JP5576195B2 - オートフォーカス装置 - Google Patents

オートフォーカス装置 Download PDF

Info

Publication number
JP5576195B2
JP5576195B2 JP2010148630A JP2010148630A JP5576195B2 JP 5576195 B2 JP5576195 B2 JP 5576195B2 JP 2010148630 A JP2010148630 A JP 2010148630A JP 2010148630 A JP2010148630 A JP 2010148630A JP 5576195 B2 JP5576195 B2 JP 5576195B2
Authority
JP
Japan
Prior art keywords
light
shape
unit
pattern image
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010148630A
Other languages
English (en)
Other versions
JP2012013820A (ja
Inventor
一樹 北川
清治 下川
秀和 佐野
章平 鵜戸
貴久 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP2010148630A priority Critical patent/JP5576195B2/ja
Publication of JP2012013820A publication Critical patent/JP2012013820A/ja
Application granted granted Critical
Publication of JP5576195B2 publication Critical patent/JP5576195B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、オートフォーカス装置に関する。
従来、画像計測機や光学機器に設けられるオートフォーカス装置が知られている。
オートフォーカス装置は、単一の光ビームを測定対象物(ワーク)に集光してフォーカス検出を行い、合焦位置を取得する。
具体的に、オートフォーカス装置では、例えば、図16に示すように、レーザダイオード501から出射したレーザ光を、対物レンズ502を介してワークWに照射させ、ワークWの表面で反射されて対物レンズ502及び凸レンズ503を介して戻ってきた反射光を、ビームスプリッタ504で分岐して受光素子505A及び受光素子505Bに照射させるようになっている。このとき、ワークWの表面には、微小スポットSが結像されている。
このようなオートフォーカス装置では、例えば、図17に示すように、ワークWの表面に段差部があった場合、この段差部にてフォーカス検出がなされると段差部に照射される単一の光ビームが段差部の境界線(エッジ)によって散乱するため、フォーカス検出を実行できないという問題があった。
そのため、例えば、シリンドリカルレンズを用いて、ワークWの表面上に結像するレーザ光の形状をライン形状とし、平均化効果を向上させて、段差部でもフォーカス検出を可能とする技術が提案されている(例えば、特許文献1参照。)。
特開2006−276320号公報
しかしながら、上記の特許文献1に記載の発明では、例えば、図18に示すように、段差部のエッジの方向とレーザ光のラインの方向が一致した場合など、ワークWの向き(段差の方向)によっては依然として光の散乱が発生してしまい、フォーカス検出が困難な場合がある。
本発明の課題は、測定対象物の表面に段差部があった場合でも好適に測定できるオートフォーカス装置を提供することである。
上記課題を解決するために、
請求項1に記載の発明は、オートフォーカス装置において、
光源と、
前記光源と測定対象物との間に配され、前記光源からの出射光と前記測定対象物からの戻り光とが同一光路となるように通過させる光学部と、
前記光学部を通過した前記戻り光によりフォーカス検出を行う検出手段と、
を備え、
前記光学部は、
前記光源からの前記出射光を平行光とする凸レンズと、
前記凸レンズからの前記平行光を円環状に変形させる光形状変形手段と、
前記光形状変形手段からの円環状の光により前記測定対象物の表面に円環状のパターン像を集光させる対物レンズと、
を備え
前記光形状変形手段は、前記測定対象物の表面にて反射した前記戻り光を変形前の元の形状に戻して前記検出手段に到達させることを特徴とする。
また、請求項2に記載の発明は、請求項1に記載のオートフォーカス装置において、
前記光形状変形手段は、円錐レンズであることを特徴とする。
また、請求項3に記載の発明は、請求項2に記載のオートフォーカス装置において、
前記円錐レンズは、着脱可能に備えられていることを特徴とする。
また、請求項4に記載の発明は、請求項1に記載のオートフォーカス装置において、
前記光形状変形手段は、円錐ミラーであることを特徴とする。
また、請求項5に記載の発明は、請求項1に記載のオートフォーカス装置において、
前記光形状変形手段は、
一定速度で回転する回転軸と、
前記回転軸に対して傾いて配される駆動ミラーと、
前記回転軸を駆動する駆動手段と、
を備えることを特徴とする。
また、請求項6に記載の発明は、請求項5に記載のオートフォーカス装置において、
前記駆動手段は、前記回転軸を駆動状態と静止状態とに切り替え可能であり、
前記回転軸を駆動状態と静止状態とに切り替えることにより、前記パターン像の形状を円環状とスポット状とに切り替えることを特徴とする。
また、請求項7に記載の発明は、請求項1〜6の何れか一項に記載のオートフォーカス装置において、
前記光形状変形手段と前記対物レンズとの間に、前記光学系の光路長を変更するための光学部材を備えていることを特徴とする。
また、請求項8に記載の発明は、請求項1〜7の何れか一項に記載のオートフォーカス装置において、
前記光源からの前記出射光の波長を変更することで、前記パターン像の色が変更可能であることを特徴とする。
本発明によれば、出射光を平行光とする凸レンズと対物レンズとの間に、凸レンズからの平行光を円環状に変形する光形状変形手段が備えられている。
このため、測定対象物の表面に円環状のパターン像が結像され、スポット状のパターン像に比べて平均化効果が向上するので、測定対象物の表面に段差部があった場合でもフォーカス検出ができることとなる。また、その段差部が如何なる向きであっても、円環状であるため、ライン形状のように段差部形状と一致して光が散乱すること無く、フォーカス検出ができることとなる。
第1実施形態のオートフォーカス装置の構成を示す模式図である。 図1のオートフォーカス装置の制御構成を示すブロック図である。 測定対象物の表面のパターン像と段差部とを示す模式図である。 パターン像の色を変更した状態を示す模式図である。 図1のオートフォーカス装置の変形例の構成を示す模式図である。 第2実施形態のオートフォーカス装置の構成を示す模式図である。 図6のオートフォーカス装置の制御構成を示すブロック図である。 測定対象物の表面のパターン像と段差部とを示す模式図である。 パターン像の色を変更した状態を示す模式図である。 図6のオートフォーカス装置の変形例の構成を示す模式図である。 第3実施形態のオートフォーカス装置の構成を示す模式図である。 図11のオートフォーカス装置の制御構成を示すブロック図である。 測定対象物の表面のパターン像と段差部とを示す模式図である。 パターン像の色を変更した状態を示す模式図である。 図11のオートフォーカス装置の変形例の構成を示す模式図である。 従来のオートフォーカス装置の構成を示す模式図である。 従来のオートフォーカス装置の問題点を説明するための図である。 従来のオートフォーカス装置の問題点を説明するための図である。
以下、図を参照して、本発明に係るオートフォーカス装置について、詳細に説明する。
本発明のオートフォーカス装置は、例えば、顕微鏡、画像計測機などの光学装置に搭載されるものである。
(第1実施形態)
まず、構成について説明する。
本実施形態におけるオートフォーカス装置100は、図1、2に示すように、光出射部1と、ハーフミラー2と、光学部10と、ビームスプリッタ3と、検出部(検出手段)4A,4Bと、演算部5と、ステージ6と、ステージ駆動機構部7と、制御部9と、等を備えている。
なお、本実施形態においては、図1に示すように、光出射部1からハーフミラー2に向かう方向をX方向(左右方向)、ハーフミラー2から光学部10に向かう方向をZ方向(高さ方向)、X方向及びZ方向に直交する方向をY方向(前後方向)とする。
光出射部1は、例えば、放電灯、発光ダイオード、レーザなどの光源を備え、光ビームを発生させて出射する。光出射部1から出射された光(出射光)は、光出射部1のX方向右側に配置されたハーフミラー2に照射される。
ハーフミラー2は、光出射部1から入射した光を、光出射部1のZ方向下側に配置された光学部10に向かって反射させる。ハーフミラー2により反射された光は、光学部10に上方から照射される。
また、ハーフミラー2は、ワークWの表面にて反射され、下方から光学部10を透過して進んできた戻り光を透過させ、ビームスプリッタ3に向かって照射する。
光学部10は、ハーフミラー2とワークWとの間に配され、光出射部1からの出射光とワークWからの戻り光とを同一光路にて通過させる。
具体的に、光学部10は、上方から順に凸レンズ11と、円錐レンズ12と、対物レンズ13と、を備えている。なお、凸レンズ11、円錐レンズ12、及び対物レンズ13は、光軸が同一となっている。
凸レンズ11は、ハーフミラー2から入射した光を平行光として、下方の円錐レンズ12に照射する。
円錐レンズ12は、光形状変形手段として、凸レンズ11からの円形状の平行光を円環状に変形させる。
具体的に、円錐レンズ12は、その頂点が下側となるように配置された円錐形状のレンズである。この円錐レンズ12の円錐面に上方から平行光が照射されると、平行光は円環状ビーム(リング状ビーム)に変換されて、下方の対物レンズ13に照射される。
対物レンズ13は、ワークWに対向して備えられ、円錐レンズ12から照射された円環状ビームによりワークWの表面に円環状のパターン像を結像させる。
従って、ハーフミラー2から照射され、光学部10(凸レンズ11、円錐レンズ12、対物レンズ13)を透過してワークWに到達した光は、当該ワークWの表面において円環状のパターン像を形成する。
このとき、図3に示すように、パターン像が円環状であるため、ワークWの表面のエッジがパターン像に対して如何なる向きとなっていてもフォーカス検出ができるようになっている。
そして、ワークWの表面にて反射され、出射光と同一光路を逆方向に進むワークWからの戻り光は、光学部10を下方から透過する際に、円錐レンズ12により円環状ビームから円形状の平行光に再度変換されて、上方のハーフミラー2を透過して、ビームスプリッタ3に向かう。
また、円錐レンズ12は、着脱可能に備えられており、円錐レンズ12の抜き差しにより、ワークWの表面に現れるパターン像を円環状とスポット状とに切り替えることができるようになっている。
つまり、円錐レンズ12が取り外されている場合には、対物レンズ13は、凸レンズ11から照射される平行光によりワークWの表面にスポット状のパターン像を結像させる。
ビームスプリッタ3は、ハーフミラー2のZ方向上側に配置され、光学部10及びハーフミラー2を下方から透過してきたワークWの表面からの戻り光を2つに分岐して、検出部4A,4Bに入射させる。
検出部4A,4Bは、受光素子41A,41Bと、各受光素子41A,41Bに備えられたピンホール42A,42Bと、から構成されている。
検出部4A,4Bは、ビームスプリッタ3により2つに分岐された光のうち一方をそれぞれ受光し、受光した光の光量を検出する。
演算部5は、検出部4A,4Bからの出力信号のそれぞれを、増幅器(図示省略)により増幅し、演算回路(図示省略)によりそれらの増幅信号の差をとることにより、フォーカス誤差信号を取得する。
ステージ6は、対物レンズ13のZ方向の下方において、その上面にワークWを載置する。このステージ6は、ステージ駆動機構部7により水平(X、Y方向)及び垂直(Z方向)の3方向に移動可能となっている。
ステージ駆動機構部7は、ステージ6をX、Y、Z方向に移動可能に支持している。
具体的に、ステージ駆動機構部7は、制御部9が出力する制御信号に応じてステージ6をX、Y、Z方向に移動させると共に、ステージ6のX、Y、Z方向における位置(位置座標)を制御部9に出力する。従って、ステージ駆動機構部7により、ステージ6と対物レンズ13との間の相対距離を変化させ、ワークWの表面に焦点を合わせる(フォーカスを検出する)ことが可能となっている。
なお、本発明の実現は光出射部1の波長にはよらない為、光出射部1の光源を適宜変更して、光出射部1から出射する光の波長を変更することが出来る。
そして、光出射部1から出射される光の波長を変更することで、図4(a)(b)に示すように、ワークWの表面に現れるパターン像の色が変更される。つまり、ワークWの特性(色や反射率)に応じてパターン像の色が変更できるようになっている。
制御部9は、図2に示すように、CPU(Central Processing Unit)91、RAM(Random Access Memory)92、記憶部93、等を備え、光出射部1、検出部4A,4B、演算部5、ステージ駆動機構部7、等と接続されている。
CPU91は、例えば、記憶部93に記憶されている各種処理プログラムに従って、各種の制御処理を行う。
RAM92は、CPU91により演算処理されたデータを格納するワークメモリエリアを形成している。
記憶部93は、例えば、CPU91によって実行可能なシステムプログラムや、そのシステムプログラムで実行可能な各種処理プログラム、これら各種処理プログラムを実行する際に使用されるデータ、CPU91によって演算処理された各種処理結果のデータなどを記憶する。なお、プログラムは、コンピュータが読み取り可能なプログラムコードの形で記憶部93に記憶されている。
次に、作用について説明する。
オートフォーカス装置100では、光出射部1から出射した光は、ハーフミラー2を介して光学部10に照射され、光学部10を上方から透過してワークWに照射される。そして、ワークWの表面にて反射された戻り光は、光学部10及びハーフミラー2を下方から透過して、ビームスプリッタ3を介して検出部4A,4Bに入射する。
このとき、光学部10は、凸レンズ11と対物レンズ13との間に円錐レンズ12を備えており、このため、ワークWの表面に結像されるパターン像が円環状に形成されることとなる。そして、ワークWの表面にて反射した戻り光は、再度、下方から光学部10内の円錐レンズ12を透過するため、円形状に戻される。
つまり、光出射部1から出射した円形状の出射光は、円錐レンズ12により円環状となりワークWの表面にて反射して、円環状の戻り光は円錐レンズ12により円形状に戻って検出部4A,4Bに到達する。
ここで、パターン像が円環状であるため、円形レーザの円周部分に沿って平均化効果が向上し、ワークWの表面に段差部があった場合でもフォーカス検出が可能となる。また、パターン像が円環状であるため、段差部のエッジの方向が如何なる向きであっても、フォーカス検出が可能である。
更に、円錐レンズ12は、着脱可能に備えられているため、円錐レンズ12の抜き差しにより、パターン像をスポット状と円環状とに切り替えることができる。
以上にように、本実施形態のオートフォーカス装置100によれば、光出射部1と、光出射部1からの出射光をワークWに照射させ、出射光と同一光路を逆方向に進むワークWからの戻り光を通過させる光学部10と、光学部10を通過した戻り光によりフォーカス検出を行う検出部4A,4Bと、を備え、光学部10は、光出射部1からの出射光を平行光とする凸レンズ11と、凸レンズ11からの平行光を円環状に変形する円錐レンズ12と、円錐レンズ12からの円環状の光によりワークWの表面に円環状のパターン像を集光させる対物レンズ13と、を備えている。
このため、ワークWの表面に円環状のパターン像が結像され、スポット状のパターン像に比べて平均化効果が向上するので、ワークWの表面に段差部があった場合でもフォーカス検出ができることとなる。また、その段差部が如何なる向きであっても、円環状であるため、ライン形状のように段差部形状と一致して光が散乱すること無く、フォーカス検出ができることとなる。
また、本実施形態のオートフォーカス装置100によれば、円錐レンズ12は、着脱可能に備えられている。
このため、円錐レンズ12の抜き差しにより、パターン像をスポット状と円環状とに切り替えることができるので、例えば狭小範囲においてスポット状のパターン像が形成されるように切り替えることが可能となり、汎用性を向上させることができる。
また、本実施形態のオートフォーカス装置100によれば、光出射部1からの出射光の波長を変更することで、パターン像の色が変更可能である。
このため、ワークWの特性(色や反射率)に応じてパターン像の色が変更でき、汎用性を向上させることができる。
(変形例1)
次に、上記の第1実施形態の変形例である変形例1について説明する。
変形例1のオートフォーカス装置100Aには、図5に示すように、円錐レンズ12と対物レンズ13との間に、光学部10Aの光路長を変更するための光学部材であるリレーレンズ14が備えられている。
これにより、円錐レンズ12から出射した光は、対物レンズ13に到達するまでの間に別の光学系を経由することができるようになっている。
なお、この光学系を形成するレンズは、1枚のリレーレンズに限定されものではなく、その数は適時設定可能であるのは勿論である。
従って、オートフォーカス装置100Aは、装置構成などに応じて光学部10Aの光路長を適宜調整することが可能となり、利便性を向上させることができる。
(第2実施形態)
まず、構成について説明する。
本実施形態におけるオートフォーカス装置200は、図6、7に示すように、光出射部1と、ハーフミラー2と、光学部20と、ビームスプリッタ3と、検出部(検出手段)4A,4Bと、演算部5と、ステージ6と、ステージ駆動機構部7と、波長変更部(波長変更手段)8と、制御部9と、等を備えている。
なお、本実施形態においては、図6に示すように、光出射部1からハーフミラー2に向かう方向をZ方向(高さ方向)、ハーフミラー2から光学部20に向かう方向をX方向(左右方向)、X方向及びZ方向に直交する方向をY方向(前後方向)とする。
光出射部1は、例えば、放電灯、発光ダイオード、レーザなどの光源を備え、光ビームを発生させて出射する。光出射部1から出射された光(出射光)は、光出射部1のZ方向下側に配置されたハーフミラー2に照射される。
ハーフミラー2は、光出射部1から入射した光を、光出射部1のX方向左側に配置された光学部20に向かって反射させる。ハーフミラー2から出射された光は、光学部20に右方から照射される。
また、ハーフミラー2は、ワークWの表面にて反射されて光学部20を出射光とは逆方向に通過して進んできた戻り光を透過させ、ビームスプリッタ3に向かって照射する。
光学部20は、ハーフミラー2とワークWとの間に配され、光出射部1からの出射光とワークWからの戻り光とを同一光路にて通過させる。
具体的に、光学部20は、凸レンズ21と、円錐ミラー22と、対物レンズ23と、を備えている。
凸レンズ21は、ハーフミラー2から入射した光を平行光として、凸レンズ21のX方向左側に配置される円錐ミラー22に照射する。
円錐ミラー22は、光形状変形手段として、凸レンズ21からの円形状の平行光を円環状に変形させる。
具体的に、円錐ミラー22は、鏡面加工された円錐面を持ち、当該円錐面の軸線Lが凸レンズ21からの平行光に対して斜めになるように配置されている。
このため、凸レンズ21からの平行光は、円錐ミラー22の円錐面に対して斜めの方向から照射され、円錐ミラー22によって反射される際に円環状ビーム(リング状ビーム)に変換されて、下方の対物レンズ23に照射される。
対物レンズ23は、ワークWに対向して備えられ、円錐ミラー22から照射された円環状ビームによりワークWの表面に円環状のパターン像を結像させる。
従って、ハーフミラー2から照射され、光学部20(凸レンズ21、円錐ミラー22、対物レンズ23)を通過してワークWに到達した光は、当該ワークWの表面において円環状のパターン像を形成することとなる。
このとき、図8に示すように、パターン像が円環状であるため、ワークWの表面のエッジがパターン像に対して如何なる向きとなっていてもフォーカス検出ができるようになっている。
そして、ワークWの表面にて反射され、出射光と同一光路を逆方向に進むワークWからの戻り光は、光学部20を出射光と逆方向に通過する際に、円錐ミラー22により円環状ビームから円形状の平行光に再度変換されて、ハーフミラー2を透過して、ビームスプリッタ3に向かうことなる。
ビームスプリッタ3は、ハーフミラー2のX方向右側に配置され、光学部20及びハーフミラー2を通過してきたワークWの表面からの戻り光を2つに分岐して、検出部4A,4Bに入射させる。
検出部4A,4Bは、受光素子41A,41Bと、各受光素子41A,41Bに備えられたピンホール42A,42Bと、から構成されている。
検出部4A,4Bは、それぞれがビームスプリッタ3により2つに分岐された光のうち一方を受光し、受光した光の光量を検出する。
演算部5は、検出部4A,4Bからの出力信号のそれぞれを、増幅器(図示省略)により増幅し、演算回路(図示省略)によりそれらの増幅信号の差をとることにより、フォーカス誤差信号を取得する。
ステージ6は、対物レンズ23のZ方向の下方において、その上面にワークWを載置する。このステージ6は、ステージ駆動機構部7により水平(X、Y方向)及び垂直(Z方向)の3方向に移動可能となっている。
ステージ駆動機構部7は、ステージ6をX、Y、Z方向に移動可能に支持している。
具体的に、ステージ駆動機構部7は、制御部9が出力する制御信号に応じてステージ6をX、Y、Z方向に移動させると共に、ステージ6のX、Y、Z方向における位置(位置座標)を制御部9に出力する。従って、ステージ駆動機構部7により、ステージ6と対物レンズ23との間の相対距離を変化させ、ワークWの表面に焦点を合わせる(フォーカスを検出する)ことが可能となっている。
なお、本発明の実現は光出射部1の波長にはよらない為、光出射部1の光源を適宜変更して、光出射部1から出射する光の波長を変更することが出来る。
そして、光出射部1から出射される光の波長を変更することで、図9(a)(b)に示すように、ワークWの表面に現れるパターン像の色が変更される。つまり、ワークWの特性(色や反射率)に応じてパターン像の色が変更できるようになっている。
制御部9は、図7に示すように、CPU(Central Processing Unit)91、RAM(Random Access Memory)92、記憶部93、等を備え、光出射部1、検出部4A,4B、演算部5、ステージ駆動機構部7、等と接続されている。
CPU91は、例えば、記憶部93に記憶されている各種処理プログラムに従って、各種の制御処理を行う。
RAM92は、CPU91により演算処理されたデータを格納するワークメモリエリアを形成している。
記憶部93は、例えば、CPU91によって実行可能なシステムプログラムや、そのシステムプログラムで実行可能な各種処理プログラム、これら各種処理プログラムを実行する際に使用されるデータ、CPU91によって演算処理された各種処理結果のデータなどを記憶する。なお、プログラムは、コンピュータが読み取り可能なプログラムコードの形で記憶部93に記憶されている。
次に、作用について説明する。
オートフォーカス装置200では、光出射部1から出射した光は、ハーフミラー2を介して光学部20に照射され、光学部20を通過してワークWに照射される。そして、ワークWの表面にて反射された戻り光は、光学部20及びハーフミラー2を出射光とは逆方向に通過して、ビームスプリッタ3を介して検出部4A,4Bに入射する。
このとき、光学部20は、凸レンズ21と対物レンズ23との間に円錐ミラー22を備えており、このため、ワークWの表面に結像されるパターン像が円環状に形成されることとなる。そして、ワークWの表面にて反射した戻り光は、再度、光学部20内の円錐ミラー22により反射するため、円形状に戻される。
つまり、光出射部1から出射した円形状の出射光は、円錐ミラー22により円環状となりワークWの表面にて反射して、円環状の戻り光は円錐ミラー22により円形状に戻って検出部4A,4Bに到達する。
ここで、パターン像が円環状であるため、円形レーザの円周部分に沿って平均化効果が向上し、ワークWの表面に段差部があった場合でもフォーカス検出が可能となる。また、パターン像が円環状であるため、段差部のエッジの方向が如何なる向きであっても、フォーカス検出が可能である。
以上にように、本実施形態のオートフォーカス装置200によれば、光出射部1と、光出射部1からの出射光をワークWに照射させ、出射光と同一光路を逆方向に進むワークWからの戻り光を通過させる光学部20と、光学部20を通過した戻り光によりフォーカス検出を行う検出部4A,4Bと、を備え、光学部20は、光出射部1からの出射光を平行光とする凸レンズ21と、凸レンズ21からの平行光を円環状に変形する円錐ミラー22と、円錐ミラー22からの円環状の光によりワークWの表面に円環状のパターン像を集光させる対物レンズ23と、を備えている。
このため、ワークWの表面に円環状のパターン像が結像され、スポット状のパターン像に比べて平均化効果が向上するので、ワークWの表面に段差部があった場合でもフォーカス検出ができることとなる。また、その段差部が如何なる向きであっても、円環状であるため、ライン形状のように段差部形状と一致して光が散乱すること無く、フォーカス検出ができることとなる。
また、本実施形態のオートフォーカス装置200によれば、光出射部1からの出射光の波長を変更することで、パターン像の色が変更可能である。
このため、ワークWの特性(色や反射率)に応じてパターン像の色が変更でき、汎用性を向上させることができる。
(変形例2)
次に、上記の第2実施形態の変形例である変形例2について説明する。
変形例1のオートフォーカス装置200Aには、図10に示すように、円錐ミラー22と対物レンズ23との間に、光学部20Aの光路長を変更するための光学部材であるリレーレンズ24が備えられている。
これにより、円錐ミラー22から出射した光は、対物レンズ23に到達するまでの間に別の光学系を経由することができるようになっている。
なお、この光学系を形成するレンズは、1枚のリレーレンズに限定されものではなく、その数は適時設定可能であるのは勿論である。
従って、オートフォーカス装置200Aは、装置構成などに応じて光学部20Aの光路長を適宜調整することが可能となり、利便性を向上させることができる。
(第3実施形態)
まず、構成について説明する。
本実施形態におけるオートフォーカス装置300は、図11、12に示すように、光出射部1と、ハーフミラー2と、光学部30と、ビームスプリッタ3と、検出部(検出手段)4A,4Bと、演算部5と、ステージ6と、ステージ駆動機構部7と、制御部9Aと、等を備えている。
なお、本実施形態においては、図11に示すように、光出射部1からハーフミラー2に向かう方向をZ方向(高さ方向)、ハーフミラー2から光学部30に向かう方向をX方向(左右方向)、X方向及びZ方向に直交する方向をY方向(前後方向)とする。
光出射部1は、例えば、放電灯、発光ダイオード、レーザなどの光源を備え、光ビームを発生させて出射する。光出射部1から出射された光(出射光)は、光出射部1のZ方向下側に配置されたハーフミラー2に照射される。
ハーフミラー2は、光出射部1から入射した光を、光出射部1のX方向左側に配置された光学部30に向かって反射させる。ハーフミラー2から出射された光は、光学部30に右方から照射される。
また、ハーフミラー2は、ワークWの表面にて反射され、光学部30を出射光とは逆方向に通過して進んできた戻り光を透過させ、ビームスプリッタ3に向かって照射する。
光学部30は、ハーフミラー2とワークWとの間に配され、光出射部1からの出射光とワークWからの戻り光とを同一光路にて通過させる。
具体的に、光学部30は、凸レンズ31と、光形状変形部32と、対物レンズ33と、を備えている。
凸レンズ31は、ハーフミラー2から入射した光を平行光として、凸レンズ31のX方向左側に配置される光形状変形部32に照射する。
光形状変形部32は、光形状変形手段として、凸レンズ31からの円形状の平行光を円環状に変形させる。
具体的に、光形状変形部32は、回転軸321と、駆動ミラー322と、回転軸321を駆動する駆動部(駆動手段)323と、を備えている。
回転軸321は、その一端に駆動ミラー322を備え、駆動部323により駆動されて一定速度で回転する。
駆動ミラー322は、回転軸321に対して傾いて配されている。また、駆動ミラー322は、そのミラー面が、凸レンズ31からの平行光に対して斜めになるように配置されている。そして、駆動ミラー322は、回転軸321の回転と連動して動作しつつ、凸レンズ31からの平行光を対物レンズ33に対して反射させる。
具体的には、凸レンズ31からの円形状の平行光は、駆動ミラー322のミラー面に対して斜めの方向から照射され、当該駆動ミラー322によって反射される際に回転軸321が駆動部323の駆動に応じて回転した場合に、円環状ビーム(リング状ビーム)に変換されて、下方の対物レンズ33に照射されるようになっている。
つまり、駆動ミラー322が回転駆動すると反射角度が変化するため、光はその反射角度に応じてワークWの表面を円環状に連続移動し、円環状のパターン像で結像する。
駆動部323は、制御部9Aが出力する制御信号に応じて回転軸321を駆動させる。
具体的に、駆動部323は、回転軸321を駆動状態と静止状態とに切り替え可能であり、回転軸321を駆動状態と静止状態とに切り替えることにより、パターン像の形状を円環状とスポット状とに切り替えることができるようになっている。
対物レンズ33は、ワークWに対向して備えられ、駆動ミラー322が駆動している場合には、駆動ミラー322から照射された円環状ビームによりワークWの表面に円環状のパターン像を結像させる。
また、対物レンズ33は、駆動ミラー322が静止している場合には、駆動ミラー322から照射された平行光によりワークWの表面にスポット状のパターン像を結像させる。
従って、ハーフミラー2から照射され、光学部30(凸レンズ31、光形状変形部32、対物レンズ33)を通過してワークWに到達した光は、駆動ミラー322が駆動している場合には、当該ワークWの表面において円環状のパターン像を形成することとなる。
このとき、図13に示すように、パターン像が円環状であるため、ワークWの表面のエッジがパターン像に対して如何なる向きとなっていてもフォーカス検出ができるようになっている。
そして、ワークWの表面にて反射され、出射光と同一光路を逆方向に進むワークWからの戻り光は、光学部30を出射光と逆方向に通過する際に、光形状変形部32により円環状ビームから円形状の平行光に再度変換されて、ハーフミラー2を透過して、ビームスプリッタ3に向かうことなる。
ビームスプリッタ3は、ハーフミラー2のX方向右側に配置され、光学部30及びハーフミラー2を通過してきたワークWの表面からの戻り光を2つに分岐して、検出部4A,4Bに入射させる。
検出部4A,4Bは、受光素子41A,41Bと、各受光素子41A,41Bに備えられたピンホール42A,42Bと、から構成されている。
検出部4A,4Bは、それぞれがビームスプリッタ3により2つに分岐された光のうち一方を受光し、受光した光の光量を検出する。
演算部5は、検出部4A,4Bからの出力信号のそれぞれを、増幅器(図示省略)により増幅し、演算回路(図示省略)によりそれらの増幅信号の差をとることにより、フォーカス誤差信号を取得する。
ステージ6は、対物レンズ33のZ方向の下方において、その上面にワークWを載置する。このステージ6は、ステージ駆動機構部7により水平(X、Y方向)及び垂直(Z方向)の3方向に移動可能となっている。
ステージ駆動機構部7は、ステージ6をX、Y、Z方向に移動可能に支持している。
具体的に、ステージ駆動機構部7は、制御部9Aが出力する制御信号に応じてステージ6をX、Y、Z方向に移動させると共に、ステージ6のX、Y、Z方向における位置(位置座標)を制御部9Aに出力する。従って、ステージ駆動機構部7により、ステージ6と対物レンズ33との間の相対距離を変化させ、ワークWの表面に焦点を合わせる(フォーカスを検出する)ことが可能となっている。
なお、本発明の実現は光出射部1の波長にはよらない為、光出射部1の光源を適宜変更して、光出射部1から出射する光の波長を変更することが出来る。
そして、光出射部1から出射される光の波長を変更することで、図14(a)(b)に示すように、ワークWの表面に現れるパターン像の色が変更される。つまり、ワークWの特性(色や反射率)に応じてパターン像の色が変更できるようになっている。
制御部9Aは、図12に示すように、CPU(Central Processing Unit)91A、RAM(Random Access Memory)92A、記憶部93A、等を備え、光出射部1、検出部4A,4B、演算部5、ステージ駆動機構部7、駆動部323、等と接続されている。
CPU91Aは、例えば、記憶部93Aに記憶されている各種処理プログラムに従って、各種の制御処理を行う。
RAM92Aは、CPU91Aにより演算処理されたデータを格納するワークメモリエリアを形成している。
記憶部93Aは、例えば、CPU91Aによって実行可能なシステムプログラムや、そのシステムプログラムで実行可能な各種処理プログラム、これら各種処理プログラムを実行する際に使用されるデータ、CPU91Aによって演算処理された各種処理結果のデータなどを記憶する。なお、プログラムは、コンピュータが読み取り可能なプログラムコードの形で記憶部93Aに記憶されている。
次に、作用について説明する。
オートフォーカス装置300では、光出射部1から出射した光は、ハーフミラー2を介して光学部30に照射され、光学部30を通過してワークWに照射される。そして、ワークWの表面にて反射された戻り光は、光学部30及びハーフミラー2を出射光とは逆方向に通過して、ビームスプリッタ3を介して検出部4A,4Bに入射する。
このとき、光学部30は、凸レンズ31と対物レンズ33との間に光形状変形部32を備えており、このため、駆動ミラー322が駆動している場合には、ワークWの表面に結像されるパターン像が円環状に形成されることとなる。そして、ワークWの表面にて反射した戻り光は、再度、光学部30内の光形状変形部32により反射するため、円形状に戻される。
つまり、駆動ミラー322が駆動している場合には、光出射部1から出射した円形状の出射光は、光形状変形部32により円環状となりワークWの表面にて反射して、円環状の戻り光は光形状変形部32により円形状に戻って検出部4A,4Bに到達する。
ここで、パターン像が円環状であるため、円形レーザの円周部分に沿って平均化効果が向上し、ワークWの表面に段差部があった場合でもフォーカス検出が可能となる。また、パターン像が円環状であるため、段差部のエッジの方向が如何なる向きであっても、フォーカス検出が可能である。
更に、回転軸321を駆動状態と静止状態とに切り替えることができ、駆動ミラー322を静止させて、パターン像をスポット状に切り替えることができる。
以上にように、本実施形態のオートフォーカス装置300によれば、光出射部1と、光出射部1からの出射光をワークWに照射させ、出射光と同一光路を逆方向に進むワークWからの戻り光を通過させる光学部30と、光学部30を通過した戻り光によりフォーカス検出を行う検出部4A,4Bと、を備え、光学部30は、光出射部1からの出射光を平行光とする凸レンズ31と、凸レンズ31からの平行光を円環状に変形する光形状変形部32と、光形状変形部32からの円環状の光によりワークWの表面に円環状のパターン像を集光させる対物レンズ33と、を備えている。
このため、ワークWの表面に円環状のパターン像が結像され、スポット状のパターン像に比べて平均化効果が向上するので、ワークWの表面に段差部があった場合でもフォーカス検出ができることとなる。また、その段差部が如何なる向きであっても、円環状であるため、ライン形状のように段差部形状と一致して光が散乱すること無く、フォーカス検出ができることとなる。
また、本実施形態のオートフォーカス装置300によれば、駆動部323は、回転軸321を駆動状態と静止状態とに切り替え可能であり、回転軸321を駆動状態と静止状態とに切り替えることにより、パターン像の形状は円環状とスポット状とに切り替わるようになっている。
このため、回転軸321を駆動状態と静止状態とに切り替えることにより、例えば狭小範囲においてスポット状のパターン像が形成されるように切り替えることが可能となり、汎用性を向上させることができる。
また、本実施形態のオートフォーカス装置300によれば、光出射部1からの出射光の波長を変更することで、パターン像の色が変更可能である。
このため、ワークWの特性(色や反射率)に応じてパターン像の色が変更でき、汎用性を向上させることができる。
(変形例3)
次に、上記の第1実施形態の変形例である変形例3について説明する。
変形例3のオートフォーカス装置300Aには、図15に示すように、駆動ミラー322と対物レンズ33との間に、光学部30Aの光路長を変更するための光学部材であるリレーレンズ34が備えられている。
これにより、駆動ミラー322から出射した光は、対物レンズ33に到達するまでの間に別の光学系を経由することができるようになっている。
なお、この光学系を形成するレンズは、1枚のリレーレンズに限定されものではなく、その数は適時設定可能であるのは勿論である。
従って、オートフォーカス装置300Aは、装置構成などに応じて光学部30Aの光路長を適宜調整することが可能となり、利便性を向上させることができる。
なお、上記第1〜第3実施形態のオートフォーカス装置においては、何れもピンホール法の構成を例示しているが、例えば、ナイフエッジ法、フーコー法、非点収差法、等のピンホール法以外の検出原理を用いることとしても良い。
(第1実施形態)
100 オートフォーカス装置
1 光出射部(光源)
2 ハーフミラー
3 ビームスプリッタ
4A,4B 検出部(検出手段)
5 演算部
6 ステージ
7 ステージ駆動機構部
8 波長変更部(波長変更手段)
9 制御部
10 光学部
11 凸レンズ
12 円錐レンズ(光形状変形手段)
13 対物レンズ
W ワーク(測定対象物)
(変形例1)
100A オートフォーカス装置
10A 光学部
11 凸レンズ
12 円錐レンズ(光形状変形手段)
13 対物レンズ
14 リレーレンズ
(第2実施形態)
200 オートフォーカス装置
1 光出射部(光源)
2 ハーフミラー
3 ビームスプリッタ
4A,4B 検出部(検出手段)
5 演算部
6 ステージ
7 ステージ駆動機構部
8 波長変更部(波長変更手段)
9 制御部
20 光学部
21 凸レンズ
22 円錐ミラー(光形状変形手段)
L 軸線
23 対物レンズ
W ワーク(測定対象物)
(変形例2)
200A オートフォーカス装置
20A 光学部
21 凸レンズ
22 円錐ミラー(光形状変形手段)
23 対物レンズ
24 リレーレンズ
(第3実施形態)
300 オートフォーカス装置
1 光出射部(光源)
2 ハーフミラー
3 ビームスプリッタ
4A,4B 検出部(検出手段)
5 演算部
6 ステージ
7 ステージ駆動機構部
8 波長変更部(波長変更手段)
9A 制御部
30 光学部
31 凸レンズ
32 光形状変形部(光形状変形手段)
321 回転軸
322 駆動ミラー
323 駆動部(駆動手段)
33 対物レンズ
W ワーク(測定対象物)
(変形例3)
300A オートフォーカス装置
30A 光学部
31 凸レンズ
32 光形状変形部(光形状変形手段)
321 回転軸
322 駆動ミラー
323 駆動部(駆動手段)
33 対物レンズ
34 リレーレンズ

Claims (8)

  1. 光源と、
    前記光源と測定対象物との間に配され、前記光源からの出射光と前記測定対象物からの戻り光とが同一光路となるように通過させる光学部と、
    前記光学部を通過した前記戻り光によりフォーカス検出を行う検出手段と、
    を備え、
    前記光学部は、
    前記光源からの前記出射光を平行光とする凸レンズと、
    前記凸レンズからの前記平行光を円環状に変形させる光形状変形手段と、
    前記光形状変形手段からの円環状の光により前記測定対象物の表面に円環状のパターン像を集光させる対物レンズと、
    を備え
    前記光形状変形手段は、前記測定対象物の表面にて反射した前記戻り光を変形前の元の形状に戻して前記検出手段に到達させることを特徴とするオートフォーカス装置。
  2. 前記光形状変形手段は、円錐レンズであることを特徴とする請求項1に記載のオートフォーカス装置。
  3. 前記円錐レンズは、着脱可能に備えられていることを特徴とする請求項2に記載のオートフォーカス装置。
  4. 前記光形状変形手段は、円錐ミラーであることを特徴とする請求項1に記載のオートフォーカス装置。
  5. 前記光形状変形手段は、
    一定速度で回転する回転軸と、
    前記回転軸に対して傾いて配される駆動ミラーと、
    前記回転軸を駆動する駆動手段と、
    を備えることを特徴とする請求項1に記載のオートフォーカス装置。
  6. 前記駆動手段は、前記回転軸を駆動状態と静止状態とに切り替え可能であり、
    前記回転軸を駆動状態と静止状態とに切り替えることにより、前記パターン像の形状を円環状とスポット状とに切り替えることを特徴とする請求項5に記載のオートフォーカス装置。
  7. 前記光形状変形手段と前記対物レンズとの間に、前記光学系の光路長を変更するための光学部材を備えていることを特徴とする請求項1〜6の何れか一項に記載のオートフォーカス装置。
  8. 前記光源からの前記出射光の波長を変更することで、前記パターン像の色が変更可能であることを特徴とする請求項1〜7の何れか一項に記載のオートフォーカス装置。
JP2010148630A 2010-06-30 2010-06-30 オートフォーカス装置 Active JP5576195B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010148630A JP5576195B2 (ja) 2010-06-30 2010-06-30 オートフォーカス装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010148630A JP5576195B2 (ja) 2010-06-30 2010-06-30 オートフォーカス装置

Publications (2)

Publication Number Publication Date
JP2012013820A JP2012013820A (ja) 2012-01-19
JP5576195B2 true JP5576195B2 (ja) 2014-08-20

Family

ID=45600352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010148630A Active JP5576195B2 (ja) 2010-06-30 2010-06-30 オートフォーカス装置

Country Status (1)

Country Link
JP (1) JP5576195B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210091482A (ko) * 2020-01-14 2021-07-22 (주) 큐알에스 렌즈, 이를 포함하는 렌즈군 및 렌즈 가공 광학계

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015225288A (ja) * 2014-05-29 2015-12-14 株式会社レイテックス オートフォーカス装置及びオートフォーカス方法
US10151962B2 (en) * 2016-09-29 2018-12-11 Mitutoyo Corporation Variable focal length lens system with focus monitoring and control

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58208945A (ja) * 1982-05-31 1983-12-05 Canon Inc 焦点検出方法および装置
JP2001091467A (ja) * 1999-04-08 2001-04-06 Mitsutoyo Corp 拡散照明方法及び装置
ATE363653T1 (de) * 2001-03-06 2007-06-15 Evotec Ag Verfahren zur untersuchung chemischer und/oder biologischer proben
JP2007121749A (ja) * 2005-10-28 2007-05-17 Nikon Corp 顕微鏡

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210091482A (ko) * 2020-01-14 2021-07-22 (주) 큐알에스 렌즈, 이를 포함하는 렌즈군 및 렌즈 가공 광학계
KR102360828B1 (ko) * 2020-01-14 2022-02-09 (주) 큐알에스 렌즈, 이를 포함하는 렌즈군 및 렌즈 가공 광학계

Also Published As

Publication number Publication date
JP2012013820A (ja) 2012-01-19

Similar Documents

Publication Publication Date Title
JP5718662B2 (ja) オートフォーカス装置
US8259305B2 (en) Surface shape measuring system and surface shape measuring method using the same
US20120307259A1 (en) Apparatus and method for inspecting an object with increased depth of field
US8710412B2 (en) Focus information generating device and focus information generating method
JP2006084794A (ja) 焦点位置制御機構付き観察装置
JP5782786B2 (ja) 形状測定装置
US9151962B2 (en) Position detector and autofocus control apparatus using focal point deviation detector
JP2016024009A (ja) 厚さ測定装置及び厚さ測定方法
KR100679643B1 (ko) 자동초점 조절패턴을 채택하는 자동초점 조절장치 및그것을 사용한 자동초점 조절방법
JP6552043B2 (ja) シート照明顕微鏡
JP6288280B2 (ja) 表面形状測定装置
JP5576195B2 (ja) オートフォーカス装置
US20160054552A1 (en) Confocal laser scanning microscope
JP2003232989A (ja) 顕微鏡ベースのシステムに対するオートフォーカスモジュール、オートフォーカスモジュールを有する顕微鏡システム、および顕微鏡ベースのシステムに対する自動焦点合わせ方法
JP2009270937A (ja) 3次元形状計測装置
JP2010121960A (ja) 測定装置及び被検物の測定方法
JP2010217124A (ja) 形状測定装置及び方法
JP2010216880A (ja) 変位センサ
JP6363477B2 (ja) 3次元形状測定装置
US6486964B2 (en) Measuring apparatus
US20170069110A1 (en) Shape measuring method
WO2010137637A1 (ja) 形状測定装置、形状測定方法、および、製造方法
JP2008261829A (ja) 表面測定装置
JP2013088570A (ja) 顕微鏡装置
JP2008256637A (ja) 3次元形状測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140703

R150 Certificate of patent or registration of utility model

Ref document number: 5576195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250