JPS6061097A - Controlling method of air supply in composting process - Google Patents

Controlling method of air supply in composting process

Info

Publication number
JPS6061097A
JPS6061097A JP58170376A JP17037683A JPS6061097A JP S6061097 A JPS6061097 A JP S6061097A JP 58170376 A JP58170376 A JP 58170376A JP 17037683 A JP17037683 A JP 17037683A JP S6061097 A JPS6061097 A JP S6061097A
Authority
JP
Japan
Prior art keywords
amount
air supply
aeration
fermentation
ventilation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58170376A
Other languages
Japanese (ja)
Other versions
JPS6261560B2 (en
Inventor
Hajime Ito
一 伊藤
Hiromitsu Nakamori
仲森 啓允
Teruhisa Yoshida
輝久 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kiden Kogyo Ltd
Original Assignee
Hitachi Kiden Kogyo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kiden Kogyo Ltd filed Critical Hitachi Kiden Kogyo Ltd
Priority to JP58170376A priority Critical patent/JPS6061097A/en
Publication of JPS6061097A publication Critical patent/JPS6061097A/en
Publication of JPS6261560B2 publication Critical patent/JPS6261560B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses

Landscapes

  • Treatment Of Sludge (AREA)
  • Fertilizers (AREA)

Abstract

PURPOSE:To enable the control of air supply showing ideal fermentation progress by obtaining a necessary supply amt. of air to get the desired temp. from a relational expression between the fermentation temp. and the ratio of air supply to residual BOD and the value of desired temp., and controlling the supply. CONSTITUTION:The weight, water content, and BOD5 when the starting material is thrown in are obtained. The initial set value of air supply is then calculated by using the previously obtained relational expression. The desired temp. at this time is preferably regulated to about 70 deg.C. After the staring material is thrown in, the fermentation is started by regulating the air supply to said value. The air supply and the CO2 concn. are measured continuously or at every specified period of time after the fermentation is started. After apecified hours, the CO2 amt. generated during the specified hours is obtained by integration from the measured values of air supply and CO2 concn. Said operation are repeated at every predetermined time, and the control of air supply showing ideal fermentation progress can be realized.

Description

【発明の詳細な説明】 本発明は各種q)汚泥等を好気性発酵処理を行うコンゲ
スト化プロセス嘉こ於て、その通気量を制御して効率的
に処理せんとする通気量の制御方法に関するもq)であ
る。
[Detailed Description of the Invention] The present invention provides a method for controlling the amount of aeration to efficiently process various types of q) sludge, etc. in a congesting process in which sludge, etc. is subjected to aerobic fermentation treatment by controlling the amount of aeration. Regarding q).

下水汚泥その他各種の汚泥、有り性廃棄物を好気性発酵
即ちコンポスト化させる実験に於て発酵原料中のBOD
総量に対する通気量の比が発酵温度上密接な関係がある
ことが判明した。
BOD in fermentation raw materials in an experiment in which sewage sludge and other various sludges and common wastes are aerobically fermented, that is, composted.
It was found that the ratio of the aeration amount to the total amount was closely related to the fermentation temperature.

したがって、各時刻におけるBOD総隈を知ることがで
きれば、目標とする発酵温度を維持するために必要な通
気tを決めることができる。
Therefore, if the total BOD at each time can be known, the ventilation t required to maintain the target fermentation temperature can be determined.

し しかもB ODail#′i即時に測定できないため、
何らかの方法で推定しなければならない。通気量と00
29度の変化からGO2発生量をめ、分解したBODI
Iとの関係′5!−調べたところ、両者には密接な相関
が認められた。以上によF1通気量とCO2濃度?幣視
することによってBOn総量の変化を推定し、通気量/
BODa量と完工 酵温度の関係から適極な通気量に調整することが可卵と
なった。
However, since B ODail#'i cannot be measured immediately,
It has to be estimated somehow. Airflow and 00
Decomposed BODI based on the amount of GO2 generated based on the change in temperature of 29 degrees.
Relationship with I'5! - Upon investigation, a close correlation was found between the two. Based on the above, F1 ventilation amount and CO2 concentration? The change in the total amount of BOn is estimated by observing the amount, and the amount of ventilation/
It became possible to adjust the aeration amount to an appropriate level based on the relationship between the BODa amount and the completion fermentation temperature.

本発明げかかる点Sこ着眼してなされたもので、下水汚
泥、畜産廃棄物などの有機性廃棄物のフンポスト化過程
にセいて、通気量と002#度からCO2発生七を計算
し、GO2発生険と、BOD分解分解量係式からBOD
分解1t、さらに残存するBODw#をめ、通気fi/
BOD残存看と発酵温度の関係式および目標温度の値か
ら目標温度にする1こ必要な通気量をめ、通気量制御を
行なうことを特徴とするものである。
The present invention was made by paying attention to the point S, and in the process of converting organic waste such as sewage sludge and livestock waste, CO2 generation is calculated from the ventilation amount and 002°C, and GO2 BOD from the equation of occurrence risk and BOD decomposition amount
1 ton of decomposition, and the remaining BODw#, ventilation fi/
This method is characterized in that the amount of ventilation required to reach the target temperature is determined from the relational expression between the BOD residual value and the fermentation temperature and the value of the target temperature, and the amount of ventilation is controlled.

以下本発明を図示の実施例に基づいて詳細に説明する。The present invention will be explained in detail below based on illustrated embodiments.

第1防は下水汚泥にもみがらを添加してコンポスト化す
る過程において分解したBODi(x)と発生した00
2騎(y)の関係を示したものである。即ち、分解した
BOD量(x)と発生したCO2量(y)の関係は相関
係微が0.98で1に近いことから極めて相関が大きく
、本原料の場合、yツQ、 l、 9 ’) x 1・
36 の関係式が成り立つ。y−B 、 z、bにおけ
る定数^、bは発酵原料lこより幾分異なるが、予めa
、請求めておけば、通気量とCO2濃度の経時変化から
、ある時刻までIこ発生したCO2暖の総和ry)が計
算できるため、関係式y −1@ 、 z b 1!r
−用いて分解したBOD総−tit (x) Th、推
定することができる。さらに発酵開始時の重量、含水率
BOD5の分析値から計算される初期BODlplから
、ある時刻において残存す/:t ROD量(Z) ′
fr−計算する。
The first prevention is BODi (x) decomposed and 00 generated during the process of adding rice husks to sewage sludge and composting it.
This shows the relationship between two horses (y). In other words, the relationship between the amount of BOD decomposed (x) and the amount of CO2 generated (y) has an extremely high correlation as the correlation coefficient is 0.98, which is close to 1. In the case of this raw material, ytsuQ, l, 9 ') x 1・
The following relational expression holds true. The constants ^ and b in y-B, z, and b are somewhat different depending on the fermentation raw material l, but a
, the total amount of CO2 heat generated up to a certain time can be calculated from the changes in ventilation volume and CO2 concentration over time, so the relational expression y −1 @ , z b 1! r
- The total BOD decomposed using -tit (x) Th, can be estimated. Furthermore, from the initial BODlpl calculated from the weight at the start of fermentation and the analysis value of moisture content BOD5, the remaining /:t ROD amount (Z)' at a certain time
fr - calculate.

一方i多くのコンポスト化実験から、通気量/BO1f
t(Q/Z)と発酵温It’ (T)との関係がT−C
(Q/Zldの関係式で示されることが判明した。この
場合、定@0.dけ発酵槽によって幾分Rなるが、こわ
は主Sこ発酵槽の断熱性に左右される。したがって特定
の発酵槽に固有(7) o 、dを予めめておけば、あ
る時刻Iこおいて適正な発酵温度(TIにするために必
要な通気量(Q、1は、その時刻にセいて残存するBO
Dli(Z)と関係式T=C(Q/Zldから計算でき
る。
On the other hand, from many composting experiments, the airflow rate/BO1f
The relationship between t(Q/Z) and fermentation temperature It' (T) is T-C
(It was found that it is expressed by the relational expression Q/Zld. In this case, the constant@0.d fermenter causes some R, but the stiffness depends on the heat insulation of the main S. (7) If o and d are set in advance, the aeration amount (Q, 1) required to achieve the appropriate fermentation temperature (TI) at a certain time I is determined by the amount of air remaining at that time. BO to do
It can be calculated from Dli(Z) and the relational expression T=C(Q/Zld).

たとえば槽容降約3m%の小容険発酵槽でけT=I F
+ 4 (q/Z )−0,59ノ関係式が得られる。
For example, in a small fermenter with a tank volume reduction of 3 m%, T = IF.
+4(q/Z)-0,59 relational expression is obtained.

以上の通気量制御方法をtR2図1こ示す70−シート
に砕って説明する。
The above ventilation amount control method will be explained by breaking it down into 70 sheets as shown in tR2 FIG.

まず原料投入時の重量、含水率、Boas をめておく
。これは投入原料中盛こ含まれ/) BOD総EN(Z
o)?計算するためのもので、過去のデータから十分推
定できる場合は、推定値であってもよい。
First, record the weight, moisture content, and Boas of the raw materials at the time of input. This includes input raw materials /) BOD total EN (Z
o)? If the value is for calculation and can be sufficiently estimated from past data, it may be an estimated value.

次に予めめておいた関係式T−C(q/Z]dを用いて
初期の通気量設定値Qo ′f/計算するつこの時目禰
温度TQけ70℃程度が好ましい。
Next, when calculating the initial ventilation rate set value Qo'f/ using the relational expression T-C(q/Z]d prepared in advance, the target temperature TQ is preferably about 70°C.

原料投入後、通気量をQo に設定するこ七により発酵
が開始する。発酵開始後、連続的またはある時間11f
t隔ごとに通気1とCO2濃度を測定する。一定時11
υ(tl)が経過した後、通気量とco2m%度の実測
値から稜分番とより、31時間内盛こ発生したcoz量
(yl)をめる。
After adding the raw materials, fermentation is started by setting the aeration amount to Qo. Continuously or for a certain period of time 11f after the start of fermentation
Measure ventilation 1 and CO2 concentration every t intervals. Fixed time 11
After υ(tl) has elapsed, calculate the amount of coz (yl) that has occurred within 31 hours using the ridge number from the actual measured values of the ventilation amount and CO2m% degree.

本発明によればCo2発生量(y)とBOD分解量(X
)の間諜こけy =Fl 、 X’ b (7)関係が
あるため、予めめておいた関係式を用いて711こ対す
るBOD分解@X1 を計算する。この時原料中に残存
するB ODij Zl l′i、 Zl−ZO−XI
となる。
According to the present invention, the amount of Co2 generated (y) and the amount of BOD decomposed (X
), since there is a relationship, the BOD decomposition @X1 for 711 is calculated using a predetermined relational expression. At this time, B ODij Zl l'i, Zl-ZO-XI remaining in the raw material
becomes.

次にこの時+7(jにセいて満足すべき目障温度T1と
関係式T=C(q/Zldより適正な通気量Q1を計算
し、通気量をqoからqi lこ設定変更する。
Next, at this time, +7(j) is set to satisfactorily eyesight temperature T1, and the relational expression T=C(q/Zld is used to calculate an appropriate ventilation amount Q1, and the ventilation amount is changed from qo to qi l).

以上〕操作を予め定めた時刻において、くりすような通
気屑制匈が町姥である。また竿2図1こおいて通気!、
co2濃度の自動記録装置と通気量制@装@およびマイ
コンを連結させることにより発酵経過を自動制御するこ
とがn[情である。
[Above] At the predetermined time of the operation, the ventilation waste control is completed. Also, put the rod 2 and 1 for ventilation! ,
It is desirable to automatically control the progress of fermentation by connecting an automatic CO2 concentration recording device to an aeration rate system and a microcomputer.

而して本発明による時は各種汚泥等を簡易な方法で効率
的で理想的な発酵処理することができろ利点を有する。
The present invention has the advantage that various types of sludge can be subjected to efficient and ideal fermentation treatment using a simple method.

【図面の簡単な説明】[Brief explanation of the drawing]

筆1図はコンポスト化過程1こセいて分解した5oot
lと、発生したGO2置の関係を示す相関図、埴2図は
本発明の通気量制御方法を示す70−シートである。 特許出願人 日立機電工業株式会叱 代 理 人 林 清 門 外 1名 り1図
The first drawing shows 5oots that were decomposed during the composting process.
Figure 2, a correlation diagram showing the relationship between 1 and the generated GO2 position, is a 70-sheet showing the ventilation amount control method of the present invention. Patent Applicant Hitachi Machinery and Electric Industry Co., Ltd. Kiyoshi Hayashi Mongai 1 person 1 drawing

Claims (1)

【特許請求の範囲】 (1) 下水汚泥、畜産廃棄物などの有機性廃棄物のフ
ンポスト化過程にセいて、通気層と002濃度からCD
2発生量を計算し、GO2発生量とBOD分解量の関係
式からBOD分解潰、さらに残存するB ODMIをめ
、通気機/ROD歿存吟と発酵温度の関係式セよび目標
温度の値から目標温度1こするに必要な通気量をめ、通
気噴制?atlを行なうことを特徴とするコンゴスト化
プロセスにおける通気量の制御方法。 (21002’発牛贋とBOD分解分解間係式をとした
ことを特徴とする特許請求の範囲第1項記載のコンポス
ト化プロセスにおける通気量の制御方法。 (3)通気Mt/BOD残存量と発酵温度の関係式とし
たことを特徴とする特許請求の範囲ftX1項記載のフ
ンポスト化プロセスにおける通気量の制御方法。 (4)通気量とCO2濃度の自軸記録計および;巾気景
制御装置を備え、マイコンを甲いて白層T的に通気量の
設定変更が行なえるようにしたことを特徴とする特許請
求の範囲第1項記載のフンポスト化プロセスにおける通
気量の制御方法。
[Scope of Claims] (1) In the process of converting organic waste such as sewage sludge and livestock waste into a waste post, CD from the aeration layer and 002 concentration is
2 Calculate the amount generated, calculate the BOD decomposition and crushing from the relational expression between the amount of GO2 generation and the amount of BOD decomposed, and calculate the remaining BODMI from the relational expression between the aerator/ROD concentration and fermentation temperature and the value of the target temperature. Determine the amount of ventilation required to reach the target temperature of 1, and use ventilation jet control? A method for controlling the amount of aeration in a congosting process, characterized by carrying out atl. (21002' A method for controlling the amount of aeration in a composting process according to claim 1, characterized in that a formula is used for the relationship between decomposition and BOD decomposition. (3) Aeration Mt/remaining amount of BOD A method for controlling the aeration amount in the feces post-forming process according to claim 1, characterized in that the relational expression of the fermentation temperature is used. (4) A self-axis recorder for aeration amount and CO2 concentration, and a climate control device. 2. A method for controlling the amount of ventilation in a post forming process according to claim 1, characterized in that the setting of the amount of ventilation in the white layer T can be changed by using a microcomputer.
JP58170376A 1983-09-14 1983-09-14 Controlling method of air supply in composting process Granted JPS6061097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58170376A JPS6061097A (en) 1983-09-14 1983-09-14 Controlling method of air supply in composting process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58170376A JPS6061097A (en) 1983-09-14 1983-09-14 Controlling method of air supply in composting process

Publications (2)

Publication Number Publication Date
JPS6061097A true JPS6061097A (en) 1985-04-08
JPS6261560B2 JPS6261560B2 (en) 1987-12-22

Family

ID=15903788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58170376A Granted JPS6061097A (en) 1983-09-14 1983-09-14 Controlling method of air supply in composting process

Country Status (1)

Country Link
JP (1) JPS6061097A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229136A (en) * 2011-04-26 2012-11-22 Obihiro Univ Of Agriculture & Veterinary Medicine Compost producing method and device
JP2016160386A (en) * 2015-03-04 2016-09-05 太平洋セメント株式会社 Method for converting organic sludge into fuel
JP2017057236A (en) * 2015-09-14 2017-03-23 太平洋セメント株式会社 Conversion of organic sludges to fuel
JP2017137400A (en) * 2016-02-03 2017-08-10 太平洋セメント株式会社 Conversion of organic sludges to fuel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012229136A (en) * 2011-04-26 2012-11-22 Obihiro Univ Of Agriculture & Veterinary Medicine Compost producing method and device
JP2016160386A (en) * 2015-03-04 2016-09-05 太平洋セメント株式会社 Method for converting organic sludge into fuel
JP2017057236A (en) * 2015-09-14 2017-03-23 太平洋セメント株式会社 Conversion of organic sludges to fuel
JP2017137400A (en) * 2016-02-03 2017-08-10 太平洋セメント株式会社 Conversion of organic sludges to fuel

Also Published As

Publication number Publication date
JPS6261560B2 (en) 1987-12-22

Similar Documents

Publication Publication Date Title
Haug et al. Nitrification with submerged filters
Buhr et al. The thermophilic anaerobic digestion process
US4249929A (en) Method of digesting organic wastes
Andreottola et al. Experimental validation of a simulation and design model for nitrogen removal in sequencing batch reactors
Honeycutt et al. Heat units for describing carbon mineralization and predicting net nitrogen mineralization
CN110577275B (en) Intelligent aeration control system and method for sewage treatment
JP4334317B2 (en) Sewage treatment system
Jones et al. Simulation for operation and control of reject water treatment processes
JPS6061097A (en) Controlling method of air supply in composting process
JPS6041598A (en) Controlling process of passed air quantity in compositing process
US4975194A (en) Process for the disinfection of sewage sludge
US3285732A (en) Continuous single-zone thermophilic phase composting process
Derco et al. Dynamic simulations of waste water treatment plant operation
WO2007020675A1 (en) Method and apparatus for measuring bod
JPS6121796A (en) Method for setting aeration amount in compost fermentation process
JPH034993A (en) Model prediction and control of activated sludge processing
JPH08323393A (en) Water quality simulator for circulation type nitrification and denitirification method
JPH1179873A (en) Odorless fermentation treatment of miscellaneous drainage and sludge
Ekama et al. Mass balances and modelling over wastewater treatment plants
GB1584042A (en) Method for the biological treatment of organic waste water
Hart et al. Activated sludge control for seasonal nitrification
JPS61287497A (en) Anaerobic digester
Choubert et al. Maximum growth and decay rates of autotrophic biomass to simulate nitrogen removal at 10 C with municipal activated sludge plants
JP3137869B2 (en) Night soil treatment method
JPH06279158A (en) Fermentation composting method for organic matter