空隙を閉塞するのに時間を必要とし、遮水機能を発揮するのに時間がかかる。   When the particle size of the water-swellable granules is large, the specific surface area of the water-blocking granulated product for the bored hole to be introduced is reduced, so that the dispersion suppressing effect is enhanced, but the inter-particle voids at the time of filling are widened. After reaching the above, it takes time to block the voids between the particles by swelling, and it takes time to exert the water shielding function.

本発明において、ボーリング孔用遮水造粒物をボーリング孔に投入してから遮水機能を発揮するまでの時間は、ボーリング孔の深度や使用時の泥水温度等に応じて定まるので、一義的に定まるものではない。
しかし、本発明のボーリング孔用遮水造粒物は、ボーリング孔の深度等を考慮し、疎水性の、粉末または薄膜の被覆率等を調整することにより、ボーリング孔の底部に到達してからできるだけ早く、例えば遅くとも約5時間以内に遮機能水機能を発揮するように調節することができる。
In the present invention, the time from the introduction of the boring hole impermeable granulated material to the boring hole until the performance of the impermeable function is determined according to the depth of the boring hole, the mud temperature during use, etc. It is not determined by.
However, the water-impregnated granule for the boring hole of the present invention takes into account the depth of the boring hole, etc., and adjusts the coverage of the hydrophobic powder or thin film after reaching the bottom of the boring hole. It can be adjusted as soon as possible, for example, within about 5 hours at the latest so as to exert the function of blocking water.

このボーリング孔用遮水造粒物の使用の一例について図2において図示を参照して説明する。図示していないが、ボーリング孔15に水が溜っている。膨潤した本発明のボーリング孔用遮水造粒物21が、水脈層17よりも浅い深度まで堆積していることにより、水脈層17からの水の表面流出を防止することができる。よって、水脈層17からの水のボーリング孔15への流出を伴うことなく、濾過砂19、井戸スクリーン20、及びストレーナパイプ18を通して地下水を取水することができる。   An example of the use of this boring hole impermeable granulated material will be described with reference to the drawing in FIG. Although not shown, water has accumulated in the boring hole 15. Since the swollen impermeable granulated material 21 for boring holes of the present invention is deposited to a depth shallower than the water vein layer 17, the surface outflow of water from the water vein layer 17 can be prevented. Therefore, groundwater can be taken in through the filtration sand 19, the well screen 20, and the strainer pipe 18 without flowing out of the water vein layer 17 to the borehole 15.

ボーリング孔用遮水造粒物の形状に特に制限はないが、球形であると比表面積が減少するため、膨潤し難く、泥水中落下時の抵抗が少ないため、好ましい。   Although there is no restriction | limiting in particular in the shape of the water-blocking granulated material for boring holes, Since a specific surface area will reduce because it is spherical, it is hard to swell, and since there is little resistance at the time of dropping in muddy water, it is preferable.

本発明において、水膨潤性粒体に用いる水膨潤性粘土の液性限界(JIS A 1205 土の液性限界、塑性限界試験方法)は、100%以上1,000%以下であることが好ましく、200%以上1,000%以下であることがより好ましく、300%以上1,000%以下であることがさらに好ましく、500%以上1,000%以下であることが最も好ましい。
液性限界が低すぎる水膨潤性粘土は、低含水比で流動性が発現するため、泥水中落下時の分散が早く、崩壊し易い。また、逆に液性限界が高すぎる場合は、底部到達後に膨潤によってボーリング孔用遮水造粒物同士の空隙を閉塞する時間が長くなり遮水機能を発揮するまでの時間が長くなってしまう場合がある。
In the present invention, the liquid limit of the water-swellable clay used for the water-swellable granules (JIS A 1205 soil liquid limit, plastic limit test method) is preferably 100% or more and 1,000% or less, It is more preferably 200% or more and 1,000% or less, further preferably 300% or more and 1,000% or less, and most preferably 500% or more and 1,000% or less.
A water-swellable clay whose liquid limit is too low exhibits fluidity at a low water content ratio, and therefore disperses quickly when falling in muddy water, and is easily disintegrated. On the other hand, if the liquid limit is too high, the time to close the gap between the water-impregnated granules for boring holes due to swelling after reaching the bottom becomes longer and the time until the water shielding function is exhibited becomes longer. There is a case.

水膨潤性粒体のコーティングに用いる疎水性物質はポリスチレンやポリエチレンなどの汎用プラスチック、固形パラフィン、ステアリン酸カルシウム等の金属脂肪酸、活性炭等のカーボンや有機修飾により疎水性にした鉱物(有機化ベントナイトなどと呼ばれるもの)などが挙げられる。
コーティング方法としては、水膨潤性粒体表面にバインダーを塗布し、その粘性により粉末を付着させる方法、粉末で水膨潤性粒体を覆い、圧力などの外力により圧着させる方法やアルコールや鉱物油、動物油、植物油等に溶解・分散させた疎水性物質や溶融させた疎水性物質を塗布し、水膨潤性粒体表面に薄膜を形成する方法、界面活性剤により表面修飾することで表面を100%でなく部分的にコーティングし、疎水性を付与する方法などが挙げられる。
Hydrophobic substances used for coating water-swellable granules are general-purpose plastics such as polystyrene and polyethylene, solid fatty acids such as solid paraffin and calcium stearate, carbon such as activated carbon, and minerals made hydrophobic by organic modification (such as organic bentonite) And so on).
Coating methods include applying a binder to the surface of the water-swellable granules and attaching the powder by its viscosity, covering the water-swellable granules with the powder, and applying pressure by an external force such as pressure, alcohol or mineral oil, Applying a hydrophobic substance dissolved or dispersed in animal oil, vegetable oil, etc. or a melted hydrophobic substance to form a thin film on the surface of water-swellable granules, and 100% surface modification by surface modification with a surfactant Alternatively, a method of partially coating to impart hydrophobicity may be used.

疎水性の、粉末または薄膜による水膨潤性粒体の被覆は、被覆率80%以上が好ましく、より好ましくは90%以上である。また、100%被覆してしまうと遮水機能が発揮されないため、被覆率は100%未満である。
水膨潤性粒体の被覆率が低すぎる場合、粒残存率が低下し、泥水中落下時に膨潤してしまうため使用量を算出することが困難となる場合がある。さらに、付着性が強くなり泥水中落下時に堆積してしまい、孔底部に到達しない恐れがある。本発明において、粒残存率が80%以上であれば、使用上ほぼ問題はない。
The coverage of the water-swellable granules with a hydrophobic powder or thin film is preferably 80% or more, more preferably 90% or more. Moreover, since a water-blocking function will not be exhibited if 100% is covered, the coverage is less than 100%.
When the coverage of the water-swellable granules is too low, the residual ratio of the grains decreases, and it may swell when falling in muddy water, making it difficult to calculate the amount used. Furthermore, the adhesiveness becomes strong, and it accumulates at the time of dropping in muddy water, and there is a possibility that it will not reach the bottom of the hole. In the present invention, if the grain residual ratio is 80% or more, there is almost no problem in use.

水膨潤性粒体に疎水性でない、水溶性高分子をコーティングし耐水性を付与した場合、湿度の高い環境で保管すると、水溶性高分子の粘着性が発現し、造粒物が互いに接着し、固着してしまう可能性がある。また、泥水中落下時にもストレーナパイプ等に付着し、底部に到達せずに堆積してしまう恐れがあるため、水溶性高分子による耐水性付与は好ましくない。   When water-swellable granules are coated with a non-hydrophobic, water-soluble polymer to provide water resistance, the water-soluble polymer will exhibit stickiness when stored in a humid environment, and the granules will adhere to each other. , There is a possibility of sticking. Moreover, since there exists a possibility that it may adhere to a strainer pipe etc. even if it falls in muddy water, and it may accumulate without reaching a bottom part, Water-resistant provision with a water-soluble polymer is not preferable.

粉末を水膨潤性粒体の表面に塗布する場合、疎水性物質の粉末が大きすぎるとコーティングした後の粉末間の空隙が大きくなり、水膨潤性粒体に耐水性を付与し難い場合がある。また、粒径の大すぎる粉末はコーティングした後に付着しにくいため、容易に剥離してしまう場合がある。そのため、粉末の粒径は1mm以下であることが好ましく、0.5mm以下であることがより好ましい。粉末の粒径の下限に特に制限はないが、1μm以上であることが実際的である。   When applying powder to the surface of water-swellable granules, if the powder of the hydrophobic substance is too large, the gap between the powders after coating becomes large and it may be difficult to impart water resistance to the water-swellable granules . Moreover, since the powder with too large particle diameter is hard to adhere after coating, it may be easily peeled off. Therefore, the particle size of the powder is preferably 1 mm or less, and more preferably 0.5 mm or less. Although there is no restriction | limiting in particular in the minimum of the particle size of powder, It is practical that it is 1 micrometer or more.

また、疎水性物質の、温度20℃の水に対する比重は1未満であることが好ましい。1未満であると、泥水中落下時や底部到達後にボーリング孔用遮水造粒物が膨潤し、疎水性物質は水膨潤性粒体から剥離し、ボーリング孔上部まで浮上する。そのため、疎水性物質を回収することができ、土中に疎水性物質が残ることを防止出来る。   The specific gravity of the hydrophobic substance with respect to water at a temperature of 20 ° C. is preferably less than 1. If it is less than 1, the water-blocking granulated material for boring holes swells when falling in the muddy water or after reaching the bottom, and the hydrophobic substance peels off from the water-swelling granules and rises to the top of the boring hole. Therefore, the hydrophobic substance can be recovered and the hydrophobic substance can be prevented from remaining in the soil.

上記材料及びコーティング方法は限定されるものではない。本発明において、疎水性物質は水膨潤性粒体に耐水性を付与する目的で用いられ、前記疎水性物質の中から1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。本発明のボーリング孔用遮水造粒物は、水膨潤性粒体100質量部に対し、疎水性物質が、10質量部以下であることが好ましく、5質量部以下であることがより好ましく、3質量部以下であることがさらに好ましい。疎水性物質の下限は特に制限されないが、0.1質量部以上であることが実際的である。疎水性物質が多すぎるとコーティング皮膜強度が強くなり、ボーリング孔用遮水造粒物が遮水効果を発揮する時間が著しく長くなる場合がある。   The materials and coating methods are not limited. In the present invention, the hydrophobic substance is used for the purpose of imparting water resistance to the water-swellable granules, and may be used alone or in combination of two or more of the hydrophobic substances. . In the water-impregnated granulated product for boring holes of the present invention, the hydrophobic substance is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, with respect to 100 parts by mass of the water-swellable granules. More preferably, it is 3 parts by mass or less. The lower limit of the hydrophobic substance is not particularly limited, but is practically 0.1 parts by mass or more. If the amount of the hydrophobic substance is too large, the coating film strength becomes strong, and the time for which the water-blocking granulated material for boring holes exhibits the water-blocking effect may be remarkably increased.

本発明において、ボーリング孔用遮水造粒物は効果を損なわない範囲で、必要に応じ従来造粒に用いられている種々の添加成分を任意成分として配合することが出来る。例えば、バインダー(結合剤)といわれるような造粒性を向上させる剤や粒比重調整のためのバライトなどの加重剤、さらには着色剤、防腐剤などが挙げられる。   In the present invention, various additive components conventionally used in granulation can be blended as optional components as necessary within a range that does not impair the effect of the water-impervious granule for boring holes. For example, an agent for improving granulation property called a binder (binder), a weighting agent such as barite for adjusting the particle specific gravity, a colorant, an antiseptic, and the like can be given.

以下、実施例に基づいて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these.

粒残存率および遮水機能発揮時間確認試験、付着性、保管試験を下記方法により実施し、下記表1にその結果を示す。   Grain residual rate and water shielding function performance time confirmation test, adhesion, and storage test were carried out by the following methods, and the results are shown in Table 1 below.

(粒残存率測定方法)
水膨潤性粒体を疎水性物質で被覆して得たボーリング孔用遮水造粒物100gを、温度20℃の水に30分間浸漬させた。浸漬させた造粒物を温度20℃のエタノールに移し表面の膨潤した造粒物を凝集させ分離した。中心に残った膨潤しなかった造粒物を回収した。膨潤しなかった造粒物を105℃で24時間乾燥し、固形物の残存量(g)を測定した。
粒残存率は、下記式により得られる。

粒残存率(%)=[(水に浸漬させる前の造粒物100(g)−水に浸漬させても膨潤しなかった造粒物の乾燥させた固形物(g))/100(g)]×100
(Measurement method of grain residual rate)
100 g of a water-blocking granulated product for boring holes obtained by coating water-swellable granules with a hydrophobic substance was immersed in water at a temperature of 20 ° C. for 30 minutes. The soaked granulated product was transferred to ethanol at a temperature of 20 ° C., and the granulated product having a swollen surface was aggregated and separated. The unswelled granulated material remaining in the center was collected. The granulated product that did not swell was dried at 105 ° C. for 24 hours, and the residual amount (g) of the solid was measured.
The grain residual ratio is obtained by the following formula.

Residual rate of grain (%) = [(granulated product before being immersed in water 100 (g) −dried solid matter (g) of granulated product which did not swell even when immersed in water) / 100 (g ] X 100

(遮水機能発揮時間確認試験方法)
遮水機能発揮時間確認試験において、図1に示す透水試験装置により通水時間による透水係数の変化を測定した。内径10cm、高さ10cmの円柱状アクリルケース1の内部にボーリング孔用遮水造粒物(試料2)を充填し、アクリルケース1の上下に金属製蓋3を設置し、アクリルケース1をフランジ4で固定する。また、注水口5および排水口6の内側には、試料2が注水管7および排水管8に詰まらないように、ろ紙9およびステンレス製焼結フィルター10を設置した。蒸留水をいれたタンク11に窒素ボンベ12を用いて加圧し、レギュレーター13にて圧力を調整した。注水開始時はバルブ14を開け、注水管7内部にたまった空気を排出した。
注水後は排出管8より排出された水を回収し、透水性が非常に低いとされる透水係数1×10−7m/sec以下(JIS A 1218 土の透水試験法)となるまでの時間を測定した。圧力は試料の流失が起こらないように0.5kgf/cmずつ増加させ、最大5.0kgf/cmとした。
また施工箇所において、24時間程度で投入したボーリング孔用遮水造粒物間の空隙が閉塞しない場合、埋め戻し材がボーリング孔用遮水造粒物の空隙に侵入し、遮水機能が発揮出来なくなる恐れがあるため、24時間後までの10−7m/sに達しない試料は、下記表1において「遮水せず」とした。
(Test method for checking the water shielding function time)
In the water-impervious function demonstration time confirmation test, the change in the water permeability coefficient with the water passage time was measured by the water permeability test apparatus shown in FIG. A cylindrical acrylic case 1 having an inner diameter of 10 cm and a height of 10 cm is filled with a water-blocking granulated material for boring holes (sample 2), a metal lid 3 is installed on the upper and lower sides of the acrylic case 1, and the acrylic case 1 is flanged. Fix with 4. In addition, a filter paper 9 and a stainless sintered filter 10 were installed inside the water injection port 5 and the water discharge port 6 so that the sample 2 would not clog the water injection tube 7 and the water discharge tube 8. A tank 11 containing distilled water was pressurized using a nitrogen cylinder 12 and the pressure was adjusted by a regulator 13. At the start of water injection, the valve 14 was opened, and the air accumulated in the water injection pipe 7 was discharged.
After water injection, the water discharged from the discharge pipe 8 is collected, and the time required to reach a water permeability of 1 × 10 −7 m / sec or less (JIS A 1218 soil permeability test method), which is considered to be very low in water permeability. Was measured. Pressure is increased by 0.5 kgf / cm 2 as erosion of the sample does not occur, and a maximum 5.0 kgf / cm 2.
In addition, if the gap between the water-impregnated granule for boring holes introduced in about 24 hours does not block at the construction site, the backfill material will enter the gap of the water-impregnated granule for boring holes, and the water shielding function will be demonstrated. Samples that did not reach 10 −7 m / s until 24 hours later were classified as “not water-blocked” in Table 1 below because there is a possibility that they could not be produced.

(付着性確認試験方法)
付着性は水中に水平に設置した長さ30cmのステンレス鋼板の端部に下記各試料を静置し、30分間静置した。その後、ステンレス鋼板の試料を載せた端部を持ち上げ、45度に傾け静置した試料が自重で反対側の端部までの30cm移動するか確認した。移動したものを「○」、付着して動かないもの、途中で止まったものを「×」とした。
(Adhesion confirmation test method)
For adhesion, the following samples were allowed to stand at the end of a 30 cm long stainless steel plate placed horizontally in water and left for 30 minutes. Thereafter, the end portion on which the stainless steel plate sample was placed was lifted, and it was confirmed that the sample placed at an angle of 45 ° and moved to the opposite end portion by 30 cm by its own weight. The moved object was indicated as “◯”, the adhered object that did not move, and the one that stopped midway was indicated as “X”.

(保管試験方法)
保管試験は空気穴を設けたポリエチレン袋に包装した下記各試料を室温20℃±3℃、相対湿度100%に調整した部屋に1kgf/cmの圧力を掛け、保管した後、試料の固着有無を確認した。固着しなかったものを「○」、固着したものを「×」とした。
(Storage test method)
Storage test applying a pressure of 1 kgf / cm 2 in a room adjusted for each of the following samples packaged in a polyethylene bag provided air holes room temperature 20 ° C. ± 3 ° C., a relative humidity of 100%, after storage, fixed presence of the sample It was confirmed. Those that did not adhere were designated as “◯”, and those that did not adhere as “×”.

上記に示す方法により、粒残存率及び遮水機能発揮時間、付着性、保管試験を実施した結果を下記表1に示す。   Table 1 below shows the results of carrying out the grain residual rate, the water shielding function performance time, the adhesion, and the storage test by the method described above.

(実施例1〜5、参考例1)
液性限界を200に調整したベントナイトを押出造粒機(不二パウダル製F−5)にてφ2、3、5、10、20、50mmの粒を成形し、粒径と同じ目開きの篩で粒長を調整した円柱状の水膨潤性粒体を得た。
粒長を調整した各水膨潤性粒体に被覆率85%となるようにウルシロウを溶融コーティングしたものを試料1、2、3、4、5、6とした。
(Examples 1-5, Reference Example 1)
Bentonite whose liquid limit is adjusted to 200 is formed into granules of φ2, 3, 5, 10, 20, 50 mm using an extrusion granulator (F-5 manufactured by Fuji Powder Co., Ltd.). A columnar water-swellable granule having a grain length adjusted with was obtained.
Samples 1, 2, 3, 4, 5, and 6 were prepared by melt-coating urushi wax so that each water-swellable particle having an adjusted particle length had a coverage of 85%.

(実施例6〜10、参考例2、3)
液性限界を50、100、200、500、700、1,000、1,200に調整したベントナイトを押出造粒機(不二パウダル製F−5)によりφ10mmの粒を成形し、粒径と同じ目開きの篩で粒長を調整した円柱状の水膨潤性粒体を得た。
粒長を調整した各水膨潤性粒体に被覆率85%となるようにウルシロウを溶融コーティングしたものを試料7、8、9、10、11、12、13とした。
(Examples 6 to 10, Reference Examples 2 and 3)
Bentonite whose liquid limit was adjusted to 50, 100, 200, 500, 700, 1,000, 1,200 was formed into particles having a diameter of 10 mm by an extrusion granulator (F-5 manufactured by Fuji Powder Co., Ltd.). A cylindrical water-swellable granule having a grain length adjusted with a sieve having the same opening was obtained.
Samples 7, 8, 9, 10, 11, 12, and 13 were prepared by melt-coating urushi wax so that the water-swellable granules having adjusted grain lengths had a coverage of 85%.

(実施例11〜13、参考例4〜6)
液性限界を200に調整したベントナイトを押出造粒機(不二パウダル製F−5)にてφ5mmの粒を成形し、粒径と同じ目開きの篩で粒長を調整した円柱状の水膨潤性粒体を得た。
粒長を調整した各水膨潤性粒体に被覆率50、60、70、80、90、100%となるようにウルシロウを溶融コーティングしたものを試料14、15、16、17、18、19とした。
(Examples 11-13, Reference Examples 4-6)
Bentonite whose liquid limit is adjusted to 200 is formed into a cylindrical water whose diameter is adjusted to 5 mm with an extrusion granulator (F-5 manufactured by Fuji Powder Co., Ltd.) and the particle length is adjusted with a sieve having the same opening as the particle diameter. Swellable granules were obtained.
Samples 14, 15, 16, 17, 18, 19 were prepared by melt-coating urushi wax so that each of the water-swellable granules having adjusted grain lengths had a coverage of 50, 60, 70, 80, 90, 100%. did.

(比較例1〜5)
液性限界を200に調整したベントナイトを押出造粒機(不二パウダル製F−5)にてφ5mmの粒を成形し、粒径と同じ目開きの篩で粒長を調整した円柱状の水膨潤性粒体を得た。
粒長を調整した各水膨潤性粒体に2wt%、20℃での粘度が100、500、800、1,000、1,200mPa・sの水溶性高分子を被覆率85%コーティングしたものを試料20、21、22、23、24とした。
(Comparative Examples 1-5)
Bentonite whose liquid limit is adjusted to 200 is formed into a cylindrical water whose diameter is adjusted to 5 mm with an extrusion granulator (F-5 manufactured by Fuji Powder Co., Ltd.) and the particle length is adjusted with a sieve having the same opening as the particle diameter. Swellable granules were obtained.
Each water-swellable granule adjusted in grain length is coated with a water-soluble polymer having a viscosity of 100, 500, 800, 1,000, and 1,200 mPa · s at 2 wt% and a viscosity at 20 ° C. of 85%. Samples 20, 21, 22, 23, and 24 were used.

(実施例14〜16、参考例7)
液性限界を200に調整したベントナイトを押出造粒機(不二パウダル製F−5)にてφ5mmの粒を成形し、粒径と同じ目開きの篩で粒長を調整した円柱状の水膨潤性粒体を得た。
粒長を調整した各水膨潤性粒体に粒径0.1、0.5、1、2mmに調整した金属脂肪酸粉末(日油社製 オーラブライトCA−65)を水膨潤性粒体表面の全面にコーティングしたものを試料25、26、27、28とした。
なお、各試料の水膨潤性粒体の被覆率は電子顕微鏡を用い、表面の同一視野の元素分布を確認し、Cは金属脂肪酸のみに含まれることから(C元素分布面積/視野全面積)×100とし算出した。
(Examples 14 to 16, Reference Example 7)
Bentonite whose liquid limit is adjusted to 200 is formed into a cylindrical water whose diameter is adjusted to 5 mm with an extrusion granulator (F-5 manufactured by Fuji Powder Co., Ltd.) and the particle length is adjusted with a sieve having the same opening as the particle diameter. Swellable granules were obtained.
Each water-swellable granule whose grain length is adjusted is coated with metal fatty acid powder (Norbo Corporation Orlabrite CA-65) adjusted to a particle size of 0.1, 0.5, 1 or 2 mm on the surface of the water-swellable granule. Samples 25, 26, 27, and 28 were coated on the entire surface.
The coverage of the water-swellable granules in each sample was confirmed by using an electron microscope to confirm the element distribution in the same visual field on the surface, and C was included only in the metal fatty acid (C element distribution area / total visual field area). Calculated as x100.

Figure 0006071229
Figure 0006071229

実施例1〜5及び参考例1の結果から、粒径が2mmの場合、粒残存率が70%と低く更に付着性を示すことから、泥水中落下時の崩壊もしくは孔壁への付着により、ボーリング孔底部まで到達出来ず、所定の遮水性能を得られないことが確認された。また、粒径が大きいものほど遮水機能発揮時間が長くかかることが確認された。   From the results of Examples 1 to 5 and Reference Example 1, when the particle size is 2 mm, the residual rate of the particles is 70% and further shows adhesion. It was confirmed that the bottom of the borehole could not be reached and the prescribed water shielding performance could not be obtained. Moreover, it was confirmed that the larger the particle size, the longer the water blocking function performance time.

実施例6〜10及び参考例2及び3の結果から、原料として使用する水膨潤性粘土の液性限界が50%の場合、粒残存率が71%と低く、泥水中落下時の崩壊によりボーリング孔底部まで到達出来ず、所定の遮水性能を得られないことが確認された。また、液性限界が1,200%の場合、空隙を所定時間内に閉塞出来ず、遮水性機能を発揮しないことが確認された。   From the results of Examples 6 to 10 and Reference Examples 2 and 3, when the liquid limit of the water-swellable clay used as a raw material is 50%, the residual rate of grains is as low as 71%, and boring due to collapse when falling in muddy water It was confirmed that the bottom of the hole could not be reached and the predetermined water shielding performance could not be obtained. Moreover, when the liquid limit was 1,200%, it was confirmed that the voids could not be closed within a predetermined time, and the water shielding function was not exhibited.

実施例11〜13及び参考例4〜6の結果から、被覆率が低くなると遮水機能発揮時間は短くなった。しかし、被覆率50%では粒残存率が71%と低く、泥水中落下時の崩壊によりボーリング孔底部まで到達できないことが確認された。また被覆率60%では付着性を示すことから、泥水中落下時の孔壁への付着によりボーリング孔底部まで到達できないことが確認された。また、被覆率を100%とすると空隙を所定時間内に閉塞出来ず、所定の遮水性能を得られないことが確認された。   From the results of Examples 11 to 13 and Reference Examples 4 to 6, the water shielding function exhibiting time was shortened when the coverage ratio was low. However, at a coverage of 50%, the residual rate of grains was as low as 71%, and it was confirmed that the bottom of the borehole could not be reached due to the collapse when falling in the muddy water. Moreover, since it showed adhesiveness at a coverage of 60%, it was confirmed that the bottom of the borehole could not be reached due to adhesion to the hole wall when dropping in the muddy water. Further, when the coverage was 100%, it was confirmed that the gap could not be closed within a predetermined time, and the predetermined water shielding performance could not be obtained.

比較例1〜5の結果より、水溶性高分子を用いて耐水性を付与した場合、保管試験において吸湿により粘着性を発現し、造粒体同士が固着して使用困難となることが確認された。   From the results of Comparative Examples 1 to 5, it was confirmed that when water resistance was imparted using a water-soluble polymer, it exhibited stickiness due to moisture absorption in a storage test, and the granules were fixed and difficult to use. It was.

実施例14〜16及び参考例7の結果から、粒表面を被覆する金属脂肪酸粉末の粒径が2mmの場合、粒残存率が67%以下と低く、泥水中落下時の崩壊によりボーリング孔底部まで到達できず、所定の遮水性能を得られないことが確認された。   From the results of Examples 14 to 16 and Reference Example 7, when the particle size of the metal fatty acid powder covering the particle surface is 2 mm, the residual rate of the particles is as low as 67% or less, and the bottom of the borehole due to the collapse when falling in the muddy water It could not be reached, and it was confirmed that the predetermined water shielding performance could not be obtained.

1 アクリルケース
2 試料
3 金属製蓋
4 フランジ
5 注水口
6 排水口
7 注水管
8 排水管
9 ろ紙
10 ステンレス製焼結フィルター
11 タンク
12 窒素ボンベ
13 レギュレーター
14 バルブ
15 ボーリング孔
16 地表層
17 水脈層
18 ストレーナパイプ
19 濾過砂
20 井戸スクリーン
21 ボーリング孔用遮水造粒物
DESCRIPTION OF SYMBOLS 1 Acrylic case 2 Sample 3 Metal lid 4 Flange 5 Injection port 6 Drainage port 7 Injection tube 8 Drainage tube 9 Filter paper 10 Stainless steel sintered filter 11 Tank 12 Nitrogen cylinder 13 Regulator 14 Valve 15 Boring hole 16 Ground layer 17 Water vein layer 18 Strainer pipe 19 Filter sand 20 Well screen 21 Impermeable granulated material for borehole

Claims (4)

水膨潤性粒体表面が、疎水性の、粉末または薄膜で被覆されていて、前記粉末または前記薄膜による、前記水膨潤性粒体表面の被覆率が70%以上100%未満であり、前記水膨潤性粒体は、液性限界が100〜1,000%の水膨潤性粘土の成形体であることを特徴とするボーリング孔用遮水造粒物。 The surface of the water-swellable granules is coated with a hydrophobic powder or thin film, and the coverage of the surface of the water-swellable granules with the powder or the thin film is 70% or more and less than 100%, and the water swellable granulates, boreholes for water shield granulate liquid limit is characterized moldings der Rukoto of 100 to 1,000% of the water-swellable clay. 前記疎水性粉末の粒径が1mm以下であることを特徴とする請求項記載のボーリング孔用遮水造粒物。 Claim 1 boreholes for water shield granules according to the particle size of the hydrophobic powder is characterized in that it is 1mm or less. 前記水膨潤性粘土がベントナイト、スメクタイト、膨潤性雲母から選ばれる少なくとも1つであることを特徴とする請求項または記載のボーリング孔用遮水造粒物。 The water-blocking granulated product for boring holes according to claim 1 or 2, wherein the water-swellable clay is at least one selected from bentonite, smectite, and swellable mica. 前記水膨潤性粒体の粒径が3〜50mmであることを特徴とする請求項1〜のいずれか1項に記載のボーリング孔用遮水造粒物。 The water-blocking granulated product for boring holes according to any one of claims 1 to 3 , wherein the water-swellable granules have a particle size of 3 to 50 mm.
JP2012079691A 2012-03-30 2012-03-30 Impermeable granulated material for boring holes Active JP6071229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012079691A JP6071229B2 (en) 2012-03-30 2012-03-30 Impermeable granulated material for boring holes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012079691A JP6071229B2 (en) 2012-03-30 2012-03-30 Impermeable granulated material for boring holes

Publications (2)

Publication Number Publication Date
JP2013209817A JP2013209817A (en) 2013-10-10
JP6071229B2 true JP6071229B2 (en) 2017-02-01

Family

ID=49527886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012079691A Active JP6071229B2 (en) 2012-03-30 2012-03-30 Impermeable granulated material for boring holes

Country Status (1)

Country Link
JP (1) JP6071229B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5736295A (en) * 1980-08-14 1982-02-27 Shimizu Construction Co Ltd
JPS616119A (en) * 1984-06-21 1986-01-11 Kunimine Kogyo Kk Highly swellable inorganic granule
JP2722177B2 (en) * 1994-12-20 1998-03-04 豊順鉱業株式会社 Method for activating clay and its product
JP3892536B2 (en) * 1997-06-30 2007-03-14 応用地質株式会社 Sealed pore water pressure measuring device
JP4036975B2 (en) * 1998-08-28 2008-01-23 日本国土開発株式会社 Bentonite granular material and bentonite mixed soil material and impermeable method
US7402338B2 (en) * 2005-02-25 2008-07-22 Superior Graphite Co. Graphite-coated particulate materials
JP5291927B2 (en) * 2007-12-19 2013-09-18 大成建設株式会社 Fresh water storage and intake system
JP5576641B2 (en) * 2009-11-20 2014-08-20 クニミネ工業株式会社 Powdered sodium silicate granulated product

Also Published As

Publication number Publication date
JP2013209817A (en) 2013-10-10

Similar Documents

Publication Publication Date Title
US10422194B2 (en) Method of conversion of a drilling mud to a gel-based lost circulation material to combat lost circulation during continuous drilling
US5897946A (en) Flowable material to isolate or treat a surface
Xu et al. Bentonite slurry infiltration into sand: filter cake formation under various conditions
AU2001243492B2 (en) Composite particles and methods of their use
US4936386A (en) Method for sealing well casings in the earth
US20140262262A1 (en) Compositions and Methods for the Controlled Release of Active Ingredients
EA014318B1 (en) Hydrophobic composites and particulates and applications thereof
US10246632B2 (en) Proppant having amphiphobic coatings and methods for making and using same
KR101229674B1 (en) Particle linear for seawater resistance
Moon et al. Effectiveness of compacted soil liner as a gas barrier layer in the landfill final cover system
Karimi A study of geotechnical applications of biopolymer treated soils with an emphasis on silt
JP6071229B2 (en) Impermeable granulated material for boring holes
JP2007536387A (en) Hydrophobic composition and fine particles, and uses thereof
Hoeks et al. Bentonite liners for isolation of waste disposal sites
JP6207149B2 (en) Underground continuous water barrier method
JP4131458B2 (en) Filling material for buried waste, manufacturing method and construction method thereof
Xu Infiltration and excess pore water pressures in front of a TBM: experiments, mechanisms and computational models
JP4853200B2 (en) Water-blocking structure and water-blocking method at joints of water-blocking walls, and water-insulating material that can follow deformation
CN107532766A (en) For eliminating the system leaked in pipe, composition and method
CN110106762A (en) A kind of artificial water storage stone and preparation method thereof
NL2002653C2 (en) Method for manufacturing a well for water withdrawal or storage or infiltration by means of HDD technology and encased filter tube therefor.
NL2032305B1 (en) Consolidated dry mixture containing granular material and bentonite
CN109516704B (en) Thermotropic unfolding device and preparation method
JP6041165B2 (en) Process for producing bentonite compact
Liang et al. Improving the consolidation properties of hydrophilic polyurethane for feldspathic sandstone water erosion prevention

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161227

R150 Certificate of patent or registration of utility model

Ref document number: 6071229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250