JP5574917B2 - Multilayer wiring board - Google Patents

Multilayer wiring board Download PDF

Info

Publication number
JP5574917B2
JP5574917B2 JP2010240992A JP2010240992A JP5574917B2 JP 5574917 B2 JP5574917 B2 JP 5574917B2 JP 2010240992 A JP2010240992 A JP 2010240992A JP 2010240992 A JP2010240992 A JP 2010240992A JP 5574917 B2 JP5574917 B2 JP 5574917B2
Authority
JP
Japan
Prior art keywords
metal material
conductors
resin
conductor
resin insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010240992A
Other languages
Japanese (ja)
Other versions
JP2011222945A (en
Inventor
利弘 橋本
啓介 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2010240992A priority Critical patent/JP5574917B2/en
Publication of JP2011222945A publication Critical patent/JP2011222945A/en
Application granted granted Critical
Publication of JP5574917B2 publication Critical patent/JP5574917B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、樹脂絶縁層と薄膜配線層とが交互に積層され、上下の薄膜配線層が樹脂絶縁層を厚み方向に貫通する貫通導体によって互いに電気的に接続されてなる薄膜多層部を有する多層配線基板に関するものである。   The present invention provides a multilayer having thin film multilayer portions in which resin insulating layers and thin film wiring layers are alternately laminated, and upper and lower thin film wiring layers are electrically connected to each other by through conductors penetrating the resin insulating layer in the thickness direction. The present invention relates to a wiring board.

従来、半導体素子を上面の端子に接続し、この端子と電気的に接続された下面の接続パッドを外部電気回路に電気的に接続するための多層配線基板として、複数の薄膜配線層と複数の樹脂絶縁層とが交互に積層されてなる薄膜多層部が、セラミック基板等の基板の上面に配置されてなる多層配線基板が知られている。このような多層配線基板は、例えば、半導体素子の電気的なチェックを行なう、いわゆるプローブカード用の基板として用いられている。   Conventionally, as a multilayer wiring board for connecting a semiconductor element to a terminal on the upper surface and electrically connecting a connection pad on the lower surface electrically connected to the terminal to an external electric circuit, a plurality of thin film wiring layers and a plurality of wiring layers are provided. There is known a multilayer wiring board in which thin film multilayer portions in which resin insulating layers are alternately laminated are arranged on the upper surface of a substrate such as a ceramic substrate. Such a multilayer wiring board is used, for example, as a so-called probe card board for performing an electrical check of a semiconductor element.

このような多層配線基板におけるセラミック基板は、例えば、酸化アルミニウム質焼結体等からなる絶縁基体の上下面および内部に、タングステン等の金属材料からなるメタライズ配線層や貫通導体等の配線導体が配置された構造である。そして、薄膜多層部の上面に露出して形成された薄膜配線層が半導体素子と接続される端子として機能し、セラミック基板の下面に形成された配線導体が外部接続用の接続パッドとして機能する。   In such a multilayer wiring board, for example, a metalized wiring layer made of a metal material such as tungsten or a wiring conductor such as a through conductor is arranged on the upper and lower surfaces and inside of an insulating base made of an aluminum oxide sintered body or the like. It is a structured. The thin film wiring layer formed exposed on the upper surface of the thin film multilayer portion functions as a terminal connected to the semiconductor element, and the wiring conductor formed on the lower surface of the ceramic substrate functions as a connection pad for external connection.

薄膜多層部は、高い密度で電極が配置された半導体素子に対応して薄膜配線層が形成されたものであり、近年の半導体素子の電極の高密度化に対応するために、より一層の薄膜配線層の高密度化が求められている。また、この高密度化のために、薄膜配線層を上下に接続する貫通導体についてもより一層の高密度化が必要である。そして、この貫通導体の高密度化のために、上下に連続する複数の樹脂絶縁層にわたって、それぞれの樹脂絶縁層の貫通導体を平面視で互いに重なるようにして形成すること(いわゆるスタックドビアとすること)が提案されている。   In the thin film multilayer portion, a thin film wiring layer is formed corresponding to a semiconductor element in which electrodes are arranged at a high density. In order to cope with the recent increase in the density of electrodes of a semiconductor element, a further thin film layer is formed. There is a demand for higher density wiring layers. In order to increase the density, it is necessary to further increase the density of the through conductors connecting the thin film wiring layers up and down. In order to increase the density of the through conductors, the through conductors of the respective resin insulation layers are formed so as to overlap each other in a plan view over a plurality of resin insulation layers that are continuous in the vertical direction (so-called stacked vias). ) Has been proposed.

特開2003−218531号公報JP 2003-218531 A 特開2006−173333号公報JP 2006-173333 A

しかしながら、上記のように複数の樹脂絶縁層にわたって、貫通導体が平面視で重なるように形成した場合には、貫通導体を形成する銅等の金属材料と樹脂絶縁層との間で熱膨張率(線膨張係数)が異なるため、この熱膨張率の差に起因して、樹脂絶縁層と貫通導体との間に大きな熱応力が生じやすい。そして、この熱応力によって、貫通導体や、貫通導体と樹脂絶縁層との界面においてクラックや断線等の機械的な破壊が生じやすいという問題点があった。このような機械的な破壊が生じた場合には、例えば、薄膜多層部の上面側の薄膜配線層と下面側の薄膜配線層との間で、電気抵抗の増加や電気的な接続の信頼性の低下等の不具合を生じる。   However, when the through conductors are formed so as to overlap in a plan view across the plurality of resin insulation layers as described above, the coefficient of thermal expansion (the thermal expansion coefficient between a metal material such as copper and the resin insulation layer forming the through conductors ( Since the linear expansion coefficients are different, a large thermal stress is likely to occur between the resin insulating layer and the through conductor due to the difference in thermal expansion coefficient. And there existed a problem that mechanical destruction, such as a crack and a disconnection, was easy to produce in the interface of a penetration conductor and a penetration conductor and a resin insulating layer by this thermal stress. When such a mechanical breakdown occurs, for example, an increase in electrical resistance or reliability of electrical connection between the thin film wiring layer on the upper surface side and the thin film wiring layer on the lower surface side of the thin film multilayer portion. Cause problems such as lowering

本発明は上記従来の技術の問題点に鑑みて完成されたものであり、その目的は、貫通導体が、上下に連続する複数の樹脂絶縁層にわたって平面視で互いに重なる位置に形成されている場合でも、貫通導体や貫通導体と樹脂絶縁層との界面等に機械的な破壊が生じることを効果的に抑制することが可能であり、小型化が容易で、かつ信頼性が高い多層配線基
板を提供することにある。
The present invention has been completed in view of the above-described problems of the prior art, and its purpose is that the through conductors are formed at positions where they overlap each other in plan view across a plurality of resin insulating layers that are vertically continuous. However, it is possible to effectively suppress the mechanical breakdown at the through conductor or the interface between the through conductor and the resin insulation layer, and it is possible to reduce the size and the reliability of the multilayer wiring board. It is to provide.

本発明の多層配線基板は、樹脂絶縁層と薄膜配線層とが交互に積層され、上下の前記薄膜配線層が前記樹脂絶縁層を厚み方向に貫通する貫通導体によって互いに電気的に接続されてなる薄膜多層部を有する多層配線基板であって、前記貫通導体は、上下に連続する複数の前記樹脂絶縁層にわたって平面視で互いに重なる位置に形成されたものを含んでおり、平面視で重なる複数の前記貫通導体のうちの一部が錫を主成分とする金属材料からなり、他が銅を主成分とする金属材料からなり、前記貫通導体のうちの錫を主成分とする金属
材料からなるものの一端面が位置する前記樹脂絶縁層の層間において、上下の前記樹脂絶縁層同士が、複数の前記貫通導体に対応した位置に複数個の貫通孔を有する樹脂接着層を介して互いに接着されているとともに、上下の前記樹脂絶縁層の前記貫通導体同士が、それぞれ前記樹脂接着層の前記貫通孔内に充填された錫を主成分とする金属材料によって互いに電気的に接続されており、前記樹脂接着層の前記貫通孔に充填された錫を主成分とする前記金属材料の側面は、平面視で前記樹脂接着層の中心部から外辺に向かって放射状に伸びる仮想の直線と交差する部分のうち前記中心部に近い側に位置する交差部のみが凸状に湾曲しているか、または該交差部において他の部分よりも大きく凸状に湾曲していることを特徴とするものである。
In the multilayer wiring board of the present invention, resin insulating layers and thin film wiring layers are alternately laminated, and the upper and lower thin film wiring layers are electrically connected to each other by through conductors that penetrate the resin insulating layer in the thickness direction. A multilayer wiring board having a thin film multilayer portion, wherein the through conductor includes a plurality of resin insulating layers formed vertically and overlapping with each other in a planar view, and includes a plurality of overlapping in a planar view. a metal material portion of said through conductor is composed mainly of tin, Ri Do a metallic material other is a main component of copper, metal mainly composed of tin of said through conductors
Between the resin insulation layers where one end face of the material is located, the upper and lower resin insulation layers are mutually connected via a resin adhesive layer having a plurality of through holes at positions corresponding to the plurality of through conductors. The through conductors of the upper and lower resin insulation layers are electrically connected to each other by a metal material mainly composed of tin filled in the through holes of the resin adhesive layer. The side surface of the metal material mainly composed of tin filled in the through hole of the resin adhesive layer intersects with a virtual straight line extending radially from the center of the resin adhesive layer toward the outer side in plan view. those only intersection portion located closer to the center of the portion that is characterized that you have curved largely convex than other portions in or the crossing portion is curved in a convex shape is there.

また、本発明の多層配線基板は、上記構成において、上下に連続する3層以上の前記樹脂絶縁層にわたって平面視で互いに重なる位置に前記貫通導体が形成されており、これらの貫通導体のうちの上下方向の中央部分に位置する前記樹脂絶縁層に形成されているものが錫を主成分とする金属材料からなり、他のものが銅を主成分とする金属材料からなることを特徴とするものである。   In the multilayer wiring board of the present invention, in the above configuration, the through conductors are formed at positions overlapping with each other in plan view over three or more resin insulating layers that are continuous in the vertical direction. What is formed in the said resin insulation layer located in the center part of an up-down direction consists of a metal material which has tin as a main component, and another thing consists of a metal material which has copper as a main component, It is.

本発明の多層配線基板によれば、薄膜多層部において、貫通導体は、上下に連続する複数の樹脂絶縁層にわたって平面視で互いに重なる位置に形成されたものを含んでおり、平面視で重なる複数の貫通導体のうちの一部が錫を主成分とする金属材料からなり、他が銅を主成分とする金属材料からなることから、上下の貫通導体を連続させた、いわゆるスタックドビアを有する場合でも、貫通導体と樹脂絶縁層との間に生じる熱応力を銅よりも弾性率が低い錫を主成分とする金属材料によって緩和することができる。そのため、貫通導体や貫通導体と薄膜配線層との界面等にクラック等の機械的な破壊が生じることが抑制される。また、複数の貫通導体のうち一部のもののみが錫を主成分とする金属材料からなり、他が銅を主成分とする金属材料からなるものであることから、複数の貫通導体における合計の電気抵抗を低く抑えることができる。そのため、多層配線基板としての電気抵抗が高くなるようなことは効果的に抑制される。   According to the multilayer wiring board of the present invention, in the thin film multilayer portion, the through conductors include those formed at positions overlapping each other in a plan view across a plurality of resin insulating layers continuous in the vertical direction. Since some of the through conductors are made of a metal material mainly composed of tin and the other is made of a metal material mainly composed of copper, even in the case of having a so-called stacked via in which the upper and lower through conductors are continuous. The thermal stress generated between the through conductor and the resin insulating layer can be relaxed by a metal material mainly composed of tin having a lower elastic modulus than copper. Therefore, it is possible to suppress the occurrence of mechanical breakdown such as cracks at the through conductor or the interface between the through conductor and the thin film wiring layer. Moreover, since only some of the plurality of through conductors are made of a metal material mainly composed of tin and the other is made of a metal material mainly composed of copper, Electrical resistance can be kept low. For this reason, an increase in electrical resistance as a multilayer wiring board is effectively suppressed.

また、本発明の多層配線基板は、上記構成において、上下に連続する3層以上の樹脂絶縁層にわたって平面視で互いに重なる位置に貫通導体が形成されており、これらの貫通導体のうちの上下方向の中央部分に位置する樹脂絶縁層に形成されているものが錫を主成分
とする金属材料からなり、他のものが銅を主成分とする金属材料からなる場合には、貫通導体における熱応力の緩和をより一層効果的に行なわせることができる。
In the multilayer wiring board of the present invention, in the above configuration, through conductors are formed at positions overlapping with each other in plan view over three or more continuous resin insulating layers in the vertical direction, and the vertical direction of these through conductors If the resin insulation layer located in the central part of the material is made of a metal material mainly composed of tin and the other is composed of a metal material mainly composed of copper, the thermal stress in the through conductor Can be made more effective.

すなわち、薄膜多層部において、上下に連続する3層以上の樹脂絶縁層にわたって平面視で互いに重なる位置に貫通導体が形成されているときに、応力が集中しやすい上下方向の中央部分に位置する樹脂絶縁層の貫通導体において弾性率を低く抑えることができるため、熱応力の緩和をより有効なものとすることができる。   That is, in the thin film multi-layer part, when the through conductors are formed at positions overlapping with each other in plan view over three or more continuous resin insulating layers in the upper and lower directions, the resin located in the central portion in the vertical direction where stress is easily concentrated Since the elastic modulus can be kept low in the through conductor of the insulating layer, the thermal stress can be alleviated more effectively.

また、本発明の多層配線基板は、上記構成において、貫通導体のうちの錫を主成分とする金属材料からなるものの一端面が位置する樹脂絶縁層の層間において、上下の樹脂絶縁層同士が、貫通導体に対応した位置に貫通孔を有する樹脂接着層を介して互いに接着されているとともに、上下の樹脂絶縁層の貫通導体同士が、樹脂接着層の貫通孔内に充填された錫を主成分とする金属材料によって互いに電気的に接続されている。貫通導体における熱応力の緩和に有効であるとともに、生産性を高める上でも有効な多層配線基板とすることができる。
Further, in the multilayer wiring board of the present invention, in the above configuration, the upper and lower resin insulation layers are arranged between the resin insulation layers where one end face of the through conductor is made of a metal material mainly composed of tin, Bonded to each other through a resin adhesive layer having a through hole at a position corresponding to the through conductor, and the through conductors of the upper and lower resin insulation layers are mainly composed of tin filled in the through hole of the resin adhesive layer. Are electrically connected to each other by a metal material . Together they are effective in alleviating thermal stress in penetrations conductor can be an effective multi-layer wiring board even for improving the productivity.

すなわち、この場合には、貫通導体を有する複数の樹脂絶縁層を、錫を主成分とする金属材料で貫通導体が形成された部分を境にして上下に分けて製作し、これらを樹脂接着層で接着して多層配線基板を生産することができるため、薄膜多層部の生産性を向上させることが容易であり、多層配線基板としての生産性を高める上でも有効である。この場合、錫(融点:約232℃)を主成分とする金属材料の融点が比較的低いため、上下の貫通導体
を接続させるために樹脂接着層の貫通孔内に金属材料を溶融させて充填させることも容易である。また、錫を主成分とする金属材料は、例えば錫−銀はんだを用いることができ、銅を主成分とする金属材料からなる貫通導体に対する接合が容易である。
That is, in this case, a plurality of resin insulation layers having penetrating conductors are manufactured by dividing them into upper and lower parts with a portion where the penetrating conductors are formed of a metal material mainly composed of tin, and these are formed as resin adhesive layers. Thus, it is easy to improve the productivity of the thin-film multilayer part, and it is effective in improving the productivity as a multilayer wiring board. In this case, since the melting point of the metal material mainly composed of tin (melting point: about 232 ° C) is relatively low, the metal material is melted and filled in the through hole of the resin adhesive layer in order to connect the upper and lower through conductors. It is also easy to make it. Moreover, for example, tin-silver solder can be used as the metal material containing tin as a main component, and bonding to a through conductor made of a metal material containing copper as a main component is easy.

また、本発明の多層配線基板は、上記構成において、複数の貫通導体をそれぞれ上下に電気的に接続する金属材料が充填された貫通孔が樹脂接着層に複数個配置されており、金属材料の側面が、平面視で樹脂接着層の中心部から外辺に向かって放射状に伸びる仮想の直線と交差する部分のうち中心部に近い側に位置する交差部のみが凸状に湾曲しているか、またはこの交差部において他の部分よりも大きく凸状に湾曲している。複数の貫通導体に対応して配置された樹脂接着層のそれぞれの金属材料にせん断応力として作用する熱応力をより効果的に緩和することができる。 In the multilayer wiring board of the present invention, in the above configuration, a plurality of through holes filled with a metal material for electrically connecting a plurality of through conductors up and down are arranged in the resin adhesive layer. Only the intersection located on the side closer to the center of the portion intersecting with the virtual straight line extending radially from the center of the resin adhesive layer toward the outer side in plan view is curved in a convex shape. Alternatively, the intersection is curved in a convex shape larger than other portions . Thermal stress acting as a shear stress in each metal material arranged corresponding to the multiple through conductor resin adhesive layer can be more effectively alleviated.

すなわち、この場合には、樹脂接着層において、中心から外辺に向かって放射状に伸びる仮想の直線に沿った方向に、金属材料に大きな熱応力が作用する傾向がある。そのため、これらの金属材料に対しては、上記仮想の直線が交差する部分においてより大きな熱応
力(せん断応力)が作用する傾向があり、特に、いわゆる昇温過程において上記交差する部分のうち中心部に近い側に位置する交差部において応力による金属材料と貫通導体や薄膜配線層との間の断線が生じやすい。
That is, in this case, in the resin adhesive layer, a large thermal stress tends to act on the metal material in a direction along a virtual straight line extending radially from the center toward the outer side. Therefore, for these metal materials, a larger thermal stress (shear stress) tends to act at a portion where the imaginary straight line intersects. Disconnection between the metal material and the through conductor or the thin film wiring layer is likely to occur due to stress at the intersection located on the side close to.

これに対して、上記構成を備えている場合には、金属材料において、熱応力が集中しやすい側面が大きく湾曲していることで熱応力が分散され、応力を緩和する効果を高めることができる。したがって、複数の金属材料が配置されている構成において、金属材料の側面の湾曲の範囲を小さく抑えながら、金属材料と貫通導体や薄膜配線層との接続信頼性を効果的に向上させることができる。   On the other hand, in the case where the above configuration is provided, in the metal material, the side surface on which the thermal stress tends to concentrate is greatly curved, so that the thermal stress is dispersed and the effect of relaxing the stress can be enhanced. . Therefore, in a configuration in which a plurality of metal materials are arranged, it is possible to effectively improve the connection reliability between the metal material and the through conductor or the thin-film wiring layer while suppressing the range of curvature of the side surface of the metal material to be small. .

言い換えれば、上記構成において、金属材料の、仮想の直線と交差する部分のうち中心部に近い側に位置する交差部のみが凸状に湾曲しているか、またはこの部分において他の部分よりも大きく湾曲している(より外側に突出している)場合には、金属材料の側面について湾曲させる部分、つまり外側に張り出させる範囲を小さく抑えながら応力を緩和することができるため、金属材料(および貫通導体)の高密度化の上で有利である。   In other words, in the above configuration, only the intersecting portion located nearer to the central portion of the portion intersecting with the virtual straight line of the metal material is curved in a convex shape or larger in this portion than the other portions. If it is curved (protruding outward), the stress can be relieved while keeping the curved portion of the metal material side, ie, the area protruding outward, small, so the metal material (and penetration) This is advantageous in increasing the density of the conductor).

本発明の多層配線基板の実施の形態の一例を示す断面図である。It is sectional drawing which shows an example of embodiment of the multilayer wiring board of this invention. 図1に示す多層配線基板の要部を拡大して示す要部拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a main part showing an enlarged main part of the multilayer wiring board shown in FIG. 1. 本発明の多層配線基板の実施の形態の他の例における要部を拡大して示す要部拡大断面図である。It is a principal part expanded sectional view which expands and shows the principal part in the other example of embodiment of the multilayer wiring board of this invention. (a)〜(c)はそれぞれ本発明の多層配線基板の実施の形態の他の例における要部を拡大して示す要部拡大断面図である。(A)-(c) is the principal part expanded sectional view which expands and shows the principal part in the other example of embodiment of the multilayer wiring board of this invention, respectively. (a)は本発明の多層配線基板の実施の形態の他の例における樹脂接着層の部分を平面視した平面図(透視図)であり、(b)は(a)の要部を拡大して示す要部拡大平面図である。(A) is the top view (perspective view) which planarly viewed the part of the resin contact bonding layer in the other example of embodiment of the multilayer wiring board of this invention, (b) expanded the principal part of (a). FIG. (a)および(b)はそれぞれ本発明の多層配線基板の実施の形態の他の例における要部を拡大して示す要部拡大断面図である。(A) And (b) is a principal part expanded sectional view which expands and shows the principal part in the other example of embodiment of the multilayer wiring board of this invention, respectively.

本発明の多層配線基板を添付の図面を参照しつつ詳細に説明する。図1は本発明の多層配線基板の実施の形態の一例を示す断面図であり、図2は、図1に示す多層配線基板の要部を拡大して示す要部拡大断面図である。図1および図2において、1は樹脂絶縁層,2は薄膜配線層,3は貫通導体,4は薄膜多層部である。樹脂絶縁層1,薄膜配線層2および貫通導体3によって薄膜多層部4が構成され、薄膜多層部4がセラミック基板6の上面に積層されて多層配線基板5が構成されている。   A multilayer wiring board according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing an example of an embodiment of a multilayer wiring board according to the present invention, and FIG. 2 is an enlarged cross-sectional view showing a main part of the multilayer wiring board shown in FIG. 1 and 2, 1 is a resin insulating layer, 2 is a thin film wiring layer, 3 is a through conductor, and 4 is a thin film multilayer portion. A thin film multilayer portion 4 is constituted by the resin insulating layer 1, the thin film wiring layer 2 and the through conductor 3, and the thin film multilayer portion 4 is laminated on the upper surface of the ceramic substrate 6 to constitute the multilayer wiring substrate 5.

樹脂絶縁層1は、例えば長方形状や正方形状等の四角形状、または円形状等で、厚みが約25μm程度の層状に形成されている。また、図1に示す例において、複数の樹脂絶縁層1は、平面視でそれぞれの外形寸法および形状が同様であり、多層配線基板5の外側面に凹凸が生じないように積層されている。積層された複数の樹脂絶縁層1は、薄膜多層部4における絶縁性の基体部分(符号なし)となるものであり、例えば上面に半導体素子等の電子部品(図示せず)が搭載され、下面がセラミック基板6等の剛性の高い基板上に取着される。   The resin insulating layer 1 is, for example, a rectangular shape such as a rectangular shape or a square shape, or a circular shape, and is formed in a layer shape having a thickness of about 25 μm. In the example shown in FIG. 1, the plurality of resin insulating layers 1 have the same outer dimensions and shapes in plan view, and are laminated so that the outer surface of the multilayer wiring board 5 is not uneven. The plurality of laminated resin insulation layers 1 serve as an insulating base portion (not indicated) in the thin film multilayer portion 4. For example, an electronic component (not shown) such as a semiconductor element is mounted on the top surface, and the bottom surface Is mounted on a highly rigid substrate such as the ceramic substrate 6.

これらの樹脂絶縁層1は、例えば、エポキシ樹脂やポリイミド樹脂,ポリアミドイミド樹脂,ポリエーテルイミド樹脂,液晶ポリマー等の樹脂材料により形成されている。   These resin insulation layers 1 are made of, for example, a resin material such as an epoxy resin, a polyimide resin, a polyamideimide resin, a polyetherimide resin, or a liquid crystal polymer.

樹脂絶縁層1を厚み方向に貫通する貫通導体3および薄膜配線層2は、多層配線基板5に搭載される半導体素子等の電極をプリント回路基板等の外部の電気回路(図示せず)に
電気的に接続するための導電路となる部分である。例えば、薄膜多層部4の上面の中央部に半導体素子を搭載するとともに、その電極を薄膜多層部4の最上面に露出する薄膜配線層2にはんだやプローブ等を介して電気的に接続すれば、半導体素子の電極が薄膜配線層2および貫通導体3を介して薄膜多層部4の最下面の薄膜配線層2と導通される。そして、この薄膜多層部4の最下面の薄膜配線層2を、例えばセラミック基板6にあらかじめ形成しておいた配線導体7を介して外部の電気回路に電気的に接続すれば、半導体素子の電極と外部の電気回路とが電気的に接続される。
The through conductor 3 and the thin film wiring layer 2 penetrating the resin insulating layer 1 in the thickness direction electrically connect electrodes such as semiconductor elements mounted on the multilayer wiring board 5 to an external electric circuit (not shown) such as a printed circuit board. This is a portion that becomes a conductive path for connection. For example, when a semiconductor element is mounted on the center of the upper surface of the thin film multilayer portion 4 and the electrode is electrically connected to the thin film wiring layer 2 exposed on the uppermost surface of the thin film multilayer portion 4 via solder, a probe, or the like. The electrodes of the semiconductor element are electrically connected to the lowermost thin film wiring layer 2 of the thin film multilayer portion 4 through the thin film wiring layer 2 and the through conductor 3. Then, if the thin-film wiring layer 2 on the lowermost surface of the thin-film multilayer part 4 is electrically connected to an external electric circuit through a wiring conductor 7 previously formed on the ceramic substrate 6, for example, the electrode of the semiconductor element And an external electric circuit are electrically connected.

なお、図1に示す例においては、セラミック基板6も、平面視で薄膜多層部4と同様の形状および寸法で形成されている。つまり、多層配線基板5は、例えば全体が四角板状や円板状等であり、上面が、実装や電気チェックを行なう半導体素子等の電子部品を搭載(半導体素子を多層配線基板5に電気的および機械的に接続して半導体装置とするための実装、または半導体素子に対して電気的なチェックを施すための一時的な載置)するための部位として使用される。半導体素子としては、ICやLSI等の半導体集積回路素子や、半導体基板の表面に微小な電子機械機構が形成されてなるマイクロマシン(いわゆるMEMS素子)等が挙げられる。   In the example shown in FIG. 1, the ceramic substrate 6 is also formed in the same shape and dimensions as the thin film multilayer portion 4 in plan view. In other words, the multilayer wiring board 5 has, for example, a square plate shape or a disk shape as a whole, and an upper surface is mounted with an electronic component such as a semiconductor element for mounting and electrical checking (the semiconductor element is electrically connected to the multilayer wiring board 5). It is also used as a part for mounting mechanically to form a semiconductor device, or for temporary placement for electrical checking of semiconductor elements. Examples of semiconductor elements include semiconductor integrated circuit elements such as ICs and LSIs, and micromachines (so-called MEMS elements) in which a minute electromechanical mechanism is formed on the surface of a semiconductor substrate.

薄膜配線層2は、例えば、銅や銀,パラジウム,金,白金,アルミニウム,クロム,ニッケル,コバルト,チタン等の金属材料またはこれらの金属材料の合金材料からなる。   The thin film wiring layer 2 is made of, for example, a metal material such as copper, silver, palladium, gold, platinum, aluminum, chromium, nickel, cobalt, titanium, or an alloy material of these metal materials.

また、薄膜配線層2は、上記の金属材料をスパッタリング法や蒸着法,めっき法等の方法で樹脂絶縁層1の上面等の表面に被着させ、必要に応じてマスキングやエッチング等のトリミング加工を施すことによって、所定のパターンで樹脂絶縁層1の表面に被着させることができる。   The thin-film wiring layer 2 is formed by depositing the above metal material on the surface such as the upper surface of the resin insulating layer 1 by a sputtering method, a vapor deposition method, a plating method, or the like, and trimming processing such as masking or etching as necessary. Can be applied to the surface of the resin insulating layer 1 in a predetermined pattern.

貫通導体3は、例えば上記の樹脂絶縁層1の一部にCOレーザやYAGレーザによるレーザ加工,RIE(リアクティブ イオン エッチング)または溶剤によるエッチング等の孔あけ加工で厚み方向に貫通する貫通孔(符号なし)を形成し、この貫通孔内に貫通導体3となる導体材料を、スパッタリング法や蒸着法,めっき法,導体ペーストの充填等の方法で充填することによって形成することができる。 The through conductor 3 is, for example, a through hole penetrating in a thickness direction in a part of the resin insulating layer 1 by drilling such as laser processing using a CO 2 laser or YAG laser, RIE (reactive ion etching), or etching using a solvent. (No symbol) is formed, and a conductive material to be the through conductor 3 is filled in the through hole by a method such as sputtering, vapor deposition, plating, or filling of a conductive paste.

このような貫通導体3も、例えば、銅や銀,パラジウム,金,白金,アルミニウム,クロム,ニッケル,コバルト,チタン,タングステン等の金属材料またはこれらの金属材料の合金材料からなるものとすることができるが、後述する、上下に連続する複数の樹脂絶縁層1にわたって平面視で互いに重なる位置に形成された貫通導体3については、平面視で重なる複数の貫通導体3のうちの一部が錫を主成分とする金属材料からなり、他が銅を主成分とする金属材料からなるものとする必要がある。   Such a through conductor 3 may also be made of a metal material such as copper, silver, palladium, gold, platinum, aluminum, chromium, nickel, cobalt, titanium, tungsten, or an alloy material of these metal materials. However, with respect to the through conductors 3 that are formed at positions that overlap each other in a plan view across a plurality of resin insulating layers 1 that are continuous vertically, a part of the plurality of through conductors 3 that overlap in a plan view is tin. It is necessary to be made of a metal material having a main component and the other being made of a metal material having copper as a main component.

すなわち、本発明の多層配線基板5においては、薄膜多層部4の貫通導体3が、上下に連続する複数の樹脂絶縁層1にわたって平面視で互いに重なる位置に形成されたものを含んでおり、平面視で重なる複数の貫通導体3のうちの一部が錫を主成分とする金属材料からなる貫通導体3aであり、他が銅を主成分とする金属材料からなる貫通導体3bである。   That is, in the multilayer wiring board 5 of the present invention, the through conductor 3 of the thin film multilayer portion 4 includes a plurality of resin insulating layers 1 that are vertically continuous and are formed at positions overlapping each other in plan view. A part of the plurality of through conductors 3 overlapping in view is a through conductor 3a made of a metal material mainly composed of tin, and the other is a through conductor 3b made of a metal material mainly composed of copper.

このように、上下に連続する複数の樹脂絶縁層1にわたって、平面視でそれぞれの貫通導体3を互いに重ならせた、つまり複数の貫通導体3を上下に(必要に応じて薄膜配線層2を介して)連続させた、いわゆるスタックドビアを有する薄膜多層部4においては、貫通導体3と樹脂絶縁層1との間に生じる熱応力を、銅よりも弾性率が低い錫を主成分とする金属材料からなる貫通導体3aによって効果的に緩和することができる。そのため、貫通導体3(特に、貫通導体3の内部のうち、特に薄膜配線層2と接する部分の端部分等)
や貫通導体3と薄膜配線層2との界面等にクラック等の機械的な破壊が生じるようなことが抑制される。また、電気抵抗が低い銅(錫の抵抗率が約11.5Ω・mであるのに対し、銅の抵抗率が約1.7Ω・cmである。)を主成分とする金属材料からなる貫通導体3bによ
って貫通導体3全体の電気抵抗を低く抑えることができる。
In this way, the through conductors 3 are overlapped with each other in a plan view over the plurality of resin insulating layers 1 that are continuous in the vertical direction, that is, the plurality of through conductors 3 are arranged vertically (if necessary, the thin film wiring layer 2 is disposed). In the thin film multi-layer part 4 having a so-called stacked via that is continuous), the thermal stress generated between the through conductor 3 and the resin insulating layer 1 is a metal material mainly composed of tin having a lower elastic modulus than copper. The through conductor 3a can be effectively relaxed. Therefore, the through conductor 3 (particularly, the end portion of the inside of the through conductor 3 that is in contact with the thin film wiring layer 2 in particular)
In addition, the occurrence of mechanical breakdown such as cracks at the interface between the through conductor 3 and the thin film wiring layer 2 is suppressed. Further, the through conductor 3b made of a metal material whose main component is copper having a low electric resistance (the resistivity of tin is about 11.5 Ω · m, whereas the resistivity of copper is about 1.7 Ω · cm). Thus, the electrical resistance of the entire through conductor 3 can be kept low.

また、このような平面視で重なる位置に形成された貫通導体3a,3bを有することによって、薄膜多層部4および多層配線基板5全体の平面視における面積を小さく抑えることができる。   Further, by having the through conductors 3a and 3b formed at such overlapping positions in plan view, the area of the thin film multilayer portion 4 and the multilayer wiring board 5 as a whole can be kept small.

この場合、銅のヤング率が約129.8GPaであるのに対して、錫のヤング率が約49.9G
Paであり、銅に比べて錫の方が同じ応力に対して変形量が約2.6倍大きい。そのため、
上記のような応力の緩和を有効に行なわせることができる。
In this case, the Young's modulus of copper is approximately 129.8 GPa, whereas the Young's modulus of tin is approximately 49.9 GPa.
The deformation amount is about 2.6 times larger for tin than for copper. for that reason,
The above stress can be effectively relaxed.

なお、銅を主成分とする金属材料は、銅を20質量%程度以上含むものであることが、貫通導体3における電気抵抗を効果的に低く抑える上で好ましい。銅を主成分とする金属材料において、銅に添加する材料としては、例えばチタンやクロム,ニッケル,コバルト等を挙げることができる。   In addition, it is preferable that the metal material which has copper as a main component contains about 20 mass% or more of copper, in order to suppress the electrical resistance in the through-conductor 3 effectively low. In the metal material mainly composed of copper, examples of the material added to copper include titanium, chromium, nickel, and cobalt.

また、錫を主成分とする金属材料は、錫を質量90%程度以上含むものであることが、貫通導体3における応力の緩和を効果的なものとする上で好ましい。錫を主成分とする金属材料において、錫に添加する金属材料としては銀や銅,ビスマス,インジウム等を用いることができる。このような金属材料を添加した錫としては、例えば低融点ろう材(いわゆる鉛フリーはんだ等)となるものを用いることもできる。例えば、錫に銀を5質量%程度添加した場合であれば、錫が100質量%である場合に比べてウィスカ発生防止等の効果を
得ることができる。
Moreover, it is preferable that the metal material containing tin as a main component contains tin in an amount of about 90% or more in order to effectively relieve stress in the through conductor 3. In the metal material mainly composed of tin, silver, copper, bismuth, indium or the like can be used as the metal material added to tin. As tin added with such a metal material, for example, a material that becomes a low melting point brazing material (so-called lead-free solder or the like) can be used. For example, when about 5% by mass of silver is added to tin, effects such as prevention of whisker generation can be obtained as compared with the case where tin is 100% by mass.

貫通導体3は、電気抵抗を低く抑える上では横断面(電流が流れる方向に直交する方向における断面)の面積が大きいほど好ましく、多層配線部4の外形の寸法を小さく抑える上では横断面が小さいほど好ましい。また、貫通孔導体3のうち特に上下に連続する複数の樹脂絶縁層1にわたって平面視で互いに重なる位置に形成されているもの3a,3bについては、上記のように応力を緩和してクラックを抑制する上では円形が好ましい。   The through conductor 3 preferably has a larger cross-sectional area (cross-section in a direction perpendicular to the direction of current flow) in order to keep electric resistance low, and the cross-section is small in order to keep the outer dimensions of the multilayer wiring part 4 small. The more preferable. Further, among the through-hole conductors 3 which are formed at positions where they overlap each other in plan view over a plurality of resin insulating layers 1 which are continuous in the vertical direction, stress is relieved and cracks are suppressed as described above. For this purpose, a circular shape is preferable.

このような貫通導体3の横断面については、上記の要件を考慮しながら、適宜設定すればよく、例えば、貫通導体3の長さ(樹脂絶縁層1の厚み方向の寸法)が15〜30μm程度の場合であれば、直径が30〜50μm程度の円形状や、長軸の長さが30〜50μm程度で短軸の長さが30〜50μm程度の楕円形状等とすればよい。   The transverse cross section of such a through conductor 3 may be appropriately set in consideration of the above requirements. For example, the length of the through conductor 3 (the dimension in the thickness direction of the resin insulating layer 1) is about 15 to 30 μm. In this case, a circular shape with a diameter of about 30 to 50 μm, an elliptical shape with a major axis length of about 30 to 50 μm and a minor axis length of about 30 to 50 μm may be used.

なお、上下に連続する複数の樹脂絶縁層1にわたって平面視で互いに重なる位置に形成されている貫通導体3a,3bについて、図1においては、3層の樹脂絶縁層1においてそれぞれの貫通導体3a,3bが平面視で互いに重なる位置に形成された例を示しているが、4層以上または2層の樹脂絶縁層1においてそれぞれの貫通導体3a,3bが平面視で互いに重なる位置に形成されていてもよい。このような場合でも、平面視で互いに重なる上下の貫通導体3の一部(少なくとも1つ樹脂絶縁層1の貫通導体3)が錫を主成分とする金属材料からなるもの3aであれば、全部の貫通導体3を銅を主成分とする金属材料からなるもの3bとした場合に比べて、応力を緩和して貫通導体3等におけるクラックの発生を低減することができる。   In addition, about the penetration conductors 3a and 3b formed in the position which mutually overlaps by planar view over the several resin insulation layer 1 continuous up and down, in FIG. 1, in the resin insulation layer 1 of three layers, each penetration conductor 3a, In the example, 3b is formed in a position overlapping with each other in plan view, but in each of the four or more resin insulating layers 1, the through conductors 3a and 3b are formed in positions overlapping each other in plan view. Also good. Even in such a case, all of the upper and lower through conductors 3 that overlap each other in plan view (at least one through conductor 3 of the resin insulating layer 1) are made of a metal material mainly composed of tin, as long as they are all 3a. Compared to the case where the through conductor 3 is made of a metal material 3b mainly composed of copper, the stress can be relaxed and the occurrence of cracks in the through conductor 3 and the like can be reduced.

ただし、薄膜多層部4において、上下に連続する複数の樹脂絶縁層1にわたって平面視で重なる位置に貫通導体3が形成されている部分においては、上下方向の中央部分に位置する樹脂絶縁層1に、錫を主成分とする金属材料からなる貫通導体3aを配置することが
好ましい。これは、上下の貫通導体3が平面視で重なる位置に形成されている場合には、上下方向の中央部に位置する樹脂絶縁層1の貫通導体3において上下両方向からの熱応力が集中するため、この中央部に位置する樹脂絶縁層1の貫通導体3に作用する応力が大きくなる傾向があり、この部分で応力をより効果的に緩和することが、貫通導体3や貫通導体3と薄膜配線層2との界面におけるクラック等の機械的な破壊を抑制する上で効果的であるためである。
However, in the thin film multilayer portion 4, in the portion where the through conductor 3 is formed at a position overlapping in a plan view over a plurality of resin insulating layers 1 that are continuous in the vertical direction, the resin insulating layer 1 positioned in the central portion in the vertical direction is used. It is preferable to arrange the through conductor 3a made of a metal material mainly composed of tin. This is because when the upper and lower penetrating conductors 3 are formed so as to overlap with each other in plan view, thermal stress from both the upper and lower directions concentrates on the penetrating conductor 3 of the resin insulating layer 1 located at the center in the vertical direction. The stress acting on the through conductor 3 of the resin insulating layer 1 located in the center portion tends to increase, and the stress can be more effectively relieved in this portion. This is because it is effective in suppressing mechanical breakage such as cracks at the interface with the layer 2.

すなわち、本発明の多層配線基板5において、上下に連続する3層以上の樹脂絶縁層1にわたって平面視で互いに重なる位置に貫通導体3(3a,3b)が形成されており、これらの貫通導体3のうちの上下方向の中央部分に位置する樹脂絶縁層1に形成されているものが錫を主成分とする金属材料からなり、他のものが銅を主成分とする金属材料からなる場合には、貫通導体3における熱応力の緩和をより一層効果的に行なわせることができる。   That is, in the multilayer wiring board 5 of the present invention, the through conductors 3 (3a, 3b) are formed at positions where they overlap each other in a plan view over the three or more continuous resin insulating layers 1 in the vertical direction. When the one formed in the resin insulating layer 1 located in the central portion in the vertical direction is made of a metal material mainly containing tin, and the other is made of a metal material mainly containing copper The thermal stress in the through conductor 3 can be more effectively reduced.

そして、上下に連続する3層以上の樹脂絶縁層1にわたって、それぞれの貫通導体3が互いに平面視で重なっているときに、応力が集中しやすい中央の樹脂絶縁層1の、錫を主成分とする金属材料からなる貫通導体3aにおいて弾性率を低く抑えることができるため、貫通導体3と樹脂絶縁層1との熱膨張率の差等に起因する熱応力の緩和をより有効に行なわせることができる。   Then, when the respective through conductors 3 overlap each other in plan view over the three or more layers of resin insulating layers 1 that are continuous in the vertical direction, the main resin insulating layer 1 in which stress is likely to concentrate is mainly composed of tin. Since the elastic modulus can be kept low in the through conductor 3a made of a metallic material, the thermal stress due to the difference in thermal expansion coefficient between the through conductor 3 and the resin insulating layer 1 can be more effectively performed. it can.

この場合、樹脂絶縁層1の厚みが、前述した樹脂材料による形成が容易な約15〜30μm程度である場合には、個々の貫通導体3の長さも約15〜30μm程度になる。そして、このような場合には、上下に連続する樹脂絶縁層1について、5層程度までであれば、それぞれの貫通導体3が平面視で互いに重なる位置に形成されていても、上下方向の中央部に位置する1層の樹脂絶縁層1において錫を主成分とする金属材料からなる貫通導体3aを形成すれば、熱応力をより効果的に緩和することができる。   In this case, when the thickness of the resin insulating layer 1 is about 15 to 30 μm which can be easily formed by the resin material described above, the length of each through conductor 3 is also about 15 to 30 μm. In such a case, with respect to the resin insulating layer 1 that is vertically continuous, up to about five layers, even if the through conductors 3 are formed at positions overlapping each other in plan view, the center in the vertical direction If the through conductor 3a made of a metal material containing tin as a main component is formed in the single resin insulating layer 1 located in the portion, the thermal stress can be alleviated more effectively.

以上のような薄膜多層部4を有する多層配線基板5は、例えば以下のようにして作製することができる。   The multilayer wiring board 5 having the thin film multilayer portion 4 as described above can be manufactured, for example, as follows.

まず、セラミック基板6等の比較的剛性が高い基板を準備する。この基板は、剛性が低い薄膜多層部4をその上面に被着させて剛性の高い多層配線基板5とするためのものである。セラミック基板6は、例えば酸化アルミニウム質焼結体や窒化アルミニウム質焼結体,ムライト質焼結体,ガラスセラミック焼結体,ガラス母材中に結晶成分を析出させた結晶化ガラスまたは雲母やチタン酸アルミニウム等の微結晶焼結体からなる、金属材料とほぼ同等の精密な機械加工が可能なセラミック材料(いわゆるマシナブルセラミックス)等のセラミック材料により形成されている。   First, a substrate having relatively high rigidity such as a ceramic substrate 6 is prepared. This substrate is used for forming a multilayer wiring board 5 having high rigidity by depositing a thin film multilayer portion 4 having low rigidity on the upper surface thereof. The ceramic substrate 6 is made of, for example, an aluminum oxide sintered body, an aluminum nitride sintered body, a mullite sintered body, a glass ceramic sintered body, crystallized glass in which crystal components are precipitated in a glass base material, mica, titanium, or the like. It is made of a ceramic material such as a ceramic material (so-called machinable ceramics), which is made of a microcrystalline sintered body such as aluminum oxide, and can be machined substantially as accurately as a metal material.

セラミック基板6は、例えば酸化アルミニウム質焼結体からなる場合であれば、次のようにして製作することができる。すなわち、酸化アルミニウムおよび酸化ケイ素等の原料粉末に適当な有機バインダおよび有機溶剤を添加混合して作製したスラリーをドクターブレード法やリップコータ法等のシート成形技術でシート状に成形することによってセラミックグリーンシートを作製して、その後、セラミックグリーンシートを切断加工や打ち抜き加工によって適当な形状および寸法とするとともに、これを約1300〜1500℃の温度で焼成することによって製作することができる。   If the ceramic substrate 6 is made of, for example, an aluminum oxide sintered body, it can be manufactured as follows. That is, a ceramic green sheet is formed by forming a slurry prepared by adding and mixing an appropriate organic binder and organic solvent to raw material powders such as aluminum oxide and silicon oxide into a sheet shape by a sheet forming technique such as a doctor blade method or a lip coater method. After that, the ceramic green sheet can be made into an appropriate shape and size by cutting or punching and fired at a temperature of about 1300 to 1500 ° C.

また、セラミック基板6には、必要に応じて配線導体7を、タングステンやモリブデン,マンガン,銅,銀,パラジウム,金,白金等の金属材料を用いて、メタライズ法やめっき法等の方法で被着させておく。配線導体7は、例えばタングステンからなる場合であれば、タングステンのペーストをセラミック基板6となるセラミックグリーンシートの表面
やあらかじめ形成しておいた貫通孔の内部等に塗布または充填し、セラミックグリーンシートと同時焼成することによって被着させることができる。
The ceramic substrate 6 is covered with a wiring conductor 7 by a metallizing method or a plating method using a metal material such as tungsten, molybdenum, manganese, copper, silver, palladium, gold, or platinum, if necessary. Let me wear it. If the wiring conductor 7 is made of tungsten, for example, a paste of tungsten is applied or filled on the surface of the ceramic green sheet to be the ceramic substrate 6 or the inside of a through-hole formed in advance, and the ceramic green sheet It can be deposited by co-firing.

次に、セラミック基板6の上面に、上記の樹脂材料(ポリイミド樹脂やポリアミドイミド樹脂,ポリエーテルイミド樹脂,液晶ポリマー等)の未硬化物を層状に塗布して硬化させ樹脂絶縁層1を被着させるとともに、樹脂絶縁層1の一部を厚み方向に貫通させるように、COレーザやYAGレーザによるレーザ加工,RIE(リアクティブ イオン エッチング)または溶剤によるエッチング等の孔あけ加工を施して貫通孔を形成する。その後、樹脂絶縁層1の上面および貫通孔の内部に上記の金属材料(銅や銀,パラジウム,金,白金,アルミニウム,クロム,ニッケル,コバルト,チタン,タングステン)をスパッタリング法や蒸着法,めっき法等の方法でパターン状に被着または充填することよって、薄膜配線層2および貫通導体3を形成する。この際に、貫通導体3のうち、上下に連続する複数の樹脂絶縁層1にわたって平面視で互いに重なる位置に形成するものについては、一部を、錫を主成分とする金属材料で形成する必要があり、他のものを、銅を主成分とする金属材料で形成する必要がある。 Next, an uncured product of the above resin material (polyimide resin, polyamideimide resin, polyetherimide resin, liquid crystal polymer, etc.) is applied to the upper surface of the ceramic substrate 6 in a layered form and cured to deposit the resin insulation layer 1 And through-hole processing such as laser processing using a CO 2 laser or YAG laser, RIE (reactive ion etching), or etching using a solvent so that a part of the resin insulating layer 1 is penetrated in the thickness direction. Form. Thereafter, the above metal material (copper, silver, palladium, gold, platinum, aluminum, chromium, nickel, cobalt, titanium, tungsten) is applied to the upper surface of the resin insulating layer 1 and the inside of the through hole by sputtering, vapor deposition or plating. The thin film wiring layer 2 and the through conductor 3 are formed by depositing or filling in a pattern by a method such as the above. At this time, among the through conductors 3 that are formed at positions that overlap each other in a plan view across a plurality of resin insulating layers 1 that are continuous in the vertical direction, a part of the through conductors 3 must be formed of a metal material mainly composed of tin. Others need to be formed of a metal material mainly composed of copper.

錫を主成分とする金属材料からなる貫通導体3aは、例えば錫−銀系の低融点ろう材(いわゆる鉛フリーはんだ)のペーストを上記樹脂絶縁層1の貫通孔内に充填して加熱すれば、形成することができる。   The through conductor 3a made of a metal material mainly composed of tin can be heated by filling a through hole of the resin insulating layer 1 with, for example, a paste of a tin-silver low melting point brazing material (so-called lead-free solder). Can be formed.

また、銅を主成分とする金属材料からなる貫通導体3bは、例えば、樹脂絶縁層1の内側面にスパッタリング法によってチタン等の薄膜金属層を被着させておき、この薄膜金属層上にめっき法によって銅を被着させて貫通孔を銅のめっき層で充填することによって形成することができる。   In addition, the through conductor 3b made of a metal material mainly composed of copper, for example, is formed by depositing a thin film metal layer such as titanium on the inner surface of the resin insulating layer 1 by a sputtering method, and plating on the thin film metal layer. It can be formed by depositing copper by the method and filling the through hole with a copper plating layer.

そして、この樹脂絶縁層1,薄膜配線層2および貫通導体3を形成する工程を繰り返せば、セラミック基板6の上面に薄膜多層部4が配置され、薄膜多層部4において、上下に連続する複数の樹脂絶縁層1にわたって平面視で互いに重なる位置に、錫を主成分とする金属材料からなる貫通導体3aと、銅を主成分とする貫通導体3bとが形成された多層配線基板5を製作することができる。   And if this process of forming the resin insulation layer 1, the thin film wiring layer 2 and the through conductor 3 is repeated, the thin film multilayer portion 4 is disposed on the upper surface of the ceramic substrate 6, and in the thin film multilayer portion 4, a plurality of continuous vertical layers are provided. Manufacturing a multilayer wiring board 5 in which a through conductor 3a made of a metal material mainly composed of tin and a through conductor 3b mainly composed of copper are formed at positions overlapping with each other in a plan view over the resin insulating layer 1. Can do.

本発明の多層配線基板5においては、上記いずれの構成においても、例えば図3に示すように、貫通導体3のうちの錫を主成分とする金属材料からなるもの3aの一端面が位置する樹脂絶縁層1の層間において、上下の樹脂絶縁層1同士が、貫通導体3(3a,3b)に対応した位置に貫通孔(符号なし)を有する樹脂接着層8を介して互いに接着されているとともに、上下の樹脂絶縁層1の貫通導体3(3a,3b)同士が、樹脂接着層8の貫通孔内に充填された錫を主成分とする金属材料9によって互いに電気的に接続されている場合には、多層配線基板5としての生産性を高める上で有効である。   In the multilayer wiring board 5 of the present invention, in any of the above-described configurations, for example, as shown in FIG. 3, the resin in which one end surface of the through conductor 3 made of a metal material mainly composed of tin is located. Between the insulating layers 1, the upper and lower resin insulating layers 1 are bonded to each other via a resin adhesive layer 8 having a through hole (not indicated) at a position corresponding to the through conductor 3 (3a, 3b). When the through conductors 3 (3a, 3b) of the upper and lower resin insulation layers 1 are electrically connected to each other by a metal material 9 whose main component is tin filled in the through holes of the resin adhesive layer 8 Is effective in improving the productivity of the multilayer wiring board 5.

すなわち、貫通導体3(3a,3b)を有する複数の樹脂絶縁層1を、錫を主成分とする金属材料で貫通導体3aが形成された部分で上下に分けて作り、これらを樹脂接着層8で接着して多層配線基板5を生産することができるため、多層配線基板5としての生産性を高めることが容易である。言い換えれば、薄膜多層部4を、例えばセラミック基板6の上面に順次樹脂絶縁層1等を積層させるのではなく、これらの樹脂絶縁層1等を複数のブロックに分けて並行して製作することができるので、生産性を高めることができる。   That is, a plurality of resin insulation layers 1 having penetrating conductors 3 (3a, 3b) are formed separately in the upper and lower portions at the portion where the penetrating conductor 3a is formed of a metal material mainly composed of tin, and these are formed as the resin adhesive layer 8. Since the multilayer wiring board 5 can be produced by bonding with the above, it is easy to increase the productivity as the multilayer wiring board 5. In other words, instead of sequentially laminating the resin insulation layer 1 and the like on the upper surface of the ceramic substrate 6 for example, the thin film multilayer portion 4 can be manufactured in parallel by dividing the resin insulation layer 1 and the like into a plurality of blocks. This can increase productivity.

また、錫(融点:約232℃)を主成分とする金属材料9の融点が比較的低いため、上下
の貫通導体3(3a,3b)を接続させるために樹脂接着層8の貫通孔内に金属材料9を溶融させて充填させることも容易である。この場合、錫を主成分とする金属材料9(以下、単に金属材料9という場合がある)は、例えば錫−銀はんだを用いることができ、銅を
主成分とする金属材料からなる貫通導体3bに対する接合も容易である。
Further, since the melting point of the metal material 9 mainly composed of tin (melting point: about 232 ° C.) is relatively low, the metal material 9 in the through hole of the resin adhesive layer 8 is connected to connect the upper and lower through conductors 3 (3a, 3b). It is also easy to melt and fill the metal material 9. In this case, for example, tin-silver solder can be used as the metal material 9 containing tin as a main component (hereinafter sometimes simply referred to as metal material 9), and the through conductor 3b made of a metal material containing copper as a main component. Bonding to is easy.

樹脂接着層8としては、樹脂絶縁層1と同様の樹脂材料を用いることができるが、硬化温度がより低いものが好適に使用される。これは、錫を主成分とする金属材料9を樹脂接着層8内に配置した状態で樹脂接着層8を熱硬化させるときの金属材料9の変形の抑制や、作業性等を考慮することによる。この場合、樹脂絶縁層1と樹脂接着層8との間で熱膨張率が異なり、熱応力が生じる可能性がある。また、樹脂接着層8の貫通孔は、樹脂絶縁層1の場合と同様に、レーザ加工やRIE,溶剤によるエッチング等の方法で形成することができる。   As the resin adhesive layer 8, the same resin material as that of the resin insulating layer 1 can be used, but one having a lower curing temperature is preferably used. This is due to the suppression of deformation of the metal material 9 when the resin adhesive layer 8 is thermoset with the metal material 9 mainly composed of tin disposed in the resin adhesive layer 8, workability, and the like. . In this case, the coefficient of thermal expansion differs between the resin insulating layer 1 and the resin adhesive layer 8, and thermal stress may occur. Further, the through hole of the resin adhesive layer 8 can be formed by a method such as laser processing, RIE, etching with a solvent, and the like, as in the case of the resin insulating layer 1.

樹脂接着層8内に充填された錫を主成分とする金属材料9は、錫を主成分とする貫通導体3aと同様のものでもよい。この場合には、例えば、貫通導体3aとなる錫を主成分とする金属材料(低融点ろう材のペースト等)を樹脂絶縁層1の貫通孔内に充填する際に、その金属材料が貫通孔の上端からはみ出すような量としておいて、このはみ出した金属材料を樹脂接着層8の貫通孔内に充填させるようにすれば、樹脂接着層8の貫通孔への金属材料の充填が容易となるため、多層配線基板5の生産性をより高くすることができる。   The metal material 9 mainly composed of tin filled in the resin adhesive layer 8 may be the same as the through conductor 3a mainly composed of tin. In this case, for example, when filling the through hole of the resin insulating layer 1 with a metal material (a low melting point brazing paste or the like) containing tin as a main component and serving as the through conductor 3a, If the protruding metal material is filled into the through-holes of the resin adhesive layer 8 with the amount protruding from the upper end of the resin, the metal material can be easily filled into the through-holes of the resin adhesive layer 8. Therefore, the productivity of the multilayer wiring board 5 can be further increased.

また、この場合には、例えば図3に示すように、上下の貫通孔(樹脂絶縁層1の貫通孔と樹脂接着層8の貫通孔)の互いに接続し合う部分における開口を他の部分よりも広くしておいた方が、低融点ろう材のペースト等の充填をより容易とする上で好ましい。この場合には、樹脂接着層8からその下側に接する樹脂絶縁層1にかけて、錫を主成分とする金属材料からなる一続きの貫通導体(符号なし)が形成されているとみなすこともできる。そして、この一続きの貫通導体を介して、銅を主成分とする金属材料からなる上下の貫通導体3bが互いに電気的に接続されている。   Further, in this case, for example, as shown in FIG. 3, the opening in the connecting portion of the upper and lower through holes (the through hole of the resin insulating layer 1 and the through hole of the resin adhesive layer 8) is made more than the other portions. It is preferable to make it wide in order to more easily fill the paste with a low melting point brazing material. In this case, it can be considered that a continuous through conductor (no symbol) made of a metal material mainly composed of tin is formed from the resin adhesive layer 8 to the resin insulating layer 1 in contact therewith. . The upper and lower through conductors 3b made of a metal material mainly composed of copper are electrically connected to each other through the continuous through conductor.

なお、樹脂接着層8の錫を主成分とする金属材料9と貫通導体3との電気的な接続は、必ずしも互いに直接に接続させて行なわせる必要はなく、間に薄膜配線層2を介在させて行なうようにしてもよい。例えば、図3に示す例において、金属材料9の上側の端面は薄膜配線層2と直接に接続され、この薄膜配線層2を介して上側の貫通導体3(3b)と電気的に接続されている。   It should be noted that the electrical connection between the metal material 9 mainly composed of tin of the resin adhesive layer 8 and the through conductor 3 is not necessarily performed by direct connection to each other, and the thin film wiring layer 2 is interposed therebetween. May be performed. For example, in the example shown in FIG. 3, the upper end surface of the metal material 9 is directly connected to the thin film wiring layer 2 and is electrically connected to the upper through conductor 3 (3b) via the thin film wiring layer 2. Yes.

また、本発明の多層配線基板5は、上下の樹脂絶縁層1同士が樹脂接着層8を介して互いに接着されているとともに、上下の樹脂絶縁層1の貫通導体3同士が金属材料9によって互いに電気的に接続されている上記構成において、金属材料9の側面の少なくとも一部が凸状に湾曲している場合には、金属材料9と貫通導体3および薄膜配線層2との接続信頼性を向上させることができる。これについて、他の実施形態として以下に説明する。なお、金属材料9の側面を上記のように湾曲させるためには、この金属材料9が充填されている樹脂接着層8の貫通孔の内側面も同様に湾曲している必要がある。   In the multilayer wiring board 5 of the present invention, the upper and lower resin insulation layers 1 are bonded to each other via a resin adhesive layer 8, and the through conductors 3 of the upper and lower resin insulation layers 1 are bonded to each other by a metal material 9. In the above electrically connected configuration, when at least a part of the side surface of the metal material 9 is curved in a convex shape, the connection reliability between the metal material 9 and the through conductor 3 and the thin film wiring layer 2 is improved. Can be improved. This will be described below as another embodiment. In order to bend the side surface of the metal material 9 as described above, the inner side surface of the through hole of the resin adhesive layer 8 filled with the metal material 9 needs to be similarly curved.

本発明の多層配線基板5の実施の形態の他の例を図4に示す。なお、図4(a)〜(c)は、それぞれ本発明の多層配線基板5の実施の形態の他の例における要部を示す要部断面図である。図4において図1および図3と同様の部位には同様の符号を付している。   Another example of the embodiment of the multilayer wiring board 5 of the present invention is shown in FIG. 4A to 4C are main part cross-sectional views showing main parts in other examples of the embodiment of the multilayer wiring board 5 of the present invention. 4, parts similar to those in FIGS. 1 and 3 are given the same reference numerals.

図4(a)に示すように、樹脂接着層8内に充填された錫を主成分とする金属材料9の側面の一部が凸状に湾曲している場合には、樹脂接着層8と金属材料9との間に生じる熱応力が、樹脂接着層8の貫通孔内に充填された錫を主成分とする金属材料9に対してせん断応力として作用することを抑制することができる。これは、上記応力が金属材料9に作用したときに、湾曲した側面に沿って斜め方向に分散され、せん断応力として作用する成分が小さく抑えられることによる。   As shown in FIG. 4A, when a part of the side surface of the metal material 9 mainly composed of tin filled in the resin adhesive layer 8 is curved in a convex shape, the resin adhesive layer 8 and It can suppress that the thermal stress which arises between the metal materials 9 acts as a shear stress with respect to the metal material 9 which has as a main component the tin with which the through-hole of the resin contact bonding layer 8 was filled. This is because when the stress acts on the metal material 9, it is dispersed in an oblique direction along the curved side surface, and the component acting as a shear stress is suppressed to be small.

したがって、応力による金属材料9と薄膜配線層2との間の亀裂等をより確実に抑制して、金属材料9と薄膜配線層2との接続信頼性をさらに向上させることができる。   Therefore, cracks between the metal material 9 and the thin film wiring layer 2 due to stress can be more reliably suppressed, and the connection reliability between the metal material 9 and the thin film wiring layer 2 can be further improved.

なお、図4(a)に示す例は、図3に示すような傾斜した金属材料9の側面のうち下側が凸状に湾曲した例である。この例において、湾曲した側面のうち最も外側に出ている部分(最突出部)は金属材料9の側面の上下方向の途中にあり、この最突出部から下端にかけて再び金属材料9の中心方向に曲がっている。つまり、側面の上下方向の途中の一部が外側に突出して凸部分になっている。   In addition, the example shown to Fig.4 (a) is an example in which the lower side was curving convexly among the side surfaces of the inclined metal material 9 as shown in FIG. In this example, the portion of the curved side surface that protrudes to the outermost side (the most protruding portion) is in the middle of the side surface of the metal material 9 in the vertical direction, and again extends toward the center of the metal material 9 from the most protruding portion to the lower end. bent. That is, a part of the side surface in the vertical direction protrudes outward to form a convex portion.

金属材料9が上記形状の場合には、斜め方向に分散された上記応力のうち金属材料9に対して上下方向に圧縮させる成分が凸部分の上下で互いに打ち消しあうため、応力が金属材料9と薄膜配線層2とを引き剥がす方向に作用することが抑制される。そのため、金属材料9と薄膜配線層2との接続信頼性をさらに向上させる上で有効である。   In the case where the metal material 9 has the above-described shape, the components that are compressed in the vertical direction with respect to the metal material 9 out of the stress dispersed in the oblique direction cancel each other up and down the convex portion. The action in the direction of peeling the thin film wiring layer 2 is suppressed. Therefore, it is effective in further improving the connection reliability between the metal material 9 and the thin film wiring layer 2.

また、図4(b)に示すように、金属材料9の側面の全体が凸状に湾曲している場合には、金属材料9の側面の上端から下端にかけて(つまり側面のより広い範囲で)応力を分散させることができる。そのため、この場合にも、金属材料9と薄膜配線層2との接続信頼性をさらに向上させることができる。   As shown in FIG. 4B, when the entire side surface of the metal material 9 is curved in a convex shape, from the upper end to the lower end of the side surface of the metal material 9 (that is, in a wider range of the side surface). Stress can be dispersed. Therefore, also in this case, the connection reliability between the metal material 9 and the thin film wiring layer 2 can be further improved.

なお、図4(b)に示す例においては、金属材料9の湾曲した側面の曲がり方(金属材料9の縦断面における側面に相当する弧状の線の曲率半径)が途中で変化し、下部において上部よりも大きく湾曲している(より外側に突出している)。このような場合には、金属材料9の側面の上端から下端にかけて湾曲させた構造において、図4(a)に示す例のような、側面の一部のみを湾曲させたときの効果(分散させた応力が金属材料9と薄膜配線層2とを引き剥がす方向に作用することの抑制)をある程度得ることもできる。   In the example shown in FIG. 4B, the bending method of the curved side surface of the metal material 9 (the radius of curvature of the arc-shaped line corresponding to the side surface in the longitudinal section of the metal material 9) changes in the middle, and in the lower part It is curved more than the top (projects more outward). In such a case, in the structure in which the side surface of the metal material 9 is curved from the upper end to the lower end, the effect (dispersion) when only a part of the side surface is curved as in the example shown in FIG. It is also possible to obtain a certain degree of suppression of the stress acting on the metal material 9 and the thin film wiring layer 2 in the direction of peeling off.

また、図4(c)に示す例は、金属材料9の側面のうち下側が凸状に湾曲しているとともに、最突出部が下端に位置している例である。言い換えれば、樹脂接着層8の金属材料9が充填されている貫通孔の開口径が、下端において最も大きくなっている例である。   The example shown in FIG. 4C is an example in which the lower side of the side surface of the metal material 9 is curved in a convex shape, and the most protruding portion is located at the lower end. In other words, the opening diameter of the through hole filled with the metal material 9 of the resin adhesive layer 8 is the largest at the lower end.

この例のように、上下の貫通孔(樹脂絶縁層1の貫通孔と樹脂接着層8の貫通孔)の互いに接続し合う部分における開口を他の部分よりも広くしておいた方が、金属材料9となる低融点ろう材のペースト等の貫通孔への充填をより容易とする上で好ましい。   As shown in this example, the upper and lower through-holes (through holes in the resin insulation layer 1 and through-holes in the resin adhesive layer 8) are connected to each other with a wider opening than the other parts. It is preferable in order to more easily fill the through holes such as paste of the low melting point brazing material to be the material 9.

金属材料9について、側面の少なくとも一部を凸状に湾曲させるには、例えば以下のようにすればよい。   In order to curve at least a part of the side surface of the metal material 9 in a convex shape, for example, the following may be performed.

すなわち、まず、未硬化で、ある程度塑性変形が可能な状態の樹脂接着層8に図3に示すような貫通孔を、前述した樹脂絶縁層1の場合と同様にレーザ加工やRIE,溶剤によるエッチング等の孔あけ加工で形成する。   That is, first, through holes as shown in FIG. 3 are formed in the resin adhesive layer 8 which is uncured and can be plastically deformed to some extent, as in the case of the resin insulating layer 1 described above, laser processing, RIE, etching with a solvent. It is formed by drilling such as.

その後、例えば上記のように樹脂絶縁層1の貫通孔の上端から貫通導体3(3a)となる金属の材料(低融点ろう材のペースト)をはみ出させておいて、このはみ出した金属の材料を樹脂接着層8の貫通孔内に充填させるようにして、その後、未硬化の樹脂接着層8を硬化させることで形成することができる。はみ出した金属の材料が樹脂接着層8の貫通孔内に充填される際に、貫通孔の体積に比べて金属材料9の体積を多くしておくことによって樹脂接着層8が塑性変形し(貫通孔が横方向に膨れて)、貫通孔の内側面が湾曲する。これに応じて、金属材料9の側面が湾曲する。   Thereafter, for example, as described above, a metal material (low melting point brazing paste) that becomes the through conductor 3 (3a) is protruded from the upper end of the through hole of the resin insulating layer 1, and this protruding metal material is removed. It can be formed by filling the through-holes of the resin adhesive layer 8 and then curing the uncured resin adhesive layer 8. When the protruding metal material is filled into the through-holes of the resin adhesive layer 8, the resin adhesive layer 8 is plastically deformed (penetrated) by increasing the volume of the metal material 9 relative to the volume of the through-holes. The hole swells laterally), and the inner surface of the through hole is curved. In response to this, the side surface of the metal material 9 is curved.

また、本発明の多層配線基板5は、例えば図5に示すように、複数の貫通導体3をそれ
ぞれ上下に電気的に接続する金属材料9が充填された貫通孔が樹脂接着層8に複数個配置されているときに、材料9の側面が、平面視で樹脂絶縁層1の中心から外辺に向かって放射状に伸びる仮想の直線Lと交差する部分のうち中心部に近い側に位置する交差部のみが凸状に湾曲しているか、またはこの交差部において他の部分よりも大きく湾曲している場合には、複数の貫通導体3に対応して配置された樹脂接着層8のそれぞれの金属材料9にせん断応力として作用する熱応力をより緩和することができる。なお、図5(a)は本発明の多層配線基板5の実施の形態の他の例における樹脂接着層8の部分を平面視した平面図(透視図)であり、図5(b)は、図5(a)の要部を拡大して示す要部拡大平面図である。図5において図1および図3と同様の部位には同様の符号を付している。
In addition, as shown in FIG. 5, for example, the multilayer wiring board 5 of the present invention has a plurality of through holes filled with a metal material 9 electrically connecting the plurality of through conductors 3 in the vertical direction. When disposed, the side surface of the material 9 is an intersection located on the side closer to the center portion of the portion intersecting with a virtual straight line L extending radially from the center of the resin insulating layer 1 toward the outer side in a plan view. If only the portion is curved in a convex shape or is curved larger than the other portion at this intersection, each metal of the resin adhesive layer 8 disposed corresponding to the plurality of through conductors 3 Thermal stress acting as shear stress on the material 9 can be further relaxed. FIG. 5A is a plan view (perspective view) of a portion of the resin adhesive layer 8 in another example of the embodiment of the multilayer wiring board 5 according to the present invention, and FIG. It is a principal part enlarged plan view which expands and shows the principal part of Fig.5 (a). 5, parts similar to those in FIGS. 1 and 3 are denoted by the same reference numerals.

この構成における断面の要部の一例を図6に示す。なお、図6(a)および(b)は、それぞれ本発明の多層配線基板5の実施の形態の他の例における要部を示す要部断面図である。図6において図1および図3と同様の部位には同様の符号を付している。   An example of the principal part of the cross section in this structure is shown in FIG. FIGS. 6A and 6B are cross-sectional views showing main parts of other examples of the embodiment of the multilayer wiring board 5 of the present invention. In FIG. 6, the same parts as those in FIGS. 1 and 3 are denoted by the same reference numerals.

図6(a)に示す例において、金属材料9の側面は、平面視で樹脂絶縁層1の中心から外辺に向かって放射状に伸びる仮想の直線Lと交差する部分のうち前記中心部に近い側に位置する交差部において他の部分よりも大きく湾曲している。この場合には、複数の金属材料9が樹脂接着層8に配置されている多層配線基板5において、金属材料9における熱応力をより緩和することができる。   In the example shown in FIG. 6A, the side surface of the metal material 9 is close to the central portion of a portion intersecting with a virtual straight line L extending radially from the center of the resin insulating layer 1 toward the outer side in a plan view. It is curved more greatly than the other part at the intersection located on the side. In this case, the thermal stress in the metal material 9 can be further relaxed in the multilayer wiring board 5 in which the plurality of metal materials 9 are arranged on the resin adhesive layer 8.

すなわち、金属材料9において、熱応力がより大きく作用する傾向がある側面の一部(仮想の直線Lと交差する中心部に近い側の交差部)が湾曲していることで、熱応力が上下方向(斜め方向)により一層効果的に分散され、緩和効果を高めることができる。したがって、上記構成において、金属材料9と貫通導体3や薄膜配線層2との接続信頼性を効果的に向上させることができる。   That is, in the metal material 9, a part of the side surface where the thermal stress tends to act more greatly (intersection near the central portion intersecting with the virtual straight line L) is curved, so that the thermal stress increases and decreases. It is more effectively dispersed depending on the direction (oblique direction), and the relaxation effect can be enhanced. Therefore, in the above configuration, the connection reliability between the metal material 9 and the through conductor 3 or the thin film wiring layer 2 can be effectively improved.

また、図6(b)に示すように、平面視で樹脂絶縁層1の中心から外辺に向かって放射状に伸びる仮想の直線Lと交差する部分のうち前記中心部に近い側に位置する交差部のみが凸状に湾曲している場合には、金属材料9のうち凸状に湾曲させる範囲をより小さく抑えながら、金属材料9と薄膜配線層2との界面に働くせん断応力をより効果的に低減することができる。   Further, as shown in FIG. 6B, the intersection located on the side closer to the central portion of the portion intersecting with the virtual straight line L extending radially from the center of the resin insulating layer 1 toward the outer side in a plan view. When only the portion is curved in a convex shape, the shear stress acting on the interface between the metal material 9 and the thin-film wiring layer 2 is more effectively suppressed while suppressing the range of the metal material 9 to be curved in a convex shape. Can be reduced.

言い換えれば、上記構成において、金属材料9の、仮想の直線Lと交差する部分のうち中心部に近い側に位置する交差部のみが凸状に湾曲しているか、またはこの部分において他の部分よりも大きい場合には、金属材料9の側面について湾曲させる部分、つまり外側に張り出させる範囲を小さく抑えながら応力を緩和することができるので、金属材料9(および貫通導体3)の高密度化の上で有利である。   In other words, in the above configuration, only the intersecting portion located on the side closer to the center of the portion intersecting the virtual straight line L of the metal material 9 is curved in a convex shape, or in this portion than the other portions. Is larger, the stress can be relaxed while suppressing the curved portion of the side surface of the metal material 9, that is, the range protruding outward, so that the density of the metal material 9 (and the through conductor 3) can be increased. This is advantageous.

(実施例1)
酸化アルミニウム質焼結体からなるセラミック基板の上面に、厚みが約20μmのエポキシ樹脂からなる樹脂絶縁層と、厚みが約10μmの銅からなる薄膜配線層とを交互に10層積層するとともに、各樹脂絶縁層に直径が約400μmの貫通導体を形成して上下の薄膜配線
層を互いに電気的に接続させた多層配線基板を用いて、本発明の多層配線基板における効果を確認した。
Example 1
On the top surface of the ceramic substrate made of an aluminum oxide sintered body, 10 layers of resin insulating layers made of epoxy resin having a thickness of about 20 μm and thin film wiring layers made of copper having a thickness of about 10 μm are alternately laminated. The effect of the multilayer wiring board of the present invention was confirmed using a multilayer wiring board in which a through conductor having a diameter of about 400 μm was formed in the resin insulating layer and the upper and lower thin film wiring layers were electrically connected to each other.

樹脂絶縁層のうち上から3〜5層目の上下に連続する3層の樹脂絶縁層にわたって、平面視で互いに重なる位置に貫通導体を形成し、その3層の貫通導体のうち上下方向の中央に位置する1つのもの(上から4層目)を、錫を主成分として95質量%含有し、銀を質量5%含有する金属材料によって形成した。また、他の2つの貫通導体を、銅を主成分とし
て約99質量%含有し、チタンおよびニッケルを含む金属材料で形成した。これらの3層の貫通導体以外の貫通導体も、上記同様の銅を主成分とする金属材料で形成した。
A through conductor is formed at a position overlapping with each other in a plan view over three resin insulating layers that are continuous from the top to the bottom of the third to fifth layers of the resin insulating layer, and the center in the vertical direction of the three layers of through conductors 1 (the fourth layer from the top) was formed of a metal material containing 95% by mass of tin as a main component and 5% by mass of silver. The other two through conductors were made of a metal material containing about 99% by mass of copper as a main component and containing titanium and nickel. The through conductors other than these three layers of through conductors were also formed of the same metal material mainly composed of copper as described above.

また、比較例として、すべての貫通導体を上記と同様の銅を主成分とする金属材料で形成したこと以外は上記の実施例の多層配線基板と同様にして作製した従来技術による多層配線基板を準備した。   In addition, as a comparative example, a multilayer wiring board according to the prior art manufactured in the same manner as the multilayer wiring board of the above example except that all through conductors are formed of the same metal material mainly composed of copper as described above. Got ready.

なお、セラミック基板は、酸化アルミニウム質焼結体からなる厚みが1mmの第1セラミック基板の表面および内部にタングステンからなるメタライズ導体で配線導体を形成したものを使用した。   In addition, the ceramic board | substrate which formed the wiring conductor by the metallized conductor which consists of tungsten on the surface and the inside of the 1st ceramic board which consists of an aluminum oxide sintered body and is 1 mm in thickness was used.

これらの実施例および比較例の多層配線基板について、加速試験として温度サイクル試験を+125℃〜−55℃の条件で500サイクル行なった後に、貫通導体の内部および貫通導体と薄膜配線層との境界におけるクラックと断線の有無を、複数の貫通導体を直列に接続したデイジーチェーンサンプルを用いて抵抗変動をデジタルマルチメータで測定することによって検査した。抵抗値に変動(抵抗の増加)等の異常が見られた試料については、貫通導体部分の断面を観察してクラック等の有無を確認した。   For the multilayer wiring boards of these examples and comparative examples, after performing a temperature cycle test as an acceleration test for 500 cycles at + 125 ° C. to −55 ° C., the inside of the through conductor and the boundary between the through conductor and the thin film wiring layer The presence or absence of cracks and disconnections was examined by measuring resistance variation with a digital multimeter using a daisy chain sample in which a plurality of through conductors were connected in series. For samples in which an abnormality such as fluctuation (increase in resistance) was observed in the resistance value, the cross-section of the through conductor portion was observed to check for cracks and the like.

その結果、実施例の多層配線基板では20%を超える抵抗変動(電気抵抗の増加)および
断線の発生が見られなかったのに対し、比較例の多層配線基板では20個中6個において断線の発生が見られ、20個中9個に20%を超える抵抗変動が見られた。以上のように、本発
明の多層配線基板においては、複数の樹脂絶縁層にわたって、貫通導体が平面視で重なるように形成した場合でも、貫通導体や貫通導体と樹脂絶縁層との界面等に機械的な破壊が生じることを効果的に抑制することが可能であり、小型化が容易で、かつ信頼性が高い多層配線基板を提供することができることが確認できた。
As a result, in the multilayer wiring board of the example, the resistance fluctuation exceeding 20% (increase in electric resistance) and the occurrence of disconnection were not observed, whereas in the multilayer wiring board of the comparative example, the disconnection occurred in 6 out of 20 Occurrence was observed, and resistance variation exceeding 20% was observed in 9 out of 20 pieces. As described above, in the multilayer wiring board of the present invention, even when the through conductors are formed so as to overlap in a plan view over a plurality of resin insulation layers, the machine is formed on the interface between the through conductors or the through conductors and the resin insulation layer. It has been confirmed that it is possible to effectively suppress the occurrence of mechanical destruction, and to provide a multilayer wiring board that can be easily downsized and has high reliability.

(実施例2)
実施例1において、樹脂絶縁層のうち上から3層目と4層目との間に樹脂接着層を介在させるとともに、錫を主成分として95質量%含有し、銀を質量5%含有する金属材料を樹脂接着層に貫通させて配置し、金属材料を介して、3層目の銅を主成分とする貫通導体と4層目の錫を主成分とする貫通導体とを電気的に接続させ、錫を主成分とする金属材料の側面の一部を凸状に湾曲させた。湾曲の形態は、図4(a)に示す例と同様にした。これ以外は実施例1と同様にして実施例2の多層配線基板を準備した。比較例の多層配線基板は実施例1の場合と同様にして準備した。
(Example 2)
In Example 1, a resin adhesive layer is interposed between the third and fourth layers from the top of the resin insulating layer, and contains 95% by mass of tin as a main component and 5% by mass of silver. The material is disposed so as to penetrate the resin adhesive layer, and the through conductor mainly composed of copper of the third layer and the through conductor mainly composed of tin of the fourth layer are electrically connected through the metal material. A part of the side surface of the metal material mainly composed of tin was curved in a convex shape. The shape of the curve was the same as in the example shown in FIG. A multilayer wiring board of Example 2 was prepared in the same manner as Example 1 except for this. The multilayer wiring board of the comparative example was prepared in the same manner as in Example 1.

これらの実施例2および比較例の多層配線基板について、加速試験として温度サイクル試験を+125℃〜−55℃の条件で1000サイクル行なった後に、貫通導体の内部および貫通
導体と薄膜配線層との境界におけるクラックと断線の有無を、複数の貫通導体を直列に接続したデイジーチェーンサンプルを用いて抵抗変動をデジタルマルチメータで測定することによって検査した。抵抗値に変動(抵抗の増加)等の異常が見られた試料については、貫通導体部分の断面を観察してクラック等の有無を確認した。
For these multilayer wiring boards of Example 2 and Comparative Example, after performing a temperature cycle test as an accelerated test for 1000 cycles at + 125 ° C. to −55 ° C., the inside of the through conductor and the boundary between the through conductor and the thin film wiring layer The presence or absence of cracks and breaks in the wire was examined by measuring resistance variation with a digital multimeter using a daisy chain sample in which a plurality of through conductors were connected in series. For samples in which an abnormality such as fluctuation (increase in resistance) was observed in the resistance value, the cross-section of the through conductor portion was observed to check for cracks and the like.

その結果、実施例の多層配線基板では20%を超える抵抗変動(電気抵抗の増加)および
断線の発生が見られなかったのに対し、比較例の多層配線基板では20個中11個において断線の発生が見られ、20個中9個に20%を超える抵抗変動が見られた。
As a result, in the multilayer wiring board of the example, the resistance fluctuation exceeding 20% (increase in electric resistance) and the occurrence of the disconnection were not seen, whereas in the multilayer wiring board of the comparative example, the disconnection occurred in 11 out of 20 Occurrence was observed, and resistance variation exceeding 20% was observed in 9 out of 20 pieces.

言い換えれば、実施例2の多層配線基板においては、樹脂接着層を樹脂絶縁層の間に介在させた(つまり、熱応力が生じやすい)構成において、温度サイクルの回数(つまり、熱応力の作用回数)を増やしても、金属材料と貫通導体との間の接続を確保することができた。   In other words, in the multilayer wiring board of Example 2, in the configuration in which the resin adhesive layer is interposed between the resin insulating layers (that is, thermal stress is likely to occur), the number of temperature cycles (that is, the number of times the thermal stress is applied). ), The connection between the metal material and the through conductor could be secured.

以上のように、金属材料の側面の少なくとも一部を湾曲させることによって、信頼性を向上させる効果を得られることが確認できた。   As described above, it was confirmed that the effect of improving the reliability can be obtained by curving at least part of the side surface of the metal material.

1・・・樹脂絶縁層
2・・・薄膜配線層
3・・・貫通導体
4・・・薄膜多層部
5・・・多層配線基板
6・・・セラミック基板
7・・・配線導体
8・・・樹脂接着層
9・・・錫を主成分とする金属材料
DESCRIPTION OF SYMBOLS 1 ... Resin insulation layer 2 ... Thin film wiring layer 3 ... Through-conductor 4 ... Thin film multilayer part 5 ... Multi-layer wiring board 6 ... Ceramic substrate 7 ... Wiring conductor 8 ... Resin adhesive layer 9... Metal material mainly composed of tin

Claims (2)

樹脂絶縁層と薄膜配線層とが交互に積層され、上下の前記薄膜配線層が前記樹脂絶縁層を厚み方向に貫通する貫通導体によって互いに電気的に接続されてなる薄膜多層部を有する多層配線基板であって、
前記貫通導体は、上下に連続する複数の前記樹脂絶縁層にわたって平面視で互いに重なる位置に形成されたものを含んでおり、平面視で重なる複数の前記貫通導体のうちの一部が錫を主成分とする金属材料からなり、他が銅を主成分とする金属材料からなり、
前記貫通導体のうちの錫を主成分とする金属材料からなるものの一端面が位置する前記樹脂絶縁層の層間において、上下の前記樹脂絶縁層同士が、複数の前記貫通導体に対応した位置に複数個の貫通孔を有する樹脂接着層を介して互いに接着されているとともに、上下の前記樹脂絶縁層の前記貫通導体同士が、それぞれ前記樹脂接着層の前記貫通孔内に充填された錫を主成分とする金属材料によって互いに電気的に接続されており、
前記樹脂接着層の前記貫通孔に充填された錫を主成分とする前記金属材料の側面は、平面視で前記樹脂接着層の中心部から外辺に向かって放射状に伸びる仮想の直線と交差する部分のうち前記中心部に近い側に位置する交差部のみが凸状に湾曲しているか、または該交差部において他の部分よりも大きく凸状に湾曲していることを特徴とする多層配線基板。
A multilayer wiring board having thin film multilayer portions in which resin insulating layers and thin film wiring layers are alternately laminated, and the upper and lower thin film wiring layers are electrically connected to each other by through conductors penetrating the resin insulating layer in the thickness direction. Because
The penetrating conductor includes a plurality of the resin insulating layers that are vertically continuous with each other so as to overlap each other in plan view, and a part of the plurality of penetrating conductors that overlap in plan view mainly includes tin. a metal material as a component, Ri Do a metallic material other is a main component of copper,
Among the through conductors, one made of a metal material containing tin as a main component, and between the resin insulating layers where one end surface is located, a plurality of upper and lower resin insulating layers are arranged at positions corresponding to the plurality of through conductors. Mainly composed of tin that is bonded to each other through the resin adhesive layer having a plurality of through holes, and the through conductors of the upper and lower resin insulating layers are filled in the through holes of the resin adhesive layer, respectively. Are electrically connected to each other by a metal material
The side surface of the metal material mainly composed of tin filled in the through hole of the resin adhesive layer intersects with a virtual straight line extending radially from the center of the resin adhesive layer toward the outer side in a plan view. a multilayer wiring board in which only the intersecting portion positioned closer to the center of the part, characterized in Rukoto or are convexly curved or at the crossing portion curved largely convex than other portions .
上下に連続する3層以上の前記樹脂絶縁層にわたって平面視で互いに重なる位置に前記貫通導体が形成されており、これらの貫通導体のうちの上下方向の中央部分に位置する前記樹脂絶縁層に形成されているものが錫を主成分とする金属材料からなり、他のものが銅を主成分とする金属材料からなることを特徴とする請求項1に記載の多層配線基板。   The through conductors are formed at positions where they overlap each other in plan view over three or more resin insulating layers that are continuous in the vertical direction, and are formed in the resin insulating layer located in the central portion in the vertical direction of these through conductors. 2. The multilayer wiring board according to claim 1, wherein the one made of a metal material mainly composed of tin and the other composed of a metal material mainly composed of copper.
JP2010240992A 2010-03-25 2010-10-27 Multilayer wiring board Active JP5574917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010240992A JP5574917B2 (en) 2010-03-25 2010-10-27 Multilayer wiring board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010070400 2010-03-25
JP2010070400 2010-03-25
JP2010240992A JP5574917B2 (en) 2010-03-25 2010-10-27 Multilayer wiring board

Publications (2)

Publication Number Publication Date
JP2011222945A JP2011222945A (en) 2011-11-04
JP5574917B2 true JP5574917B2 (en) 2014-08-20

Family

ID=45039478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010240992A Active JP5574917B2 (en) 2010-03-25 2010-10-27 Multilayer wiring board

Country Status (1)

Country Link
JP (1) JP5574917B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6133901B2 (en) * 2012-12-27 2017-05-24 京セラ株式会社 Wiring board, electronic device and light emitting device
JP2016072285A (en) * 2014-09-26 2016-05-09 京セラ株式会社 Circuit board and probe card
KR102014111B1 (en) 2015-06-19 2019-08-26 가부시키가이샤 무라타 세이사쿠쇼 Laminated wiring board and probe card having the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003163458A (en) * 2001-11-29 2003-06-06 Fujitsu Ltd Multilayer wiring board and its manufacturing method
JP2006253189A (en) * 2005-03-08 2006-09-21 Fujitsu Ltd Multilayer substrate and manufacturing method thereof
JP2007266325A (en) * 2006-03-28 2007-10-11 Matsushita Electric Works Ltd Printed-wiring material, and manufacturing method thereof, and manufacturing method of multilayer printed-wiring board

Also Published As

Publication number Publication date
JP2011222945A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
US9326378B2 (en) Thin-film wiring substrate and substrate for probe card
JPWO2015102107A1 (en) Multilayer wiring board and inspection apparatus including the same
JP2009071299A (en) Wiring board
JP6589990B2 (en) Laminated wiring board for probe card and probe card having the same
JP5574917B2 (en) Multilayer wiring board
JP5977180B2 (en) Wiring board
JP5566271B2 (en) Wiring board and manufacturing method thereof
JP6408423B2 (en) Package and electronic equipment
JP6100617B2 (en) Multi-layer wiring board and probe card board
JP6683533B2 (en) Wiring board
JP2008252058A (en) Semiconductor device and method of manufacturing same
JP2013207204A (en) Wiring mother board
JP6250943B2 (en) Wiring board
JP2013197634A (en) Electronic component and oscillator
JP5836751B2 (en) Thin film wiring board
JP5956185B2 (en) Multiple wiring board
JP2015159242A (en) Wiring board, and multilayer wiring board including the same
JP2016006846A (en) Wiring board and electronic apparatus
JP2013191678A (en) Multilayer wiring board
JP6151616B2 (en) Electronic component mounting substrate and electronic device
JP2012033623A (en) Multilayer wiring board
WO2022004280A1 (en) Multilayer circuit board and electronic-component-mounted multilayer board
WO2023074262A1 (en) Circuit module
JP2014086679A (en) Thin film wiring board, multilayer wiring board and substrate for probe card
JP2014067891A (en) Wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140701

R150 Certificate of patent or registration of utility model

Ref document number: 5574917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150