JP2006335630A - Apparatus and method for composting - Google Patents

Apparatus and method for composting Download PDF

Info

Publication number
JP2006335630A
JP2006335630A JP2005165992A JP2005165992A JP2006335630A JP 2006335630 A JP2006335630 A JP 2006335630A JP 2005165992 A JP2005165992 A JP 2005165992A JP 2005165992 A JP2005165992 A JP 2005165992A JP 2006335630 A JP2006335630 A JP 2006335630A
Authority
JP
Japan
Prior art keywords
fermentation
air
temperature
organic waste
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005165992A
Other languages
Japanese (ja)
Inventor
Tadashi Suga
正 須賀
Osamu Kudo
修 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2005165992A priority Critical patent/JP2006335630A/en
Publication of JP2006335630A publication Critical patent/JP2006335630A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Abstract

<P>PROBLEM TO BE SOLVED: To realize efficient composting at a low cost by controlling airflow and temperature depending on fermentation stages of organic wastes to provide an always-optimal fermentation environment when composting of organic wastes is performed in a cold district where fermentation conditions are severe and under an environment where fermentation conditions vary. <P>SOLUTION: In an apparatus 10 for composting, a sensor 11 for detecting fermentation stages is used to detect fermentation stages when organic wastes such as dung and urine stacked in a fermentor is fermented for composting, and a control panel 12 controls a blower 13 so that air in an amount required for each fermentation stage is supplied to the organic wastes. The control panel 12 detects the temperature of air drawn by the blower 13 with an intake-air temperature sensor 14. When the intake-air temperature decreases to a predetermined temperature or lower, the air is heated by an air heater 15 before it is supplied. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、堆肥化装置およびその堆肥化方法に関し、特に、家畜等から生じる糞尿等の有機系廃棄物を好気性微生物により堆肥化する堆肥化装置および堆肥化方法に関するものである。   The present invention relates to a composting apparatus and a composting method thereof, and more particularly to a composting apparatus and a composting method for composting organic waste such as manure generated from livestock and the like with aerobic microorganisms.

従来より、家畜等から生じる糞尿等の有機系廃棄物を処理して堆肥化する場合に、有機系廃棄物の含水率を65%前後に調整した後、発酵槽に投入し、好気性発酵を促す空気(酸素)を発酵槽の底部から堆積した有機系廃棄物に供給し、かつ、有機系廃棄物を間欠的に切り返すことにより、投入した有機系廃棄物を投入側から取出側へ順次送出し、堆肥化するようにした堆肥化装置が知られている。   Conventionally, when organic waste such as manure generated from livestock is processed and composted, the water content of the organic waste is adjusted to around 65% and then put into a fermenter for aerobic fermentation. Supplying urging air (oxygen) to the organic waste deposited from the bottom of the fermenter and intermittently switching back the organic waste, so that the input organic waste is sequentially sent from the input side to the extraction side However, a composting apparatus that composts is known.

この堆肥化装置では、発酵槽に投入された有機系廃棄物を間欠的に切り返しつつ、発酵槽の一端側の初期発酵領域から他端側の末期発酵領域へ有機系廃棄物を移動させることによって、各領域の有機系廃棄物が発酵進行過程に準じていると看做し、領域毎に供給する空気量を調節して発酵効率を向上させ、短時間で発酵不足の無い堆肥を形成するものであった(例えば、特許文献1参照)。   In this composting apparatus, the organic waste that has been input to the fermenter is intermittently turned over, and the organic waste is moved from the initial fermentation region on one end side of the fermenter to the end fermentation region on the other end side. Considering that organic waste in each area conforms to the fermentation process, adjusting the amount of air supplied to each area to improve fermentation efficiency and forming compost free from shortage of fermentation in a short time (For example, see Patent Document 1).

特許第3443055号公報Japanese Patent No. 3443055

しかしながら、このような堆肥化装置にあっては、発酵槽における有機系廃棄物の投入口から取出口に至る各領域を発酵進行過程に分け、空気の供給量を調節可能としているが、供給する空気の温度や投入する有機系廃棄物の温度が季節(夏季、冬季)や使用地域(温暖な地域、寒冷地)によって異なると、発酵の進行速度も異なってくるため、発酵槽の領域と発酵進行過程とが対応しなくなり、適切な空気の供給量が確保できなくなるという課題が考えられる。   However, in such a composting apparatus, each area from the inlet to the outlet of the organic waste in the fermenter is divided into fermentation progress processes, and the supply amount of air can be adjusted. If the temperature of the air or the temperature of the organic waste to be introduced varies depending on the season (summer, winter) and the area of use (warm area, cold area), the rate of fermentation varies, so the fermenter area and fermentation There is a problem that the progress process becomes incompatible and an appropriate amount of air supply cannot be secured.

また、上述した堆肥化装置では、投入する有機系廃棄物の種類や投入量などに応じて、発酵領域を増減したり、空気噴出管路部及び空気噴出パイプの本数の増減も自由であるとするが、何を基準として発酵領域を増減したり、空気噴出管路部及び空気噴出パイプの本数を増減するのかについては記載がなく、発酵段階にある有機系廃棄物に常に適切な空気供給量が確保できるかは不明であり、特に、発酵条件の厳しい寒冷地や発酵条件が変化する環境下でも短時間で発酵不足の無い堆肥が形成できるかは疑問である。仮に、発酵領域の増減や空気噴出管路部及び空気噴出パイプの本数の増減ができたとしても、多大なコストを要するという別の課題が考えられる。   In the composting apparatus described above, the fermentation area can be increased or decreased according to the type and amount of the organic waste to be input, and the number of air ejection pipe sections and air ejection pipes can be freely increased or decreased. However, there is no description on what to increase / decrease the fermentation area or increase / decrease the number of air ejection pipes and air ejection pipes based on the standard, and always provide an appropriate air supply amount for organic waste in the fermentation stage It is unclear whether it can be ensured. In particular, it is doubtful whether compost free from shortage of fermentation can be formed in a short time even in cold regions with severe fermentation conditions or in environments where fermentation conditions change. Even if the increase / decrease of the fermentation region and the number of air ejection pipe sections and the number of air ejection pipes can be increased, another problem of requiring a great cost is conceivable.

本発明は、上記に鑑みてなされたものであって、発酵条件の厳しい寒冷地や発酵条件の変化する環境下で有機系廃棄物を堆肥化する場合でも、有機系廃棄物の発酵段階に応じた送風制御や温度制御を行うことによって、常に最適な発酵環境が提供可能となり、低コストで効率の良い堆肥化が実現できる堆肥化装置および堆肥化方法を提供することを目的とする。   The present invention has been made in view of the above, and according to the fermentation stage of organic waste, even when composting organic waste in a cold region where fermentation conditions are severe or in an environment where fermentation conditions change. It is an object of the present invention to provide a composting apparatus and a composting method that can always provide an optimal fermentation environment by performing air blowing control and temperature control, and can realize efficient composting at low cost.

上述した課題を解決し、目的を達成するために、請求項1にかかる発明は、有機系廃棄物を堆積して発酵させる発酵槽と、該発酵槽に配置された送気管を通して前記有機系廃棄物に空気を供給する送風機と、前記有機系廃棄物の発酵段階を検出する発酵段階検出手段と、前記送風機の送風量を制御する制御手段とを備え、前記制御手段が前記発酵段階検出手段により検出した有機系廃棄物の発酵段階に応じて前記送風機の送風量を制御し、効率的に有機系廃棄物を発酵させることを特徴とする。   In order to solve the above-described problems and achieve the object, the invention according to claim 1 is directed to a fermenter for depositing and fermenting organic waste, and the organic waste through an air pipe arranged in the fermenter. A blower for supplying air to the product, a fermentation stage detection means for detecting the fermentation stage of the organic waste, and a control means for controlling the air flow rate of the blower, wherein the control means is controlled by the fermentation stage detection means. According to the detected fermentation stage of the organic waste, the blower amount of the blower is controlled to efficiently ferment the organic waste.

また、請求項2にかかる発明は、請求項1に記載の堆肥化装置において、前記送風機が吸気する空気の温度を検出する吸気温度検出手段と、前記送風機から供給される空気を加熱する空気加熱手段とをさらに備え、前記制御手段は、吸気温度検出手段で検出された空気の温度が前記発酵段階検出手段で検出した発酵段階に必要な温度以下となった場合に、前記空気加熱手段を制御して送風機から供給される空気を加熱し、各発酵段階に必要な温度の空気を供給することを特徴とする。   The invention according to claim 2 is the composting apparatus according to claim 1, wherein the intake air temperature detecting means for detecting the temperature of the air sucked by the blower and the air heating for heating the air supplied from the blower. And the control means controls the air heating means when the temperature of the air detected by the intake air temperature detection means becomes equal to or lower than the temperature required for the fermentation stage detected by the fermentation stage detection means. Then, the air supplied from the blower is heated, and air having a temperature necessary for each fermentation stage is supplied.

また、請求項3にかかる発明は、請求項2に記載の堆肥化装置において、前記発酵段階検出手段は、前記有機系廃棄物が発酵して堆肥化する際に発する発酵熱を検出する堆肥温度センサであって、前記有機系廃棄物が発酵を開始して発酵熱によって堆肥温度が上昇し始める初期立上り段階と、発酵がさらに進んで堆肥温度が急激に上昇する立上り段階と、発酵が活性化して継続的に堆肥の熟成が進み堆肥温度の上昇が頭打ちになる活性化段階の少なくとも3つの発酵段階を堆肥温度で判別し、前記堆肥温度センサで検出した堆肥温度による発酵段階に応じた送風量と空気温度が得られるように前記制御手段で制御することを特徴とする。   Further, the invention according to claim 3 is the composting apparatus according to claim 2, wherein the fermentation stage detection means detects the heat of fermentation generated when the organic waste is fermented and composted. A sensor, wherein the organic waste starts fermentation and the compost temperature starts to rise due to the heat of fermentation; The aging of compost continues and the increase in compost temperature reaches its peak, and at least three fermentation stages of the activation stage are discriminated by the compost temperature, and the amount of air blown according to the fermentation stage based on the compost temperature detected by the compost temperature sensor And the air temperature is controlled by the control means.

また、請求項4にかかる発明は、請求項2に記載の堆肥化装置において、前記発酵段階検出手段は、前記有機系廃棄物の発酵が活性化し、継続的に堆肥の熟成が進むに連れて変化する酸素消費量に応じた酸素濃度の変化を検出する酸素濃度検出センサであって、前記酸素濃度レベルを複数段階に分けて、前記酸素濃度検出センサで検出した酸素濃度による発酵段階に応じた送風量と空気温度が得られるように前記制御手段が制御することを特徴とする。   Further, the invention according to claim 4 is the composting apparatus according to claim 2, wherein the fermentation stage detection means activates fermentation of the organic waste and continuously advances compost maturation. An oxygen concentration detection sensor that detects a change in oxygen concentration according to a changing oxygen consumption amount, wherein the oxygen concentration level is divided into a plurality of stages, and according to the fermentation stage based on the oxygen concentration detected by the oxygen concentration detection sensor The control means controls the air flow rate and the air temperature to be obtained.

また、請求項5にかかる発明は、発酵槽内に堆積した有機系廃棄物の発酵段階を検出する発酵段階検出ステップと、発酵段階に応じた必要な量の空気を前記有機系廃棄物に供給する空気供給ステップとを含み、前記空気供給ステップでは、有機系廃棄物の発酵段階に応じて送風量を制御することを特徴とする。   The invention according to claim 5 is a fermentation stage detection step for detecting a fermentation stage of organic waste deposited in the fermenter, and supplies the organic waste with a necessary amount of air according to the fermentation stage. An air supply step, wherein the air supply step controls the amount of blown air according to the fermentation stage of the organic waste.

また、請求項6にかかる発明は、請求項5に記載の堆肥化方法において、前記有機系廃棄物に送風する空気の吸気温度を検出する吸気温度検出ステップと、吸気した空気を前記有機系廃棄物に送風する前に加熱する空気加熱ステップとをさらに含み、検出された吸気温度が発酵段階に必要な空気温度を下回っている場合に、前記有機系廃棄物へ送風する前に空気を加熱し、各発酵段階に必要な温度の空気を供給することを特徴とする。   The invention according to claim 6 is the composting method according to claim 5, wherein an intake air temperature detecting step for detecting an intake air temperature of air blown to the organic waste, and the intake air is converted into the organic waste. An air heating step for heating before blowing to the object, and heating the air before blowing to the organic waste when the detected intake air temperature is below the air temperature required for the fermentation stage. The method is characterized by supplying air at a temperature required for each fermentation stage.

また、請求項7にかかる発明は、請求項6に記載の堆肥化方法において、前記発酵段階検出ステップは、前記有機系廃棄物が発酵して堆肥化する際に発する発酵熱を検出することによって発酵段階を判別するもので、前記有機系廃棄物が発酵を開始して発酵熱によって堆肥温度が上昇し始める初期立上り段階と、発酵がさらに進んで堆肥温度が急激に上昇する立上り段階と、発酵が活性化して継続的に堆肥の熟成が進み堆肥温度の上昇が頭打ちになる活性化段階の少なくとも3つの発酵段階を堆肥温度によって判別し、発酵段階に応じた送風量と空気温度が得られるように制御することを特徴とする。   Further, the invention according to claim 7 is the composting method according to claim 6, wherein the fermentation stage detection step detects the heat of fermentation generated when the organic waste is fermented and composted. A fermentation stage is discriminated. The organic waste starts fermentation and the initial rise stage where the compost temperature starts to rise due to fermentation heat; the rise stage where the fermentation progresses further and the compost temperature rises rapidly; It is possible to determine at least three fermentation stages of the activation stage where the compost maturation progresses continuously and the rise of the compost temperature reaches its peak, and the blast volume and air temperature corresponding to the fermentation stage are obtained. It is characterized by controlling to.

また、請求項8にかかる発明は、請求項6に記載の堆肥化方法において、前記発酵段階検出ステップは、前記有機系廃棄物の発酵が活性化し、継続的に堆肥の熟成が進むに連れて変化する酸素消費量に応じた酸素濃度の変化を検出することによって発酵段階を判別するもので、前記酸素濃度レベルを複数段階に分けて発酵段階を酸素濃度によって判別し、発酵段階に応じた送風量と空気温度が得られるように制御することを特徴とする。   Further, the invention according to claim 8 is the composting method according to claim 6, wherein the fermentation stage detection step is activated as fermentation of the organic waste is activated and compost maturation progresses continuously. The fermentation stage is discriminated by detecting a change in oxygen concentration according to the changing oxygen consumption. The oxygen concentration level is divided into a plurality of stages, the fermentation stage is discriminated by the oxygen concentration, and the fermentation stage is fed. Control is made so that the air volume and the air temperature are obtained.

請求項1にかかる堆肥化装置は、制御手段が発酵段階検出手段により検出した有機系廃棄物の発酵段階に応じて送風機の送風量を制御するので、発酵条件の変化する環境下であっても、有機系廃棄物の各発酵段階に必要な空気を適切に供給することができる。このため、効率の良い堆肥化が可能になると共に、発酵段階に応じて送風機の送風量を制御することから送風機の省電力化を図ることができ、均質な堆肥を低コストにて提供できるという効果を奏する。   Since the composting apparatus concerning Claim 1 controls the ventilation volume of an air blower according to the fermentation stage of the organic waste which the control means detected by the fermentation stage detection means, even under the environment where fermentation conditions change. The air necessary for each fermentation step of organic waste can be supplied appropriately. For this reason, efficient composting becomes possible, and since the air volume of the blower is controlled according to the fermentation stage, power saving of the blower can be achieved, and homogeneous compost can be provided at low cost. There is an effect.

また、請求項2にかかる堆肥化装置は、さらに吸気温度検出手段で検出された吸気温度が当該発酵段階に必要な温度以下になった場合に、空気加熱手段を制御して送風機から有機系廃棄物に供給する空気を加熱することで、常に発酵段階に適した温度の空気を供給することができる。このため、発酵条件の厳しい寒冷地であっても、発酵段階に応じた温度の空気を供給することができ、発酵の進行を抑制することなく、効率の良い堆肥化が可能になるという効果を奏する。   Further, the composting apparatus according to claim 2 further controls the air heating means to control the organic waste from the blower when the intake air temperature detected by the intake air temperature detection means is below the temperature required for the fermentation stage. By heating the air supplied to the product, it is possible to always supply air having a temperature suitable for the fermentation stage. For this reason, even in cold regions where the fermentation conditions are severe, it is possible to supply air at a temperature according to the fermentation stage, and it is possible to efficiently compost without suppressing the progress of fermentation. Play.

また、請求項3にかかる堆肥化装置は、発酵段階検出手段として有機系廃棄物が発酵し堆肥化する際に発する発酵熱を検出する堆肥温度センサを用い、少なくとも3つの発酵段階を判別して、その発酵段階に応じた送風量と空気温度が得られるように制御することができる。特に、1次発酵のように有機系廃棄物の発酵が立上ってから活性化するまでの堆肥温度変化の大きい期間は、発酵熱による堆肥温度で容易に発酵段階が判別できると共に、好気性微生物により酸素を使って有機系廃棄物の発酵が進み発酵熱が発生するので、堆肥温度と空気(酸素)の必要量とが密接な関係にあることを利用し、堆肥温度から必要な送風量を割り出すことができる。供給される空気の温度は、冬季の寒冷地の空気をそのまま供給すると、発酵の初期立上り段階で温度が下がり、好気性微生物による発酵が進まなくなる恐れがあるため、一定の温度(例えば、15℃前後)まで加熱して供給するようにする。その後の立上り段階や活性化段階では、好気性微生物が繁殖して発酵が進み、発酵熱が発生するため、堆肥温度の変化状況にそれ程影響が出なければ空気の加熱は不要となる。このように、堆肥温度センサによって有機系廃棄物の発酵段階を検出し、発酵段階に応じた送風量と空気温度になるよう制御するので、発酵条件の厳しい寒冷地や発酵条件の変化する環境下であっても効率の良い堆肥化が可能となり、均質な堆肥を低コストにて提供できるという効果を奏する。   The composting apparatus according to claim 3 uses a compost temperature sensor that detects fermentation heat generated when organic waste is fermented and composted as fermentation stage detection means, and discriminates at least three fermentation stages. It is possible to control the air flow rate and the air temperature according to the fermentation stage. In particular, during the period of large change in compost temperature from the start of the fermentation of organic waste to activation like primary fermentation, the fermentation stage can be easily discriminated by the compost temperature due to fermentation heat, and aerobic Since the fermentation of organic waste proceeds using microorganisms with oxygen and fermentation heat is generated, the amount of blast required from the compost temperature is utilized by utilizing the close relationship between the compost temperature and the required amount of air (oxygen). Can be determined. If the air in the cold region in winter is supplied as it is, the temperature of the supplied air decreases at the initial stage of fermentation, and there is a risk that fermentation by aerobic microorganisms will not proceed. Heat and supply until before and after. In the subsequent start-up stage and activation stage, aerobic microorganisms propagate and fermentation proceeds to generate fermentation heat. Therefore, heating of air is not required unless the change in the compost temperature is affected so much. In this way, the fertilization temperature sensor detects the fermentation stage of organic waste and controls the air flow and air temperature according to the fermentation stage, so it can be used in cold regions where fermentation conditions are severe or in environments where fermentation conditions change. Even so, efficient composting is possible, and homogeneous compost can be provided at low cost.

また、請求項4にかかる堆肥化装置は、発酵段階検出手段として有機系廃棄物の発酵が活性化し、継続的に堆肥の熟成が進むに連れて変化する酸素消費量に応じた酸素濃度の変化を検出する酸素濃度検出センサを用い、複数段階に分けた酸素濃度のどのレベルを検出したかによって必要な送風量と空気温度が得られるよう制御することで、発酵段階に応じた適切な発酵環境を整えることができる。特に、2次発酵のように有機系廃棄物の発酵が活性化し、継続的に堆肥の熟成が進む期間は、堆肥の熟成に伴って発酵に必要な酸素量が減少してくるので、酸素濃度を検出することで必要な送風量を割り出すことができる。供給される空気の温度は、請求項3の場合と同様に堆肥温度の変化状況にそれ程影響が出なければ空気の加熱は不要となる。このように、酸素濃度検出センサによって有機系廃棄物の表面付近の酸素濃度を検出し、酸素濃度に対応する発酵段階に応じた送風量と空気温度になるよう制御するので、発酵条件の厳しい寒冷地や発酵条件の変化する環境下であっても効率の良い堆肥化が可能となり、均質な堆肥を低コストにて提供できるという効果を奏する。   Further, the composting apparatus according to claim 4 is a change in oxygen concentration according to oxygen consumption that changes as fermentation of organic waste is activated as a fermentation stage detection means and aging of compost progresses continuously. By using an oxygen concentration detection sensor that detects the amount of oxygen and controlling the level of oxygen concentration divided into multiple stages so that the necessary air flow and air temperature can be obtained, an appropriate fermentation environment according to the fermentation stage Can be arranged. In particular, during the period in which fermentation of organic waste is activated and compost maturation proceeds continuously as in secondary fermentation, the amount of oxygen necessary for fermentation decreases as the compost matures. By detecting this, it is possible to determine the necessary blowing amount. As with the case of claim 3, the temperature of the supplied air is not required to be heated unless the change of the compost temperature is affected so much. In this way, the oxygen concentration detection sensor detects the oxygen concentration in the vicinity of the surface of the organic waste and controls the air flow and air temperature according to the fermentation stage corresponding to the oxygen concentration. Efficient composting is possible even in an environment where the ground and fermentation conditions change, and there is an effect that homogeneous compost can be provided at low cost.

また、請求項5にかかる堆肥化方法は、発酵槽内に堆積した有機系廃棄物の発酵段階を検出し、発酵段階に応じた必要な量の空気を有機系廃棄物に供給するので、発酵条件の変化する環境下であっても、有機系廃棄物の各発酵段階に必要な空気を適切に供給することができる。このため、効率の良い堆肥化が可能になると共に、発酵段階に応じた必要な量の空気を送風することから省電力化が図れ、均質な堆肥を低コストにて提供できるという効果を奏する。   Further, the composting method according to claim 5 detects the fermentation stage of the organic waste accumulated in the fermenter and supplies the organic waste with a necessary amount of air corresponding to the fermentation stage. Even under an environment where conditions change, it is possible to appropriately supply air necessary for each fermentation stage of organic waste. For this reason, efficient composting becomes possible, and since the required amount of air corresponding to the fermentation stage is blown, power can be saved, and uniform compost can be provided at low cost.

また、請求項6にかかる堆肥化方法は、さらに有機系廃棄物に送風する空気の吸気温度を検出し、検出された吸気温度が発酵段階に必要な空気温度を下回っていると、有機系廃棄物に送風する前に加熱して、各発酵段階に必要な温度の空気を供給することができる。このため、発酵条件の厳しい寒冷地であっても、発酵段階に応じた温度の空気を供給することができ、発酵の進行を抑制することなく、効率の良い堆肥化が可能になるという効果を奏する。   The composting method according to claim 6 further detects the intake air temperature of the air sent to the organic waste, and if the detected intake air temperature is below the air temperature required for the fermentation stage, the organic waste It can be heated before it is blown into the product to provide air at the temperature required for each fermentation stage. For this reason, even in cold regions where the fermentation conditions are severe, it is possible to supply air at a temperature according to the fermentation stage, and it is possible to efficiently compost without suppressing the progress of fermentation. Play.

また、請求項7にかかる堆肥化方法は、発酵段階検出ステップが有機系廃棄物が発酵して堆肥化する際に発する発酵熱を検出することで発酵段階を判別するもので、発酵段階に応じた送風量と空気温度が得られるように制御することができる。特に、1次発酵のように有機系廃棄物の発酵が立上ってから活性化するまでの堆肥温度変化の大きい期間は、発酵熱による堆肥温度で容易に発酵段階を判別することができ、好気性微生物により酸素を使って有機系廃棄物の発酵が進んで発酵熱が発生するので、堆肥温度と空気(酸素)の必要量とが密接な関係にあることを利用し、堆肥温度から必要な送風量を割り出すことができる。供給される空気の温度は、冬季の寒冷地の空気をそのまま供給すると発酵の初期立上り段階では温度が下がってしまい、発酵が進まなくなる恐れがあるため、一定の温度(例えば、15℃前後)まで加熱して供給するようにする。その後の立上り段階や活性化段階では、好気性微生物が繁殖して発酵が進み、発酵熱が発生するため、堆肥温度の変化状況にそれ程影響が出なければ空気を加熱する必要がなくなる。このように、堆肥温度を検出することで有機系廃棄物の発酵段階を検出し、発酵段階に応じた送風量と空気温度になるよう制御するので、発酵条件の厳しい寒冷地や発酵条件の変化する環境下であっても効率の良い堆肥化が可能となり、均質な堆肥を低コストにて提供できるという効果を奏する。   In the composting method according to claim 7, the fermentation stage detection step determines the fermentation stage by detecting the fermentation heat generated when the organic waste is fermented and composted. The air flow rate and the air temperature can be controlled. In particular, during the period of large change in compost temperature from the start of fermentation of organic wastes to activation like primary fermentation, the fermentation stage can be easily determined by the compost temperature due to fermentation heat, Since aerobic microorganisms use oxygen to ferment organic waste and generate fermentation heat, it is necessary to use the fact that compost temperature and the required amount of air (oxygen) are closely related to each other. The amount of blast can be determined. The temperature of the supplied air may be reduced to a certain temperature (for example, around 15 ° C.) because if the air in a cold region in winter is supplied as it is, the temperature may drop at the initial stage of fermentation and the fermentation may not proceed. Heat and supply. In the subsequent start-up stage and activation stage, aerobic microorganisms propagate and fermentation progresses to generate heat of fermentation. Therefore, it is not necessary to heat the air unless the change in compost temperature is affected so much. In this way, the fermentation stage of organic waste is detected by detecting the compost temperature, and the air volume and air temperature are controlled according to the fermentation stage. Even under such circumstances, efficient composting is possible, and homogeneous compost can be provided at low cost.

また、請求項8にかかる堆肥化方法は、発酵段階検出ステップが有機系廃棄物の発酵が活性化し、継続的に堆肥の熟成が進むに連れて変化する酸素消費量に応じた酸素濃度の変化を検出することで発酵段階を判別するもので、検出した酸素濃度レベルによる発酵段階に応じた送風量と空気温度が得られるように制御することができる。特に、2次発酵のように有機系廃棄物の発酵が活性化し、継続的に堆肥の熟成が進む期間は、堆肥温度の変化は少ないが、堆肥の熟成に伴って発酵に必要な酸素量が減少してくるので、酸素濃度を検出することで必要な送風量を割り出すことができる。供給される空気の温度は、請求項6の場合と同様に堆肥温度の変化状況にそれ程影響が出なければ空気を加熱する必要がなくなる。このように、有機系廃棄物の表面付近の酸素濃度を検出して、酸素濃度に対応する発酵段階に応じた送風量と空気温度になるよう制御するので、発酵条件の厳しい寒冷地や発酵条件の変化する環境下であっても効率の良い堆肥化が可能となり、均質な堆肥を低コストにて提供できるという効果を奏する。   Further, in the composting method according to claim 8, in the fermentation stage detection step, the fermentation of the organic waste is activated, and the oxygen concentration changes according to the oxygen consumption amount that changes as the compost matures continuously. The fermentation stage is discriminated by detecting the air flow, and the air flow and the air temperature corresponding to the fermentation stage based on the detected oxygen concentration level can be controlled. In particular, during the period in which fermentation of organic waste is activated and compost maturation progresses like secondary fermentation, the change in compost temperature is small, but the amount of oxygen required for fermentation increases with compost maturation. Since it decreases, it is possible to determine the necessary blowing amount by detecting the oxygen concentration. If the temperature of the supplied air does not affect the change state of the compost temperature as much as in the case of claim 6, it is not necessary to heat the air. In this way, the oxygen concentration near the surface of organic waste is detected and controlled so that the air flow and air temperature according to the fermentation stage corresponding to the oxygen concentration are controlled. Even under the changing environment, efficient composting is possible, and homogeneous compost can be provided at low cost.

以下に、本発明にかかる堆肥化装置および堆肥化方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, embodiments of a composting apparatus and a composting method according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

図1は、本発明にかかる堆肥化装置の特徴的な構成要素を説明するブロック図であり、
後述する実施の形態1および実施の形態2に共通の概念ブロック図である。図1に示すように、本発明の堆肥化装置10は、不図示の発酵槽内に堆積させた糞尿等の有機系廃棄物を発酵させて堆肥化する際に、その発酵段階を検出する発酵段階検出手段としての発酵段階検出センサ11、堆肥化装置10全体の動作を制御する制御手段としての制御盤12、有機系廃棄物に対して不図示の通気管等を介して空気を供給する送風機13、その送風機13が吸気する空気の温度を検出する吸気温度検出手段としての吸気温度センサ14、および特定の発酵段階で吸気温度が低すぎる場合に送風機13から供給される空気を加熱する空気加熱手段としての空気加熱ヒータ15などで構成されている。
FIG. 1 is a block diagram illustrating characteristic components of a composting apparatus according to the present invention.
It is a conceptual block diagram common to Embodiment 1 and Embodiment 2 mentioned later. As shown in FIG. 1, the composting apparatus 10 of the present invention detects a fermentation stage when fermenting and composting organic waste such as manure deposited in a fermenter (not shown). A fermentation stage detection sensor 11 as a stage detection means, a control panel 12 as a control means for controlling the operation of the composting apparatus 10 as a whole, and a blower for supplying air to an organic waste through a vent pipe (not shown). 13. Intake air temperature sensor 14 as an intake air temperature detection means for detecting the temperature of air taken in by the blower 13 and air heating for heating air supplied from the blower 13 when the intake air temperature is too low at a specific fermentation stage It comprises an air heater 15 as a means.

発酵段階検出センサ11は、複数の段階に分けられた有機系廃棄物の発酵過程が今どの段階にあるのかを検出するためのセンサであり、実施の形態1では、熱電対などを利用して計測された堆肥温度に基づいて発酵段階を検出する堆肥温度センサ111が用いられ、実施の形態2では、発酵槽に堆積した有機系廃棄物の表面付近の酸素濃度を計測することで発酵段階を検出する酸素濃度センサ112が用いられている。   The fermentation stage detection sensor 11 is a sensor for detecting at which stage the fermentation process of organic waste divided into a plurality of stages is present. In the first embodiment, a thermocouple or the like is used. The compost temperature sensor 111 that detects the fermentation stage based on the measured compost temperature is used. In the second embodiment, the fermentation stage is determined by measuring the oxygen concentration near the surface of the organic waste deposited in the fermenter. An oxygen concentration sensor 112 for detection is used.

制御盤12は、発酵段階検出センサ11で検出された発酵段階に応じて必要な空気量を有機系廃棄物に供給すべく送風機13を制御している。また、寒冷地などでは、送風機13がそのまま外気を吸気して有機系廃棄物に供給すると、発酵の初期立上り時に必要な温度が得られなくなるので、吸気温度センサ14と空気加熱ヒータ15が使用される。まず、制御盤12は、吸気温度センサ14で検出された吸気温度が発酵の初期立上りに必要な温度(約15℃)以下の場合、発酵段階検出センサ11で検出された発酵段階と照会し、空気温度が低すぎる場合は空気加熱ヒータ15で発酵段階に適した温度まで加熱してから供給するように制御する。   The control panel 12 controls the blower 13 to supply a necessary amount of air to the organic waste according to the fermentation stage detected by the fermentation stage detection sensor 11. Also, in cold districts, if the blower 13 directly sucks outside air and supplies it to organic waste, the temperature required at the initial start of fermentation cannot be obtained, so the intake air temperature sensor 14 and the air heater 15 are used. The First, when the intake air temperature detected by the intake air temperature sensor 14 is equal to or lower than the temperature required for the initial start of fermentation (about 15 ° C.), the control panel 12 refers to the fermentation stage detected by the fermentation stage detection sensor 11, When the air temperature is too low, the air heater 15 is controlled so as to be heated after being heated to a temperature suitable for the fermentation stage.

(実施の形態1)
本実施の形態1の特徴は、有機系廃棄物の1次発酵における発酵過程を堆肥温度によって初期立上り段階、立上り段階、活性化段階の少なくとも3つに分割し、それぞれの発酵段階に必要な発酵条件(供給する空気量と空気温度)を定義して、各発酵段階に必要な空気量の調整は送風機の稼動時間と停止時間の割合を変えて間欠運転を行うことで送風機の無駄な運転を無くすと共に、発酵が進んで堆肥温度が一定温度以上になると空気の加熱を中止するようにして、電気使用量を極力削減するようにしたものである。
(Embodiment 1)
The feature of the first embodiment is that the fermentation process in the primary fermentation of organic waste is divided into at least three stages of an initial rising stage, a rising stage, and an activation stage depending on the compost temperature, and fermentation required for each fermentation stage. By defining the conditions (the amount of air to be supplied and the air temperature) and adjusting the amount of air required for each fermentation stage, the operation of the blower is changed and the ratio of the stop time is changed to perform intermittent operation. In addition to eliminating the heat, when the fermentation progresses and the compost temperature rises above a certain temperature, heating of the air is stopped to reduce the amount of electricity used as much as possible.

図2は、本発明の実施の形態1にかかる堆肥化装置の概略構成図である。図2における制御盤12、送風機13、吸気温度センサ14、および、空気加熱ヒータ15は、図1と同様であるので、構成説明を省略する。   FIG. 2 is a schematic configuration diagram of the composting apparatus according to the first embodiment of the present invention. The control panel 12, the blower 13, the intake air temperature sensor 14, and the air heater 15 in FIG. 2 are the same as those in FIG.

実施の形態1の特徴的な構成要素である図2の堆肥温度センサ111は、図1の発酵段階検出センサ11の一例であって、発酵槽20内に堆積された有機系廃棄物21が発酵して堆肥化する際に発生する熱によって変化する堆肥温度を検出して、発酵段階を検出するようにしたものである。   The compost temperature sensor 111 in FIG. 2 which is a characteristic component of the first embodiment is an example of the fermentation stage detection sensor 11 in FIG. 1, and the organic waste 21 deposited in the fermenter 20 is fermented. Then, the temperature of compost that changes due to the heat generated when composting is detected, and the fermentation stage is detected.

また、図2に示すように、送風機13から送風管24を介して発酵槽20内の有機系廃棄物21に供給する空気は、途中の空気加熱ヒータ15、圧力計セット部22、および風量調節バルブ23を経由した後、発酵槽20のコンクリート製の底壁の凹溝(図示せず)に配置されたヘッダー管(図示せず)にまず供給され、そのヘッダー管からさらに所定間隔で櫛歯状に延在する複数の送気管(図示せず)に分岐して供給され、その送気管に設けられた複数の噴出口(図示せず)から有機系廃棄物に空気が供給される。なお、この噴出口は、堆積した有機系廃棄物によって目詰まりしないように木材チップ(図示しない)等で覆ってある。   In addition, as shown in FIG. 2, the air supplied from the blower 13 to the organic waste 21 in the fermenter 20 through the blower pipe 24 is a midway air heater 15, a pressure gauge setting unit 22, and an air volume adjustment. After passing through the valve 23, it is first supplied to a header pipe (not shown) disposed in a concave groove (not shown) in the bottom wall made of concrete of the fermenter 20, and comb teeth are further spaced from the header pipe at predetermined intervals. Are branched and supplied to a plurality of air supply pipes (not shown) extending in a shape, and air is supplied to the organic waste from a plurality of jets (not shown) provided in the air supply pipes. In addition, this spout is covered with a wood chip (not shown) etc. so that it may not be clogged with the accumulated organic waste.

次に、実施の形態1の動作を説明する。図3は、実施の形態1における有機系廃棄物の1次発酵過程を示す線図であり、横軸は発酵に要する日数(1日〜7日)、縦軸は有機系廃棄物に供給される送風量と堆肥温度が示されている。   Next, the operation of the first embodiment will be described. FIG. 3 is a diagram showing the primary fermentation process of organic waste in Embodiment 1, wherein the horizontal axis is the number of days required for fermentation (1-7 days), and the vertical axis is supplied to the organic waste. The amount of air blown and compost temperature are shown.

具体的には、例えば、Lo℃(吸気温度)が0℃の場合に、ヒータ稼動期間を決めるL℃(堆肥温度)を15℃とし、初期立上り段階から立上り段階に移行するS℃(堆肥温度)を40℃とし、立上り段階から活性化段階に移行するH℃(堆肥温度)を80℃に予め設定しておくものとする(標準値)。   Specifically, for example, when Lo ° C (intake air temperature) is 0 ° C, L ° C (compost temperature) that determines the heater operation period is set to 15 ° C, and S ° C (compost temperature) that shifts from the initial rising stage to the rising stage ) Is set to 40 ° C., and H ° C. (composting temperature) that shifts from the rising stage to the activation stage is preset to 80 ° C. (standard value).

このように、堆肥化装置の使用者が予め基準となる温度と、運転パターンを設定するだけで(標準値の場合は設定不要)、図3に示すように、堆肥温度に基づいて分けられる発酵段階応じた運転パターンで送風機から空気が有機系廃棄物に供給されると共に、吸気温度が低い場合、堆肥温度が一定温度以上にならない期間は、電気加熱ヒータ15を稼動させることによって、発酵の初期立上り時に必要な温度の空気を供給することができる。   In this way, the fertilizer can be divided based on the compost temperature as shown in FIG. 3 simply by setting the reference temperature and the operation pattern in advance by the user of the composting apparatus (setting is not necessary in the case of the standard value). When air is supplied to the organic waste from the blower in accordance with the operation pattern according to the stage and the intake air temperature is low, during the period in which the compost temperature does not exceed a certain temperature, the electric heater 15 is operated to start the fermentation. Air at a necessary temperature can be supplied at the time of rising.

図3に示すように、初期立上り段階は、発酵槽に投入した有機系廃棄物が発酵を開始し、発酵熱によって堆肥温度がS℃(約40℃)に上昇するまでの期間をいう(第1段階)。この段階では、好気性微生物の活動がまだそれ程活発化していないため、空気量は少なくて良いが(稼動4分で停止20分の間欠運転パターンL)、吸気温度がLo℃(約0℃)の空気をそのまま供給すると発酵が進まなくなる恐れがあるため、L℃(約15℃)以上になるように空気加熱ヒータで空気を加熱してから供給する。空気加熱ヒータ15の稼動は、初期立上り段階のうち堆肥温度がL℃(約15℃)になるまでの期間継続される。   As shown in FIG. 3, the initial rising stage refers to a period until the organic waste introduced into the fermentor starts fermentation and the compost temperature rises to S ° C. (about 40 ° C.) due to the heat of fermentation (No. 1). 1 stage). At this stage, the activity of aerobic microorganisms has not yet increased so much, so the amount of air may be small (intermittent operation pattern L with 4 minutes of operation and 20 minutes of stoppage), but the intake air temperature is Lo ° C (about 0 ° C) If the air is supplied as it is, the fermentation may not proceed. Therefore, the air is heated after being heated by an air heater so that the temperature becomes L ° C. (about 15 ° C.) or higher. The operation of the air heater 15 is continued for a period until the compost temperature reaches L ° C. (about 15 ° C.) in the initial rising stage.

続いて、立上り段階は、発酵がさらに進んで堆肥温度がS℃(約40℃)からH℃(約80℃)に急激に上昇するまでの期間をいう(第2段階)。この段階では、好気性微生物の活動が活発化してくるため、空気量はある程度必要になってくるが(稼動7分で停止20分の間欠運転パターンH)、堆肥温度が40℃以上と高いので供給される空気温度が必ずしもL℃(約15℃)以上でなくても良く、空気加熱ヒータ15は稼動させない。   Subsequently, the rising stage refers to a period from when the fermentation further proceeds until the compost temperature rapidly rises from S ° C. (about 40 ° C.) to H ° C. (about 80 ° C.) (second stage). At this stage, the activity of aerobic microorganisms becomes active, so a certain amount of air is required (intermittent operation pattern H with 7 minutes of operation and 20 minutes of stoppage), but the compost temperature is as high as 40 ° C or higher. The supplied air temperature does not necessarily have to be L ° C. (about 15 ° C.) or higher, and the air heater 15 is not operated.

さらに、活性化段階は、発酵が活性化して堆肥温度がH℃(約80度)を超えてから温度上昇が頭打ちとなり、継続的に堆肥の熟成化が進む期間をいう(第3段階)。この段階では、好気性微生物の活動が最も活発化するため、空気量は多く必要となるが(ここでは連続運転パターンとしたが、稼動時間の割合を多くした間欠運転パターンであっても良い)、堆肥温度が非常に高いので供給される空気温度がL℃(約15℃)以上である必要はなく、空気加熱ヒータ15は稼動させない。   Further, the activation stage refers to a period in which the temperature rises peak after the fermentation is activated and the compost temperature exceeds H ° C. (about 80 ° C.), and compost maturation proceeds continuously (third stage). At this stage, aerobic microorganisms are most active, so a large amount of air is required (here, a continuous operation pattern is used, but an intermittent operation pattern with a higher operating time ratio may be used). Since the compost temperature is very high, the supplied air temperature does not need to be L ° C. (about 15 ° C.) or higher, and the air heater 15 is not operated.

なお、実施の形態1では、図2に示すように、堆肥温度センサ111が図中に1つだけ描かれているが、1つに限定する趣旨ではなく、複数のセンサを有機系廃棄物21の様々な場所に配置し、有機系廃棄物21の全体の温度分布を検出し、それに基づいて制御を行うようにしても良い。ここでは、事前に(あるいは、一定期間毎に)複数のセンサを用いて有機系廃棄物21の温度分布を検出し、その中から制御対象(発酵槽内の有機系廃棄物)を代表する堆肥温度センサのみを残し、通常使用時はその測定値を基準として制御対象を簡易に制御することを行っている。また、制御対象が複数ある場合でも、相互に関連していて、測定値が予測可能な場合は、基準となるセンサの測定値から他の制御対象の測定値を予測して制御することも可能となる。このような制御方法は、それ程厳密な制御が要求されない対象を制御する際に、低コストで迅速に制御することが可能なため、非常に有用である。また、実施の形態1での、L、S、Hの温度設定、間欠運転パターンの設定、送風量の設定等は、実験等によって、コストメリットが得られるような値に設置すればよい。   In the first embodiment, as shown in FIG. 2, only one compost temperature sensor 111 is depicted in the drawing. However, the present invention is not limited to one, and a plurality of sensors are used as the organic waste 21. The temperature distribution of the entire organic waste 21 may be detected and controlled based on the temperature distribution. Here, the temperature distribution of the organic waste 21 is detected in advance (or at regular intervals) using a plurality of sensors, and compost representing the control target (organic waste in the fermenter) from the detected temperature distribution. Only the temperature sensor is left, and during normal use, the controlled object is simply controlled based on the measured value. In addition, even when there are multiple control targets, if they are related to each other and the measurement values can be predicted, it is possible to predict and control the measurement values of other control targets from the measurement values of the reference sensor It becomes. Such a control method is very useful because it can be quickly controlled at a low cost when controlling an object for which strict control is not required. Further, the temperature setting of L, S, and H, the setting of the intermittent operation pattern, the setting of the air flow rate, and the like in the first embodiment may be set to values that can provide cost merit through experiments or the like.

(実施の形態2)
本実施の形態2の特徴は、有機系廃棄物の2次発酵における発酵過程を有機系廃棄物の表面付近の酸素濃度を検出することによって、複数の発酵段階に分け、それぞれの発酵段階に応じた必要な空気量を適正に供給すると共に、供給する空気温度が設定値よりも低い場合は電気加熱ヒータを稼動させることによって、発酵の阻害要因をできるだけ除去するようにしたものである。
(Embodiment 2)
The feature of the second embodiment is that the fermentation process in the secondary fermentation of organic waste is divided into a plurality of fermentation stages by detecting the oxygen concentration near the surface of the organic waste, and according to each fermentation stage. In addition, the necessary amount of air is properly supplied, and when the supplied air temperature is lower than the set value, the electric heater is operated to eliminate as much as possible the fermentation inhibition factor.

図4は、本発明の実施の形態2にかかる堆肥化装置の概略構成図であり、2次発酵槽に移された有機系廃棄物21の発酵が熟成段階を迎え、ここで堆肥化される。図4における制御盤12、送風機13、吸気温度センサ14、空気加熱ヒータ15、圧力計セット部22、風量調節バルブ23、および、送風管24は、図1および図2と略同様であるので、構成説明を省略する。なお、図4に示す2次発酵を行う発酵槽20は、投入側あるいは取出側から見た図であり、直線式攪拌機械70を回転させながら取出側から投入側(図の奥行き方向)に走行させることで、発酵槽20内の有機系廃棄物21を攪拌しながら投入側から取出側に少しずつ移動させるものである。   FIG. 4 is a schematic configuration diagram of the composting apparatus according to the second embodiment of the present invention. Fermentation of the organic waste 21 transferred to the secondary fermenter reaches an aging stage and is composted here. . The control panel 12, the blower 13, the intake air temperature sensor 14, the air heater 15, the pressure gauge setting unit 22, the air volume adjustment valve 23, and the blower pipe 24 in FIG. 4 are substantially the same as those in FIGS. 1 and 2. Description of the configuration is omitted. In addition, the fermenter 20 which performs the secondary fermentation shown in FIG. 4 is the figure seen from the injection | throwing-in side or the taking-out side, and it travels from the taking-out side to the charging | throwing-in side (depth direction of a figure), rotating the linear stirring machine 70. By doing so, the organic waste 21 in the fermenter 20 is moved little by little from the input side to the extraction side while stirring.

実施の形態2の特徴的な構成要素である図4の酸素濃度検出センサ112は、図1の発酵段階検出センサ11の一例であって、発酵槽20内に堆積された有機系廃棄物21が発酵して堆肥化する過程で酸素が消費されるので、発酵が活発に行われている付近では酸素濃度が低下する傾向にある。このため、酸素濃度を検出することで発酵状態が判ると共に、必要な空気量も判明するため、これに基づいて発酵段階を検出することが可能となる。   The oxygen concentration detection sensor 112 in FIG. 4 which is a characteristic component of the second embodiment is an example of the fermentation stage detection sensor 11 in FIG. 1, and the organic waste 21 deposited in the fermenter 20 is Since oxygen is consumed in the process of fermenting and composting, the oxygen concentration tends to decrease in the vicinity where the fermentation is actively performed. For this reason, by detecting the oxygen concentration, the state of fermentation is known and the necessary amount of air is also found, so that the fermentation stage can be detected based on this.

図5は、図4に示す2次発酵用の発酵槽全体を横方向から見た図である。図5に示すように、2次発酵用の発酵槽20は、1次発酵が終わった有機系廃棄物を投入側から投入し、直線式攪拌機械70を回転させながら取出側から投入側に走行させることで、発酵槽20内の有機系廃棄物を攪拌して空気の通りを良くし、均質な発酵が行えるようにすると共に、発酵槽20の右側に少しずつ移動させるため、右側に行くほど発酵の熟成度が上がり、堆肥化された有機系廃棄物21を右側の取出側から取り出すことができる。   FIG. 5 is a diagram of the entire fermenter for secondary fermentation shown in FIG. 4 as viewed from the lateral direction. As shown in FIG. 5, the fermenter 20 for secondary fermentation inputs organic waste after primary fermentation from the input side, and runs from the extraction side to the input side while rotating the linear stirring machine 70. As a result, the organic waste in the fermenter 20 is agitated to improve the passage of air so that homogenous fermentation can be performed and moved to the right side of the fermenter 20 little by little. The degree of maturation of fermentation is increased, and the composted organic waste 21 can be taken out from the right extraction side.

ここでは、図5に示すように、4台の送風機(1)131〜送風機(4)134が発酵槽20の投入側から取出側に順番に配置されていて、それぞれの発酵状態に応じた空気量を個別に供給できるようになっている。   Here, as shown in FIG. 5, the four fans (1) 131 to the fan (4) 134 are arranged in order from the input side to the output side of the fermenter 20, and air corresponding to each fermentation state. The quantity can be supplied individually.

次に、実施の形態2の動作を説明する。図6は、実施の形態2における有機系廃棄物の2次発酵過程を示す線図であり、横軸は発酵に要する日数(1日〜25日)、縦軸は有機系廃棄物に供給される送風量と堆肥温度と酸素濃度とが示されている。この図6は、1次発酵が終了して投入された有機系廃棄物を日数の経過と共に行われる発酵制御の状態を追跡したと考えることもできるが、2次発酵用の発酵槽20は、図5に示すように構成されていて、発酵段階に応じて順次右方向に移動させるので、図6の時間軸を図5の発酵槽20の位置関係にそのまま置き換えて考えることもできる。   Next, the operation of the second embodiment will be described. FIG. 6 is a diagram showing the secondary fermentation process of organic waste in Embodiment 2, where the horizontal axis is the number of days required for fermentation (1 to 25 days), and the vertical axis is supplied to the organic waste. The blast volume, compost temperature, and oxygen concentration are shown. Although this FIG. 6 can also be considered that the state of the fermentation control performed with the passage of days for the organic waste input after the completion of the primary fermentation, the fermenter 20 for secondary fermentation, Since it is configured as shown in FIG. 5 and is sequentially moved to the right according to the fermentation stage, the time axis in FIG. 6 can be replaced with the positional relationship of the fermenter 20 in FIG.

まず、図5に示すように、酸素濃度検出センサ112は、送風機(1)131が配置された有機系廃棄物21の表面の直上付近に配置されており、1次発酵が終わったばかりの有機系廃棄物21の酸素濃度を検出することができる。2次発酵における酸素の消費傾向は、図6に示すように、2次発酵が継続して行われ、発酵が熟成段階に入ってくると、好気性微生物の活動が徐々に低下し始め、それに伴って酸素の消費量も少しずつ低下していくと共に、発酵温度(堆肥温度)も低下する傾向にある。その結果、酸素濃度曲線に見られるように、熟成が進むに連れて酸素濃度が上昇することになる。   First, as shown in FIG. 5, the oxygen concentration detection sensor 112 is disposed in the vicinity of the surface of the organic waste 21 on which the blower (1) 131 is disposed, and the organic system just after the primary fermentation is finished. The oxygen concentration of the waste 21 can be detected. As shown in FIG. 6, the tendency of oxygen consumption in the secondary fermentation is that when the secondary fermentation is continuously carried out and the fermentation enters the ripening stage, the activity of the aerobic microorganisms gradually begins to decline. Along with this, the oxygen consumption gradually decreases, and the fermentation temperature (compost temperature) tends to decrease. As a result, as can be seen from the oxygen concentration curve, the oxygen concentration increases as the aging progresses.

図6に示す、4つの発酵段階において各送風機の運転パターンを設定するにあたって、事前に酸素濃度検出センサ112を少なくとも4ヶ所(各送風機から供給される有機系廃棄物の直上付近)に配置し、検出された各酸素濃度に基づいて必要な空気量を計算し、各送風機の稼動時間と停止時間とを組み合わせた間欠運転パターンを作成するようにする。例えば、送風機(1)の間欠運転パターンは、送風機を9分稼動させて51分停止させ、送風機(2)は、送風機を7分稼動させて53分停止させ、送風機(3)は、送風機を6分稼動させて54分停止させ、送風機(4)は、送風機を4分稼動させて56分停止させる。このような必要空気量の段階的な減少傾向は、発酵が熟成段階に入って発酵が落ち着いてきた傾向と一致する。   In setting the operation pattern of each blower in the four fermentation stages shown in FIG. 6, the oxygen concentration detection sensors 112 are disposed in advance at least four locations (near the top of the organic waste supplied from each blower), A necessary air amount is calculated based on each detected oxygen concentration, and an intermittent operation pattern in which the operation time and stop time of each blower are combined is created. For example, the intermittent operation pattern of the blower (1) operates the blower for 9 minutes and stops for 51 minutes, the blower (2) operates the blower for 7 minutes and stops for 53 minutes, and the blower (3) The air blower (4) is operated for 6 minutes and stopped for 54 minutes, and the blower (4) is operated for 4 minutes and stopped for 56 minutes. Such a gradual decrease tendency of the required air amount is consistent with the tendency that the fermentation has settled as the fermentation enters the aging stage.

また、送風機による吸気温度は、ここではL℃(約15℃)を設定吸気温度とし、図4の吸気温度センサ14の検出値が設定吸気温度を下回ると、空気加熱ヒータ15で15℃以上に加熱してから供給するよう制御盤12によって制御される。吸気温度が15℃以上であれば、空気加熱ヒータ15を使わずにそのまま供給することになる。   Further, the intake air temperature by the blower is set to L ° C. (about 15 ° C.) here as the set intake air temperature, and when the detected value of the intake air temperature sensor 14 in FIG. It is controlled by the control panel 12 to supply after heating. If the intake air temperature is 15 ° C. or higher, it is supplied without using the air heater 15.

このように、実施の形態2によれば、発酵槽内の有機系廃棄物の発酵過程を複数の発酵段階に分け、各発酵段階を酸素濃度に基づいて検出し、各発酵段階に必要な空気量と空気温度条件が満たされるように自動制御が行われるため、手間がかからず、それぞれの発酵段階に適した条件に基づいて無駄のない発酵処理が可能となり、送風機やヒータなどに要する電気使用量を大幅に削減することができる。例えば、前記の場合では、段階的間欠運転は、約1/6〜1/14程度の電気使用量で済み、平均しても約1/8程度で済むため、仮に連続運転した場合と比較すると大幅な電気使用量の削減を実現することができる。   Thus, according to Embodiment 2, the fermentation process of the organic waste in the fermenter is divided into a plurality of fermentation stages, each fermentation stage is detected based on the oxygen concentration, and the air required for each fermentation stage Since automatic control is performed so that the volume and air temperature conditions are satisfied, there is no hassle, and it is possible to perform a waste-free fermentation process based on the conditions suitable for each fermentation stage. The amount used can be greatly reduced. For example, in the above-mentioned case, the stepwise intermittent operation requires about 1/6 to 1/14 of the electricity consumption, and on average, about 1/8 is sufficient. Significant reduction in electricity consumption can be realized.

さらに、空気加熱ヒータ15の使用状況についても、設定吸気温度を設定し、その設定吸気温度以下になった場合にのみヒータを使用するため、仮にヒータを連続使用した場合と比べると図6の場合は電気ヒータに要する電気使用量を1/2以下に抑えることができる。   Further, as for the usage status of the air heater 15, since the heater is used only when the set intake air temperature is set and becomes lower than the set intake air temperature, the case of FIG. 6 is compared with the case where the heater is continuously used. Can reduce the amount of electricity used for the electric heater to 1/2 or less.

なお、実施の形態2では、図5に示すように、酸素濃度検出センサ112が図中に1つだけ描かれているが、1つに限定する趣旨ではなく、複数のセンサを常時配置し、その酸素濃度検出値に基づいて、各送風機の間欠運転パターンを選択しても良い。   In the second embodiment, as shown in FIG. 5, only one oxygen concentration detection sensor 112 is depicted in the drawing. However, the present invention is not limited to one, and a plurality of sensors are always arranged. The intermittent operation pattern of each blower may be selected based on the detected oxygen concentration value.

以上のように、本発明にかかる堆肥化装置および堆肥化方法は、有機系廃棄物のリサイクルに有用であり、特に、糞尿等の有機系廃棄物のリサイクルに適している。   As described above, the composting apparatus and composting method according to the present invention are useful for recycling organic waste, and are particularly suitable for recycling organic waste such as manure.

本発明にかかる堆肥化装置の特徴的な構成要素を説明するブロック図である。It is a block diagram explaining the characteristic component of the composting apparatus concerning this invention. 本発明の実施の形態1にかかる堆肥化装置の概略構成図である。It is a schematic block diagram of the composting apparatus concerning Embodiment 1 of this invention. 実施の形態1における有機系廃棄物の1次発酵過程を示す線図である。FIG. 2 is a diagram showing a primary fermentation process of organic waste in Embodiment 1. 本発明の実施の形態2にかかる堆肥化装置の概略構成図である。It is a schematic block diagram of the composting apparatus concerning Embodiment 2 of this invention. 図4に示す2次発酵用の発酵槽全体を横方向から見た図である。It is the figure which looked at the whole fermenter for secondary fermentation shown in FIG. 4 from the horizontal direction. 実施の形態2における有機系廃棄物の2次発酵過程を示す線図である。It is a diagram which shows the secondary fermentation process of the organic waste in Embodiment 2. FIG.

符号の説明Explanation of symbols

10 堆肥化装置
11 発酵段階検出センサ
12 制御盤
13 送風機
14 吸気温度センサ
15 空気加熱ヒータ
20 発酵槽
21 有機系廃棄物
22 圧力計セット部
23 風量調節バルブ
24 送風管
70 直線式攪拌機械
111 堆肥温度センサ
112 酸素濃度検出センサ
131 送風機(1)
132 送風機(2)
133 送風機(3)
134 送風機(4)
DESCRIPTION OF SYMBOLS 10 Composting apparatus 11 Fermentation stage detection sensor 12 Control panel 13 Blower 14 Intake air temperature sensor 15 Air heater 20 Fermenter 21 Organic waste 22 Pressure gauge set part 23 Air flow rate adjustment valve 24 Blow pipe 70 Linear stirring machine 111 Compost temperature Sensor 112 Oxygen concentration detection sensor 131 Blower (1)
132 Blower (2)
133 Blower (3)
134 Blower (4)

Claims (8)

有機系廃棄物を堆積して発酵させる発酵槽と、
該発酵槽に配置された送気管を通して前記有機系廃棄物に空気を供給する送風機と、
前記有機系廃棄物の発酵段階を検出する発酵段階検出手段と、
前記送風機の送風量を制御する制御手段と
を備え、
前記制御手段が前記発酵段階検出手段により検出した有機系廃棄物の発酵段階に応じて前記送風機の送風量を制御し、効率的に有機系廃棄物を発酵させることを特徴とする堆肥化装置。
A fermentor for depositing and fermenting organic waste;
A blower for supplying air to the organic waste through an air pipe arranged in the fermentor;
Fermentation stage detection means for detecting the fermentation stage of the organic waste,
Control means for controlling the air flow rate of the blower,
The composting apparatus, wherein the control means controls the amount of air blown from the blower according to the fermentation stage of the organic waste detected by the fermentation stage detection means, and efficiently ferments the organic waste.
前記送風機が吸気する空気の温度を検出する吸気温度検出手段と、
前記送風機から供給される空気を加熱する空気加熱手段と
をさらに備え、
前記制御手段は、吸気温度検出手段で検出された空気の温度が前記発酵段階検出手段で検出した発酵段階に必要な温度以下となった場合に、前記空気加熱手段を制御して送風機から供給される空気を加熱し、各発酵段階に必要な温度の空気を供給することを特徴とする請求項1に記載の堆肥化装置。
Intake air temperature detection means for detecting the temperature of the air taken in by the blower;
An air heating means for heating the air supplied from the blower,
The control means controls the air heating means and is supplied from the blower when the temperature of the air detected by the intake air temperature detection means becomes equal to or lower than the temperature required for the fermentation stage detected by the fermentation stage detection means. The composting apparatus according to claim 1, wherein the air is heated to supply air having a temperature necessary for each fermentation stage.
前記発酵段階検出手段は、前記有機系廃棄物が発酵して堆肥化する際に発する発酵熱を検出する堆肥温度センサであって、
前記有機系廃棄物が発酵を開始して発酵熱によって堆肥温度が上昇し始める初期立上り段階と、発酵がさらに進んで堆肥温度が急激に上昇する立上り段階と、発酵が活性化して継続的に堆肥の熟成が進み堆肥温度の上昇が頭打ちになる活性化段階の少なくとも3つの発酵段階を堆肥温度で判別し、前記堆肥温度センサで検出した堆肥温度による発酵段階に応じた送風量と空気温度が得られるように前記制御手段で制御することを特徴とする請求項2に記載の堆肥化装置。
The fermentation stage detection means is a compost temperature sensor for detecting fermentation heat generated when the organic waste is fermented and composted,
The organic waste starts fermentation and the initial rise stage where the compost temperature starts to rise due to the fermentation heat; the rise stage where the fermentation further progresses and the compost temperature rises rapidly; As the maturation progresses, at least three fermentation stages of the activation stage where the rise of the compost temperature reaches its peak are discriminated by the compost temperature, and the air flow rate and the air temperature corresponding to the fermentation stage based on the compost temperature detected by the compost temperature sensor are obtained. The composting apparatus according to claim 2, wherein the composting apparatus is controlled by the control means.
前記発酵段階検出手段は、前記有機系廃棄物の発酵が活性化し、継続的に堆肥の熟成が進むに連れて変化する酸素消費量に応じた酸素濃度の変化を検出する酸素濃度検出センサであって、
前記酸素濃度レベルを複数段階に分けて、前記酸素濃度検出センサで検出した酸素濃度による発酵段階に応じた送風量と空気温度が得られるように前記制御手段が制御することを特徴とする請求項2に記載の堆肥化装置。
The fermentation stage detection means is an oxygen concentration detection sensor that detects a change in oxygen concentration according to an oxygen consumption amount that changes as the fermentation of the organic waste is activated and the compost maturation progresses continuously. And
The oxygen concentration level is divided into a plurality of stages, and the control means controls the air flow rate and the air temperature according to the fermentation stage based on the oxygen concentration detected by the oxygen concentration detection sensor. 2. The composting apparatus according to 2.
発酵槽内に堆積した有機系廃棄物の発酵段階を検出する発酵段階検出ステップと、
発酵段階に応じた必要な量の空気を前記有機系廃棄物に供給する空気供給ステップと
を含み、
前記空気供給ステップでは、有機系廃棄物の発酵段階に応じて送風量を制御することを特徴とする堆肥化方法。
A fermentation stage detection step for detecting the fermentation stage of organic waste deposited in the fermenter;
An air supply step for supplying the organic waste with a necessary amount of air according to a fermentation stage,
In the air supply step, the composting method is characterized in that the blast volume is controlled according to the fermentation stage of the organic waste.
前記有機系廃棄物に送風する空気の吸気温度を検出する吸気温度検出ステップと、
吸気した空気を前記有機系廃棄物に送風する前に加熱する空気加熱ステップと
をさらに含み、
検出された吸気温度が発酵段階に必要な空気温度を下回っている場合に、前記有機系廃棄物へ送風する前に空気を加熱し、各発酵段階に必要な温度の空気を供給することを特徴とする請求項5に記載の堆肥化方法。
An intake air temperature detection step for detecting an intake air temperature of air blown to the organic waste;
An air heating step of heating the sucked air before blowing it to the organic waste,
When the detected intake air temperature is lower than the air temperature required for the fermentation stage, the air is heated before blowing to the organic waste, and the air at the temperature required for each fermentation stage is supplied. The composting method according to claim 5.
前記発酵段階検出ステップは、前記有機系廃棄物が発酵して堆肥化する際に発する発酵熱を検出することによって発酵段階を判別するもので、
前記有機系廃棄物が発酵を開始して発酵熱によって堆肥温度が上昇し始める初期立上り段階と、発酵がさらに進んで堆肥温度が急激に上昇する立上り段階と、発酵が活性化して継続的に堆肥の熟成が進み堆肥温度の上昇が頭打ちになる活性化段階の少なくとも3つの発酵段階を堆肥温度によって判別し、発酵段階に応じた送風量と空気温度が得られるように制御することを特徴とする請求項6に記載の堆肥化方法。
The fermentation stage detection step is to determine the fermentation stage by detecting fermentation heat generated when the organic waste is fermented and composted.
The organic waste starts fermentation and the initial rise stage where the compost temperature starts to rise due to the fermentation heat; the rise stage where the fermentation further progresses and the compost temperature rises rapidly; It is characterized by discriminating at least three fermentation stages of the activation stage where the rise of the compost temperature reaches its peak with the compost temperature, and controlling so that the blast volume and the air temperature according to the fermentation stage can be obtained. The composting method according to claim 6.
前記発酵段階検出ステップは、前記有機系廃棄物の発酵が活性化し、継続的に堆肥の熟成が進むに連れて変化する酸素消費量に応じた酸素濃度の変化を検出することによって発酵段階を判別するもので、
前記酸素濃度レベルを複数段階に分けて発酵段階を酸素濃度によって判別し、発酵段階に応じた送風量と空気温度が得られるように制御することを特徴とする請求項6に記載の堆肥化方法。
The fermentation stage detection step discriminates the fermentation stage by detecting a change in oxygen concentration according to an oxygen consumption amount that is changed as the fermentation of the organic waste is activated and the compost maturation progresses continuously. What to do
The composting method according to claim 6, wherein the oxygen concentration level is divided into a plurality of stages, the fermentation stage is discriminated by the oxygen concentration, and control is performed so as to obtain an air flow rate and an air temperature according to the fermentation stage. .
JP2005165992A 2005-06-06 2005-06-06 Apparatus and method for composting Pending JP2006335630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005165992A JP2006335630A (en) 2005-06-06 2005-06-06 Apparatus and method for composting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005165992A JP2006335630A (en) 2005-06-06 2005-06-06 Apparatus and method for composting

Publications (1)

Publication Number Publication Date
JP2006335630A true JP2006335630A (en) 2006-12-14

Family

ID=37556492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005165992A Pending JP2006335630A (en) 2005-06-06 2005-06-06 Apparatus and method for composting

Country Status (1)

Country Link
JP (1) JP2006335630A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288224A (en) * 2011-07-28 2011-12-21 农业部规划设计研究院 Organic solid waste aerobic fermentation engineering key parameter data acquisition system
JP2012229136A (en) * 2011-04-26 2012-11-22 Obihiro Univ Of Agriculture & Veterinary Medicine Compost producing method and device
WO2017170581A1 (en) * 2016-03-29 2017-10-05 国立大学法人帯広畜産大学 Composting apparatus, composting method, and program
KR102390855B1 (en) * 2020-10-28 2022-04-26 대한민국 Maturity determining device using circulation gas concentration measurement method and operation method thereof
JP2022127110A (en) * 2021-02-19 2022-08-31 株式会社晃伸製機 Method of producing compost intermediate and air supply system
JP7461059B2 (en) 2021-11-18 2024-04-03 株式会社晃伸製機 Air Supply System

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275582A (en) * 1990-03-26 1991-12-06 Hashimoto Koichi Controllor for compost production apparatus
JPH0899077A (en) * 1994-09-29 1996-04-16 Tanaka Giken Kogyo Kk Treatment of organic waste utilizing bacteria
JP2000325925A (en) * 1999-05-20 2000-11-28 Yukishitsu Hiryo Seibutsu Kassei Riyo Gijutsu Kenkyu Kumiai Method and apparatus for treating organic waste
JP2003251318A (en) * 2002-03-06 2003-09-09 Matsushita Electric Ind Co Ltd Fermentation treatment apparatus for organic waste
JP2004008960A (en) * 2002-06-07 2004-01-15 Tat Japan Kk Organic waste treatment method and organic waste treatment apparatus
JP2004131359A (en) * 2002-10-08 2004-04-30 Nihon Hels Industry Corp Method for automatic control in compost production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275582A (en) * 1990-03-26 1991-12-06 Hashimoto Koichi Controllor for compost production apparatus
JPH0899077A (en) * 1994-09-29 1996-04-16 Tanaka Giken Kogyo Kk Treatment of organic waste utilizing bacteria
JP2000325925A (en) * 1999-05-20 2000-11-28 Yukishitsu Hiryo Seibutsu Kassei Riyo Gijutsu Kenkyu Kumiai Method and apparatus for treating organic waste
JP2003251318A (en) * 2002-03-06 2003-09-09 Matsushita Electric Ind Co Ltd Fermentation treatment apparatus for organic waste
JP2004008960A (en) * 2002-06-07 2004-01-15 Tat Japan Kk Organic waste treatment method and organic waste treatment apparatus
JP2004131359A (en) * 2002-10-08 2004-04-30 Nihon Hels Industry Corp Method for automatic control in compost production

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229136A (en) * 2011-04-26 2012-11-22 Obihiro Univ Of Agriculture & Veterinary Medicine Compost producing method and device
CN102288224A (en) * 2011-07-28 2011-12-21 农业部规划设计研究院 Organic solid waste aerobic fermentation engineering key parameter data acquisition system
WO2017170581A1 (en) * 2016-03-29 2017-10-05 国立大学法人帯広畜産大学 Composting apparatus, composting method, and program
JPWO2017170581A1 (en) * 2016-03-29 2019-02-14 国立大学法人帯広畜産大学 Compost production apparatus, compost production method, and program
KR102390855B1 (en) * 2020-10-28 2022-04-26 대한민국 Maturity determining device using circulation gas concentration measurement method and operation method thereof
JP2022127110A (en) * 2021-02-19 2022-08-31 株式会社晃伸製機 Method of producing compost intermediate and air supply system
JP7313070B2 (en) 2021-02-19 2023-07-24 株式会社晃伸製機 Compost intermediate manufacturing method and air supply system
JP7461059B2 (en) 2021-11-18 2024-04-03 株式会社晃伸製機 Air Supply System

Similar Documents

Publication Publication Date Title
CN201165498Y (en) Organic refuse fermentation automatic detection control composting system
JP2006335630A (en) Apparatus and method for composting
CN213835091U (en) Take waste heat recovery and automatic aeration&#39;s kitchen garbage aerobic fermentation device
CN104289497B (en) A kind of multi-stage Semi-continuous Organic Refuse Bioreactor and method
JP7058413B2 (en) Composting control method
CN108117421A (en) A kind of compost ventilation aerating system
KR100365542B1 (en) Aerobic Fermentation Device for Organic Waste
CN103539494B (en) A kind of storehouse formula sludge aerobic compost method
CN109384481A (en) Microorganism highly effective compost fermentation process equipment
JP2003251318A (en) Fermentation treatment apparatus for organic waste
JP7190133B2 (en) Composting device and its control method
CN115146776A (en) Intelligent control method and system for aerobic composting of sludge
CN203128437U (en) Internal environment control system for rotary roller organic waste aerobic fermentation treatment device
CN213266315U (en) Aerobic composting device
CN112916573B (en) Organic garbage treatment method and device
JPS6012199A (en) Fermentation apparatus
CN109576140A (en) The koji-making apparatus for production line and technique of thick broad-bean sauce
KR102162151B1 (en) Fermentation apparatus using exhaust heat and double blower
JP2002346513A (en) Garbage disposer
JP2022029378A (en) Fermentation and drying apparatus and fermentation and drying method
JP7217484B1 (en) Fermentation drying control method and fermentation drying apparatus
CN216918938U (en) Be used for deodorant processing system of plant liquid dung
CN210825891U (en) Intelligent decomposing pool
JPH0977581A (en) Method for composting organic waste
JP3678080B2 (en) Operation control method of garbage processing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110