JP2022029378A - Fermentation and drying apparatus and fermentation and drying method - Google Patents

Fermentation and drying apparatus and fermentation and drying method Download PDF

Info

Publication number
JP2022029378A
JP2022029378A JP2020132710A JP2020132710A JP2022029378A JP 2022029378 A JP2022029378 A JP 2022029378A JP 2020132710 A JP2020132710 A JP 2020132710A JP 2020132710 A JP2020132710 A JP 2020132710A JP 2022029378 A JP2022029378 A JP 2022029378A
Authority
JP
Japan
Prior art keywords
fermentation
amount
container
drying
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020132710A
Other languages
Japanese (ja)
Inventor
達宏 吉田
Tatsuhiro Yoshida
友子 荒川
Tomoko Arakawa
和敏 竹内
Kazutoshi Takeuchi
英輔 川村
Eisuke Kawamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Ecotec Co Ltd
Original Assignee
Chubu Ecotec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Ecotec Co Ltd filed Critical Chubu Ecotec Co Ltd
Priority to JP2020132710A priority Critical patent/JP2022029378A/en
Publication of JP2022029378A publication Critical patent/JP2022029378A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Abstract

To provide a fermentation and drying apparatus and a fermentation and drying method which can perform air-inlet control according to each of a fermentation stage and a drying stage, and can efficiently perform fermentation and drying.SOLUTION: A fermentation and drying apparatus 1 includes a rotary shaft 3 and agitating blades 4 provided in a container 2, an air feed blower 6, and exhaust means 9, and ferments and dries a fermentation raw material while introducing outside air into the container 2 and exhausting inside air from the container 2 by the exhaust means 9, and agitating the fermentation raw material with the agitating blades 4 includes: calculation means for calculating a change amount of a fermentation heat quantity at an arbitrary time interval; determination means for determining timing of changing the change amount from an increasing trend to a decreasing trend on the basis of the calculated change amount of the fermentation heat quantity; and operation control means for performing an operation mode of setting at least any one of an amount of the outside air introduced into the container and a temperature of the outside air introduced into the container to be larger than an item before the timing is determined, after the timing has been determined by the determination means.SELECTED DRAWING: Figure 1

Description

本発明は、発酵乾燥装置および発酵乾燥方法に関する。 The present invention relates to a fermentation drying apparatus and a fermentation drying method.

従来、家畜排泄物や、食品廃棄物、下水汚泥などの発酵原料の発酵・乾燥を行い、堆肥化する装置として、微生物の発酵作用を利用した密閉縦型堆肥化装置が知られている。この装置は、円筒縦型のタンク形状であり、密閉容器内に投入された発酵原料を撹拌し強制通気しつつ発酵と乾燥を行っている。 Conventionally, as a device for fermenting and drying fermented raw materials such as livestock excrement, food waste, and sewage sludge to compost, a closed vertical composting device using the fermentation action of microorganisms is known. This device has a cylindrical vertical tank shape, and ferments and dries while stirring and forcibly aerating the fermentation raw materials put into the closed container.

例えば、特許文献1には、容器内に設けられた回転軸およびこれに付設された複数の撹拌翼と、送気手段と、排気手段とを備えてなる密閉型の発酵乾燥装置が開示されている。この装置では、所定時間当たりの発酵熱量や蒸発水分量を発酵指標とし、この発酵指標に基づいて容器内に導入される外気の量を制御している。指標となる発酵熱量や蒸発水分量は、容器に導入する外気の温度と流量、および容器内から排出される内気の温度と流量に基づいて算出されている。 For example, Patent Document 1 discloses a closed-type fermentation / drying apparatus including a rotating shaft provided in a container, a plurality of stirring blades attached to the rotating shaft, an air supply means, and an exhaust means. There is. In this apparatus, the amount of heat of fermentation and the amount of water vaporized per predetermined time are used as fermentation indexes, and the amount of outside air introduced into the container is controlled based on the fermentation indexes. The amount of heat of fermentation and the amount of water evaporated as indicators are calculated based on the temperature and flow rate of the outside air introduced into the container and the temperature and flow rate of the inside air discharged from the container.

特開2018-172272号公報Japanese Unexamined Patent Publication No. 2018-172272

一般に、発酵乾燥装置の運転では、容器に導入される外気の流量や温度を制御することが重要である。容器に導入される外気の働きとしては、(1)微生物の活性化のために酸素を供給すること、(2)発酵原料や容器内から水分を持ち出し乾燥させることが挙げられる。従来、発酵乾燥装置では、発酵と乾燥が同時並行で進んでいるにもかかわらず、発酵原料の投入から取り出しまでの発酵乾燥処理において、発酵と乾燥のそれぞれに着目した運転はされていない。他方、発酵原料の投入からある段階までは、発酵の度合いが大きく、それ以降は乾燥の度合いが大きいことが、経験上わかっている。そのため、発酵と乾燥のどちらかにより重点を置いた入気制御を行うことが望ましいと考えられる。 Generally, in the operation of the fermentation drying device, it is important to control the flow rate and temperature of the outside air introduced into the container. The functions of the outside air introduced into the container include (1) supplying oxygen for activating microorganisms, and (2) taking out water from the fermentation raw material and the container and drying it. Conventionally, in the fermentation / drying apparatus, although fermentation and drying are progressing in parallel, in the fermentation / drying process from the input to the removal of the fermentation raw material, the operation focusing on each of fermentation and drying has not been performed. On the other hand, it is empirically known that the degree of fermentation is large from the input of the fermentation raw material to a certain stage, and the degree of drying is large after that. Therefore, it is desirable to control the air intake with more emphasis on either fermentation or drying.

本発明はこのような事情に鑑みてなされたものであり、発酵原料の投入から取り出しまでの発酵乾燥処理において、発酵段階と乾燥段階のそれぞれに応じた入気制御を行なうことができ、発酵乾燥を効率的に実施できる発酵乾燥装置および発酵乾燥方法を提供することを目的とする。具体的には、発酵に重点を置いた入気制御では乾物分解量をより増加させることを目的とし、乾燥に重点を置いた入気制御では水蒸発量をより増加させることを目的とする。 The present invention has been made in view of such circumstances, and in the fermentation and drying process from the input to the removal of the fermentation raw material, it is possible to control the air intake according to each of the fermentation stage and the drying stage, and the fermentation and drying can be performed. It is an object of the present invention to provide a fermentation / drying apparatus and a fermentation / drying method capable of efficiently carrying out the above. Specifically, the air intake control focusing on fermentation aims to further increase the amount of dry matter decomposition, and the air intake control focusing on drying aims to further increase the amount of water evaporation.

本発明の発酵乾燥装置は、容器内に設けられた回転軸およびこれに付設された複数の撹拌翼と、該容器内に外気を取り入れるための送気手段と、該容器内に蓄積する内気を容器外部に排出するための排気手段とを備えてなる密閉型の発酵乾燥装置であって、上記発酵乾燥装置は、上記送気手段により上記容器内に外気を導入し、かつ、上記排気手段により上記容器内から内気を排気しつつ、発酵原料を上記撹拌翼で撹拌しながら発酵および乾燥させる装置であり、上記発酵乾燥装置は、任意の時間間隔における発酵熱量の変化量(以下、単にΔQともいう)を算出する算出手段と、算出された上記発酵熱量の変化量に基づいて、該変化量が増加傾向から減少傾向に変化するタイミングを判定する判定手段と、上記判定手段によって上記タイミングが判定された後において、上記容器内に導入される外気の量および上記容器内に導入される外気の温度の少なくともいずれかの項目を、上記タイミングが判定される以前の項目よりも大きくする運転モードを行なう運転制御手段とを有することを特徴とする。 The fermentation / drying apparatus of the present invention comprises a rotating shaft provided in a container, a plurality of stirring blades attached to the rotating shaft, an air supply means for taking in outside air into the container, and inside air accumulated in the container. A closed-type fermentation / drying device provided with an exhaust means for discharging to the outside of the container, wherein the fermentation / drying device introduces outside air into the container by the air supply means and uses the exhaust means. It is a device for fermenting and drying the fermentation raw material while stirring with the stirring blade while exhausting the inside air from the container, and the fermentation drying device is the amount of change in the amount of heat of fermentation at an arbitrary time interval (hereinafter, also simply referred to as ΔQ). The timing is determined by the calculation means for calculating (referred to as), the determination means for determining the timing at which the change amount changes from the increasing tendency to the decreasing tendency based on the calculated change amount of the fermentation calorific value, and the determination means. After that, an operation mode in which at least one of the items of the amount of outside air introduced into the container and the temperature of the outside air introduced into the container is made larger than the item before the timing is determined is set. It is characterized by having an operation control means for performing.

本明細書において、容器内に導入される外気の温度とは、送気手段やヒータなどを経て最終的に容器内に導入される外気の温度のことをいい、この温度を「入気温度」という。なお、入気経路が複数ある場合には、各入気経路から容器内に導入される外気の温度の平均を入気温度とする。また、本明細書において、容器内に導入される外気の量とは、容器内に導入される単位時間あたりの外気の量であり、これを「入気量」という。なお、入気経路が複数ある場合には、各入気経路から導入される単位時間あたりの外気の量の合計を入気量とする。 In the present specification, the temperature of the outside air introduced into the container means the temperature of the outside air finally introduced into the container via the air supply means, the heater, etc., and this temperature is referred to as the "intake temperature". That is. When there are a plurality of inlet air passages, the average temperature of the outside air introduced into the container from each inlet air passage is taken as the intake air temperature. Further, in the present specification, the amount of outside air introduced into the container is the amount of outside air introduced into the container per unit time, and this is referred to as "intake amount". When there are a plurality of intake routes, the total amount of outside air introduced from each intake route per unit time is taken as the intake amount.

上記運転制御手段は、上記運転モードにおいて、さらに、上記撹拌翼の撹拌頻度および撹拌速度の少なくともいずれかの項目を、上記タイミングが判定される以前の項目よりも大きくすることを特徴とする。 The operation control means is characterized in that, in the operation mode, at least one of the stirring frequency and the stirring speed of the stirring blade is made larger than the item before the timing is determined.

上記判定手段は、上記発酵熱量の変化量の傾きを算出し、その傾きが閾値未満であり、さらに、その時点において、上記発酵熱量が増加していること、上記内気の温度(排気温度)が増加していること、および、上記内気の温度が所定温度以上であることの少なくともいずれかを満たすことを条件に、上記タイミングを判定することを特徴とする。 The determination means calculates the slope of the amount of change in the amount of heat of fermentation, the slope is less than the threshold value, the amount of heat of fermentation is increasing at that time, and the temperature of the inside air (exhaust temperature) is determined. It is characterized in that the timing is determined on condition that at least one of the increase and the temperature of the inside air being equal to or higher than a predetermined temperature is satisfied.

上記運転制御手段は、上記判定手段によって上記タイミングが判定された後で、かつ、上記運転モードを行なう前の所定期間に、上記容器内に導入される外気の量と、その温度と、上記撹拌翼の撹拌頻度と、その撹拌速度との少なくともいずれかの項目を、上記タイミングが判定される以前の項目よりも小さくすることを特徴とする。 The operation control means has the amount of outside air introduced into the container, the temperature thereof, and the stirring in a predetermined period after the timing is determined by the determination means and before the operation mode is performed. It is characterized in that at least one of the stirring frequency of the blade and the stirring speed thereof is made smaller than the item before the timing is determined.

上記所定期間は、上記判定手段によって上記タイミングが判定された後から上記発酵熱量の変化量がマイナスになるまでの期間であることを特徴とする。 The predetermined period is characterized in that it is a period from the time when the timing is determined by the determination means until the amount of change in the amount of heat of fermentation becomes negative.

本発明の発酵乾燥方法は、容器内に設けられた回転軸およびこれに付設された複数の撹拌翼と、該容器内に外気を取り入れるための送気手段と、該容器内に蓄積する内気を容器外部に排出するための排気手段とを備えてなる密閉型の発酵乾燥装置における発酵乾燥方法であって、上記発酵乾燥装置は、上記送気手段により上記容器内に外気を導入し、かつ、上記排気手段により上記容器内から内気を排気しつつ、発酵原料を上記撹拌翼で撹拌しながら発酵および乾燥させる装置であり、上記発酵乾燥方法は、任意の時間間隔における発酵熱量の変化量を算出する算出工程と、算出された上記発酵熱量の変化量に基づいて、該変化量が増加傾向から減少傾向に変化するタイミングを判定する判定工程と、上記判定工程によって上記タイミングが判定された後において、上記容器内に導入される外気の量および上記容器内に導入される外気の温度の少なくともいずれかの項目を、上記タイミングが判定される以前の項目よりも大きくする運転制御工程とを有することを特徴とする。 In the fermentation drying method of the present invention, a rotating shaft provided in a container, a plurality of stirring blades attached to the rotating shaft, an air supply means for taking in outside air into the container, and inside air accumulated in the container are used. It is a fermenting and drying method in a closed type fermenting and drying device provided with an exhaust means for discharging to the outside of the container. It is a device for fermenting and drying the fermentation raw material while stirring the fermentation raw material with the stirring blade while exhausting the inside air from the container by the exhaust means, and the fermentation drying method calculates the amount of change in the amount of heat of fermentation at an arbitrary time interval. After the calculation step is performed, the determination step of determining the timing at which the change amount changes from the increasing tendency to the decreasing tendency based on the calculated change amount of the fermentation heat amount, and after the timing is determined by the determination step. It has an operation control step in which at least one of the items of the amount of outside air introduced into the container and the temperature of the outside air introduced into the container is made larger than the item before the timing is determined. It is characterized by.

本発明の発酵乾燥装置は、任意の時間間隔における発酵熱量の変化量を算出する算出手段と、算出された発酵熱量の変化量に基づいて、該変化量が増加傾向から減少傾向に変化するタイミングを判定する判定手段と、判定手段によって上記タイミングが判定された後において、容器内に導入される入気量および入気温度の少なくともいずれかの項目を、上記タイミングが判定される以前の項目よりも大きくする運転モードを行なう運転制御手段とを有するので、上記タイミングが判定された後は、特に水蒸発量を増加させるための乾燥重視の入気制御を行うことができる。これにより、発酵原料の投入から取り出しまでの発酵乾燥処理において、発酵段階と乾燥段階のそれぞれに応じた入気制御を行なうことができ、発酵乾燥を効率的に実施できる。 The fermentation / drying apparatus of the present invention has a calculation means for calculating the amount of change in the amount of heat of fermentation at an arbitrary time interval, and a timing at which the amount of change changes from an increasing tendency to a decreasing tendency based on the calculated amount of change in the amount of heat of fermentation. At least one of the items of the in-air amount and the in-air temperature to be introduced into the container after the above-mentioned timing is determined by the determination means and the determination means is set from the items before the above-mentioned timing is determined. Since it has an operation control means for performing an operation mode in which the temperature is increased, after the timing is determined, it is possible to perform air intake control with particular emphasis on drying in order to increase the amount of water evaporation. As a result, in the fermentation and drying process from the input to the removal of the fermentation raw material, the air intake can be controlled according to each of the fermentation stage and the drying stage, and the fermentation and drying can be efficiently performed.

本発明の発酵乾燥装置の一例を示す縦断面図である。It is a vertical sectional view which shows an example of the fermentation drying apparatus of this invention. 試験例の発酵乾燥装置の入排気経路の概略図である。It is a schematic diagram of the intake / exhaust path of the fermentation drying apparatus of a test example. 発酵熱量Qと排気温度の時間推移などを示す図である。It is a figure which shows the time transition of a fermentation calorie Q and an exhaust temperature. 発酵熱量の変化量ΔQと排気温度の相関関係を示す図である。It is a figure which shows the correlation of the change amount ΔQ of the fermentation heat quantity, and the exhaust temperature. 発酵熱量Qと排気温度の時間推移などを示す図である。It is a figure which shows the time transition of a fermentation calorie Q and an exhaust temperature. 発酵熱量の変化量ΔQと排気温度の相関関係を示す図である。It is a figure which shows the correlation of the change amount ΔQ of the fermentation heat quantity, and the exhaust temperature. 発酵熱量の変化量ΔQに応じて分割した運転モードの一例を示す図である。It is a figure which shows an example of the operation mode divided according to the change amount ΔQ of the fermentation heat quantity. 発酵熱量の変化量ΔQに応じて分割した運転モードの他の例を示す図である。It is a figure which shows the other example of the operation mode divided according to the change amount ΔQ of the fermentation heat quantity. 図8の運転制御における排気温度の時間推移を示すモデル図である。It is a model diagram which shows the time transition of the exhaust temperature in the operation control of FIG. 発酵熱量の変化量ΔQの算出スパン毎の結果を示す図である。It is a figure which shows the result for each calculation span of the change amount ΔQ of the amount of heat of fermentation.

本発明の発酵乾燥装置の概要を図1に基づいて説明する。図1は発酵乾燥装置の構成の一例を示す縦断面図である。図1に示すように、発酵乾燥装置1は、円筒縦型の容器2と、容器2内に縦方向に設けられた回転軸3と、回転軸3周りに多段に付設された複数枚の撹拌翼4と、容器2内に外気を取り入れるための送気手段としての送気ブロワ6と、容器2内に蓄積する内気を容器外部に排出するための排気手段9とを備えてなる密閉縦型の発酵乾燥装置(コンポ)である。本発明における該装置は、容器2の内容積が10m以上である業務用の大型の装置を主な対象としている。撹拌翼4の形状は、特に制限なく、例えば、回転軸3から容器2の内壁側に向けて直線的に延設されたピッチドパドル形状とし、その回転方向前側に傾斜面を有する形状などとできる。 The outline of the fermentation drying apparatus of the present invention will be described with reference to FIG. FIG. 1 is a vertical cross-sectional view showing an example of the configuration of a fermentation drying device. As shown in FIG. 1, the fermentation / drying device 1 includes a cylindrical vertical container 2, a rotary shaft 3 provided in the container 2 in the vertical direction, and a plurality of stirring machines provided around the rotary shaft 3 in multiple stages. A closed vertical type provided with a wing 4, an air supply blower 6 as an air supply means for taking in outside air into the container 2, and an exhaust means 9 for discharging the inside air accumulated in the container 2 to the outside of the container. It is a fermentation and drying device (component) of. The device in the present invention is mainly intended for a large-scale device for business use in which the internal volume of the container 2 is 10 m 3 or more. The shape of the stirring blade 4 is not particularly limited, and may be, for example, a pitched paddle shape extending linearly from the rotation shaft 3 toward the inner wall side of the container 2, and having an inclined surface on the front side in the rotation direction thereof.

最下段の撹拌翼の下部に通気孔4aを有し、送気ブロワ6から送られる外気(入気)を回転軸内に設けられた配管6aを介して該通気孔より容器内に導入している。発酵槽である容器2は、金属製外層と断熱層とを有する断熱容器であり、かつ、通気孔から導入される以外の外気とは接触しにくい気密性容器である。また、容器2の上部に発酵原料の投入口2aと、排気口2cとを有し、底部に処理後の発酵乾燥物の取出口2bを有する。排気口2cは排気手段9に連結されている。投入口2aおよび取出口2bには、容器の気密性を確保するための開閉可能な蓋などが設けられている。 A ventilation hole 4a is provided in the lower part of the lowermost stirring blade, and the outside air (inlet air) sent from the air supply blower 6 is introduced into the container through the ventilation hole through the pipe 6a provided in the rotating shaft. There is. The container 2 which is a fermenter is a heat insulating container having a metal outer layer and a heat insulating layer, and is an airtight container which is hard to come into contact with outside air other than introduced from the ventilation holes. Further, the upper part of the container 2 has an input port 2a for fermented raw materials and an exhaust port 2c, and the bottom part has an outlet 2b for the fermented dried product after treatment. The exhaust port 2c is connected to the exhaust means 9. The inlet 2a and the outlet 2b are provided with a lid that can be opened and closed to ensure the airtightness of the container.

図1に示す形態では、容器2の下方に機械室5が設けられ、この機械室内に回転軸3の駆動手段である油圧シリンダ8と、上述の送気ブロワ6が設けられている。回転軸3は、機械室5内に貫通しており、油圧シリンダ8により所定回転数で回転させられる。送気ブロワ6としては、入気量を調整可能とするため、ブロワ回転数をインバータ周波数で制御できるものを用いることが好ましい。また、配管6aの途中に、入気量を調整する送気バルブを設けてもよい。 In the form shown in FIG. 1, a machine room 5 is provided below the container 2, and a hydraulic cylinder 8 as a driving means for the rotating shaft 3 and the above-mentioned air supply blower 6 are provided in the machine room. The rotary shaft 3 penetrates into the machine room 5 and is rotated at a predetermined rotation speed by the hydraulic cylinder 8. As the air supply blower 6, it is preferable to use one whose blower rotation speed can be controlled by the inverter frequency in order to make it possible to adjust the amount of air input. Further, an air supply valve for adjusting the amount of incoming air may be provided in the middle of the pipe 6a.

容器内で発生したガスや水蒸気などは、排気口2cから排気手段9を介して外気へ排気される。排気手段9は、排気管10と、排気ブロワ11と、脱臭装置12とを有する。排気ブロワ11は、容器内のガスなどを強制的に排気させる。脱臭装置12は、例えば、ガスなどに洗浄液としての水を接触させて臭気成分を捕捉する水洗スクラバーなどである。臭気成分としては、プロピオン酸、ノルマル酪酸、イソ吉草酸などの低級脂肪酸や、硫黄化合物、アンモニアなどが挙げられる。容器2と排気ブロワ11の間の排気管10には、排気温度を検出する温度センサ13が設けられている。 Gas, water vapor, and the like generated in the container are exhausted from the exhaust port 2c to the outside air via the exhaust means 9. The exhaust means 9 includes an exhaust pipe 10, an exhaust blower 11, and a deodorizing device 12. The exhaust blower 11 forcibly exhausts gas or the like in the container. The deodorizing device 12 is, for example, a water-washing scrubber that captures odorous components by bringing water as a cleaning liquid into contact with gas or the like. Examples of the odorous component include lower fatty acids such as propionic acid, normal butyric acid, and isovaleric acid, sulfur compounds, and ammonia. The exhaust pipe 10 between the container 2 and the exhaust blower 11 is provided with a temperature sensor 13 for detecting the exhaust temperature.

図1に示す形態では、送気ブロワ6から送られる外気を加温するためのヒータ7が設けられている。ヒータ7は必須ではなく、例えば、排気手段9からの排気の熱を利用して送気ブロワ6から容器内に導入される外気を加温する熱交換手段(図示省略)を設けてもよい。この場合、ヒータを不要とでき、ランニングコストの低減が図れる。熱交換手段の形態や設置場所は特に限定されず、例えば、排気が充満された熱交換装置内に容器内導入前の送気配管を通すことなどが挙げられる。 In the form shown in FIG. 1, a heater 7 for heating the outside air sent from the air supply blower 6 is provided. The heater 7 is not essential, and for example, a heat exchange means (not shown) may be provided to heat the outside air introduced into the container from the air supply blower 6 by using the heat of the exhaust gas from the exhaust means 9. In this case, the heater can be eliminated and the running cost can be reduced. The form and installation location of the heat exchange means are not particularly limited, and examples thereof include passing an air supply pipe before introduction into the container into a heat exchange device filled with exhaust gas.

発酵乾燥装置1は、容器2外周の少なくとも一部を空間を介して覆うように設置された外部断熱パネルを有する態様としてもよい。外部断熱パネルを設け、容器との二重断熱構造とすることで、屋外に設置する該装置においてより安定した処理が可能になる。外部断熱パネルの形状としては、例えば、該パネルで構成される装置外壁が上記容器の円筒外周に略外接する四角筒状などが挙げられる。 The fermentation / drying device 1 may have an external heat insulating panel installed so as to cover at least a part of the outer periphery of the container 2 through a space. By providing an external heat insulating panel and forming a double heat insulating structure with the container, more stable processing becomes possible in the device installed outdoors. Examples of the shape of the external heat insulating panel include a square cylinder in which the outer wall of the device composed of the panel substantially circumscribes the outer periphery of the cylinder of the container.

本発明の発酵乾燥装置において、発酵乾燥処理の対象となる発酵原料には、有機質成分を多く含む、家畜排泄物、食品廃棄物、汚泥、またはこれらの混合物が挙げられる。具体的には、家畜排泄物として、鶏糞、豚糞、牛糞、馬糞などが挙げられ、食品廃棄物として生ごみ、食品製造副産物などが挙げられ、汚泥として、下水処理施設から発生する汚泥、農業集落排水処理施設から発生する汚泥、畜産汚水処理過程で発生する汚泥、食品工場の排水処理過程で発生する汚泥などが挙げられる。また、発酵乾燥装置における発酵乾燥処理は、容器内において、好気性発酵菌の存在下で通気しながら好気発酵させて行なう。好気性発酵菌としては、30~90℃程度で活性化する発酵菌が好ましく、例えば、ジオバチスル属やバチルス属などが挙げられる。 In the fermentation and drying apparatus of the present invention, the fermentation raw material to be subjected to the fermentation and drying treatment includes livestock excrement, food waste, sludge, or a mixture thereof, which contain a large amount of organic components. Specifically, livestock excrement includes chicken manure, pig manure, cow manure, horse manure, etc., food waste includes food waste, food manufacturing by-products, etc., and sludge includes sludge generated from sewage treatment facilities, agriculture, etc. Examples include sludge generated from village wastewater treatment facilities, sludge generated in the livestock sewage treatment process, and sludge generated in the wastewater treatment process of food factories. Further, the fermentation drying process in the fermentation drying device is performed by aerobic fermentation in a container in the presence of aerobic fermenting bacteria while aerating. The aerobic fermenting bacterium is preferably a fermenting bacterium that is activated at about 30 to 90 ° C., and examples thereof include the genus Diovatisul and the genus Bacillus.

図1の発酵乾燥装置1において、投入口2aから発酵原料を容器2の内部に投入し、容器内で発酵乾燥後に容器下部の取出口2bより発酵乾燥物を取り出す。発酵および乾燥は、送気ブロワ6により、最下段の撹拌翼の通気孔4aから所定の入気量で外気を導入し、かつ、排気口2cと排気手段9から内気を排気しつつ、各撹拌翼4を低速で回転させて、発酵原料の下水汚泥などを通気撹拌し、好気発酵させることで行なう。また、通気により同時に乾燥もされる。排気口2cから排気される空気は、通気孔から容器内に導入されて処理物中を通過しながら上方へ流れてきた空気に、発酵原料より生じたガスや水蒸気を含むものである。なお、容器内への入気は、最下段の撹拌翼の通気孔4aに限らず、最下段の1つ上段の撹拌翼にも通気孔を設け、その通気孔からも入気するようにしてもよい。その場合、最下段の1つ上段の撹拌翼の通気孔へは、別途設けた送気ブロワから送気してもよい。 In the fermentation / drying apparatus 1 of FIG. 1, the fermentation raw material is put into the inside of the container 2 from the charging port 2a, and after fermentation and drying in the container, the fermented and dried product is taken out from the outlet 2b at the bottom of the container. For fermentation and drying, the air supply blower 6 introduces the outside air from the ventilation hole 4a of the lowermost stirring blade with a predetermined amount of air, and the inside air is exhausted from the exhaust port 2c and the exhaust means 9, and each stirring is performed. The wing 4 is rotated at a low speed to agitate and agitate sewage sludge, which is a fermentation raw material, for aerobic fermentation. It is also dried at the same time by ventilation. The air exhausted from the exhaust port 2c contains gas and water vapor generated from the fermentation raw material in the air introduced into the container through the ventilation holes and flowing upward while passing through the processed material. It should be noted that the inflow to the inside of the container is not limited to the ventilation hole 4a of the lowermost stirring blade, but the ventilation hole is provided in the uppermost stirring blade of the lowermost stage so that the air can be introduced from the ventilation hole. May be good. In that case, air may be supplied from a separately provided air supply blower to the ventilation hole of the stirring blade at the uppermost stage, which is one at the lowermost stage.

運転手順としては、まず、発酵乾燥装置に、該装置の内容積に対して10~30%の空間(ヘッドスペース)を残して、発酵原料を投入する。10~30%の空間を残して発酵原料を投入することにより、撹拌が十分になされるため、発酵および乾燥が効率よくなされる。投入は毎日行ない、所定の滞留期間(3日~20日程度)発酵および乾燥して、一定期間(例えば毎日)毎に所定量(例えば20質量%程度)の発酵乾燥物を取り出す。上記投入は、発酵乾燥物を取り出した後に行なう。このように、一定時間サイクルで発酵原料の一部投入と発酵乾燥物の一部取り出しを繰り返して、連続的に処理を行なう。得られる発酵乾燥物は、通常はサラサラとした粉粒状となっている。 As an operation procedure, first, the fermentation raw material is charged into the fermentation / drying apparatus, leaving a space (head space) of 10 to 30% with respect to the internal volume of the apparatus. By adding the fermentation raw material leaving a space of 10 to 30%, stirring is sufficiently performed, so that fermentation and drying are efficiently performed. It is added every day, fermented and dried for a predetermined residence period (about 3 to 20 days), and a predetermined amount (for example, about 20% by mass) of fermented and dried product is taken out at regular intervals (for example, every day). The above feeding is performed after the fermented dried product is taken out. In this way, a part of the fermentation raw material is added and a part of the fermented dried product is taken out repeatedly in a fixed time cycle to continuously perform the treatment. The obtained fermented dried product is usually in the form of smooth powder.

図1に示すように、発酵乾燥装置1には、該装置の運転を制御する制御盤14が備え付けられている。制御盤14により、例えば、自動運転モードと手動運転モードの切り替えや、自動運転モードの各種設定操作、手動運転モードにおける各種操作(例えば、送気ブロワ6のON/OFF、排気ブロワ11のON/OFF、油圧シリンダ8のON/OFF、バケット(図示省略)の昇降など)を行うことができる。 As shown in FIG. 1, the fermentation drying device 1 is provided with a control panel 14 that controls the operation of the device. With the control panel 14, for example, switching between the automatic operation mode and the manual operation mode, various setting operations of the automatic operation mode, and various operations in the manual operation mode (for example, ON / OFF of the air supply blower 6 and ON / OFF of the exhaust blower 11 / It can be turned off, the hydraulic cylinder 8 can be turned on and off, the bucket (not shown) can be raised and lowered, and the like).

上記のように、発酵原料の投入から取り出しまでの一連の発酵乾燥処理では、基本的に、発酵原料の発酵と乾燥が同時に行われている。本発明者らは、発酵熱量の変化量ΔQと排気温度との関係について調査した結果、排気温度が増加しているにもかかわらず、ある温度帯を境に発酵熱量の変化量ΔQが増加から減少に転じることを見出した。さらに、この変化量ΔQを指標とすることで、発酵段階と乾燥段階のそれぞれに特化した入気制御を行えることを見出した。本発明は、このような知見に基づくものである。 As described above, in a series of fermentation and drying treatments from the input to the removal of the fermentation raw material, the fermentation and drying of the fermentation raw material are basically performed at the same time. As a result of investigating the relationship between the amount of change in the amount of heat of fermentation ΔQ and the exhaust temperature, the present inventors have found that the amount of change in the amount of heat of fermentation ΔQ increases over a certain temperature range even though the exhaust temperature is increasing. We found that it started to decrease. Furthermore, it has been found that by using this change amount ΔQ as an index, it is possible to control the air intake specialized for each of the fermentation stage and the drying stage. The present invention is based on such findings.

本発明の発酵乾燥装置1は、任意の時間間隔における発酵熱量の変化量ΔQを算出する算出手段と、算出された変化量ΔQに基づいて、その変化量ΔQが増加傾向から減少傾向に変化するタイミングを判定する判定手段と、判定手段によって上記タイミングが判定された後において、所定の運転モードを行なう運転制御手段とを有することを特徴とする。図1の制御装置15は、これら算出手段と判定手段と運転制御手段とを含み、周知のCPU、ROM、RAMなどからなるマイクロコンピュータを主体として構成されている。制御装置15には、各地点における空気の温度をそれぞれ測定できる温度センサや、入気量を取得できる取得手段、排気量を取得できる取得手段などからの情報を連続で取得、記憶できる構成となっている。また、制御装置15は、各種演算機能も有している。 In the fermentation drying apparatus 1 of the present invention, the change amount ΔQ changes from an increasing tendency to a decreasing tendency based on the calculation means for calculating the change amount ΔQ of the fermentation heat amount at an arbitrary time interval and the calculated change amount ΔQ. It is characterized by having a determination means for determining the timing and an operation control means for performing a predetermined operation mode after the timing is determined by the determination means. The control device 15 of FIG. 1 includes these calculation means, determination means, and operation control means, and is mainly composed of a microcomputer including a well-known CPU, ROM, RAM, and the like. The control device 15 is configured to continuously acquire and store information from a temperature sensor capable of measuring the temperature of air at each point, an acquisition means capable of acquiring an inflow amount, an acquisition means capable of acquiring an exhaust amount, and the like. ing. The control device 15 also has various arithmetic functions.

上記算出手段は、発酵熱量を任意の時間間隔で繰り返し取得する。そして、取得の都度、現在の時点における発酵熱量と、所定時間前の時点における発酵熱量との差分(変化量ΔQ)を算出する。本発明において、上記ΔQの算出における、現在の時点と所定時間前の時点の時間間隔を算出スパンという。算出スパンは適宜設定でき、例えば、1分~数分程度の短い間隔から、60分や120分などの比較的長い間隔に設定できる。なお、算出スパンは、発酵熱量の取得の時間間隔と同じでも異なっていてもよい。 The above calculation means repeatedly acquires the amount of heat of fermentation at arbitrary time intervals. Then, each time it is acquired, the difference (change amount ΔQ) between the amount of heat of fermentation at the current time point and the amount of heat of fermentation at the time point before a predetermined time is calculated. In the present invention, the time interval between the current time point and the time point before a predetermined time in the calculation of ΔQ is referred to as a calculation span. The calculation span can be set as appropriate, for example, from a short interval of about 1 minute to several minutes to a relatively long interval such as 60 minutes or 120 minutes. The calculated span may be the same as or different from the time interval for acquiring the amount of heat of fermentation.

以下には、まず、養豚場で実施した試験例を用いて、発酵熱量の変化量ΔQと排気温度との関係について説明する。この試験では、発酵乾燥装置に中部エコテック社製コンポS-36ET(容積39m)を用いた。この発酵乾燥装置の入排気経路の概略図を図2に示す。 Below, first, the relationship between the amount of change in the amount of heat of fermentation ΔQ and the exhaust temperature will be described using a test example carried out at a pig farm. In this test, a component S-36ET (volume 39 m 3 ) manufactured by Chubu Ecotech Co., Ltd. was used as a fermentation drying device. A schematic diagram of the intake / exhaust path of this fermentation drying device is shown in FIG.

図2に示すように、発酵乾燥装置1’は、送気ブロワ6A、6Bで連続送気を行うとともに、容器上部の排気口2cから排気ブロワ11で排気する構成である。最下段の撹拌翼4Aへの送気は、容器下部に設置された送気ブロワ6Aで行われ、最下段から2段目の撹拌翼4Bへの送気は、容器上部に設置された送気ブロワ6Bで行われる。なお、送気ブロワ6A、6Bの送気上流側には、それぞれフィルタ16A、16Bが設けられている。この試験は、発酵乾燥装置1’の撹拌翼が7分間回転、9分間停止を1サイクルとした間欠運転で実施した。また、下部および上部に設置された送気ブロワ6A、6Bの入気量はあわせて、発酵槽容積あたり0.20m/min・mで行った。試験期間中、外気を加温するヒータ7は稼働せずに無加温の条件で運転を行ったが、送気ブロワ6A、6Bを通過した外気は各送気ブロワによって加温された。 As shown in FIG. 2, the fermentation / drying device 1'is configured to continuously supply air with the air supply blowers 6A and 6B and exhaust the air from the exhaust port 2c at the top of the container with the exhaust blower 11. The air supply to the lowermost stirring blade 4A is performed by the air supply blower 6A installed at the lower part of the container, and the air supply from the lowest stage to the second stage stirring blade 4B is performed by the air supply installed at the upper part of the container. It is performed by the blower 6B. Filters 16A and 16B are provided on the upstream side of the air supply blowers 6A and 6B, respectively. This test was carried out in an intermittent operation in which the stirring blade of the fermentation drying device 1'rotated for 7 minutes and stopped for 9 minutes as one cycle. In addition, the inflow amounts of the air supply blowers 6A and 6B installed in the lower part and the upper part were combined at 0.20 m 3 / min · m 3 per fermentation tank volume. During the test period, the heater 7 for heating the outside air was not operated and was operated under the condition of no heating, but the outside air passing through the air supply blowers 6A and 6B was heated by each air supply blower.

発酵乾燥物の取り出しは容器底部の取出口から1日1回行い、平均で1400kg程度を取り出した。発酵乾燥物を取り出した後、発酵原料の豚糞を水分や比重を調整せずに、容器上部の投入口からバケットによって1日1回、平均で3300kg程度投入した。発酵乾燥物の取り出しおよび発酵原料の投入は、基本的に毎日所定時刻(午前9時~11時の間)に実施した。 The fermented dried product was taken out once a day from the outlet at the bottom of the container, and about 1400 kg was taken out on average. After the fermented dried product was taken out, about 3300 kg of pork feces, which was the raw material for fermentation, was added once a day by a bucket from the inlet at the top of the container without adjusting the water content and specific gravity. The removal of the fermented dried product and the input of the fermented raw material were basically carried out every day at a predetermined time (between 9:00 am and 11:00 am).

試験は2月5日から2月15日の11日間行い、発酵熱量Q、発酵熱量の変化量ΔQ、入気経路の各地点の温度、排気温度、入気量、排気量、外気の湿度、容器内の温度、容器重量などを随時取得した。発酵熱量Qおよびその変化量ΔQは、以下の式(1)~式(4)を用いて算出した。 The test was conducted for 11 days from February 5th to February 15th, and the amount of heat of fermentation Q, the amount of change in the amount of heat of fermentation ΔQ, the temperature at each point of the intake route, the exhaust temperature, the amount of intake, the amount of exhaust, the humidity of the outside air, The temperature inside the container, the weight of the container, etc. were acquired at any time. The amount of heat of fermentation Q and the amount of change ΔQ thereof were calculated using the following formulas (1) to (4).

入気経路の各地点の温度は、図2に示すa~dのうち2地点(a地点:外気(下部)、b地点:ブロワ後(下部))で測定し、排気温度は、e地点で測定した。これらの地点では、K熱電対(シマデン製、型番:STD-23Sシリーズ)で配管内温度を1分間隔で測定した。容器内に導入される入気量(単位:m/h)は、b地点とd地点の配管内の風速を風速計(日本カノマックス製、型番:0965-00)によりそれぞれ測定し、下記の式(1)により求めた各値の合計量とした。なお、排気量は、その入気量の1.2倍量とした。

Figure 2022029378000002
The temperature at each point of the intake path is measured at two points a to d shown in FIG. 2 (point a: outside air (lower part), point b: after blower (lower part)), and the exhaust temperature is at point e. It was measured. At these points, the temperature inside the pipe was measured at 1-minute intervals with a K thermocouple (manufactured by Shimaden, model number: STD-23S series). The amount of air introduced into the container (unit: m 3 / h) is measured by measuring the wind speed in the pipes at points b and d with an anemometer (manufactured by Kanomax Japan, model number: 0965-00), and is as follows. The total amount of each value obtained by the formula (1) was used. The displacement was 1.2 times the amount of intake air.
Figure 2022029378000002

なお、上記の式(1)中の0.82の数値は、2n/(n+1)×(2n+1)で表される平均速度係数を示しており、撹拌翼の翼数n=7とした場合の数値である。 The numerical value of 0.82 in the above equation (1) indicates an average velocity coefficient represented by 2n 2 / (n + 1) × (2n + 1), and when the number of blades of the stirring blade is n = 7. It is a numerical value of.

発酵乾燥装置の入気熱量は、ブロワ後(下部)熱量Qg(b)とブロワ後(上部)熱量Qg(d)の総和とし、各熱量は、下記の式(2)により求めた。ブロワ後(下部)熱量Qg(b)、ブロワ後(上部)熱量Qg(d)については、外気(下部)熱量Qg(a)、外気(上部)熱量Qg(c)の相対湿度から単位容積あたりの水蒸気量を算出し、温度変化してもその水分量が変化しないと仮定して熱量の算出を行った。d地点の温度は、c地点の温度+24℃として熱量の算出を行った。また、排気熱量Qg(e)も下記の式(2)により求めた。e地点の水蒸気がほぼ飽和の状態で排出されていたため、排気の相対湿度は100%とした。なお、外気の湿度は、地方気象台が観測した10分毎のデータから1時間毎の平均値を算出し、熱量算出に用いた。

Figure 2022029378000003
The amount of heat in the air of the fermentation drying device was the sum of the amount of heat Qg (b) after the blower (lower part) and the amount of heat Qg (d) after the blower (upper part), and each amount of heat was calculated by the following formula (2). For the post-blower (lower) calorific value Qg (b) and the post-blower (upper) calorific value Qg (d), the relative humidity of the outside air (lower) calorific value Qg (a) and the outside air (upper) calorific value Qg (c) per unit volume. The amount of water vapor was calculated, and the amount of heat was calculated on the assumption that the amount of water did not change even if the temperature changed. The calorific value was calculated assuming that the temperature at point d was the temperature at point c + 24 ° C. The exhaust heat amount Qg (e) was also calculated by the following formula (2). Since the water vapor at point e was discharged in a nearly saturated state, the relative humidity of the exhaust was set to 100%. For the humidity of the outside air, the average value for each hour was calculated from the data for every 10 minutes observed by the local meteorological observatory, and used for calculating the calorific value.
Figure 2022029378000003

得られた各熱量を用いて、下記の式(3)より、単位時間あたりの発酵熱量Q(単位:MJ/h)を求めた。式(3)では、入気熱量を容器に供給される熱量として定義し、排気熱量を該入気熱量と容器で発生した熱量の合計の熱量として定義した。装置(容器)の放熱、蓄熱はないものと仮定し、排気熱量から入気熱量を差し引いたものを発酵熱量と定義した。つまり、発酵熱量は、装置内(容器内)の発酵原料の発酵乾燥により発生した熱量そのものといえる。

Figure 2022029378000004
Using each of the obtained calories, the fermentation calorific value Q (unit: MJ / h) per unit time was obtained from the following formula (3). In the formula (3), the amount of heat of the intake air is defined as the amount of heat supplied to the container, and the amount of heat of the exhaust gas is defined as the amount of heat of the sum of the amount of heat of the intake air and the amount of heat generated in the container. Assuming that there is no heat dissipation or heat storage in the device (container), the amount of heat of intake minus the amount of heat of intake is defined as the amount of heat of fermentation. That is, it can be said that the amount of heat for fermentation is the amount of heat generated by the fermentation and drying of the fermentation raw material in the apparatus (inside the container).
Figure 2022029378000004

得られた単位時間当たりの発酵熱量Qを用いて、下記の式(4)より、1時間毎の変化量ΔQ(単位:MJ/h)を算出した。式(4)中の変化量ΔQは、発酵熱量Qの増加量または減少量を表し、tは時間を表している。

Figure 2022029378000005
Using the obtained heat of fermentation Q per unit time, the amount of change ΔQ (unit: MJ / h) per hour was calculated from the following formula (4). The amount of change ΔQ in the formula (4) represents the amount of increase or decrease in the amount of heat of fermentation Q, and t represents the time.
Figure 2022029378000005

図3には、上記試験期間(2月5日~2月15日)のうち2月10日のデータを示す。図3(a)は、単位時間当たりの発酵熱量Qおよび排気温度の時間推移を示している。なお、排気温度は1時間の平均値を表している。図3(a)において、発酵熱量Qは14時から右肩上がりに増加して、翌2時にピークを迎えた後、翌9時まで減少するという動きを示した。また、発酵熱量Qの増加期間では、発酵熱量Qは20時まで2次関数的に増加し、その後、緩やかに増加した。発酵熱量Qの近似式の2階微分の値より、変化量ΔQが増加傾向から減少傾向に変化するタイミングが20時であった。なお、発酵熱量Qの増加が緩やかになる時間帯では、排気温度の傾き(増加量)も小さくなった。 FIG. 3 shows the data on February 10 of the above test period (February 5 to February 15). FIG. 3A shows the time transition of the amount of heat of fermentation Q and the exhaust temperature per unit time. The exhaust temperature represents an average value for one hour. In FIG. 3A, the amount of heat Q for fermentation increases from 14:00 to the right, peaks at 2 o'clock the next day, and then decreases until 9 o'clock the next day. Further, during the period of increase in the amount of heat of fermentation Q, the amount of heat of fermentation Q increased quadratically until 20:00, and then gradually increased. From the value of the second derivative of the approximate expression of the amount of heat of fermentation Q, the timing at which the amount of change ΔQ changed from the increasing tendency to the decreasing tendency was 20:00. In the time zone in which the increase in the amount of heat of fermentation Q became gradual, the slope (increase amount) of the exhaust temperature also became small.

図3(b)は、発酵熱量の変化量ΔQおよび排気温度の時間推移を示している。この変化量ΔQは、現在(グラフに記載の時刻)の発酵熱量Qと1時間前の発酵熱量との差分である。図3(b)に示すように、ΔQは19時~20時の時間帯でピークになっており、その後は減少している。ピーク後の変化量ΔQは、急激な落ち込みを経て、プラスからマイナスになるという動きを示した。なお、変化量ΔQがマイナスになることは、発酵熱量Qが減少することを意味する。 FIG. 3B shows the change amount ΔQ of the amount of heat of fermentation and the time transition of the exhaust temperature. This amount of change ΔQ is the difference between the current amount of heat of fermentation Q (time shown in the graph) and the amount of heat of fermentation one hour ago. As shown in FIG. 3 (b), ΔQ peaked in the time zone from 19:00 to 20:00 and decreased thereafter. The amount of change ΔQ after the peak showed a movement from positive to negative after a sharp drop. In addition, when the change amount ΔQ becomes negative, it means that the fermentation heat amount Q decreases.

図4には、発酵熱量の変化量ΔQを縦軸に排気温度を横軸にしたグラフを示す。図中の丸印は、図3(b)の各変化量ΔQに対応する期間の排気温度をプロットしたものであり、図中の点線は、その近似曲線である。この曲線は排気温度の上昇過程にある動きを表したもので不可逆的な動きをする。図4に示すように、排気温度が59℃~60℃付近を境として、変化量ΔQは増加から減少に転じている。本明細書において、変化量ΔQのピークを変曲点ともいう。変化量ΔQは、微生物が有機物を分解する際に発生した熱量の増減量を表していることから、変化量ΔQがピークを迎えて頭打ちになることは、微生物の有機物の分解速度(増殖速度)が頭打ちになることといえる。つまり、変化量ΔQのピーク後の期間は、微生物が緩やかに失活していくと考えられる。また、図4において、排気温度は変化量ΔQが16MJ/h程度で反転している。 FIG. 4 shows a graph in which the change amount ΔQ of the amount of heat of fermentation is on the vertical axis and the exhaust temperature is on the horizontal axis. The circles in the figure are plots of the exhaust temperature during the period corresponding to each change amount ΔQ in FIG. 3 (b), and the dotted line in the figure is an approximate curve thereof. This curve represents the movement in the process of increasing the exhaust temperature and is irreversible. As shown in FIG. 4, the amount of change ΔQ changes from an increase to a decrease when the exhaust temperature is around 59 ° C to 60 ° C. In the present specification, the peak of the amount of change ΔQ is also referred to as an inflection point. Since the change amount ΔQ represents the amount of increase or decrease in the amount of heat generated when the microorganism decomposes the organic matter, it is the decomposition rate (growth rate) of the organic matter of the microorganism that the change amount ΔQ reaches a peak and reaches a plateau. Can be said to reach a plateau. That is, it is considered that the microorganisms are gradually inactivated during the period after the peak of the amount of change ΔQ. Further, in FIG. 4, the change amount ΔQ of the exhaust temperature is reversed at about 16 MJ / h.

次に、図5および図6には、別日(2月13日)のデータを示す。図5および図6は、図3および図4にそれぞれ対応するグラフである。図5(b)に示すように、2月13日の変化量ΔQは20時~21時の時間帯で最大になっており、そのピーク時の排気温度は59℃~60℃程度である。また、図6に示すように、変化量ΔQの近似曲線は、図4と同様に周回性を示しており、増加から減少に転じる変曲点が確認できる。このように、別日においても、発酵熱量Q、変化量ΔQ、排気温度は、2月10日と同様の動きをしている。 Next, FIGS. 5 and 6 show data on another day (February 13). 5 and 6 are graphs corresponding to FIGS. 3 and 4, respectively. As shown in FIG. 5B, the amount of change ΔQ on February 13 is the maximum in the time zone from 20:00 to 21:00, and the exhaust temperature at the peak is about 59 ° C to 60 ° C. Further, as shown in FIG. 6, the approximate curve of the amount of change ΔQ shows the circumferentiality as in FIG. 4, and the inflection point where the increase changes to the decrease can be confirmed. As described above, even on another day, the fermentation heat amount Q, the change amount ΔQ, and the exhaust temperature are moving in the same manner as on February 10.

上記図3~図6のデータより、発酵熱量の変化量ΔQが、排気温度のある温度帯を境にして増加から減少に転じることが分かった。変化量ΔQのピークは、微生物の有機物の分解速度のピークであるといえ、そのピークの後には、微生物の活性や増殖速度が減少していくと考えられる。したがって、変化量ΔQのピーク前の期間は、容器内が発酵優位の段階であるといえ、変化量ΔQのピーク後の期間は、乾燥優位の段階であるといえる。本発明の発酵乾燥装置は、変化量ΔQのピークを検出した後において、ピーク以前とは異なる運転モードを行うこととしている。 From the data of FIGS. 3 to 6 above, it was found that the amount of change ΔQ in the amount of heat of fermentation changed from increasing to decreasing at a certain temperature range of the exhaust temperature. It can be said that the peak of the amount of change ΔQ is the peak of the decomposition rate of organic matter of the microorganism, and it is considered that the activity and the growth rate of the microorganism decrease after the peak. Therefore, it can be said that the period before the peak of the change amount ΔQ is the stage in which fermentation is dominant in the container, and the period after the peak of the change amount ΔQ is the stage in which drying is dominant. After detecting the peak of the change amount ΔQ, the fermentation / drying apparatus of the present invention performs an operation mode different from that before the peak.

図7には、変化量ΔQのピーク前後で運転モードを2つに分割した例を示す。具体的には、原料投入から取り出しまでの運転制御が、原料投入から変化量ΔQがピークに到達するまでの期間の運転モード1と、変化量ΔQがピークに到達してから取り出しまでの期間の運転モード2に分けられる。この場合、運転モード1は、微生物の増殖速度を落とさずに引き延ばすような発酵重視の運転モードであり、運転モード2は水蒸発量に由来する減少重量を増加させるような乾燥重視の運転モードである。各運転モードの内容を表1に示す。 FIG. 7 shows an example in which the operation mode is divided into two before and after the peak of the change amount ΔQ. Specifically, the operation control from the raw material input to the removal is the operation mode 1 during the period from the raw material input until the change amount ΔQ reaches the peak, and the period from the change amount ΔQ reaching the peak to the extraction. It is divided into operation modes 2. In this case, the operation mode 1 is a fermentation-oriented operation mode in which the growth rate of microorganisms is extended without slowing down, and the operation mode 2 is a drying-oriented operation mode in which the weight loss due to the amount of water evaporation is increased. be. Table 1 shows the contents of each operation mode.

Figure 2022029378000006
Figure 2022029378000006

表1に示す単位入気量は、容器内の処理物1m当たりでかつ1分当たりの入気量を示している。また、排気量は、入気量の変動に合わせた動きになる。表1に示すように、運転モード1の単位入気量は0.25~0.35m/min・mである。発酵段階の初期は、一般的に酸素要求量が大きくなることから、ある程度の単位入気量が必要になる。一方、単位入気量が大きくなり過ぎると、発酵原料の粒子表面が乾きやすくなり微生物の働きが低下するおそれがある。そのため、単位入気量は中程度に設定されている。 The unit air intake amount shown in Table 1 indicates the air intake amount per 1 m 3 of the processed material in the container and per minute. In addition, the displacement moves according to the fluctuation of the intake air volume. As shown in Table 1, the unit intake amount in the operation mode 1 is 0.25 to 0.35 m 3 / min · m 3 . In the early stage of the fermentation stage, the oxygen demand is generally large, so a certain amount of air intake is required. On the other hand, if the unit intake amount becomes too large, the surface of the particles of the fermentation raw material tends to dry, and the action of microorganisms may decrease. Therefore, the unit intake amount is set to a medium level.

また、変化量ΔQがピークに到達するまでの期間では、微生物の増殖速度が最大になることから、微生物の活性化温度に応じた入気温度(55~60℃)になっている。さらに、同期間は、投入後の発酵原料と容器内の処理物を早く混合して水分とpHの調整を行い、発酵の立ち上がりを早める必要がある。そのため、撹拌頻度がやや多め、具体的には、間欠運転における回転時間と停止時間の割合が同程度に設定されている。なお、この期間において撹拌頻度を大きくし過ぎると、投入された発酵原料が容器の下部へ落ち込みやすくなることから、間欠運転における回転時間と停止時間の割合は2:1~1:1.5が好ましい。 Further, since the growth rate of the microorganism is maximized in the period until the change amount ΔQ reaches the peak, the intake air temperature (55 to 60 ° C.) is set according to the activation temperature of the microorganism. Further, during the same period, it is necessary to quickly mix the fermented raw material after charging and the processed product in the container to adjust the water content and pH to accelerate the start of fermentation. Therefore, the stirring frequency is slightly higher, and specifically, the ratio of the rotation time and the stop time in the intermittent operation is set to be about the same. If the stirring frequency is too high during this period, the added fermentation raw material tends to fall into the lower part of the container, so the ratio of rotation time to stop time in intermittent operation is 2: 1 to 1: 1.5. preferable.

これに対して、表1の運転モード2は、乾燥に特化した運転条件に設定されている。具体的には、運転モード2は、運転モード1に比べて、単位入気量および入気温度が大きく設定されている。上述のように、変化量ΔQのピーク後の期間は乾燥優位の段階と考えられることから、比較的高温の入気温度で、かつ大容量の入気を行なうことで、水蒸発量を多くして処理物の乾燥を促進させる。入気温度は、例えば送気ブロワ後の空気をヒータやバーナなどで加温する(ON/OFF)ことや、ヒータの出力を調整可能な構成においてヒータ出力を大きくすることで、上昇させることができる。例えば、図2のb地点およびd地点に設けられた温度センサや、図2のヒータ7と容器2の間に設けられる温度センサにより測定された温度に基づき、温度調節計などでヒータ出力を制御することなどによって、入気温度を調整できる。また、単位入気量は、例えば送気ブロワのインバータ周波数を大きくすることで、上昇させることができる。 On the other hand, the operation mode 2 in Table 1 is set to the operation conditions specialized for drying. Specifically, in the operation mode 2, the unit intake amount and the intake air temperature are set larger than those in the operation mode 1. As described above, since the period after the peak of the amount of change ΔQ is considered to be the stage of predominant drying, the amount of water evaporation can be increased by injecting a large amount of air at a relatively high air temperature. To accelerate the drying of the processed material. The intake air temperature can be raised, for example, by heating (ON / OFF) the air after the air supply blower with a heater or burner, or by increasing the heater output in a configuration in which the heater output can be adjusted. can. For example, the heater output is controlled by a temperature controller or the like based on the temperature measured by the temperature sensors provided at the points b and d in FIG. 2 and the temperature sensor provided between the heater 7 and the container 2 in FIG. The intake air temperature can be adjusted by doing so. Further, the unit intake amount can be increased, for example, by increasing the inverter frequency of the air supply blower.

また、運転モード2では、撹拌翼を連続運転で回転させており、運転モード1に比べて撹拌頻度が大きくなっている。連続運転の撹拌速度は、例えば1時間あたり2回転程度である。撹拌頻度を大きくすることで、処理物に対しまんべんなく空気が接触して、乾燥を一層促進させることができる。なお、運転モード1よりも撹拌頻度を大きくする態様としては、連続運転に限らず、例えば運転モード1の間欠運転よりも回転時間の割合を大きくした間欠運転(例えば、回転18分、停止6分)にしてもよい。また、運転モード1の間欠運転と同じ時間割合の間欠運転とし、その回転時の撹拌速度を運転モード1よりも大きくしてもよい。 Further, in the operation mode 2, the stirring blade is rotated in continuous operation, and the stirring frequency is higher than that in the operation mode 1. The stirring speed of continuous operation is, for example, about 2 rotations per hour. By increasing the stirring frequency, the air is evenly contacted with the processed product, and drying can be further promoted. The mode of increasing the stirring frequency as compared with the operation mode 1 is not limited to the continuous operation, for example, the intermittent operation in which the ratio of the rotation time is larger than that of the intermittent operation of the operation mode 1 (for example, rotation 18 minutes, stop 6 minutes). ) May be used. Further, the intermittent operation at the same time ratio as the intermittent operation of the operation mode 1 may be set, and the stirring speed at the time of rotation may be higher than that of the operation mode 1.

表1の運転モード2では、単位入気量および入気温度の両方が大きく設定されているが、単位入気量および入気温度の少なくともいずれか一方が大きく設定されていればよい。また、各運転モードにおいて、単位入気量および入気温度は一定でなくてもよく、運転モード2が運転モード1に対して、単位入気量および入気温度の少なくともいずれか一方が大きい関係を満たした上で、変動させてもよい。また、表1中の具体的な数値は、これに限らず、消費電力や消費エネルギー量を考慮して、適宜設定することができる。 In the operation mode 2 of Table 1, both the unit intake amount and the intake air temperature are set to be large, but at least one of the unit intake amount and the intake air temperature may be set to be large. Further, in each operation mode, the unit intake amount and the intake air temperature do not have to be constant, and the operation mode 2 has a relationship in which at least one of the unit intake amount and the intake air temperature is larger than that of the operation mode 1. May be changed after satisfying. Further, the specific numerical values in Table 1 are not limited to this, and can be appropriately set in consideration of power consumption and energy consumption.

また、表1では、運転モード2の単位入気量、入気温度、撹拌頻度を、運転モード1の各項目に対して変更したが、更にそれ以外の項目を変更させてもよい。例えば、発酵初期の段階は微生物の酸素要求量が大きいことに鑑みて、運転モード1の入気の酸素濃度を、運転モード2の入気の酸素濃度よりも大きくしてもよい。この場合、運転モード1では、入気の酸素濃度を意図的に高くする制御を行ない、運転モード2では、そのような制御を行わないようにすることができる。また、運転モード2の入気の湿度を、運転モード1の入気の湿度よりも小さくしてもよい。この場合、運転モード2において、乾いた外気が容器内に導入されるため乾燥の効率化に寄与する。 Further, in Table 1, the unit intake amount, intake temperature, and stirring frequency of the operation mode 2 are changed for each item of the operation mode 1, but other items may be further changed. For example, in view of the large oxygen demand of microorganisms in the initial stage of fermentation, the oxygen concentration of the intake air in the operation mode 1 may be higher than the oxygen concentration of the intake air in the operation mode 2. In this case, in the operation mode 1, the control to intentionally increase the oxygen concentration of the incoming air can be performed, and in the operation mode 2, such control can be prevented. Further, the humidity of the incoming air in the operation mode 2 may be smaller than the humidity of the incoming air in the operation mode 1. In this case, in the operation mode 2, the dry outside air is introduced into the container, which contributes to the efficiency of drying.

次に、ΔQピークの判定について、図7を参照して説明する。図7に示すように、ΔQピークは、変化量ΔQが増加傾向から減少傾向に転ずるタイミングの変化量ΔQである。そのため、変化量ΔQの変化量(傾き)を算出して、その傾きが閾値未満であるか否かを判定することで、ΔQピークの有無を判定できる。傾きが閾値未満であれば、ΔQピークがある、つまり変化量ΔQが増加傾向から減少傾向に変化するタイミングを迎えたと判定する。傾きが閾値以上であれば、ΔQピークに到達していないと判定する。上記閾値の値は、特に限定されないが、ΔQピークの前後において、ΔQの傾きはプラス、ゼロ、マイナスの順に変化することを考慮して、例えばゼロなどに設定される。 Next, the determination of the ΔQ peak will be described with reference to FIG. 7. As shown in FIG. 7, the ΔQ peak is the amount of change ΔQ at the timing when the amount of change ΔQ changes from the increasing tendency to the decreasing tendency. Therefore, the presence or absence of the ΔQ peak can be determined by calculating the change amount (slope) of the change amount ΔQ and determining whether or not the slope is less than the threshold value. If the slope is less than the threshold value, it is determined that there is a ΔQ peak, that is, the timing at which the change amount ΔQ changes from the increasing tendency to the decreasing tendency has been reached. If the slope is equal to or greater than the threshold value, it is determined that the ΔQ peak has not been reached. The value of the threshold value is not particularly limited, but is set to, for example, zero in consideration of the fact that the slope of ΔQ changes in the order of plus, zero, and minus before and after the ΔQ peak.

ΔQピークの判定の精度を高めるため、更にその他の項目も加えて、ΔQピークを判定することが好ましい。図7に示すように、変化量ΔQがピークを迎えた時点において、発酵熱量Qおよび排気温度はいずれも増加傾向である。また、上記図3~図6で示したように、変化量ΔQがピークを迎えた時点の排気温度は概ね60℃付近である。これらを考慮して、(a)発酵熱量Qが増加していること、(b)排気温度が増加していること、および(c)排気温度が所定温度以上であることの少なくともいずれかの項目をΔQピークの判定に用いることが好ましい。 In order to improve the accuracy of determining the ΔQ peak, it is preferable to determine the ΔQ peak by adding other items. As shown in FIG. 7, when the change amount ΔQ reaches its peak, both the fermentation heat amount Q and the exhaust temperature tend to increase. Further, as shown in FIGS. 3 to 6, the exhaust temperature at the time when the change amount ΔQ reaches the peak is approximately around 60 ° C. In consideration of these, at least one of (a) the amount of heat Q for fermentation is increasing, (b) the exhaust temperature is increasing, and (c) the exhaust temperature is at least a predetermined temperature. Is preferably used for determining the ΔQ peak.

上記(a)の判定は、発酵熱量の変化量ΔQがプラスであることに基づいて判定する。上記(b)の判定は、その時点の排気温度が所定時間前の排気温度に比べて増加していることに基づいて判定する。上記(c)の判定は、その時点の排気温度が、例えば56℃以上であることに基づいて判定する。また、ΔQピークの判定は、変化量ΔQの傾きに加えて、上記(a)~(c)のいずれも満たすことを条件に行なうことがより好ましい。 The determination in (a) above is based on the fact that the amount of change ΔQ in the amount of heat of fermentation is positive. The determination in (b) above is determined based on the fact that the exhaust temperature at that time is increased as compared with the exhaust temperature before a predetermined time. The determination in (c) above is based on the fact that the exhaust temperature at that time is, for example, 56 ° C. or higher. Further, it is more preferable that the determination of the ΔQ peak is performed on the condition that all of the above (a) to (c) are satisfied in addition to the slope of the change amount ΔQ.

図8には、他の運転制御として、運転モードをさらに細分化した例を示す。図8では、原料投入から取り出しまでの運転制御が、原料投入から変化量ΔQがピークに到達するまでの期間の運転モード1と、変化量ΔQがピークに到達してからΔQがマイナスになるまでの期間の運転モード3と、変化量ΔQがマイナスになってから取り出しまでの期間の運転モード2に分けられる。図8では、図7と異なり、運転モード1と運転モード2の間に運転モード3が設けられている。この期間では排気温度が高温で概ね一定になっており、運転モード3では排気温度を維持する運転を行う。各運転モードの内容を表2に示す。 FIG. 8 shows an example in which the operation mode is further subdivided as another operation control. In FIG. 8, the operation control from the input of the raw material to the removal of the raw material is performed in the operation mode 1 during the period from the input of the raw material to the peak of the change amount ΔQ, and from the time when the change amount ΔQ reaches the peak until the ΔQ becomes negative. It is divided into an operation mode 3 during the period of 1 and an operation mode 2 during the period from when the change amount ΔQ becomes negative until the extraction. In FIG. 8, unlike FIG. 7, an operation mode 3 is provided between the operation mode 1 and the operation mode 2. During this period, the exhaust temperature is almost constant at a high temperature, and in the operation mode 3, the operation of maintaining the exhaust temperature is performed. Table 2 shows the contents of each operation mode.

Figure 2022029378000007
Figure 2022029378000007

表2に示す運転モード1、運転モード2の内容は、表1の内容と同じである。一方、運転モード3は、微生物の増殖速度を急激に増やさずに排気温度を維持するため、運転モード1に比べて単位入気量および入気温度が小さくなっている。また、撹拌頻度についても、運転モード1に比べて小さくなっている。乾燥重視の運転モード2の前に、つなぎとして運転モード3を設けることで、微生物の失活を遅らせて、発酵での乾物分解量の増加が見込める。 The contents of the operation mode 1 and the operation mode 2 shown in Table 2 are the same as the contents of Table 1. On the other hand, in the operation mode 3, since the exhaust temperature is maintained without rapidly increasing the growth rate of microorganisms, the unit intake amount and the intake temperature are smaller than those in the operation mode 1. Further, the stirring frequency is also smaller than that in the operation mode 1. By providing the operation mode 3 as a binder before the operation mode 2 in which emphasis is placed on drying, it is expected that the deactivation of microorganisms will be delayed and the amount of dry matter decomposed in fermentation will increase.

図8の運転制御において、ΔQがマイナスになることの判定は、ΔQがゼロ未満であるか否かを判定することで行う。また、この判定の精度を高めるため、更にその他の項目を加えてもよい。図8より、ΔQがマイナスになった時点において、排気温度は概ね一定であることから、例えば排気温度の変化量が所定範囲内であることを併せて判定してもよい。 In the operation control of FIG. 8, the determination that ΔQ becomes negative is performed by determining whether or not ΔQ is less than zero. Further, in order to improve the accuracy of this determination, other items may be added. From FIG. 8, since the exhaust temperature is substantially constant when ΔQ becomes negative, for example, it may be determined that the amount of change in the exhaust temperature is within a predetermined range.

図9には、図8の運転制御を行った場合の排気温度の時間推移のモデル図を示す。図9に示すように、3つの運転モードを組み合わせることで、発酵段階と乾燥段階を区別した入気制御を行なうことができる。その結果、排気温度が段階的に上昇し、乾物分解量の増加と水蒸発量の増加が期待される。運転モード1では発酵重視の入気制御により排気温度を速やかに上昇させ、運転モード3では、単位入気量や入気温度を抑えることで排気温度を維持し、運転モード2では、単位入気量や入気温度を増大することで乾燥を促進させる。なお、運転モード3の運転期間は、消費電力を抑えるために短くすることが好ましい。 FIG. 9 shows a model diagram of the time transition of the exhaust temperature when the operation control of FIG. 8 is performed. As shown in FIG. 9, by combining the three operation modes, it is possible to perform air intake control that distinguishes between the fermentation stage and the drying stage. As a result, the exhaust temperature rises stepwise, and it is expected that the amount of dry matter decomposition and the amount of water evaporation will increase. In the operation mode 1, the exhaust temperature is rapidly raised by the intake control that emphasizes fermentation, in the operation mode 3, the exhaust temperature is maintained by suppressing the unit intake amount and the intake temperature, and in the operation mode 2, the unit intake is maintained. It promotes drying by increasing the amount and air temperature. The operation period of the operation mode 3 is preferably shortened in order to suppress power consumption.

一方、図9に示す従来の運転制御では、発酵と乾燥に着目した制御になっていない。例えば、発酵乾燥処理の後半では排気温度が低下しており、必ずしも乾燥段階に適しているといえない。なお、ここでの従来の運転制御は、例えば、単位入気量0.25m/min・m、入気温度65℃の一定制御を想定している。 On the other hand, the conventional operation control shown in FIG. 9 does not focus on fermentation and drying. For example, the exhaust temperature drops in the latter half of the fermentation drying process, and it is not always suitable for the drying stage. The conventional operation control here assumes, for example, constant control with a unit intake amount of 0.25 m 3 / min · m 3 and an intake temperature of 65 ° C.

上記図8では、変化量ΔQがピークに到達してからΔQがマイナスになるまでの期間に運転モード3を行う構成を示したが、運転モード3の運転期間はこれに限定されない。例えば、変化量ΔQがピークに到達してからΔQが急激に落ち込むまでの期間に運転モード3を行ってもよい。この急激な落ち込みは、微生物の活性が大幅に低下したことを示し、図8では23時~0時の変化量ΔQが急激に落ち込んでいる。この急激な落ち込みは、変化量ΔQの傾きが閾値(例えば3MJ/h)以上減少したことなどに基づいて判定される。 In FIG. 8 above, the operation mode 3 is performed during the period from when the change amount ΔQ reaches the peak until when ΔQ becomes negative, but the operation period of the operation mode 3 is not limited to this. For example, the operation mode 3 may be performed during the period from the time when the amount of change ΔQ reaches the peak until the amount of change ΔQ drops sharply. This sharp drop indicates that the activity of the microorganism has decreased significantly, and in FIG. 8, the amount of change ΔQ from 23:00 to 0:00 has dropped sharply. This sharp drop is determined based on the fact that the slope of the change amount ΔQ decreases by a threshold value (for example, 3 MJ / h) or more.

次に、変化量ΔQの算出スパンの検討を行った。なお、上記図3~図9では、変化量ΔQの算出スパンは60分である。上記図4の2月10日の試験において、1分間隔で取得した発酵熱量を用いて、発酵熱量の変化量ΔQの算出スパンをそれぞれ、10分、60分、120分、180分、240分、300分とした場合のΔQおよび排気温度の相関図を図10に示す。例えば、算出スパン60分の場合、算出手段において、1分毎に発酵熱量を取得し、現在(取得した時点)における発酵熱量と60分前の時点における発酵熱量との差分をΔQとして算出した。 Next, the calculation span of the amount of change ΔQ was examined. In FIGS. 3 to 9, the calculation span of the change amount ΔQ is 60 minutes. In the test on February 10 in FIG. 4, the calculation spans of the amount of change in the amount of heat of fermentation ΔQ were set to 10 minutes, 60 minutes, 120 minutes, 180 minutes, and 240 minutes, respectively, using the amount of heat of fermentation acquired at 1-minute intervals. FIG. 10 shows a correlation diagram between ΔQ and the exhaust temperature when the temperature is set to 300 minutes. For example, in the case of a calculation span of 60 minutes, the calculation means acquired the amount of heat of fermentation every minute, and calculated the difference between the amount of heat of fermentation at present (at the time of acquisition) and the amount of heat of fermentation at the time before 60 minutes as ΔQ.

図10に示すように、算出スパン10分、60分の場合は、変化量ΔQの変曲点を把握するのが比較的困難であった。一方、算出スパン120分、180分、240分、300分の場合は、プロット全体が周回性を示し、変曲点を容易に把握することができる。図10の結果より、算出スパンは120分~300分が好ましく、180分~240分がより好ましい。 As shown in FIG. 10, in the case of the calculated span of 10 minutes and 60 minutes, it was relatively difficult to grasp the inflection point of the change amount ΔQ. On the other hand, in the case of the calculated spans of 120 minutes, 180 minutes, 240 minutes, and 300 minutes, the entire plot shows circularity, and the inflection point can be easily grasped. From the results of FIG. 10, the calculated span is preferably 120 minutes to 300 minutes, more preferably 180 minutes to 240 minutes.

本発明の発酵乾燥方法は、発酵乾燥装置の任意の時間間隔における発酵熱量の変化量を算出する算出工程と、算出された発酵熱量の変化量に基づいて、該変化量が増加傾向から減少傾向に変化するタイミングを判定する判定工程と、判定工程によってタイミングが判定された後において、容器内に導入される外気の量および外気の温度の少なくともいずれかの項目を、タイミングが判定される以前の項目よりも大きくする運転制御工程とを有しており、上記の各工程は、発酵乾燥装置に備えられた手段、例えば制御装置15(図1参照)を用いて自動で行ってもよく、また、全部または一部の工程を手動で行ってもよい。後者の場合、例えば、算出工程および判定工程を発酵乾燥装置の制御装置15で行い、運転制御工程として、運転モードの切り替えを手動で行ってもよい。 In the fermentation drying method of the present invention, the change amount tends to decrease from an increasing tendency based on the calculation step of calculating the change amount of the fermentation calorific value at an arbitrary time interval of the fermentation drying apparatus and the calculated change amount of the fermentation calorific value. Before the timing is determined, at least one of the items of the amount of outside air introduced into the container and the temperature of the outside air after the timing is determined by the determination step and the determination process for determining the timing of change to It has an operation control step that is larger than the item, and each of the above steps may be automatically performed by using a means provided in the fermentation / drying device, for example, a control device 15 (see FIG. 1). , All or part of the process may be performed manually. In the latter case, for example, the calculation step and the determination step may be performed by the control device 15 of the fermentation / drying device, and the operation mode may be switched manually as the operation control step.

本発明の発酵乾燥装置は、発酵原料の投入から取り出しまでの発酵乾燥処理において、発酵段階と乾燥段階のそれぞれに応じた入気制御を行なうことができ、発酵乾燥を効率的に実施できるので、例えば、有機性廃棄物を発酵乾燥するための装置として好適に利用できる。 The fermentation and drying apparatus of the present invention can control the air intake according to each of the fermentation stage and the drying stage in the fermentation and drying process from the input to the removal of the fermentation raw material, and can efficiently carry out the fermentation and drying. For example, it can be suitably used as an apparatus for fermenting and drying organic waste.

1、1’ 発酵乾燥装置
2 容器
2a 投入口
2b 取出口
2c 排気口
3 回転軸
4、4A、4B 撹拌翼
4a 通気孔
5 機械室
6、6A、6B 送気ブロワ
7 ヒータ
8 油圧シリンダ
9 排気手段
10 排気管
11 排気ブロワ
12 脱臭装置
13 温度センサ
14 制御盤
15 制御装置
16A、16B フィルタ
1, 1'Fermentation and drying device 2 Container 2a Input port 2b Outlet 2c Exhaust port 3 Rotating shaft 4, 4A, 4B Stirring blade 4a Vent hole 5 Machine room 6, 6A, 6B Air supply blower 7 Heater 8 Hydraulic cylinder 9 Exhaust means 10 Exhaust pipe 11 Exhaust blower 12 Deodorizer 13 Temperature sensor 14 Control panel 15 Control device 16A, 16B Filter

Claims (6)

容器内に設けられた回転軸およびこれに付設された複数の撹拌翼と、該容器内に外気を取り入れるための送気手段と、該容器内に蓄積する内気を容器外部に排出するための排気手段とを備えてなる密閉型の発酵乾燥装置であって、
前記発酵乾燥装置は、前記送気手段により前記容器内に外気を導入し、かつ、前記排気手段により前記容器内から内気を排気しつつ、発酵原料を前記撹拌翼で撹拌しながら発酵および乾燥させる装置であり、
前記発酵乾燥装置は、任意の時間間隔における発酵熱量の変化量を算出する算出手段と、算出された前記発酵熱量の変化量に基づいて、該変化量が増加傾向から減少傾向に変化するタイミングを判定する判定手段と、前記判定手段によって前記タイミングが判定された後において、前記容器内に導入される外気の量および前記容器内に導入される外気の温度の少なくともいずれかの項目を、前記タイミングが判定される以前の項目よりも大きくする運転モードを行なう運転制御手段とを有することを特徴とする発酵乾燥装置。
A rotating shaft provided inside the container, a plurality of stirring blades attached to the rotating shaft, an air supply means for taking in outside air into the container, and an exhaust gas for discharging the inside air accumulated in the container to the outside of the container. It is a closed-type fermentation / drying device equipped with means.
The fermentation drying device introduces outside air into the container by the air supply means, exhausts the inside air from the container by the exhaust means, and ferments and dries the fermentation raw material while stirring with the stirring blade. It is a device
The fermentation drying device determines the timing at which the amount of change changes from an increasing tendency to a decreasing tendency based on the calculated means for calculating the amount of change in the amount of heat of fermentation at an arbitrary time interval and the calculated amount of change in the amount of heat of fermentation. The timing is determined by the determination means and at least one of the items of the amount of outside air introduced into the container and the temperature of the outside air introduced into the container after the timing is determined by the determination means. A fermentation / drying apparatus comprising: an operation control means for performing an operation mode in which the item is made larger than the item before the determination.
前記運転制御手段は、前記運転モードにおいて、さらに、前記撹拌翼の撹拌頻度および撹拌速度の少なくともいずれかの項目を、前記タイミングが判定される以前の項目よりも大きくすることを特徴とする請求項1記載の発酵乾燥装置。 The operation control means is characterized in that, in the operation mode, at least one item of the stirring frequency and the stirring speed of the stirring blade is made larger than the item before the timing is determined. 1 The fermentation drying apparatus according to 1. 前記判定手段は、前記発酵熱量の変化量の傾きを算出し、その傾きが閾値未満であり、さらに、その時点において、前記発酵熱量が増加していること、前記内気の温度が増加していること、および、前記内気の温度が所定温度以上であることの少なくともいずれかを満たすことを条件に、前記タイミングを判定することを特徴とする請求項1または請求項2記載の発酵乾燥装置。 The determination means calculates the gradient of the amount of change in the amount of heat of fermentation, the gradient is less than the threshold value, the amount of heat of fermentation is increasing at that time, and the temperature of the inside air is increasing. The fermentation drying apparatus according to claim 1 or 2, wherein the timing is determined on condition that at least one of the above and the temperature of the inside air is equal to or higher than a predetermined temperature is satisfied. 前記運転制御手段は、前記判定手段によって前記タイミングが判定された後で、かつ、前記運転モードを行なう前の所定期間に、前記容器内に導入される外気の量と、その温度と、前記撹拌翼の撹拌頻度と、その撹拌速度との少なくともいずれかの項目を、前記タイミングが判定される以前の項目よりも小さくすることを特徴とする請求項1から請求項3までのいずれか1項記載の発酵乾燥装置。 The operation control means has the amount of outside air introduced into the container, the temperature thereof, and the stirring in a predetermined period after the timing is determined by the determination means and before the operation mode is performed. The one according to any one of claims 1 to 3, wherein at least one of the stirring frequency of the blade and the stirring speed thereof is made smaller than the item before the timing is determined. Fermentation and drying equipment. 前記所定期間は、前記判定手段によって前記タイミングが判定された後から前記発酵熱量の変化量がマイナスになるまでの期間であることを特徴とする請求項4記載の発酵乾燥装置。 The fermentation drying apparatus according to claim 4, wherein the predetermined period is a period from after the timing is determined by the determination means until the amount of change in the amount of heat of fermentation becomes negative. 容器内に設けられた回転軸およびこれに付設された複数の撹拌翼と、該容器内に外気を取り入れるための送気手段と、該容器内に蓄積する内気を容器外部に排出するための排気手段とを備えてなる密閉型の発酵乾燥装置における発酵乾燥方法であって、
前記発酵乾燥装置は、前記送気手段により前記容器内に外気を導入し、かつ、前記排気手段により前記容器内から内気を排気しつつ、発酵原料を前記撹拌翼で撹拌しながら発酵および乾燥させる装置であり、
前記発酵乾燥方法は、任意の時間間隔における発酵熱量の変化量を算出する算出工程と、算出された前記発酵熱量の変化量に基づいて、該変化量が増加傾向から減少傾向に変化するタイミングを判定する判定工程と、前記判定工程によって前記タイミングが判定された後において、前記容器内に導入される外気の量および前記容器内に導入される外気の温度の少なくともいずれかの項目を、前記タイミングが判定される以前の項目よりも大きくする運転制御工程とを有することを特徴とする発酵乾燥方法。
A rotating shaft provided in the container, a plurality of stirring blades attached to the rotating shaft, an air supply means for taking in outside air into the container, and an exhaust for discharging the inside air accumulated in the container to the outside of the container. It is a fermentation and drying method in a closed type fermentation and drying device provided with means.
The fermentation drying device introduces outside air into the container by the air supply means, exhausts the inside air from the container by the exhaust means, and ferments and dries the fermentation raw material while stirring with the stirring blade. It is a device
In the fermentation drying method, a calculation step of calculating the amount of change in the amount of heat of fermentation at an arbitrary time interval and a timing at which the amount of change changes from an increasing tendency to a decreasing tendency based on the calculated amount of change in the amount of heat of fermentation are determined. After the timing is determined by the determination step and the determination step, at least one of the items of the amount of outside air introduced into the container and the temperature of the outside air introduced into the container is determined by the timing. A fermentation and drying method characterized by having an operation control step that is larger than the previous item to be determined.
JP2020132710A 2020-08-04 2020-08-04 Fermentation and drying apparatus and fermentation and drying method Pending JP2022029378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020132710A JP2022029378A (en) 2020-08-04 2020-08-04 Fermentation and drying apparatus and fermentation and drying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020132710A JP2022029378A (en) 2020-08-04 2020-08-04 Fermentation and drying apparatus and fermentation and drying method

Publications (1)

Publication Number Publication Date
JP2022029378A true JP2022029378A (en) 2022-02-17

Family

ID=80271373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020132710A Pending JP2022029378A (en) 2020-08-04 2020-08-04 Fermentation and drying apparatus and fermentation and drying method

Country Status (1)

Country Link
JP (1) JP2022029378A (en)

Similar Documents

Publication Publication Date Title
JP7058413B2 (en) Composting control method
JPH0679997B2 (en) Method and apparatus for producing fertilizer by drying and conditioning chicken manure or similar pasty material
CN106431540A (en) Intelligent control method and system for microbial decomposition process of organic matters
JP2009113023A (en) Instantaneous extinguishing apparatus for garbage and urine
JP2006335630A (en) Apparatus and method for composting
JP2022029378A (en) Fermentation and drying apparatus and fermentation and drying method
JPH0957235A (en) Treating device for organic waste and treating method therefor
JP7190133B2 (en) Composting device and its control method
CN206052025U (en) A kind of moisture control system of the microorganism decomposition technique for Organic substance
KR100798818B1 (en) Apparatus for composting use livestock excretions
JP7326204B2 (en) Fermentation drying apparatus, cement production system, and fermentation drying method
JP2022184245A (en) Fermentation and drying device and fermentation and drying method
JP7217484B1 (en) Fermentation drying control method and fermentation drying apparatus
JP2024057543A (en) Fermentation and drying apparatus and fermentation and drying method
JP2021159805A (en) Fermentation dryer, cement production system, and fermentation drying method
JP3698713B1 (en) Fermentation processing equipment
KR101262928B1 (en) Fermentation of organic waste, using environmentally friendly construction methods and using the same processing device
JPH09132490A (en) Organic matter treating device
JP3470474B2 (en) High temperature aerobic fermentation treatment equipment for solid organic waste
JP2021159807A (en) Fermentation drying method, cement production method and method for using fermented dried matter
JP2006273633A (en) Organic waste treating system and method for operating the same
KR0147112B1 (en) A device for treating garbage
JP2002186943A (en) Organic waste treatment equipment and method for composting therefrom
JPH0985220A (en) Garbage disposal device
WO2015022543A2 (en) Improved apparatus for composting and digestion of biodegradable waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230725