JP5565773B2 - Compost manufacturing method and apparatus - Google Patents

Compost manufacturing method and apparatus Download PDF

Info

Publication number
JP5565773B2
JP5565773B2 JP2011097769A JP2011097769A JP5565773B2 JP 5565773 B2 JP5565773 B2 JP 5565773B2 JP 2011097769 A JP2011097769 A JP 2011097769A JP 2011097769 A JP2011097769 A JP 2011097769A JP 5565773 B2 JP5565773 B2 JP 5565773B2
Authority
JP
Japan
Prior art keywords
temperature
compost material
compost
aeration
air volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011097769A
Other languages
Japanese (ja)
Other versions
JP2012229136A (en
Inventor
史仁 宮竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obihiro University of Agriculture and Veterinary Medicine NUC
Original Assignee
Obihiro University of Agriculture and Veterinary Medicine NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obihiro University of Agriculture and Veterinary Medicine NUC filed Critical Obihiro University of Agriculture and Veterinary Medicine NUC
Priority to JP2011097769A priority Critical patent/JP5565773B2/en
Publication of JP2012229136A publication Critical patent/JP2012229136A/en
Application granted granted Critical
Publication of JP5565773B2 publication Critical patent/JP5565773B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Fertilizers (AREA)

Description

本発明は、堆肥製造方法および装置に関する。   The present invention relates to a compost manufacturing method and apparatus.

堆肥化は、家畜排せつ物等を好気性微生物の働きにより、分解・安定化させ有機質肥料を製造する技術である。しかしながら堆肥の製造過程では、二酸化炭素(CO2)と比較して296倍の温室効果を有する一酸化二窒素(N2O)や23倍のメタン(CH4)といった強力な温室効果ガスが発生している。 Composting is a technique for producing organic fertilizers by decomposing and stabilizing livestock excreta and the like by the action of aerobic microorganisms. However, the compost production process generates powerful greenhouse gases such as dinitrogen monoxide (N 2 O) and 23 times more methane (CH 4 ), which have 296 times the greenhouse effect compared to carbon dioxide (CO 2 ). doing.

非特許文献1には、日本の農業起源温室効果ガス排出は、総排出量の3%程度であり、そのうち、家畜起源のCH4とN2Oは、家畜の飼養時に消化管から発生するCH4と、排せつ物の取り扱いから発生するCH4とN2Oであることが記載されている。反すう家畜(牛、めん羊、山羊など)を主体に709.5万トン二酸化炭素等量(CO2eq)、家畜排せつ物管理から726.1万トンCO2eqの温室効果ガスの排出が算定されている。非特許文献1は、家畜排せつ物処理起源の温室効果ガス発生の特徴、日本の主な家畜排せつ物処理、ガスクロマトグラフィーやフーリエ変換赤外分光法による温室効果ガス(CH4、N2O)の濃度測定法、家畜排せつ物の各処理システム発生係数の把握と堆積型堆肥化処理施設、強制通気型堆肥化処理施設、汚水浄化処理施設とスラリー貯留からの温室効果ガス発生評価について解説している。 Non-patent document 1 describes that Japan's agricultural greenhouse gas emissions are about 3% of total emissions, of which CH 4 and N 2 O derived from livestock are CH generated from the gastrointestinal tract during livestock breeding. 4 and CH 4 and N 2 O generated from the handling of waste. Emissions of 709,000 tons of carbon dioxide (CO 2 eq) are calculated mainly for ruminant livestock (cattle, sheep, goats, etc.), and 7261 thousand tons of CO 2 eq of greenhouse gas emissions from livestock waste management. Non-patent document 1 describes the characteristics of greenhouse gas generation originating from livestock excreta treatment, the main livestock excreta treatment in Japan, the concentration of greenhouse gases (CH 4 , N 2 O) by gas chromatography and Fourier transform infrared spectroscopy. It explains the measurement method, the grasp of the generation coefficient of each treatment system of livestock excrement, and the evaluation of greenhouse gas generation from sedimentary composting treatment facility, forced ventilation composting treatment facility, sewage purification treatment facility and slurry storage.

特許文献1には、堆肥化におけるN2O発生の抑制方法が開示されている。この方法は、汚泥を、電気浸透脱水機で脱水した後、発酵槽で汚泥を発酵して堆肥を製造する際、下部に設けた下部空気供給部に加えて上部に設けた上部空気供給部から送風を行い、N2O生成を抑制するものである。 Patent Document 1 discloses a method for suppressing N 2 O generation in composting. In this method, after dewatering sludge with an electroosmotic dehydrator, when producing compost by fermenting sludge in a fermenter, in addition to the lower air supply part provided at the lower part, the upper air supply part provided at the upper part is used. Blowing is performed to suppress N 2 O production.

特開2010-208932号公報JP 2010-208932 A

ぶんせき:No.2, Page.79-83 (2010.02.05)Bunseki: No.2, Page.79-83 (2010.02.05)

非特許文献1で紹介されている強制通気型堆肥化処理施設を初めとして、一般的な堆肥化施設では堆肥中の好気性微生物を活性化させるために堆肥の底面から送風機から空気を送ることで微生物を活性化させ、堆肥化の促進を図っている。しかしながら堆肥化施設のランニングコストの約90%は送風機の電気料金であり、送風機1台あたりの月額料金は約2〜3万円に上っている。通常堆肥化施設では送風機を数台使用するので電気料金に掛かるウェートは大きくなる。   Beginning with the forced ventilation type composting treatment facility introduced in Non-Patent Document 1, in general composting facilities, air is sent from the bottom of the compost from the blower to activate aerobic microorganisms in the compost. It activates microorganisms and promotes composting. However, about 90% of the running cost of composting facilities is the electricity charge of the blower, and the monthly charge per blower is about 20,000 to 30,000 yen. Usually, composting facilities use several blowers, which increases the weight of electricity bills.

特許文献1に記載の方法は、発酵槽で汚泥を発酵して堆肥を製造する際、上部に設けた上部空気供給部からも送風を行い、空気の供給量を増やしてN2O生成を抑制するものである。しかし、下部に設けた下部空気供給部からも空気は供給され、それに加えて上部空気供給部からも送風を行うものであり、空気供給にかかるエネルギーコストの削減は難しい。   In the method described in Patent Document 1, when producing compost by fermenting sludge in a fermenter, air is also blown from the upper air supply unit provided at the top, and the amount of air supplied is increased to suppress N2O production. It is. However, air is also supplied from the lower air supply unit provided in the lower part, and air is blown from the upper air supply unit in addition thereto, and it is difficult to reduce the energy cost for supplying air.

CH4とN2Oが温室効果ガスであり、その低減が望まれているところであるが、具体的でかつ効果的な提案はそれまでに成されていないのが実情である。 Although CH 4 and N 2 O are greenhouse gases and their reduction is desired, the actual situation is that no concrete and effective proposal has been made so far.

そこで、本発明は、送風機に掛かる電力コストを低減させることができ、かつCH4およびN2Oの排出量も低減できる新たな堆肥製造技術を提供することを目的とする。 Accordingly, the present invention can reduce the power cost of the blower, and an object of the invention to provide a new composting techniques can also be reduced emissions of CH 4 and N 2 O.

本発明は以下の通りである。
[1]
堆肥材料に通気することを含む堆肥の製造方法であって、
前記通気は、堆肥材料の温度に応じて決定した、単位量の堆肥材料に対する通気量で行い、かつ
前記堆肥材料の温度は連続的または断続的に測定し、得られた測定温度に基づいて前記単位量の堆肥材料に対する通気量を連続的または断続的に決定する、前記製造方法。
[2]
前記単位量の堆肥材料に対する通気量は、堆肥材料の乾燥重量と温度に応じて予め定めた係数の積として算出される、[1]に記載の製造方法。
[3]
温度に応じて予め定めた係数は、70℃以下の温度域で、かつ温度が上昇している間は、温度の関数であり、70℃を超える温度では定数であり、70℃以下の温度域で、かつ温度が下降している間は定数である、[1]または[2]に記載の製造方法。
[4]
堆肥材料の温度は、通気している堆肥材料の中心部付近で測定する、[1]〜[3]のいずれかに記載の製造方法。
[5]
堆肥材料は含水率が40〜80%である、[1]〜[4]のいずれかに記載の製造方法。
[6]
堆肥材料に対する通気は、堆肥材料に均一に空気が供給されるように実施する、[1]〜[5]のいずれかに記載の製造方法。
[7]
堆肥材料に対する通気は、切り返しを所定の間隔で行いながら行う、[1]〜[6]のいずれかに記載の製造方法。
[8]
堆肥材料発酵槽、
前記発酵槽に設けられた堆肥材料への通気手段、
堆肥材料の温度を計測するための温度計、および
温度計で計測された温度に基づいて通気装置の風量を決定する手段、
前記風量決定手段が決めた風量で前記通気手段の風量を制御する手段、を含む
堆肥製造装置。
[9]
前記風量決定手段および風量制御手段がインバーター制御装置であり、インバーター制御装置はインバーターを介して通気手段を制御する、[8]に記載の製造装置。
The present invention is as follows.
[1]
A method for producing compost comprising aeration of compost material,
The aeration is performed according to the aeration amount with respect to the unit amount of the compost material determined according to the temperature of the compost material, and the temperature of the compost material is measured continuously or intermittently, and based on the obtained measurement temperature The said manufacturing method which determines the ventilation | gas_flowing amount with respect to the unit amount of compost material continuously or intermittently.
[2]
The manufacturing method according to [1], wherein the aeration amount with respect to the unit amount of compost material is calculated as a product of coefficients determined in advance according to the dry weight and temperature of the compost material.
[3]
The coefficient determined according to the temperature is a function of the temperature in the temperature range of 70 ° C or lower and while the temperature is rising, and is a constant at a temperature exceeding 70 ° C, and the temperature range of 70 ° C or lower And the production method according to [1] or [2], wherein the constant is constant while the temperature is lowered.
[Four]
The manufacturing method according to any one of [1] to [3], wherein the temperature of the compost material is measured in the vicinity of the central portion of the compost material being ventilated.
[Five]
The manufacturing method according to any one of [1] to [4], wherein the compost material has a moisture content of 40 to 80%.
[6]
The manufacturing method according to any one of [1] to [5], wherein aeration of the compost material is performed so that air is uniformly supplied to the compost material.
[7]
The manufacturing method according to any one of [1] to [6], wherein aeration with respect to the compost material is performed while turning back at predetermined intervals.
[8]
Compost material fermenter,
Aeration means to compost material provided in the fermenter,
A thermometer for measuring the temperature of the compost material, and means for determining the air volume of the aeration device based on the temperature measured by the thermometer,
A compost manufacturing apparatus comprising: means for controlling the air volume of the ventilation means with the air volume determined by the air volume determining means.
[9]
The manufacturing apparatus according to [8], wherein the air volume determining means and the air volume control means are inverter control devices, and the inverter control device controls the ventilation means via the inverter.

本発明によれば、堆肥材料への送風量を、堆肥材料の発酵状況に応じた適切な送風量に制御し、それによって、無駄な通気を抑えて電力コストを低減し、さらに併せて、堆肥の発酵状況に応じて適量の通気量を送ることで温室効果ガスの排出抑制効果も得られる。   According to the present invention, the amount of air blown to the compost material is controlled to an appropriate amount of air blown according to the fermentation status of the compost material, thereby reducing wasteful ventilation and reducing power costs, and in addition, compost By sending an appropriate amount of ventilation according to the fermentation status, greenhouse gas emissions can be suppressed.

一般的な強制通気式の堆肥化(送風機を使用した堆肥化)における温度推移、並びに酸素消費および供給速度を示す。The temperature transition, oxygen consumption and supply rate in general forced-air composting (composting using a blower) are shown. 本発明の堆肥製造方法における堆肥材料の温度変化の一例を示す。An example of the temperature change of the compost material in the compost manufacturing method of this invention is shown. 実施例の堆肥製造方法における、堆肥化期間の温度変化を示す。The temperature change of the composting period in the compost manufacturing method of an Example is shown. 実施例の堆肥製造方法における、係数Aの通気量情報からインバーター制御装置およびインバーターにて出力した通気量のシミュレーション値を示す。The simulation value of the ventilation | gas_flowing amount output with the inverter control apparatus and the inverter from the ventilation | gas_flowing amount information of the coefficient A in the compost manufacturing method of an Example is shown. 実施例の堆肥製造方法における、送風機の積算消費電力量の経時変化を示す。The time-dependent change of the integrated power consumption of a fan in the compost manufacturing method of an Example is shown. 実施例の堆肥製造方法における、一酸化二窒素(N2O)の経時変化を示す。In composting process of Example illustrates the time course of dinitrogen monoxide (N 2 O). 実施例の堆肥製造方法における、メタン(CH4)の経時変化を示す。In composting process of Example illustrates the time course of methane (CH 4). 本発明の堆肥製造装置の一例を示す。An example of the compost manufacturing apparatus of this invention is shown.

<堆肥製造方法>
本発明は、堆肥材料に通気することを含む堆肥の製造方法に関する。本発明の製造方法においては、前記通気は、堆肥材料の温度に応じて決定した、単位量の堆肥材料に対する通気量で行う。さらに、前記堆肥材料の温度は連続的または断続的に測定し、得られた測定温度に基づいて前記単位量の堆肥材料に対する通気量を連続的または断続的に決定する。
<Compost production method>
The present invention relates to a method for producing compost comprising aeration of compost material. In the production method of the present invention, the aeration is performed with the aeration amount for the unit amount of the compost material determined according to the temperature of the compost material. Further, the temperature of the compost material is measured continuously or intermittently, and the ventilation rate for the unit amount of compost material is determined continuously or intermittently based on the obtained measurement temperature.

本発明の堆肥製造方法では、堆肥材料に対する通気量を、単位量の堆肥材料に対する通気量として、堆肥材料の温度に応じて決定する。単位量の堆肥材料に対する通気量fは、具体的には、堆肥材料の乾燥重量Wsと温度に応じて予め定めた係数Aの積を堆肥材料の体積Vで除した値として算出される。   In the method for producing compost of the present invention, the air flow rate for the compost material is determined as the air flow rate for the unit amount of the compost material according to the temperature of the compost material. Specifically, the ventilation amount f for the unit amount of compost material is calculated as a value obtained by dividing the product of the coefficient A determined in advance according to the dry weight Ws of compost material and the temperature by the volume V of the compost material.

一般的な強制通気式の堆肥化(送風機を使用した堆肥化)では、図1に示した様な温度推移ならびに酸素消費・供給速度を示す。堆肥化は好気性微生物による生分解反応のため、その温度状況や必要な空気量(酸素量)は常に変化する。通常は、堆肥温度が上昇する際に多量の空気(酸素)を消費し、温度が60℃以上に上昇した後は、堆肥化で使用される空気量(酸素量)は減少し始め、70℃を超えると必要な空気量(酸素量)は著しく減少する。しかしながら現場の堆肥舎では、送風機で供給する空気量(酸素量)は酸素不足にならないよう通常過大な通気量を常に送り続けているのが現状である。   In general forced-air composting (composting using a blower), the temperature transition and oxygen consumption / supply rate as shown in FIG. 1 are shown. Composting is a biodegradation reaction by aerobic microorganisms, and its temperature conditions and required air volume (oxygen volume) always change. Normally, a large amount of air (oxygen) is consumed when the compost temperature rises, and after the temperature rises above 60 ° C, the amount of air (oxygen) used in composting starts to decrease, 70 ° C If it exceeds, the required amount of air (oxygen amount) is significantly reduced. However, in an actual compost house, the amount of air supplied by the blower (oxygen amount) is normally constantly sending an excessively large ventilation amount so as not to run out of oxygen.

本発明では、堆肥材料の温度は連続的または断続的に測定し、得られた測定温度に基づいて、単位量の堆肥材料に対する通気量を連続的または断続的に決定する。その際、温度に応じて予め定めた係数Aを用いる。係数Aは、実験的に求めることができる係数であり、温度に応じて変化する(温度の関数である)が堆肥材料の種類によらずほぼ定まる係数である。   In the present invention, the temperature of the compost material is measured continuously or intermittently, and the ventilation rate for the unit amount of compost material is determined continuously or intermittently based on the obtained measurement temperature. At that time, a predetermined coefficient A is used according to the temperature. The coefficient A is a coefficient that can be obtained experimentally, and is a coefficient that varies depending on the temperature (which is a function of temperature) but is substantially determined regardless of the type of compost material.

温度に応じて予め定めた係数Aは、より具体的には、70℃以下の温度域で、かつ温度が上昇している間は、温度の関数である。また、70℃を超える温度では定数であり、70℃以下の温度域で、かつ温度が下降している間は定数である。また、20℃以下の温度域でも係数Aは、定数である。温度に応じて予め定めた係数Aとしては、例えば、以下の表1に示す関数および定数を用いることができる。この関数は、堆肥化過程で観測される微生物による酸素の消費量の変遷を、表1に示した温度域において、材料の含水率ごとに複数の測定結果から最小二乗法を適用することで算出される。但し、表1に示す関数および定数は一例であり、堆肥製造装置の構造、特に送風装置の構造や能力等に応じて、実験的に求めて、適宜設定することができる。   More specifically, the coefficient A determined in advance according to the temperature is a function of temperature in a temperature range of 70 ° C. or lower and while the temperature is rising. Further, it is a constant at a temperature exceeding 70 ° C., and is a constant in a temperature range of 70 ° C. or lower and while the temperature is decreasing. The coefficient A is a constant even in a temperature range of 20 ° C. or lower. As the coefficient A determined in advance according to the temperature, for example, the functions and constants shown in Table 1 below can be used. This function calculates the change in oxygen consumption by microorganisms observed during the composting process by applying the least squares method from multiple measurement results for each moisture content in the temperature range shown in Table 1. Is done. However, the functions and constants shown in Table 1 are examples, and can be determined experimentally and appropriately set according to the structure of the compost manufacturing apparatus, particularly the structure and capacity of the blower.

堆肥材料の乾燥重量Wsは、湿潤重量Wに含水率M.W.(%)を掛けた値として得られる。堆肥材料の体積Vは、堆肥化の原料として用いられる堆肥材料の総体積である。   The dry weight Ws of the compost material is the wet weight W and the moisture content M.I. W. It is obtained as a value multiplied by (%). The volume V of the compost material is the total volume of the compost material used as a raw material for composting.

堆肥材料の温度は、通気している堆肥材料の中心部付近で測定することができる。あるいは、堆肥材料の温度は、圧送通気式堆肥化の場合には堆肥表面上付近、吸引通気式の場合には堆肥底面の吸引口付近の比較的温度が高く検出される箇所で測定することもできる。また、堆肥材料の総体積が多い場合には、堆肥材料の温度測定は、水平および/または垂直方向の複数の箇所で行い、複数の箇所の測定温度を、例えば、平均した値から係数Aを決定することもできる。   The temperature of the compost material can be measured near the center of the aerated compost material. Alternatively, the temperature of the compost material may be measured at a location where the temperature is detected relatively high near the top of the compost in the case of pressure-venting aeration composting, and near the suction port on the bottom of the compost in the case of suction aeration. it can. In addition, when the total volume of the compost material is large, the temperature of the compost material is measured at a plurality of locations in the horizontal and / or vertical directions, and the measured temperatures at the plurality of locations are calculated by, for example, calculating the coefficient A from the average value. It can also be determined.

堆肥材料は、特に制限はなく、例えば、牛ふん、豚ふん、鶏ふん、馬ふんなどの家畜排せつ物、下水汚泥などの有機性汚泥および食品廃棄物などやそれらに水分調整材として使用されるおがくずや剪定枝、稲わらなどの副資材を含んだ材料、またはそれらを混合した材料などを挙げることができる。さらに、堆肥材料は、含水率が40%〜80%程度まで可能ではあるが、50〜70%程度であることが適当である。一般にも、良好に発酵が進むためには、堆肥材料は含水率が50〜70%程度であることが適当であり、従って、本発明でも、堆肥材料は含水率が50〜70%程度であることが適当である。堆肥材料は含水率の上限は特に制限はないが、例えば、80%以下である。   There are no particular restrictions on the compost material. , A material containing auxiliary materials such as rice straw, or a material obtained by mixing them. Further, the compost material can have a moisture content of about 40% to 80%, but is preferably about 50 to 70%. Generally, in order for fermentation to proceed well, it is appropriate that the compost material has a moisture content of about 50 to 70%. Therefore, even in the present invention, the compost material has a moisture content of about 50 to 70%. Is appropriate. The upper limit of the moisture content of the compost material is not particularly limited, but is, for example, 80% or less.

堆肥材料に対する通気は、堆肥材料に均一に空気が供給されるように実施する。堆肥材料に空気が均一に供給されることで、堆肥材料中の発酵も均一に進み、堆肥材料の温度の分布も比較的均一になり、制御が容易になる。堆肥材料への空気の均一供給は、例えば、堆肥材料を比較少量の区画に分けて連続的に移動させながら堆肥化を行うなどの方法も採用できる。あるいは、複数の空気の供給を設けた堆肥化装置で堆肥化を行うことでも堆肥材料への空気の均一供給は可能になる。   Aeration of the compost material is performed so that air is uniformly supplied to the compost material. By uniformly supplying air to the compost material, fermentation in the compost material also proceeds uniformly, the temperature distribution of the compost material becomes relatively uniform, and control becomes easy. For the uniform supply of air to the compost material, for example, a method of composting while dividing the compost material into comparatively small sections and continuously moving the compost material can be employed. Alternatively, the air can be uniformly supplied to the compost material by composting with a composting apparatus provided with a plurality of air supplies.

堆肥材料の切り返しは、所定の間隔で行いながら行うことができる。切り返しとは、天地返しとも呼ばれ、発酵中の堆肥材料を混合するか、あるいは新たな堆肥材料を一部追加するなどの操作である。堆肥材料の温度は、発酵の進行に伴って上昇して70℃以上になり、ある期間70℃以上の温度を維持した後に下降するのが一般的である。切り返しは、堆肥材料の温度が、下降傾向を示し、例えば、30〜60℃の範囲になった時点で行うことが好ましい。下降傾向を示すのは発酵が勢いを失いつつあることを示すものであり、そのタイミングで切り返しを実施することで、再度、発酵を活性化させ、堆肥化を増進させることができる。切り返し後に堆肥材料の温度は、上昇に転じるので、その際には、係数Aとしては、温度上昇時の係数を用いる。堆肥材料の温度変化の例を図2に示す。   The compost material can be turned back at a predetermined interval. Cut-back is also called top-and-bottom turning, and is an operation such as mixing composting materials being fermented or adding a part of new composting materials. The temperature of the compost material generally rises to 70 ° C or higher as the fermentation progresses, and generally decreases after maintaining the temperature of 70 ° C or higher for a certain period. Switching is preferably performed when the temperature of the compost material shows a downward trend, for example, in the range of 30 to 60 ° C. The downward trend indicates that the fermentation is losing momentum. By performing the turn-back at that timing, the fermentation can be activated again and composting can be promoted. Since the temperature of the compost material starts to rise after switching, the coefficient at the time of temperature rise is used as the coefficient A. An example of temperature change of compost material is shown in Fig.2.

堆肥材料に通気をして堆肥化を進行させ、切り返しを施しても高温まで温度が上昇しない状態になったら、堆肥化を終了させる。本発明の方法で製造された堆肥は、例えば、有機質肥料、土壌改良材、水分調整材、家畜敷料、脱臭材、バイオ燃料などに利用できる。   The composting material is ventilated to allow composting to proceed, and if the temperature does not rise to a high temperature even after turning over, composting is terminated. The compost produced by the method of the present invention can be used, for example, as an organic fertilizer, a soil conditioner, a moisture conditioner, a livestock litter, a deodorizing material, a biofuel, and the like.

<堆肥製造装置>
本発明は、堆肥製造装置を包含する。本発明の堆肥製造装置は、堆肥材料発酵槽、前記発酵槽に設けられた堆肥材料への通気手段、堆肥材料の温度を計測するための温度計、温度計で計測された温度に基づいて通気装置の風量を決定する手段、および前記風量決定手段が決めた風量で前記通気手段の風量を制御する手段を含む。本発明の堆肥製造装置の一例を図8に示す。
<Compost production equipment>
The present invention includes a compost production apparatus. The compost production apparatus of the present invention includes a compost material fermenter, a vent means for compost material provided in the fermenter, a thermometer for measuring the temperature of the compost material, and aeration based on the temperature measured by the thermometer. Means for determining the air volume of the apparatus, and means for controlling the air volume of the ventilation means with the air volume determined by the air volume determining means. An example of the compost production apparatus of the present invention is shown in FIG.

堆肥材料発酵槽は、単一の部屋からなる発酵槽であってもよいし、複数の部屋(区画)からなる発酵槽であってもよい。発酵槽には、堆肥材料への通気手段が設けられる。堆肥材料への通気手段は、例えば、送風機および送風機に連結した通気管を含むことができる。通気管は、発酵槽の下部に単一または複数設けることができる。通気管は、堆肥材料全体に均一に通気することができる構造であることが好ましく、そのような構造とは、例えば、塩化ビニル製直管に複数個の穴を加工し、単一または複数本設置した構造またはコルゲート管などの有効管を単一または複数本設置した構造などである。発酵槽および通気手段は、既存のものをそのまま利用することもできる。   The compost material fermenter may be a fermenter composed of a single room or a fermenter composed of a plurality of rooms (sections). The fermenter is provided with a ventilation means for the compost material. The ventilation means to the compost material can include, for example, a blower and a vent pipe connected to the blower. A single or a plurality of aeration tubes can be provided in the lower part of the fermenter. It is preferable that the ventilation pipe has a structure capable of uniformly ventilating the entire compost material. For example, such a structure is obtained by processing a plurality of holes in a straight pipe made of vinyl chloride, and forming a single or a plurality of pipes. It is a structure in which a single or a plurality of effective pipes such as an installed structure or a corrugated pipe are installed. Existing fermenters and aeration means can be used as they are.

堆肥材料の温度を計測するための温度計は、計測した温度を電気信号により、通気装置の風量を決定する手段に伝達できるものであればよく、例えば、熱電対や測温抵抗体、赤外線放射温度計などを挙げることができる。なお、電気信号の変換には電気信号変換器などを用いることができる。温度計は、複数設けることもできる。また、温度計は、堆肥材料の所定の位置に設置できるように固定式であっても可動式であってもよい。   The thermometer for measuring the temperature of the compost material may be any one that can transmit the measured temperature to the means for determining the air volume of the ventilator by means of an electrical signal. For example, a thermocouple, a resistance temperature detector, infrared radiation, etc. A thermometer etc. can be mentioned. An electrical signal converter or the like can be used for the electrical signal conversion. A plurality of thermometers can be provided. The thermometer may be fixed or movable so that it can be installed at a predetermined position of the compost material.

風量決定手段および風量制御手段は、例えば、インバーター制御装置であることができ、インバーター制御装置はインバーターを介して通気手段を制御することができる。この場合、温度計で計測された温度に基づく、通気手段に含まれる送風機への電圧出力は、インバーター制御装置およびインバーターで行われる。温度計が計測した温度の電気信号がインバーター制御装置の入出力端子台に電圧入力される。その入力値に応じて、インバーターへ適切な周波数に可変するようにインバーター制御装置からインバーターへ電気信号が出力される。インバーターが出力する周波数が決定されることにより、その周波数に応じた電力がインバーターから送風機へ出力される。この一連の動作により、堆肥の発酵状況に応じた適切な風量を堆肥材料へ供給できる。なお、インバーター制御装置においては風量決定のために、予め、堆肥材料の乾燥重量Ws、係数Aおよび堆肥材料の体積Vが入力され、温度の電気信号に基づいて通気量fが計算される。また、通気量fに対応した周波数は送風機の規格・特性から決定することができる。これらの周波数を与える出力信号値をインバーター制御装置に入力しておくことで、温度計で計測された温度に基づく風量決定が可能となる。なお、インバーター制御装置からのインバーターへの出力電圧値は、インバーターの制御回路端子台にステップ状に入力され、主回路端子台からその入力値に応じた電力がステップ状に通気装置へ出力される。これらインバーター制御装置およびインバーターを用いることで、通気装置の制御が可能となり、常に最適な風量で堆肥材料に空気を供給することができ、電気消費量を抑制することができると共に、CH4およびN2Oの排出量も低減できる。 The air volume determining means and the air volume control means can be, for example, an inverter control device, and the inverter control device can control the ventilation means via the inverter. In this case, the voltage output to the blower included in the ventilation means based on the temperature measured by the thermometer is performed by the inverter control device and the inverter. The electrical signal of the temperature measured by the thermometer is input to the input / output terminal block of the inverter control device. In accordance with the input value, an electric signal is output from the inverter control device to the inverter so as to vary the frequency to an appropriate value for the inverter. By determining the frequency output from the inverter, power corresponding to the frequency is output from the inverter to the blower. By this series of operations, it is possible to supply an appropriate amount of air to the compost material according to the fermentation status of the compost. In the inverter control device, the dry weight Ws of the compost material, the coefficient A, and the volume V of the compost material are input in advance to determine the air volume, and the ventilation amount f is calculated based on the temperature electrical signal. Further, the frequency corresponding to the air flow f can be determined from the specifications and characteristics of the blower. By inputting output signal values giving these frequencies to the inverter control device, it is possible to determine the air volume based on the temperature measured by the thermometer. The output voltage value from the inverter control device to the inverter is input to the control circuit terminal block of the inverter in a stepped manner, and the power corresponding to the input value is output from the main circuit terminal block to the ventilation device in a stepped manner. . By using these inverter control devices and inverters, it becomes possible to control the ventilator, always supply air to the compost material with the optimum air flow, and suppress electricity consumption, as well as CH 4 and N 2 O emissions can also be reduced.

以下本発明を実施例に基づいてさらに説明する。但し、これら実施例は、例示であって本発明の範囲を制限するものではない。   The present invention will be further described below based on examples. However, these examples are illustrative and do not limit the scope of the present invention.

図8に示す本発明の堆肥製造装置を用いて、以下の堆肥化実験行った。1槽約53立方メートルの体積を有する発酵槽に乳牛ふんおよび麦桿の混合物を約40立方メートル投入し、堆肥材料の底面から圧送通気で堆肥化を実施した。投入した堆肥材料の初期含水率は約80%であり、試験期間は2〜3月の冬期間という極めて堆肥化が難しい環境状況下で実施した。堆肥化は、一方が本堆肥製造システムを導入したもの、もう一方は通気量を一定とした従来の方法によるものであり、同時に堆肥化を行った。その堆肥化期間には温度計測器で堆肥温度を、エネルギモニタで送風機の消費電力量ならびに光音響式マルチガスモニタで堆肥表面上から温室効果ガスである一酸化二窒素(N2O)およびメタン(CH4)を計測した。 The following composting experiment was conducted using the compost manufacturing apparatus of the present invention shown in FIG. About 40 cubic meters of a mixture of dairy cow dung and wheat straw was put into a fermenter having a volume of about 53 cubic meters per tank, and composting was carried out by pumping aeration from the bottom of the compost material. The initial moisture content of the input compost material was about 80%, and the test period was conducted in an extremely difficult composting environment in the winter period from February to March. Composting was based on the conventional method with one introducing this compost production system and the other with constant air flow, and composting was performed at the same time. During the composting period, the compost temperature is measured with a temperature meter, the energy consumption of the blower is measured with an energy monitor, and the greenhouse gases nitrous oxide (N 2 O) and methane (N 2 O) and methane ( CH 4) were measured.

堆肥化期間における温度変化を図3に示した。堆肥化期間の温度変化は、本堆肥製造システムを導入した試験区では、従来の慣行区と比較して、温度の上昇が速く、かつ温度が高く維持されている。これは、本堆肥製造システムの導入により、堆肥化が促進されていることを意味する。   Figure 3 shows the temperature change during the composting period. As for the temperature change during the composting period, in the test zone where the present compost production system is introduced, the temperature rises faster and the temperature is maintained higher than the conventional practice zone. This means that composting is promoted by the introduction of this compost production system.

図4には、係数Aの通気量情報からインバーター制御装置およびインバーターにて出力した通気量のシミュレーション値を示した。なお、本実施例においては、インバーターのトリップ等の防止のため、ステップ状に出力した。慣行区では、従来の方法どおり、一定の通気量が施されているが、本堆肥製造システムの導入区では、通気量が変動している。これは、発酵状況に応じて係数Aが算出され、その通気量情報に基づいて、インバーター制御装置およびインバーターにて送風機が制御されているからである。また、本堆肥製造システムの実証試験から、省エネ化および温室効果ガスの排出量削減について、以下の3点の結果が得られている。   FIG. 4 shows a simulation value of the air flow output from the inverter control device and the inverter from the air flow information of the coefficient A. In this embodiment, the output is stepped in order to prevent the inverter from tripping. In the customary zone, a constant air flow rate is applied as in the conventional method, but in the zone where the compost production system is introduced, the air flow rate fluctuates. This is because the coefficient A is calculated according to the fermentation status, and the blower is controlled by the inverter control device and the inverter based on the aeration amount information. In addition, from the demonstration test of this compost production system, the following three results have been obtained for energy saving and reduction of greenhouse gas emissions.

1点目は、送風機の省電力使用量の削減である。図5に示したように、本堆肥製造システムも導入した場合、従来の慣行区と比較して、消費電力量を最大で約90%まで削減可能であった。これは同時に電力製造に係る二酸化炭素(CO2)排出量も最大で約90%削減可能であることを意味する。 The first point is to reduce the power consumption of the blower. As shown in FIG. 5, when this compost production system was also introduced, it was possible to reduce the power consumption to a maximum of about 90% compared to the conventional practice zone. This also means that carbon dioxide (CO 2 ) emissions associated with power production can be reduced by up to about 90%.

2点目は、温室効果ガスである一酸化二窒素(N2O)の削減である。図6に示したように、本堆肥製造システム導入区では、慣行区と比較して堆肥化期間におけるN2Oの総排出量が約50%削減可能であった。 The second point is reduction of nitrous oxide (N 2 O), a greenhouse gas. As shown in FIG. 6, in the compost production system introduction zone, the total emission of N 2 O during the composting period could be reduced by about 50% compared to the conventional district.

3点目は、温室効果ガスであるメタン(CH4)の削減である。図7に示したように、本堆肥製造システム導入区では、慣行区と比較して堆肥化期間におけるCH4の総排出量が約80%削減可能であった。 The third point is the reduction of methane (CH 4 ), a greenhouse gas. As shown in FIG. 7, in the compost production system introduction district, the total CH 4 emissions during the composting period could be reduced by about 80% compared to the customary district.

以上3点の結果から、本発明の堆肥製造技術は、省エネ化ならびに電力消費に伴うCO2の排出を削減することが可能であることが分かる。加えて、極めて強力な温室効果ガスであるN2OやCH4を削減できることも分かる。 From the results of the above three points, it can be seen that the compost production technology of the present invention can save energy and reduce CO 2 emissions accompanying power consumption. In addition, we can see that N 2 O and CH 4 , which are extremely powerful greenhouse gases, can be reduced.

本発明は、省エネと温室効果ガス排出抑制の両方を同時に満足できる堆肥製造技術であり、堆肥製造に関する種々の分野に有用である。   INDUSTRIAL APPLICABILITY The present invention is a compost production technique that can satisfy both energy saving and greenhouse gas emission suppression at the same time, and is useful in various fields related to compost production.

Claims (6)

堆肥材料に通気することを含む堆肥の製造方法であって、
前記通気は、堆肥材料の温度に応じて決定した、単位量の堆肥材料に対する通気量で行い、かつ
前記堆肥材料の温度は連続的または断続的に測定し、得られた測定温度に基づいて前記単位量の堆肥材料に対する通気量を連続的または断続的に決定する、
但し、前記単位量の堆肥材料に対する通気量は、堆肥材料の乾燥重量と温度に応じて予め定めた係数の積として算出され、 前記温度に応じて予め定めた係数は、70℃以下の温度域で、かつ温度が上昇している間は、温度の関数であり、70℃を超える温度では定数であり、70℃以下の温度域で、かつ温度が下降している間は定数であり、かつ
前記測定温度が下降傾向を示すときに堆肥材料の切り返しを行うことを含む
前記製造方法。
A method for producing compost comprising aeration of compost material,
The aeration is performed according to the aeration amount with respect to the unit amount of the compost material determined according to the temperature of the compost material, and the temperature of the compost material is measured continuously or intermittently, and based on the obtained measurement temperature Continuously or intermittently determine the ventilation rate for a unit amount of compost material,
However, the ventilation rate for the compost material of the unit amount is calculated as a product of a coefficient predetermined according to the dry weight and temperature of the compost material, and the coefficient predetermined according to the temperature is a temperature range of 70 ° C. or less. And while the temperature is rising, it is a function of temperature, constant at temperatures above 70 ° C., constant in the temperature range below 70 ° C. and while the temperature is falling, and
Including turning compost material when the measured temperature shows a downward trend ,
The manufacturing method.
堆肥材料の温度は、通気している堆肥材料の中心部付近で測定する、請求項1に記載の製造方法。 2. The production method according to claim 1 , wherein the temperature of the compost material is measured in the vicinity of the center of the compost material being ventilated. 堆肥材料は含水率が40〜80%である、請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2 , wherein the compost material has a moisture content of 40 to 80%. 堆肥材料に対する通気は、堆肥材料に均一に空気が供給されるように実施する、請求項1〜3のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 3 , wherein aeration of the compost material is performed so that air is uniformly supplied to the compost material. 堆肥材料発酵槽、
前記発酵槽に設けられた堆肥材料への通気手段、
堆肥材料の温度を計測するための温度計、および
温度計で計測された温度に基づいて通気装置の風量を決定する手段、
前記風量決定手段が決めた風量で前記通気手段の風量を制御する手段、を含み、
前記風量決定手段および風量制御手段がインバーター制御装置であり、インバーター制御装置はインバーターを介して通気手段を制御する、
請求項1〜4のいずれかに記載の方法に用いられる堆肥製造装置。
Compost material fermenter,
Aeration means to compost material provided in the fermenter,
A thermometer for measuring the temperature of the compost material, and means for determining the air volume of the aeration device based on the temperature measured by the thermometer,
Means for controlling the air volume of the ventilation means with the air volume determined by the air volume determining means,
The air volume determining means and the air volume control means are inverter control devices, and the inverter control device controls the ventilation means via the inverter.
The compost manufacturing apparatus used for the method in any one of Claims 1-4 .
前記通気手段は、堆肥材料の乾燥重量と温度に応じて予め定めた係数の積として算出される単位量の堆肥材料に対する通気量を実現するように、前記インバーター制御装置により制御される、請求項5に記載の製造装置 The aeration means is controlled by the inverter control device so as to realize a ventilation amount for a unit amount of compost material calculated as a product of a predetermined coefficient according to a dry weight and a temperature of the compost material. 5. The manufacturing apparatus according to 5 .
JP2011097769A 2011-04-26 2011-04-26 Compost manufacturing method and apparatus Active JP5565773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011097769A JP5565773B2 (en) 2011-04-26 2011-04-26 Compost manufacturing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011097769A JP5565773B2 (en) 2011-04-26 2011-04-26 Compost manufacturing method and apparatus

Publications (2)

Publication Number Publication Date
JP2012229136A JP2012229136A (en) 2012-11-22
JP5565773B2 true JP5565773B2 (en) 2014-08-06

Family

ID=47431050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011097769A Active JP5565773B2 (en) 2011-04-26 2011-04-26 Compost manufacturing method and apparatus

Country Status (1)

Country Link
JP (1) JP5565773B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7417437B2 (en) 2020-02-27 2024-01-18 株式会社Subaru motor device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5893670B2 (en) * 2014-05-12 2016-03-23 株式会社森づくり Method for producing dried sludge and treatment method thereof
JP7504371B2 (en) * 2020-02-18 2024-06-24 国立研究開発法人農業・食品産業技術総合研究機構 Composting management device and composting management method
JP7495587B1 (en) 2023-02-24 2024-06-05 佐賀県 Compost production method, control device used therein, compost production system, compost production program, and recording medium

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169991A (en) * 1983-03-17 1984-09-26 日立機電工業株式会社 Method of determinating air supply volume for compost fermentation process
JPS6041598A (en) * 1983-08-17 1985-03-05 Hitachi Kiden Kogyo Ltd Controlling process of passed air quantity in compositing process
JPS6061097A (en) * 1983-09-14 1985-04-08 Hitachi Kiden Kogyo Ltd Controlling method of air supply in composting process
JPS6121796A (en) * 1984-07-11 1986-01-30 Hitachi Kiden Kogyo Ltd Method for setting aeration amount in compost fermentation process
JP3504881B2 (en) * 1999-04-30 2004-03-08 株式会社イシカワキカイ Garbage disposal method
JP2000325925A (en) * 1999-05-20 2000-11-28 Yukishitsu Hiryo Seibutsu Kassei Riyo Gijutsu Kenkyu Kumiai Method and apparatus for treating organic waste
JP2003251318A (en) * 2002-03-06 2003-09-09 Matsushita Electric Ind Co Ltd Fermentation treatment apparatus for organic waste
JP2005170743A (en) * 2003-12-11 2005-06-30 Digi I's Ltd Method and apparatus for composting organic waste material
JP2006335630A (en) * 2005-06-06 2006-12-14 Shimizu Corp Apparatus and method for composting
JP5377911B2 (en) * 2008-09-22 2013-12-25 栄 澁澤 Composting apparatus and compost evaluation management method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7417437B2 (en) 2020-02-27 2024-01-18 株式会社Subaru motor device

Also Published As

Publication number Publication date
JP2012229136A (en) 2012-11-22

Similar Documents

Publication Publication Date Title
Sundberg et al. Higher pH and faster decomposition in biowaste composting by increased aeration
Abd El Kader et al. Turning, compacting and the addition of water as factors affecting gaseous emissions in farm manure composting
Saha et al. Effects of a partial pit ventilation system on indoor air quality and ammonia emission from a fattening pig room
JP5565773B2 (en) Compost manufacturing method and apparatus
CN105198517B (en) A kind of Quick composting device of three-decker and the method for carrying out compost using the device
JP6889933B2 (en) Composting equipment, composting methods, and programs
Wang et al. Ammonia and odour emitted from deep litter and fully slatted floor systems for growing-finishing pigs
CN106007836B (en) A kind of composting device
CN206136869U (en) Supplementary exhaust device of beasts and birds house
CN102219580B (en) Method for producing organic fertilizer by fermentation method
JP2018172272A (en) Composting apparatus and method of controlling the same
CN103980013B (en) A kind of spiral forced cyclic type bitubular organic fertilizer fermentation equipment of AC Servo Control
CN203960073U (en) Fertilizer canopy slot type static fermentation device
JP2006335630A (en) Apparatus and method for composting
KÜLCÜ Determination of the relationship between FAS values and energy consumption in the composting process
CN105503301B (en) A kind of solid waste aerobic compost and biological dewatered method
Liu et al. Effect of temperature and bulking agents on deep bio-drying of high-solid anaerobically digested sludge
CN104402552A (en) Continuous solid fermentation device
CN207911685U (en) A kind of complex microorganism bed for livestock and poultry cultivation
JP7190133B2 (en) Composting device and its control method
JP7495587B1 (en) Compost production method, control device used therein, compost production system, compost production program, and recording medium
JP2018034099A (en) Organic sludge drying method, and fuel production method using the same
Kasinski et al. Oxygen demand for the stabilization of the organic fraction of municipal solid waste in passively aerated bioreactors
CN111039540A (en) Livestock manure drying system and livestock manure drying method
CN104446731A (en) Energy-saving fermentation device utilizing perforated floor for ventilation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140609

R150 Certificate of patent or registration of utility model

Ref document number: 5565773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250