JP2018172272A - Composting apparatus and method of controlling the same - Google Patents

Composting apparatus and method of controlling the same Download PDF

Info

Publication number
JP2018172272A
JP2018172272A JP2018069588A JP2018069588A JP2018172272A JP 2018172272 A JP2018172272 A JP 2018172272A JP 2018069588 A JP2018069588 A JP 2018069588A JP 2018069588 A JP2018069588 A JP 2018069588A JP 2018172272 A JP2018172272 A JP 2018172272A
Authority
JP
Japan
Prior art keywords
amount
container
composting
fermentation
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018069588A
Other languages
Japanese (ja)
Other versions
JP7058413B2 (en
Inventor
亮 中久保
Akira Nakakubo
亮 中久保
三佳 石田
Mitsuyoshi Ishida
三佳 石田
陽一郎 小島
Yuichiro Kojima
陽一郎 小島
和敏 竹内
Kazutoshi Takeuchi
和敏 竹内
達宏 吉田
Tatsuhiro Yoshida
達宏 吉田
友子 荒川
Tomoko Arakawa
友子 荒川
鈴木 直人
Naoto Suzuki
直人 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Chubu Ecotec Co Ltd
Original Assignee
National Agriculture and Food Research Organization
Chubu Ecotec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization, Chubu Ecotec Co Ltd filed Critical National Agriculture and Food Research Organization
Publication of JP2018172272A publication Critical patent/JP2018172272A/en
Application granted granted Critical
Publication of JP7058413B2 publication Critical patent/JP7058413B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Fertilizers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composting apparatus and a method of controlling the same, in a configuration in which continuous composting is performed in a hermetic type composting apparatus, capable of stably producing compost by accurately monitoring a fermentation state.SOLUTION: A composting apparatus 1 is a hermetic type composting apparatus that includes a revolving shaft 3 disposed in a container 2, plural impeller blades 4 attached to the revolving shaft, air feeding means 6, and exhausting means 9. The composting apparatus continuously performs composting processing by, while introducing ambient air into the container 2 by the air feeding means 6 and exhausting inside air from inside the container 2 by the exhausting means 9, stirring with the impeller blades 4 and fermenting organic waste introduced from an inlet port 2a into the container, drying and discharging the fermented waste as compost from the outlet port 2b and further includes fermentation parameter output means 10 that can calculate and output fermentation calories and an evaporated water amount per a predetermined time period as fermentation parameters on the basis of a temperature and a volume of the ambient air introduced into the container 2 and a temperature and a volume of the inside air exhausted from inside the container 2.SELECTED DRAWING: Figure 1

Description

本発明は、家畜排泄物や食品残渣などの有機性廃棄物を処理するための堆肥化装置(密閉型堆肥化装置)および該装置を用いた廃棄物処理方法に関する。   The present invention relates to a composting apparatus (sealed composting apparatus) for processing organic waste such as livestock excrement and food residues, and a waste processing method using the apparatus.

畜産経営体から排出される家畜排泄物や食品産業事業所から排出される食品残渣などの有機性廃棄物は、その種類および排出量が近年増大して、その処理が大きな社会的課題となっている。これらの廃棄物を焼却処理する場合、コストが高く、ダイオキシン発生の問題もある。また、埋め立て処理する場合、廃棄場所の確保や悪臭被害の問題がある。加えて、近年では、食品リサイクル法などの法整備により有機性廃棄物の再利用の促進が求められている。これらの点に鑑みて、有機性廃棄物を堆肥化し、循環資源としてリサイクルすることが行なわれている。堆肥化する場合でも、食品残渣などの有機性廃棄物は含水量が多いことから、乾燥や発酵が十分でないと、減量化が進まず腐敗のおそれもある。   Organic waste, such as livestock excreta discharged from livestock management bodies and food residues discharged from food industry establishments, has recently increased in type and discharge, and its disposal has become a major social issue. Yes. When these wastes are incinerated, the cost is high and there is a problem of dioxin generation. Further, when landfilling is performed, there are problems of securing a disposal place and odor damage. In addition, in recent years, the promotion of the reuse of organic waste has been demanded by legislation such as the Food Recycling Law. In view of these points, organic waste is composted and recycled as a recycling resource. Even when composting, organic wastes such as food residues have a high water content. Therefore, if drying and fermentation are not sufficient, weight loss will not proceed and there is a risk of decay.

このような堆肥化を行なう装置として、微生物の発酵作用を利用した密閉縦型堆肥化装置(「コンポ」とも呼ぶ)が知られている。このコンポは、円筒縦型のタンク形状であり、密閉容器内に投入された有機性廃棄物に強制通気しつつ乾燥と発酵を行なっている。また、逐次的に堆肥原料の投入と堆肥の排出を行ない、堆肥化処理を連続的に実施している。   As an apparatus for performing such composting, a sealed vertical composting apparatus (also referred to as “component”) using a fermentation action of microorganisms is known. This component is in the shape of a cylindrical vertical tank, and is dried and fermented while forcibly ventilating the organic waste charged in the sealed container. In addition, compost raw materials are sequentially input and compost discharged, and composting is continuously performed.

また、他の堆肥化を行なう装置として、特許文献1には、発酵槽、この発酵槽に設けられた堆肥材料への通気手段、堆肥材料の温度を計測する温度計、その計測温度に基づいて通気手段の風量を制御する手段などを備えた装置が提案されている(特許文献1参照)。この装置では、送風量を堆肥材料の発酵状況に応じて適切に制御することで、送風機に掛かる電力コストを低減させることができるとしている。   As another composting apparatus, Patent Document 1 discloses a fermenter, a ventilation means for compost material provided in the fermenter, a thermometer for measuring the temperature of the compost material, and the measured temperature. An apparatus provided with means for controlling the air volume of the ventilation means has been proposed (see Patent Document 1). In this apparatus, the power cost applied to the blower can be reduced by appropriately controlling the amount of blown air in accordance with the fermentation status of the compost material.

また、特許文献2には、効率的な堆肥化を行なう装置として、通気配管と温度センサを有する熟成槽に堆肥原料を堆積して発酵を行なう装置において、毎日1回堆肥原料の温度を温度センサで測定し、得られた堆肥原料の現在の温度および熟成段階を考慮して通気量を増減させる手段を有する装置が提案されている。   Patent Document 2 discloses that as an apparatus for efficient composting, a temperature sensor is used to measure the temperature of the compost raw material once a day in an apparatus for performing fermentation by depositing compost raw material in an aging tank having an aeration pipe and a temperature sensor. The apparatus which has a means to increase / decrease aeration volume in consideration of the present temperature of the compost raw material and the aging stage of the compost raw material which were measured in 1 is proposed.

さらに、特許文献3では、小型かつ消費エネルギで十分な脱臭が可能であり、好気発酵を維持した状態での堆肥化処理を継続させて排気熱を有効利用する装置として、バッチ式の吸引通気型の堆肥化装置において所定のアンモニア成分回収部を備えた装置が提案されている。   Furthermore, Patent Document 3 discloses a batch-type suction ventilation as a device that can be sufficiently deodorized with small size and energy consumption, and that effectively uses exhaust heat by continuing the composting process while maintaining aerobic fermentation. An apparatus provided with a predetermined ammonia component recovery unit in a type composting apparatus has been proposed.

特開2012−229136号公報JP 2012-229136 A 特開2003−146783号公報JP 2003-146783 A 特開2007−269517号公報JP 2007-269517 A

上記の各発酵装置は、微生物の発酵作用を利用して好気発酵により有機性廃棄物を分解している。発酵状態の良し悪しを判断する既存の発酵指標としては、堆肥温度、排気に含まれる二酸化炭素や酸素の濃度などが一般的に知られている。これらの指標に基づき、通気制御や切り返し(撹拌)の判断、発酵終了の判断などを行なっている。特許文献1や2では、堆肥温度を指標とするため、熱電対、測温抵抗体、赤外線放射温度計などの温度計が利用されている。   Each fermentation apparatus described above decomposes organic waste by aerobic fermentation using the fermentation action of microorganisms. As an existing fermentation index for judging whether the fermentation state is good or bad, the compost temperature, the concentration of carbon dioxide or oxygen contained in the exhaust gas, etc. are generally known. Based on these indices, aeration control, judgment of turning over (stirring), judgment of the end of fermentation, and the like are performed. In Patent Documents 1 and 2, thermometers such as thermocouples, resistance temperature detectors, and infrared radiation thermometers are used in order to use compost temperature as an index.

しかしながら、堆肥温度や二酸化炭素濃度などを発酵指標として運転条件を決定する場合には以下のような問題がある。堆肥温度は、入気熱量、排気熱量、発酵熱量、堆肥熱容量(水分)、および発酵槽放熱からの熱収支により決定するものであり、不確定要素が多い。堆肥温度は、任意の試験条件下によるものであり、実際の設定値には条件合わせ、経験的な補正などが多く必要となる。また、排気熱量のほとんどが水蒸気であり、排気熱量は温度や通気量により大きく異なる。   However, when operating conditions are determined using the compost temperature, carbon dioxide concentration, or the like as a fermentation index, there are the following problems. The compost temperature is determined by the amount of heat input, the amount of exhaust heat, the amount of heat of fermentation, the heat capacity of compost (moisture), and the heat balance from heat release from the fermenter, and has many uncertain factors. The compost temperature is based on arbitrary test conditions, and it is necessary to adjust conditions and empirically correct the actual set values. Further, most of the exhaust heat quantity is water vapor, and the exhaust heat quantity varies greatly depending on the temperature and the amount of ventilation.

酸素や二酸化炭素の濃度は、微生物活性を直接的に評価可能といえる。しかし、センサ耐久性と測定精度とは両立が困難である。特に、通気量の増加に伴い、測定精度は低下するため、通気制御には不適である。また、センサへのダスト付着の問題などもある。   It can be said that the concentration of oxygen and carbon dioxide can directly evaluate microbial activity. However, it is difficult to achieve both sensor durability and measurement accuracy. In particular, since the measurement accuracy decreases with an increase in the air flow rate, it is not suitable for air flow control. There is also a problem of dust adhesion to the sensor.

また、特許文献3では、熱収支を考慮して、吸気手段の出力を調整することが記載されているが、バッチ式の堆肥化装置に関するものであり、コンポのような連続式の堆肥化装置における調整方法は考慮されていない。   Patent Document 3 describes that the output of the intake means is adjusted in consideration of the heat balance, but relates to a batch-type composting device, and is a continuous composting device such as a component. The adjustment method in is not considered.

本発明はこのような問題に対処するためになされたものであり、密閉型の堆肥化装置において連続して堆肥化を行なう構成において、発酵状態を正確に把握して堆肥を安定生産可能とするための堆肥化装置およびその制御方法を提供することを目的とする。   The present invention has been made to cope with such problems, and in a configuration in which composting is continuously performed in a closed-type composting apparatus, the state of fermentation can be accurately grasped to enable stable production of compost. An object of the present invention is to provide a composting apparatus and a control method therefor.

本発明の堆肥化装置は、容器内に設けられた回転軸およびこれに付設された複数の撹拌翼と、該容器内に外気を取り入れるための送気手段と、該容器内に蓄積する内気を容器外部に排出するための排気手段とを備えてなる密閉型の堆肥化装置であって、該堆肥化装置は、上記送気手段により上記容器内に外気を導入し、かつ、上記排気手段により上記容器内から内気を排気しつつ、上記容器内に投入口から投入される有機性廃棄物を上記撹拌翼で撹拌しながら発酵および乾燥させて堆肥とし取出口から排出する堆肥化処理を連続的に行なうものであり、該堆肥化装置は、上記容器内に導入される外気の温度(入気温度)と量(入気量)、上記容器内から排気される内気の温度(排気温度)と量(排気量)に基づき、発酵指標となる所定時間当たりの発酵熱量および蒸発水分量を算出して出力できる発酵指標出力手段を有することを特徴とする。   The composting apparatus of the present invention comprises a rotating shaft provided in a container, a plurality of stirring blades attached thereto, an air supply means for taking outside air into the container, and an internal air accumulated in the container. A closed-type composting apparatus comprising an exhaust means for discharging to the outside of the container, wherein the composting apparatus introduces outside air into the container by the air feeding means, and the exhaust means While combusting the inside air from the inside of the container, the composting process in which the organic waste introduced from the inlet into the container is fermented and dried while being stirred with the stirring blade and composted to be discharged from the outlet is continuously performed. The composting apparatus includes a temperature (inlet air temperature) and an amount of outside air introduced into the container (inlet air amount), and a temperature of the inside air exhausted from the container (exhaust temperature). Based on the volume (displacement) It characterized by having a fermentation index output means can be calculated and output the Rino fermentation heat and evaporate the water content.

この堆肥化装置において、上記回転軸は上記容器内に縦方向に設けられ、上記投入口は上記容器上部に、上記取出口は上記容器下部に設けられ、上記撹拌翼は、上記容器内において上記回転軸の下部から上部にかけて所定間隔で離間して多段に設けられており、最下段の撹拌翼に、上記送気手段と連通され、該送気手段からの外気を該容器内に導入するための通気孔を有することを特徴とする。   In this composting apparatus, the rotating shaft is provided in the container in the vertical direction, the inlet is provided in the upper part of the container, the outlet is provided in the lower part of the container, and the stirring blade is provided in the container. In order to introduce outside air from the air supply means into the container, the lower agitation blade is provided in multiple stages with a predetermined interval from the lower part to the upper part of the rotating shaft, and is communicated with the air supply means. It has the vent hole of this.

本発明の堆肥化制御方法は、上記本発明の堆肥化装置を用いた堆肥化制御方法であって、上記堆肥化装置において、上記送気手段により上記容器内に外気を導入し、かつ、上記排気手段により上記容器内から内気を排気しつつ、上記容器内に投入口から投入される有機性廃棄物を上記撹拌翼で撹拌しながら発酵および乾燥させて堆肥とし取出口から排出する堆肥化処理を連続的に行なう工程において、該工程中の任意のタイミングで、上記発酵指標出力手段から得られた発酵熱量および蒸発水分量から選ばれる少なくとも一方の発酵指標に基づいて、堆肥原料となる上記有機性廃棄物の投入量、上記容器内に導入される外気の温度(入気温度)、上記容器内に導入される外気の量(入気量)、および高発熱原料の投入量、の少なくとも1つを調整して堆肥化の進行を制御する制御工程を有することを特徴とする。   The composting control method of the present invention is a composting control method using the composting apparatus of the present invention, wherein in the composting apparatus, outside air is introduced into the container by the air feeding means, and the above Composting treatment that exhausts the inside air from the inside of the container by the exhaust means, and ferments and dries the organic waste that is input from the inlet into the container while stirring with the stirring blade and discharges it from the outlet as compost In the step of continuously performing the above, the organic to be a compost raw material based on at least one fermentation index selected from the amount of fermentation heat and the amount of evaporated water obtained from the fermentation index output means at any timing in the step At least one of the input amount of radioactive waste, the temperature of the outside air introduced into the container (inlet air temperature), the amount of outside air introduced into the container (inlet air amount), and the input amount of the highly exothermic raw material One And having a control step of controlling the progress of the composting and integer.

この堆肥化制御方法において、上記制御工程が、上記発酵熱量に基づいて、上記高発熱原料の投入量を調整する工程であることを特徴とする。また、上記制御工程が、上記蒸発水分量に基づいて、堆肥原料となる上記有機性廃棄物の投入量、上記容器内に導入される外気の温度(入気温度)、および上記容器内に導入される外気の量(入気量)の少なくとも1つを調整することを特徴とする。   In this composting control method, the control step is a step of adjusting the input amount of the highly exothermic raw material based on the amount of fermentation heat. Further, the control step is based on the amount of evaporated water, the amount of the organic waste to be used as a compost raw material, the temperature of the outside air (inlet temperature) introduced into the container, and the amount introduced into the container It is characterized by adjusting at least one of the amount of outside air (intake amount).

この堆肥化制御方法において、上記制御工程が、上記発酵熱量に基づいて、上記容器内に導入される外気の量を調整する入気量調整工程を含み、上記入気量調整工程は、所定時間間隔で上記発酵熱量を算出し、任意の算出時の発酵熱量がその前回に算出された発酵熱量に対して、増加した場合には上記容器内に導入される外気の量を増加させ、減少した場合には上記容器内に導入される外気の量を減少させることを特徴とする。特に、この入気量調整工程は、上記堆肥化装置に備えられた制御装置により、作業者の設定した上記所定時間間隔、および外気の量の調整幅で、自動で実施されることを特徴とする。   In this composting control method, the control step includes an intake air amount adjustment step of adjusting the amount of outside air introduced into the container based on the fermentation heat amount, and the intake air amount adjustment step includes a predetermined time. The amount of fermentation heat was calculated at intervals, and the amount of outside air introduced into the vessel was increased and decreased when the amount of fermentation heat at the time of any calculation increased compared to the amount of fermentation heat previously calculated. In this case, the amount of outside air introduced into the container is reduced. In particular, the air volume adjustment step is automatically performed by the control device provided in the composting apparatus at the predetermined time interval set by the operator and the adjustment range of the amount of outside air. To do.

上記制御工程において、任意の算出時の発酵熱量と、その際の堆肥化装置の消費電力量とから、(発酵熱量/消費電力量)で表される堆肥化効率を算出し、該堆肥化効率に基づいて、堆肥原料となる上記有機性廃棄物の投入量、上記容器内に導入される外気の温度(入気温度)、上記容器内に導入される外気の量(入気量)、および高発熱原料の投入量、の少なくとも1つを調整して堆肥化の進行を制御することを特徴とする。   In the above control process, the composting efficiency represented by (fermentation heat amount / power consumption amount) is calculated from the fermentation heat amount at the time of arbitrary calculation and the power consumption amount of the composting apparatus at that time, and the composting efficiency is calculated. On the basis of the amount of the organic waste used as compost material, the temperature of the outside air introduced into the container (inlet temperature), the amount of outside air introduced into the container (intake amount), and It is characterized in that the progress of composting is controlled by adjusting at least one of the input amounts of the high exothermic raw materials.

本発明の堆肥化装置は、堆肥化処理を連続的に行なう密閉型堆肥化装置であり、入気温度と入気量、排気温度と排気量に基づき、発酵指標となる所定時間当たりの発酵熱量および蒸発水分量を算出して出力できる発酵指標出力手段を有するので、発酵状態を温度や排気成分濃度のみで判断する場合よりも不確定要素がなく、正確に把握できる。このため、作業者は、上記出力手段から得られた発酵指標に基づき、堆肥原料となる有機性廃棄物の投入量、入気温度、入気量、および廃白土や米ぬかなどの高発熱原料の投入量などを調整して、良質の堆肥を効率的に生産することが可能となる。   The composting apparatus of the present invention is a closed-type composting apparatus that continuously performs composting processing, and the amount of fermentation heat per predetermined time serving as a fermentation index based on the inlet temperature and the amount of intake air, the exhaust temperature and the amount of exhaust. Furthermore, since the fermentation index output means that can calculate and output the amount of evaporated water is provided, there are no uncertainties as compared with the case where the fermentation state is determined only by the temperature and the exhaust component concentration, and it can be accurately grasped. For this reason, based on the fermentation index obtained from the output means, the worker inputs the amount of organic waste used as compost material, the input temperature, the amount of input, and the high exothermic raw materials such as waste white clay and rice bran. It is possible to efficiently produce high quality compost by adjusting the amount of input.

本発明の堆肥化装置の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the composting apparatus of this invention. 水蒸気全熱比エンタルピー関係式を示す図である。It is a figure which shows a water vapor | steam total heat specific enthalpy relational expression. ブロワのインバータ周波数と入気量との関係を示す図である。It is a figure which shows the relationship between the inverter frequency of a blower, and an air intake amount. 発酵熱量と蒸発水分量との関係を示す図である。It is a figure which shows the relationship between the amount of fermentation heat, and the amount of evaporating water. ブロワ発熱と発酵発熱による熱量変化を示す図である。It is a figure which shows the calorie | heat amount change by a blower heat_generation | fever and a fermentation heat_generation | fever. 発酵熱量および蒸発水分量と排気温度との経時変化を示す図である。It is a figure which shows the time-dependent change of fermentation calorie | heat amount, evaporative water content, and exhaust temperature. 入気量制御の間隔とインバータ周波数との関係を示す図である。It is a figure which shows the relationship between the space | interval of intake air amount control, and an inverter frequency. 入気量制御の間隔とインバータ周波数との関係を示す図である。It is a figure which shows the relationship between the space | interval of intake air amount control, and an inverter frequency. 入気量制御の間隔とインバータ周波数との関係を示す図である。It is a figure which shows the relationship between the space | interval of intake air amount control, and an inverter frequency. 入気量制御を伴う場合の周波数の経時変化を示す図である。It is a figure which shows the time-dependent change of the frequency in the case of accompanying air_entry volume control. 周波数とブロワの風量あたり消費電力量との関係を示す図である。It is a figure which shows the relationship between a frequency and the electric power consumption per the air volume of a blower.

本発明の堆肥化装置の概要を図1に基づいて説明する。図1は堆肥化装置の構成の一例を示す縦断面図である。図1に示すように、堆肥化装置1は、円筒縦型の容器2と、容器2内に縦方向に設けられた回転軸3と、回転軸3周りに多段に付設された複数枚の撹拌翼4と、容器2内に外気を取り入れるための送気手段6と、容器2内に蓄積する内気を容器外部に排出するための排気手段9とを備えてなる密閉縦型堆肥化装置(コンポ)である。本発明における該装置は、容器2の内容積が10m以上である業務用の大型の装置を主な対象としている。撹拌翼4の形状は、特に制限なく、例えば、回転軸3から容器2の内壁側に向けて直線的に延設されたピッチドパドル形状とし、その回転方向前側に傾斜面を有する形状などとできる。 An outline of the composting apparatus of the present invention will be described with reference to FIG. FIG. 1 is a longitudinal sectional view showing an example of the configuration of a composting apparatus. As shown in FIG. 1, a composting apparatus 1 includes a cylindrical vertical container 2, a rotating shaft 3 provided in the container 2 in a vertical direction, and a plurality of stirring members attached in multiple stages around the rotating shaft 3. A sealed vertical composting apparatus (component) comprising wings 4, air supply means 6 for taking outside air into the container 2, and exhaust means 9 for discharging the inside air accumulated in the container 2 to the outside of the container. ). The apparatus according to the present invention is mainly intended for a large-sized apparatus for business in which the internal volume of the container 2 is 10 m 3 or more. The shape of the stirring blade 4 is not particularly limited, and may be, for example, a pitched paddle shape linearly extending from the rotation shaft 3 toward the inner wall side of the container 2 and a shape having an inclined surface on the front side in the rotation direction.

最下段の撹拌翼の下部に通気孔4aを有し、送気手段6から送られる外気(入気)を回転軸内に設けられた配管6aを介して該通気孔より容器内に導入している。発酵槽である容器2は、金属製外層と断熱層とを有する断熱容器であり、かつ、通気孔から導入される以外の外気とは接触しにくい気密性容器である。また、容器2の上部に投入原料である有機性廃棄物の投入口2aと、排気口2cとを有し、底部に堆肥(処理後の有機性廃棄物)の取出口2bを有する。排気口2cは排気手段9に連結されている。投入口2aおよび取出口2bには、容器の気密性を確保するための開閉可能な蓋などが設けられている。   A vent hole 4a is provided at the lower part of the lowermost stirring blade, and outside air (intake air) sent from the air feeding means 6 is introduced into the container through the vent hole 6a provided in the rotating shaft. Yes. The container 2 that is a fermenter is a heat-insulating container having a metal outer layer and a heat insulating layer, and is an airtight container that is difficult to come into contact with outside air other than that introduced from a vent hole. In addition, the container 2 has an input port 2a for organic waste as an input material and an exhaust port 2c at the top, and an outlet 2b for compost (organic waste after treatment) at the bottom. The exhaust port 2 c is connected to the exhaust means 9. The inlet 2a and the outlet 2b are provided with lids that can be opened and closed to ensure the hermeticity of the container.

図1に示す形態では、容器2の下方に機械室5が設けられ、この機械室内に回転軸3の駆動手段8と、上述の送気手段6が設けられている。回転軸3は、機械室5内に貫通しており、駆動手段8により所定回転数で回転させられる。また、必要に応じて、送気手段6から送られる外気を加温するためのヒータ7が設けられている。送気手段6には、ブロワが使用される。ブロワとしては、入気量を調整可能とするため、ブロワ回転数をインバータ周波数で制御できるものを用いることが好ましい。なお、排気手段9は、排気口2cに連結された単なる通気口であってもよい。図1に示す形態では、排気手段9は単なる通気口であり、排気量は入気量の調整により従属的に調整されている。   In the form shown in FIG. 1, a machine room 5 is provided below the container 2, and the drive means 8 of the rotating shaft 3 and the above-described air supply means 6 are provided in the machine room. The rotating shaft 3 penetrates into the machine room 5 and is rotated at a predetermined number of rotations by the driving means 8. Further, a heater 7 for heating the outside air sent from the air supply means 6 is provided as necessary. A blower is used for the air supply means 6. As the blower, it is preferable to use a blower that can control the rotational speed of the blower with an inverter frequency so that the amount of intake air can be adjusted. The exhaust means 9 may be a simple vent connected to the exhaust port 2c. In the form shown in FIG. 1, the exhaust means 9 is a simple vent, and the exhaust amount is subordinately adjusted by adjusting the intake amount.

本発明の堆肥化装置1は、発酵指標出力手段10を有することを特徴とする。発酵指標出力手段10は、容器2内に導入される外気の温度(入気温度)、容器2内に導入される外気の量(入気量)、容器2内から排気される内気の温度(排気温度)、容器2内から排気される内気の量(排気量)に基づき、発酵指標として、所定時間当たりの発酵熱量および蒸発水分量を算出して出力できる手段である。このため、当該手段には、算出に必要な入気温度と排気温度をそれぞれ測定できる温度センサ、入気量を取得できる手段、排気量を取得できる手段、これらに基づき演算を行なう手段などを有する。なお、排気量が入気量などから従属的に決定できる場合には、排気量の取得手段は不要である。また、図中では、発酵指標出力手段10は、機械室5内に配置しているが、これに限定されず、該装置の任意の部位、または外部機器として設けてもよい。   The composting apparatus 1 of the present invention has a fermentation index output means 10. The fermentation index output means 10 includes the temperature of the outside air introduced into the container 2 (inlet air temperature), the amount of outside air introduced into the container 2 (inlet air amount), and the temperature of the inside air exhausted from the container 2 ( It is a means that can calculate and output the amount of heat of fermentation and the amount of evaporated water per predetermined time as a fermentation index based on the exhaust gas temperature) and the amount of internal air exhausted from the container 2 (exhaust gas amount). For this reason, the means includes a temperature sensor that can measure the intake air temperature and the exhaust gas temperature necessary for the calculation, a means that can acquire the intake air amount, a means that can acquire the exhaust air amount, a means that performs a calculation based on these, and the like. . If the exhaust amount can be determined dependently from the intake amount or the like, the exhaust amount acquisition means is not necessary. Further, in the figure, the fermentation index output means 10 is disposed in the machine room 5, but is not limited thereto, and may be provided as an arbitrary part of the apparatus or an external device.

容器2内に導入される外気の湿度(入気湿度)を取得するため、必要に応じて、湿度センサを設けてもよい。ただし、湿度センサは劣化が激しこと、排気熱量と比較して入気熱量は非常に小さいこと、入気温度の温度レンジでは相対湿度が熱量に与える影響は限定的であることから、入気湿度は固定値(例えば、70%RH)としてもよい。また、密閉型堆肥化装置である容器2内から排気される内気の湿度(排気湿度)は、ほぼ100%RHであるため、排気湿度測定のための湿度センサは不要である。   In order to acquire the humidity (intake air humidity) of the outside air introduced into the container 2, a humidity sensor may be provided as necessary. However, the humidity sensor is severely degraded, the amount of heat input is very small compared to the amount of exhaust heat, and the effect of relative humidity on the amount of heat is limited in the temperature range of the input air temperature. The humidity may be a fixed value (for example, 70% RH). Moreover, since the humidity (exhaust humidity) of the inside air exhausted from the inside of the container 2 which is a closed composting apparatus is approximately 100% RH, a humidity sensor for measuring the exhaust humidity is unnecessary.

発酵指標出力手段10において「出力」とは、作業者が発酵指標を把握するために、所定時間当たりの発酵熱量および蒸発水分量を、装置に付設した表示装置に直接に表示すること、装置に無線または有線で電子的に接続された端末の表示装置に表示することなどが挙げられる。また、制御処理をAIなどにより自動化する場合には、表示処理なく、直接に制御装置に当該データを与える形式であってもよい。発酵指標の具体的な算出方法、算出例については後述する。   In the fermentation index output means 10, “output” means that an operator directly displays the amount of heat of fermentation and the amount of evaporated water per predetermined time on a display device attached to the apparatus in order to grasp the fermentation index. Display on a display device of a terminal electronically connected wirelessly or by wire. Further, when the control process is automated by AI or the like, the data may be directly given to the control device without the display process. A specific calculation method and calculation example of the fermentation index will be described later.

堆肥化装置1は、容器2外周の少なくとも一部を空間を介して覆うように設置された外部断熱パネルを有する態様としてもよい。外部断熱パネルを設け、容器との二重断熱構造とすることで、屋外に設置する該装置においてより安定した処理が可能になる。外部断熱パネルの形状としては、例えば、該パネルで構成される装置外壁が上記容器の円筒外周に略外接する四角筒状などが挙げられる。   The composting apparatus 1 is good also as an aspect which has an external heat insulation panel installed so that at least one part of the outer periphery of the container 2 may be covered through space. By providing an external heat insulating panel and having a double heat insulating structure with the container, more stable processing can be performed in the apparatus installed outdoors. Examples of the shape of the external heat insulating panel include a rectangular tube shape in which an outer wall of the device constituted by the panel substantially circumscribes the outer periphery of the cylinder of the container.

本発明の堆肥化装置において、処理対象物であり、堆肥原料となる有機性廃棄物としては、有機質成分を多く含む、家畜排泄物、食品廃棄物、浄化槽汚泥、またはこれらの混合物が挙げられる。具体的には、家畜排泄物として、鶏糞、豚糞、牛糞、馬糞などが挙げられ、食品廃棄物として生ごみ、食品製造副産物などが挙げられ、浄化槽汚泥として、家庭用浄化槽、食品工場の余剰汚泥浄化槽などから抜き取られる汚泥が挙げられる。また、廃棄物の堆肥化は、容器内において、好気性発酵菌の存在下で通気しながら好気発酵させて行なう。好気性発酵菌としては、30〜90℃程度で活性化する発酵菌が好ましく、例えば、ジオバチスル属やバチルス属などが挙げられる。   In the composting apparatus of the present invention, examples of the organic waste that is an object to be processed and is a compost raw material include livestock excrement, food waste, septic tank sludge, or a mixture thereof containing a large amount of organic components. Specifically, livestock excretion includes chicken excrement, pig excrement, cattle excrement, horse excrement, etc., food waste includes garbage, food production by-products, etc. Examples include sludge extracted from sludge septic tanks. In addition, composting of waste is performed by aerobic fermentation while aeration is performed in the presence of aerobic fermentation bacteria in a container. As the aerobic fermenting bacteria, fermenting bacteria that are activated at about 30 to 90 ° C. are preferable, and examples thereof include Diovatisul and Bacillus.

この装置において、投入口2aから堆肥原料を容器2の内部に投入し、該処理物を容器内で堆肥化後に容器下部の取出口2bより取り出す。発酵および堆肥化は、送気手段6により最下段の撹拌翼の通気孔4aから所定の入気量で外気を導入し、かつ、排気口2cと排気手段9(通気口)から内気を排気しつつ、各撹拌翼4を低速で回転させて、堆肥原料を通気撹拌し、好気発酵させることで行なう。また、通気により同時に乾燥もされる。排気口2cから排気される空気は、通気孔から容器内に導入されて処理物中を通過しながら上方へ流れてきた空気に、堆肥原料より生じたガスや水蒸気を含むものである。   In this apparatus, the compost raw material is input into the container 2 from the input port 2a, and the processed material is composted in the container and taken out from the outlet 2b at the bottom of the container. Fermentation and composting are performed by introducing outside air with a predetermined amount of air from the vent hole 4a of the lowermost stirring blade by the air supply means 6, and exhausting the inside air from the exhaust port 2c and the exhaust means 9 (vent hole). Meanwhile, each stirring blade 4 is rotated at a low speed, and the compost raw material is aerated and aerobically fermented. It is also dried simultaneously by ventilation. The air exhausted from the exhaust port 2c contains gas and water vapor generated from the compost raw material in the air introduced into the container through the vent and flowing upward while passing through the processed material.

運転手順としては、まず、堆肥化装置に、該装置の内容積に対して10〜20%の空間(ヘッドスペース)を残して、堆肥原料を投入する。10〜20%の空間を残して堆肥原料を投入することにより、堆肥原料の撹拌が十分になされるため、発酵および乾燥が効率よくなされる。投入は毎日行ない、所定の滞留期間(3日〜20日程度)発酵および乾燥して、一定期間(例えば毎日)毎に所定量(例えば20質量%程度)の堆肥を取り出す。上記投入は、堆肥を取り出した後に行なう。このように、一定時間サイクルで堆肥原料の一部投入と堆肥の一部取り出しを繰り返して、連続的に堆肥化処理を行なう。得られる堆肥は、固形物、液状物、および半液状物などを含む複雑な混合物であり、部分的には塊状物となっている。なお、堆肥化装置を最初に使用するときは、発酵されてこの装置から取り出された前回の堆肥を処理物全体の30質量%程度予め投入しておくことが好ましい。順養化された発酵菌を使用するためである。   As an operation procedure, first, the composting apparatus is charged with leaving a space (head space) of 10 to 20% with respect to the internal volume of the composting apparatus. By adding the compost raw material while leaving a space of 10 to 20%, the compost raw material is sufficiently stirred, so that fermentation and drying are efficiently performed. The charging is carried out every day, and a predetermined residence period (about 3 to 20 days) is fermented and dried, and a predetermined amount (for example, about 20% by mass) of compost is taken out every fixed period (for example, every day). The above input is performed after the compost is taken out. In this way, the composting process is continuously performed by repeating a part of the compost raw material input and a part of the compost take-out in a certain time cycle. The resulting compost is a complex mixture containing solids, liquids, semi-liquids, etc., and is partially agglomerated. In addition, when the composting apparatus is used for the first time, it is preferable to add in advance about 30% by mass of the previous compost fermented and taken out from this apparatus. This is because acclimated fermentative bacteria are used.

本発明の堆肥化制御方法は、以上のような所定の密閉型堆肥化装置で連続して堆肥化を行なう構成において、発酵指標として、通気量(入気量、排気量)、入気温度、排気温度に基づき算出される、発酵指標となる所定時間当たりの「発酵熱量」および「蒸発水分量」に着目して堆肥化を制御する点に特徴を有する。発酵熱は、堆肥化過程における好機微生物による有機物分解過程において発生するため、発酵熱量は酸素や二酸化炭素濃度と同様に、微生物活性を直接的に評価可能である。作業者は得られた発酵指標に基づき、堆肥原料となる有機性廃棄物の投入量、入気温度、入気量、および廃白土の投入量などについて、例えば発酵熱量が最大化できるように調整する。   In the composting control method of the present invention, in the configuration in which composting is continuously performed with the above-described predetermined closed composting apparatus, as a fermentation index, aeration amount (intake amount, exhaust amount), inlet temperature, It is characterized in that composting is controlled by paying attention to “amount of fermentation heat” and “amount of evaporated water” per predetermined time, which is calculated based on the exhaust gas temperature, as a fermentation index. Fermentation heat is generated in the organic matter decomposition process by opportunity microorganisms in the composting process, so that the fermentation heat amount can directly evaluate the microbial activity as well as the oxygen and carbon dioxide concentration. Based on the obtained fermentation index, the operator adjusts the input amount of organic waste, combusting raw material, the input air temperature, the input air amount, and the input amount of waste white clay so that the heat of fermentation can be maximized. To do.

図6に発酵熱量および蒸発水分量と排気温度の経時変化の一例を示す。図6のデータは、堆肥化装置として中部エコテック社製コンポS36(容積39m)に発酵指標出力手段を設けたものを用いた。堆肥原料には豚糞4m、汚水処理槽汚泥1mを用い、入気量は5.5m/minであった。作業者は、当該装置を用い、例えば図6に示すような日積算(図は20時間)での発酵熱量と蒸発水分量のデータを取得する。基本となる定常状態での1日あたりのこれらの値を予め設定しておき、測定日の当該データがこれを下回るような場合には、作業者は、堆肥原料となる有機性廃棄物の投入や廃白土の投入、通気量の設定を行なう。特に、必要な熱量などを数値化できれば、過不足のない廃白土の投入や通気量の設定が可能となり、高効率で省エネ化が図れる。 FIG. 6 shows an example of changes over time in the amount of fermentation heat, the amount of evaporated water, and the exhaust temperature. The data shown in FIG. 6 is a composting device provided with a fermentation index output means in a component S36 (volume: 39 m 3 ) manufactured by Chubu Ecotech. Feces 4m 3 to compost raw material, the use of sewage treatment tank sludge 1 m 3, intake air amount was 5.5 m 3 / min. An operator uses the said apparatus, for example, acquires the data of fermentation calorie | heat amount and evaporative water content by the day integration | accumulation as shown in FIG. 6 (a figure is 20 hours). If these values per day in the basic steady state are set in advance, and the data on the measurement date falls below this value, the worker will input organic waste as composting raw materials. And waste white clay, and setting the ventilation rate. In particular, if the required amount of heat can be quantified, waste white clay without excess or deficiency can be input and the air flow rate can be set, so that high efficiency and energy saving can be achieved.

発酵熱量および蒸発水分量について、外気温度(入気温度)5℃、排気温度70℃、入気相対湿度(70%RH固定)、排気相対湿度(100%RH固定)、入気手段のブロワのインバータ周波数40Hzとした場合の具体的な算出例を以下の表1に示す。
Regarding the amount of heat of fermentation and the amount of evaporated water, outside air temperature (inlet air temperature) 5 ° C, exhaust temperature 70 ° C, inlet air relative humidity (fixed 70% RH), exhaust air relative humidity (fixed 100% RH), Table 1 below shows a specific calculation example when the inverter frequency is 40 Hz.

上記表において発酵熱量は、発酵熱量(kJ/min)=排気熱量(kJ/min)−入気熱量(kJ/min)で求められる。排気熱量と入気熱量は概ね以下のように算出される。   In the said table | surface, fermentation calorie | heat amount is calculated | required by fermentation calorie | heat amount (kJ / min) = exhaust calorie | heat amount (kJ / min) -intake calorie | heat amount (kJ / min). The exhaust heat quantity and the intake heat quantity are generally calculated as follows.

[排気熱量]
排気熱量は、(1)排気における比エンタルピーと(2)排気量と(3)比体積から算出される。
(1)この比エンタルピーは、絶対湿度と排気温度と所定の近似式から算出される。排気温度帯における所定の近似式は図2下部に示すとおりである。この近似式は、温度と水蒸気全熱の蒸気表のデータセットをプロットして、その近似式として作成される。
(2)排気量は、入気量に従属して求められ、湿り空気mol数と乾き空気mol分率、排気温度から算出される。
(3)比体積は、湿り空気単位体積と湿り空気分子量から算出される。
絶対湿度は、湿り空気中の水蒸気圧を用いて算出される。湿り空気mol数は、排気量と湿り空気単位体積から算出される。乾き空気mol分率は、絶対湿度を用いて算出される。湿り空気単位体積は、排気温度を用いて算出される。湿り空気分子量は、乾き空気mol分率と水蒸気mol分率から算出される。湿り空気中の水蒸気圧は、相対湿度と乾球温度の飽和水蒸気圧を用いて算出される。
なお、排気熱量算出時の相対湿度(%RH)は、上述のとおり100%RHに固定している。
[Exhaust heat quantity]
The exhaust heat quantity is calculated from (1) specific enthalpy in exhaust, (2) exhaust quantity, and (3) specific volume.
(1) This specific enthalpy is calculated from absolute humidity, exhaust temperature, and a predetermined approximate expression. The predetermined approximate expression in the exhaust gas temperature zone is as shown in the lower part of FIG. This approximate expression is created as an approximate expression by plotting a data set of a steam table of temperature and total heat of water vapor.
(2) The exhaust amount is determined depending on the intake air amount, and is calculated from the number of mols of moist air, the mol fraction of dry air, and the exhaust temperature.
(3) The specific volume is calculated from the wet air unit volume and the wet air molecular weight.
Absolute humidity is calculated using the water vapor pressure in humid air. The moist air mol number is calculated from the displacement and the humid air unit volume. The dry air mol fraction is calculated using absolute humidity. The humid air unit volume is calculated using the exhaust temperature. The wet air molecular weight is calculated from the dry air mol fraction and the water vapor mol fraction. The water vapor pressure in the humid air is calculated using the relative humidity and the saturated water vapor pressure at the dry bulb temperature.
Note that the relative humidity (% RH) at the time of calculating the exhaust heat quantity is fixed to 100% RH as described above.

[入気熱量]
入気熱量は、(1)入気における比エンタルピーと(2)入気量と(3)比体積から算出される。
(1)この比エンタルピーは、絶対湿度と入気温度と所定の近似式から算出される。入気温度帯における所定の近似式は図2上部に示すとおりである。この近似式は、排気熱量と同様に、温度と水蒸気全熱の蒸気表のデータセットをプロットして、その近似式として作成される。
(2)入気量は、例えば、ブロワのインバータ周波数を用いて図3の関係式から計算される。この方法は、ブロワ回転数を制御するためのインバータ周波数と通気量とに線形の関係がある場合に採用できる。その他、入気量の計算方法としては、入気配管の風速から演算する方法、排気配管の風速から演算する方法などを採用してもよい。
(3)比体積は、湿り空気単位体積と湿り空気分子量から算出される。
絶対湿度は、湿り空気中の水蒸気圧を用いて算出される。湿り空気単位体積は、外気温度を用いて算出される。湿り空気分子量は、乾き空気mol分率と水蒸気mol分率から算出される。湿り空気中の水蒸気圧は、相対湿度と飽和水蒸気圧を用いて算出される。
なお、入気熱量算出時の相対湿度(%RH)は、上述のとおり70%RHに固定している。
[Intake heat quantity]
The amount of heat input is calculated from (1) the specific enthalpy of the input air, (2) the amount of input air, and (3) the specific volume.
(1) This specific enthalpy is calculated from absolute humidity, inlet air temperature, and a predetermined approximate expression. The predetermined approximate expression in the inlet temperature zone is as shown in the upper part of FIG. Similar to the exhaust heat quantity, this approximate expression is created as an approximate expression by plotting a data set of the steam table of temperature and total steam heat.
(2) The intake air amount is calculated from the relational expression of FIG. 3 using the inverter frequency of the blower, for example. This method can be employed when there is a linear relationship between the inverter frequency for controlling the blower rotation speed and the air flow rate. In addition, as a calculation method of the intake air amount, a method of calculating from the wind speed of the intake pipe, a method of calculating from the wind speed of the exhaust pipe, or the like may be adopted.
(3) The specific volume is calculated from the wet air unit volume and the wet air molecular weight.
Absolute humidity is calculated using the water vapor pressure in humid air. The humid air unit volume is calculated using the outside air temperature. The wet air molecular weight is calculated from the dry air mol fraction and the water vapor mol fraction. The water vapor pressure in the humid air is calculated using the relative humidity and the saturated water vapor pressure.
Note that the relative humidity (% RH) at the time of calculating the amount of heat input is fixed at 70% RH as described above.

上記表において蒸発水分量は、蒸発水分量(kg/min)=排気の水蒸気量(kg/min)−入気の水蒸気量(kg/min)で求められる。
排気水蒸気量は、排気における湿り空気mol数と水蒸気mol分率から算出される。また、入気水蒸気量は、入気における湿り空気mol数と水蒸気mol分率から算出される。
In the above table, the amount of evaporated water is obtained by the following equation: evaporated water amount (kg / min) = exhaust water vapor amount (kg / min) −intake water vapor amount (kg / min).
The exhaust water vapor amount is calculated from the number of moles of moist air and the water vapor mol fraction in the exhaust gas. Further, the amount of incoming water vapor is calculated from the number of moist air mols and the water vapor mol fraction in the incoming air.

本発明において使用される発酵指標である発酵熱量と蒸発水分量との関係を図4に示す。図4上部は、排気温度60℃、外気5℃、相対湿度70%においてブロワのインバータ周波数(通気量)が変動した場合の上記関係を示す図である。また、図4下部は、インバータ周波数50Hz、外気5℃、相対湿度70%において排気温度が変動した場合の上記関係を示す図である。図4に示すように、相対湿度100%の排気が排出される密閉縦型の堆肥化装置においては、発酵熱量と蒸発水分量とに線形順相関が成り立つことが分かる。   FIG. 4 shows the relationship between the amount of heat of fermentation and the amount of evaporated water, which is a fermentation index used in the present invention. The upper part of FIG. 4 shows the above relationship when the inverter frequency (air flow rate) of the blower fluctuates at an exhaust temperature of 60 ° C., outside air of 5 ° C., and a relative humidity of 70%. The lower part of FIG. 4 is a diagram showing the above relationship when the exhaust gas temperature fluctuates at an inverter frequency of 50 Hz, outside air of 5 ° C., and relative humidity of 70%. As shown in FIG. 4, it can be seen that in a sealed vertical composting apparatus in which exhaust air having a relative humidity of 100% is discharged, a linear forward correlation is established between the amount of heat of fermentation and the amount of evaporated water.

また、ブロワ発熱と発酵発熱の違いによる熱量と水蒸気量の変化を図5に示す。図5に示すように、発酵熱がなければ、蒸発水分量は僅かしかない。排気温度50℃の発酵と同等の蒸発水分量を得るには通気量を7倍程度にする必要があり、極めて不効率であるため、発酵熱は密閉縦型堆肥化装置において必要不可欠である。   Moreover, the change of the calorie | heat amount and water vapor | steam amount by the difference of a blower heat_generation | fever and fermentation heat_generation | fever is shown in FIG. As shown in FIG. 5, if there is no fermentation heat, the amount of evaporated water is very small. In order to obtain the amount of evaporated water equivalent to that of fermentation at an exhaust temperature of 50 ° C., it is necessary to increase the aeration amount by about 7 times, which is extremely inefficient.

強制通気のバッチ式堆肥化装置(例えば、特許文献3のようなもの)と、本発明の強制通気の連続式堆肥化装置では、その特性に大きな差があり、堆肥化を制御する指標としては同様に考えることはできない。以下に、発酵に関与する項目毎に、バッチ式と連続式とを対比しつつ、本発明における上記発酵指標による制御の有用性について説明する。   There is a large difference in the characteristics of the forced-aeration batch composting device (for example, as in Patent Document 3) and the forced-aeration continuous composting device of the present invention, and as an index for controlling the composting I can't think of it as well. Below, the usefulness of the control by the said fermentation parameter | index in this invention is demonstrated, contrasting a batch type and a continuous type for every item which concerns on fermentation.

[原料の水分調整]
バッチ式では、家畜糞などの有機性廃棄物をオガコや木材チップなどの副資材と混合し、水分(含水率)を70%程度に調整することにより、堆肥原料の通気性を確保することが、好気発酵である堆肥化を行なうためには重要である。また、基本的に水分調整は堆肥化開始時にのみ行なうものであり、切り返し時など、堆肥化途中において水分は調整されない。
[Moisture adjustment of raw materials]
In the batch type, organic waste such as livestock excrement is mixed with auxiliary materials such as sawdust and wood chips, and the moisture (moisture content) is adjusted to about 70% to ensure the permeability of the compost material. It is important for composting, which is aerobic fermentation. In addition, basically, moisture adjustment is performed only at the start of composting, and moisture is not adjusted during composting, such as when turning over.

連続式では、水分を調整する目的での副資材は必要ない。連続式の堆肥化であるため、新規の高水分堆肥原料を水分の低い容器内の堆肥原料と撹拌することで、高水分原料の水分調整が行なわれる。容器内の堆肥原料の水分が高い状態であれば、高水分堆肥原料と容器内堆肥原料とを撹拌しても全体の水分が十分に低下せず、(1)通気性が不十分、(2)好気発酵が進まない、(3)発酵熱が不足するため蒸発水分量が少ない、(4)容器内堆肥原料の水分が上昇する、という悪循環に陥る。すなわち、容器内堆肥原料を低水分に維持するためには、堆肥原料投入による容器内への水分の持ち込みと蒸発水分量による容器外への水分の持ち出しとのバランスが重要である。   In the continuous type, no auxiliary material is required for the purpose of adjusting moisture. Since it is continuous composting, the moisture content of the high-moisture raw material is adjusted by stirring the new high-moisture compost raw material with the compost raw material in a low-moisture container. If the moisture content of the compost raw material in the container is high, even if the high-moisture compost raw material and the compost raw material in the container are agitated, the total water content does not decrease sufficiently, and (1) air permeability is insufficient, (2 Aerobic fermentation does not proceed, (3) the amount of evaporated water is small due to lack of fermentation heat, and (4) the moisture content of the compost material in the container rises. That is, in order to maintain the compost raw material in the container at a low moisture content, it is important to balance the introduction of moisture into the container by introducing the compost raw material and the removal of moisture from the container by the amount of evaporated water.

本発明の堆肥化装置では、1日あたりの蒸発水分量、滞留日数(約15日)での平均蒸発水分量を指標とすれば、容器内の水分バランスの崩れを把握しやすく、発酵状態の悪化を未然に防ぐことが可能になる。   In the composting apparatus of the present invention, if the amount of evaporated water per day and the average amount of evaporated water in the staying days (about 15 days) are used as indicators, it is easy to grasp the water balance in the container, and the fermentation state It becomes possible to prevent deterioration.

[堆肥水分]
バッチ式では、堆肥化の過程で徐々に堆肥水分は減少していき、最終的には水分40〜50%程度となる。仮に堆肥化終了時に原料水分が高い場合でも、その後の2次発酵期間中に乾燥が進むため、堆肥化終了時点での堆肥水分は大きな問題にはならない。
[Compost moisture]
In the batch type, the compost moisture gradually decreases in the process of composting, and finally becomes about 40-50%. Even if the raw material moisture is high at the end of composting, drying proceeds during the subsequent secondary fermentation period, so the compost water at the end of composting does not become a big problem.

連続式では、堆肥水分が高い場合、直径数cm程度の堆肥塊が形成され、これが容器下部の取出口を塞ぎ、堆肥排出が物理的に困難になるおそれがある。堆肥を容器外へ排出できなければ、容器内に堆肥原料投入のためのヘッドスペースを作れないため、連続式堆肥化運転が破綻する。また、過乾燥状態の場合、堆肥粉塵が発生するため、これが通気管路内(通気孔や排気口を含む)の閉塞を引き起こす場合がある。通気管路内が閉塞すれば、密閉式であるため容器外への水分の持ち出しがなくなり、また好気性発酵に必要な通気が確保できなくなるため、発酵状態の悪化を招く場合もある。滞留日数は約15日程度あるため、当該トラブルが発生した時点で原料投入量を削減する等の対策をとったとしても、その効果が明確になるには少なくとも数日のタイムラグがある。   In the continuous type, when the compost moisture is high, a compost lump having a diameter of about several centimeters is formed, which closes the outlet at the bottom of the container, and there is a risk that compost discharge becomes physically difficult. If compost cannot be discharged out of the container, the head space for compost raw material input cannot be made in the container, and the continuous composting operation fails. Further, in the overdried state, compost dust is generated, which may cause blockage in the ventilation pipe (including the vent hole and the exhaust port). If the inside of the aeration pipe is closed, it is hermetically sealed so that no moisture is taken out of the container, and aeration necessary for aerobic fermentation cannot be secured, which may lead to deterioration of the fermentation state. Since the staying days are about 15 days, there is a time lag of at least several days for the effect to be clarified even if measures such as reducing the amount of raw material input are taken when the trouble occurs.

本発明の堆肥化装置では、1日あたり蒸発水分量、滞留日数(約15日)での平均蒸発水分量を指標とすれば、容器内の水分が増加傾向にあるのか減少傾向にあるのかを判断できる。このため、作業者が取出した堆肥の状態から判断して対策を行うよりも、早期に対策を行なうことが可能になる。   In the composting apparatus of the present invention, if the amount of evaporated water per day and the average amount of evaporated water in the staying days (about 15 days) are used as indices, it is determined whether the moisture in the container is increasing or decreasing. I can judge. For this reason, it is possible to take measures earlier than taking measures by judging from the state of compost taken out by the worker.

[堆肥原料のカロリー調整]
バッチ式では、原料のカロリー調整は行わない。
連続式では、発酵状況が悪く発酵熱の発生量が小さい場合、通常時より高水分の堆肥原料を投入する場合、もしくは通常時より多くの堆肥原料を投入する場合は、原料投入による容器内への水分の持ち込みと水分蒸発による容器外への水分の持ち出しとのバランスが崩れる。この場合、廃白土などの高発熱原料を投入し、発酵熱量を増加させることで水分蒸発を促進させることにより、発酵を制御可能である。しかし、廃白土の過剰投入による必要以上の発酵熱量の発生は、容器内の堆肥の過乾燥を招く。過乾燥状態では堆肥粉塵が発生するため、これが通気管路内(通気孔や排気口を含む)の閉塞を引き起こす場合がある。通気管路内が閉塞すれば、密閉式であるため容器外への水分の持ち出しがなくなり、堆肥塊ができ、また好気性発酵に必要な通気が確保できなくなるため、発酵状態の悪化を招く場合もある。
[Adjusting the calorie content of compost]
The batch type does not adjust the calories of the raw materials.
In the continuous type, when the fermentation status is poor and the amount of fermentation heat generated is small, when compost raw materials with higher moisture content than normal are input, or when more compost raw materials are input than normal, the raw materials are put into the container. The balance between bringing in moisture and taking out moisture outside the container due to evaporation of water is lost. In this case, fermentation can be controlled by introducing a highly exothermic raw material such as waste white clay and promoting moisture evaporation by increasing the amount of fermentation heat. However, the generation of an excessive amount of fermentation heat due to excessive input of waste white clay leads to overdrying of the compost in the container. In an over-dried state, compost dust is generated, which may cause blockage in the vent pipe (including vents and exhaust ports). If the inside of the aeration pipe is closed, it will be sealed, so there will be no moisture being taken out of the container, a compost mass will be formed, and aeration necessary for aerobic fermentation will not be secured, leading to deterioration of the fermentation state There is also.

すなわち、廃白土などの高発熱原料の投入は、発酵状態の改善に有効である反面、過度の使用は配管メンテナンスや発酵状態悪化に繋がるものである。また、廃白土は有価物であるため、必要最低限の使用が経済的には望ましいが、「必要最低限」の判断は経験に頼らざるを得ないのが現状である。滞留日数は約15日程度あるため、当該トラブルが発生した時点で原料投入量を削減する等の対策をとったとしても、その効果が明確になるには少なくとも数日のタイムラグがある。   That is, the introduction of a highly exothermic raw material such as waste clay is effective for improving the fermentation state, but excessive use leads to pipe maintenance and deterioration of the fermentation state. In addition, since waste clay is a valuable resource, it is economically desirable to use the minimum necessary amount, but in the present situation, the judgment of the “minimum requirement” must be relied on for experience. Since the staying days are about 15 days, there is a time lag of at least several days for the effect to be clarified even if measures such as reducing the amount of raw material input are taken when the trouble occurs.

本発明の堆肥化装置では、1日あたり蒸発水分量、滞留日数(約15日)での平均蒸発水分量を指標とすれば、容器内の水分が減少傾向にあるのか増加傾向にあるのかを判断できる。このため、例えば増加傾向の場合は、作業者が直径数cm程度の堆肥塊の形成を確認してから廃白土の投入を判断するより早期に対策を実施でき、発酵状態の悪化を未然に防ぐことが可能である。また、定常状態での1日あたり発酵熱量を把握しておけば、直近の1日あたり発酵熱量と定常状態における1日あたり排気水蒸気量との熱量差を指標として、過不足なく廃白土を投入することが可能になる。   In the composting apparatus of the present invention, if the amount of evaporated water per day and the average amount of evaporated water in the staying days (about 15 days) are used as indices, it is determined whether the moisture in the container is decreasing or increasing. I can judge. For this reason, for example, in the case of an increasing tendency, it is possible to implement measures earlier than when the worker confirms the formation of a compost lump with a diameter of several centimeters and then determines whether to introduce waste white clay, thereby preventing deterioration of the fermentation state. It is possible. In addition, if the heat of fermentation per day in the steady state is known, waste white clay can be input without excess or shortage using the difference in heat between the most recent daily heat of fermentation and the amount of steam exhausted per day in the steady state as an index. It becomes possible to do.

[発酵不良の連続性]
バッチ式では、次のバッチでは堆肥原料が入れ替わるため、発酵状態が次のバッチに悪影響を与えることはない。
連続式では、容器内の堆肥原料の水分が高い状態であれば、高水分堆肥原料と容器内堆肥原料とを撹拌しても全体の水分が十分に低下せず、上述の悪循環に陥る。これを抜け出せなければ、容器内堆肥原料を全排出し、再度発酵を立ち上げる必要がある。
[Continuation of poor fermentation]
In the batch type, since the compost raw material is changed in the next batch, the fermentation state does not adversely affect the next batch.
In the continuous type, if the moisture content of the compost raw material in the container is high, even if the high-moisture compost raw material and the compost raw material in the container are agitated, the entire water content is not sufficiently lowered, and the vicious circle described above is caused. If this cannot be escaped, it is necessary to discharge all the compost raw materials in the container and start fermentation again.

本発明の堆肥化装置では、1日あたりの蒸発水分量、滞留日数(約15日)での平均蒸発水分量を指標とすれば、容器内の水分バランスの崩れを把握しやすく、発酵状態の悪化を未然に防ぐことが可能になる。   In the composting apparatus of the present invention, if the amount of evaporated water per day and the average amount of evaporated water in the staying days (about 15 days) are used as indicators, it is easy to grasp the water balance in the container, and the fermentation state It becomes possible to prevent deterioration.

[発酵不良]
バッチ式では、堆肥原料の水分調整、通気が適切であれば発酵停止にいたることはない。
連続式では、発酵状態が比較的良好であっても、堆肥原料投入による容器内への水分の持ち込みと水分蒸発による容器外への水分の持ち出しとのバランスが崩れれば、容器内堆肥原料の水分が徐々に増加し、緩やかに発酵状況が悪化する場合がある。この場合、作業者は直径数cm程度の堆肥塊の形成を視認するまで発酵悪化に気づけない。
[Fermentation failure]
In the batch type, if the moisture adjustment and ventilation of the compost raw material are appropriate, the fermentation will not be stopped.
In the continuous method, even if the fermentation state is relatively good, if the balance between bringing moisture into the container by introducing compost raw material and taking water out of the container by evaporating water is lost, Moisture gradually increases, and the fermentation situation may gradually deteriorate. In this case, the worker does not notice the deterioration of fermentation until he visually recognizes the formation of a compost mass having a diameter of several centimeters.

本発明の堆肥化装置では、1日あたり蒸発水分量、滞留日数(約15日)での平均蒸発水分量を指標とすれば、容器内の水分が減少傾向にあるのか増加傾向にあるのかを早期に判断できる。   In the composting apparatus of the present invention, if the amount of evaporated water per day and the average amount of evaporated water during the staying days (about 15 days) are used as indices, it is determined whether the moisture in the container is decreasing or increasing. Judge early.

以上のとおり、本発明の堆肥化装置は、堆肥化処理を連続的に行なう密閉型堆肥化装置であり、入気温度と入気量、排気温度と排気量に基づき、発酵指標となる所定時間当たりの発酵熱量および蒸発水分量を算出して出力できる発酵指標出力手段を有するので、発酵状態を正確に把握できる。この装置を用いることで、作業者はこの発酵指標に基づき、堆肥原料となる有機性廃棄物の投入量、入気温度、入気量、および廃白土などの投入量を調整できる。この結果、発酵状態を温度や排気成分濃度のみで判断して制御を最適化していた場合よりも、良質の堆肥を効率的に生産することが可能となる。   As described above, the composting apparatus of the present invention is a closed-type composting apparatus that continuously performs the composting process, and is a predetermined time serving as a fermentation index based on the intake air temperature and the intake air amount, the exhaust gas temperature and the exhaust air amount. Since it has a fermentation index output means that can calculate and output the amount of heat of fermentation and the amount of evaporated water per unit, the fermentation state can be accurately grasped. By using this apparatus, the operator can adjust the input amount of the organic waste as the compost raw material, the input air temperature, the input air amount, the input amount of waste white clay, and the like based on this fermentation index. As a result, it is possible to produce compost of good quality more efficiently than when the fermentation state is determined only by temperature and exhaust component concentration and control is optimized.

本発明の堆肥化制御方法における入気量制御ロジックについて説明する。
これは、発酵熱量に基づいて、容器内に導入される外気の量(入気量)を調整する入気量調整工程によるものである。この入気量調整工程は、所定時間間隔で発酵熱量を算出し、任意の算出時の発酵熱量と、その前回に算出された発酵熱量とを対比する。すなわち、数分間隔で発酵熱量を測定する場合には、数分前の発酵熱量Aと現在の発酵熱量Bとを対比する。そして、これが増加している場合(B>A)には入気量を増加させ、これが減少している場合(B<A)には入気量を減少させる。入気量の増減は、ブロワのインバータ周波数の増減により調整できる。発酵熱量の測定間隔が、インバータ周波数変更のインターバルとなる。この間隔は適宜設定でき、例えば、1分〜10分程度の短い間隔から、1日程度の長い間隔としてもよい。また、インバータ周波数の変更幅は、適宜設定でき、例えば、0.1Hz〜1Hz程度とできる。インバータ周波数の変更幅を小さくし過ぎると、発酵温度上昇の際(原料投入後、6時間経過程度)に必要な入気量を供給できなくなる可能性があるため、0.1Hz程度の刻みが最適である。
The intake air amount control logic in the composting control method of the present invention will be described.
This is due to an intake air amount adjustment step of adjusting the amount of outside air (inlet air amount) introduced into the container based on the fermentation heat amount. In this intake air amount adjustment step, the amount of fermentation heat is calculated at predetermined time intervals, and the amount of fermentation heat at the time of arbitrary calculation is compared with the amount of fermentation heat calculated last time. That is, when measuring the heat of fermentation at intervals of several minutes, the heat of fermentation A several minutes ago is compared with the current heat of fermentation B. Then, when this is increasing (B> A), the amount of intake is increased, and when this is decreasing (B <A), the amount of intake is decreased. The increase / decrease in the amount of intake air can be adjusted by increasing / decreasing the inverter frequency of the blower. The measurement interval of the amount of fermentation heat becomes the interval for changing the inverter frequency. This interval can be set as appropriate. For example, the interval may be as short as 1 minute to 10 minutes or as long as 1 day. The change width of the inverter frequency can be set as appropriate, for example, about 0.1 Hz to 1 Hz. If the change frequency of the inverter frequency is made too small, it may not be possible to supply the required amount of intake air when the fermentation temperature rises (about 6 hours after the raw material is charged). It is.

この入気量調整工程における制御は、堆肥化装置に備えられた制御装置により、作業者の設定した所定時間間隔、および入気量の調整幅(インバータ周波数の変更幅)で、自動で実施することができる。なお、必要に応じて手動で制御してもよい。   The control in the intake air amount adjustment step is automatically performed by the control device provided in the composting device at a predetermined time interval set by the operator and the adjustment amount of the air intake amount (change width of the inverter frequency). be able to. In addition, you may control manually as needed.

インバータ周波数変更のインターバルと、インバータ周波数の変更幅の相違による影響を図7〜図9に基づいて説明する。図7は、インバータ周波数変更のインターバルを3分、インバータ周波数の変更幅を1Hz(0.25mに相当)とした場合の結果である。図8は、インバータ周波数変更のインターバルを2分、インバータ周波数の変更幅を0.42Hz(0.105mに相当)とした場合の結果である。図9は、インバータ周波数変更のインターバルを2分、インバータ周波数の変更幅を0.1Hz(0.025mに相当)とした場合の結果である。なお、各図において、縦軸はブロワのインバータ周波数を、横軸は時刻を、それぞれ示す。 The influence of the difference between the inverter frequency change interval and the change width of the inverter frequency will be described with reference to FIGS. FIG. 7 shows the results when the inverter frequency change interval is 3 minutes and the inverter frequency change width is 1 Hz (corresponding to 0.25 m 3 ). FIG. 8 shows the results when the inverter frequency change interval is 2 minutes and the inverter frequency change width is 0.42 Hz (corresponding to 0.105 m 3 ). FIG. 9 shows the results when the inverter frequency change interval is 2 minutes and the inverter frequency change width is 0.1 Hz (corresponding to 0.025 m 3 ). In each figure, the vertical axis represents the inverter frequency of the blower, and the horizontal axis represents time.

図7〜図9で比較するように、特にインバータ周波数の変更幅を小さくする(例えば、0.3Hz以下)ことで、ブロワのインバータ周波数の設定値と、その1時間移動平均との関係が高い追従性を有することが分かる。この追従性は、供給入気量と、理論的な必要通気量との追従性といえ、この追従性を高めることにより、消費電力量あたりの発酵熱量(堆肥化効率)の向上が図れる。   As shown in FIG. 7 to FIG. 9, the relationship between the set value of the inverter frequency of the blower and its one-hour moving average is particularly high by reducing the change width of the inverter frequency (for example, 0.3 Hz or less). It can be seen that it has a following ability. This follow-up property can be said to be a follow-up property between the supply air intake amount and the theoretical required air flow rate. By increasing this follow-up property, the amount of fermentation heat (composting efficiency) per power consumption can be improved.

長期間にわたり、図9の条件で入気量調整を自動で実施した場合のインバータ周波数の設定値の変動の様子を図10に示す。図10において、縦軸はブロワのインバータ周波数を、横軸は試験日時を、それぞれ示す。入気量制御することで、原料未投入時は最低入気量で通気させ、必要なときに必要な入気量が確保できることが分かる。この結果、消費電力量あたりの発酵熱量(堆肥化効率)の向上が図れていることが分かる。当該制御を行わず、インバータ周波数38Hz一定とした場合と比較して、堆肥化効率(発酵熱量/消費電力量)で8%の改善効果が認められた。   FIG. 10 shows how the inverter frequency set value fluctuates when the intake air amount adjustment is automatically performed under the conditions shown in FIG. 9 over a long period of time. In FIG. 10, the vertical axis represents the inverter frequency of the blower, and the horizontal axis represents the test date and time. It can be seen that by controlling the air intake amount, the air can be vented at the minimum air intake amount when the raw material is not input, and the necessary air intake amount can be secured when necessary. As a result, it can be seen that the heat of fermentation (composting efficiency) per power consumption is improved. Compared with the case where the inverter frequency was fixed at 38 Hz without performing the control, an improvement effect of 8% was recognized in composting efficiency (amount of fermentation heat / power consumption).

本発明の堆肥化制御方法におけるeco入気量制御ロジックについて説明する。これは、制御工程において、任意の算出時の発酵熱量と、その際の堆肥化装置の消費電力量とから、(発酵熱量/消費電力量)で表される堆肥化効率を算出し、該堆肥化効率に基づいて、堆肥原料となる有機性廃棄物の投入量、容器内に導入される外気の温度(入気温度)、上記容器内に導入される外気の量(入気量)、および高発熱原料の投入量、の少なくとも1つを調整して堆肥化の進行を制御する方法である。特に、入気量を調整することが好ましい。   The eco air intake amount control logic in the composting control method of the present invention will be described. In the control step, the composting efficiency represented by (fermentation heat amount / power consumption amount) is calculated from the fermentation heat amount at the time of arbitrary calculation and the power consumption amount of the composting apparatus at that time, and the compost Based on the conversion efficiency, the input amount of organic waste as compost raw material, the temperature of the outside air introduced into the container (inlet air temperature), the amount of outside air introduced into the container (inlet air amount), and This is a method of controlling the progress of composting by adjusting at least one of the input amounts of the high exothermic raw materials. In particular, it is preferable to adjust the air intake amount.

上記のとおり、入気量制御ロジックでは発酵熱量を指標として入気量を増減している。しかし、入気量の多い状態(発酵の盛んな数時間)はブロワ負荷が大きいため消費電力量が上昇する。図11に示すように、一般に、風量あたりの消費電力量は、二次関数的に増加する傾向がある。これは、コンポ内の圧力損失が一定だとすると、静圧は風速の2乗に比例すること等に起因する。このため、発酵熱量を直接的に指標とするのではなく、消費電力量当たりの発酵熱量(堆肥化効率)を指標とすることで、堆肥化効率を低下させることなくブロワによる入気量を全般的に低減することが可能となる。   As described above, the intake air amount control logic increases or decreases the intake air amount using the fermentation heat amount as an index. However, in a state with a large amount of air intake (several hours of fermentation), the power consumption increases because the blower load is large. As shown in FIG. 11, generally, the power consumption per air volume tends to increase in a quadratic function. This is because, if the pressure loss in the component is constant, the static pressure is proportional to the square of the wind speed. For this reason, instead of using the amount of fermentation heat directly as an index, the amount of intake air by the blower is reduced without reducing the composting efficiency by using the amount of fermentation heat per unit of power consumption (composting efficiency) as an index. Can be reduced.

本発明の堆肥化装置は、密閉型の堆肥化装置において連続して堆肥化を行なう構成において、発酵状態を正確に把握して堆肥を安定生産可能であるので、畜産経営体から排出される家畜排泄物や食品産業事業所などから排出される食品残渣などの有機性廃棄物を堆肥化するための装置として好適に利用できる。   The composting apparatus of the present invention is configured to perform continuous composting in a closed-type composting apparatus and can accurately grasp the fermentation state and stably produce compost, so that the livestock discharged from the livestock management body It can be suitably used as an apparatus for composting organic waste such as excrement and food residues discharged from food industry establishments.

1 堆肥化装置
2 容器
2a 投入口
2b 取出口
2c 排気口
3 回転軸
4 撹拌翼
4a 通気孔
5 機械室
6 送気手段
7 ヒータ
8 駆動手段
9 排気手段
10 発酵指標出力手段
DESCRIPTION OF SYMBOLS 1 Composting apparatus 2 Container 2a Input port 2b Outlet 2c Exhaust port 3 Rotating shaft 4 Stirring blade 4a Vent 5 Machine room 6 Air supply means 7 Heater 8 Drive means 9 Exhaust means 10 Fermentation index output means

Claims (8)

容器内に設けられた回転軸およびこれに付設された複数の撹拌翼と、該容器内に外気を取り入れるための送気手段と、該容器内に蓄積する内気を容器外部に排出するための排気手段とを備えてなる密閉型の堆肥化装置であって、
該堆肥化装置は、前記送気手段により前記容器内に外気を導入し、かつ、前記排気手段により前記容器内から内気を排気しつつ、前記容器内に投入口から投入される有機性廃棄物を前記撹拌翼で撹拌しながら発酵および乾燥させて堆肥とし取出口から排出する堆肥化処理を連続的に行なうものであり、
該堆肥化装置は、前記容器内に導入される外気の温度と量、前記容器内から排気される内気の温度と量に基づき、発酵指標となる所定時間当たりの発酵熱量および蒸発水分量を算出して出力できる発酵指標出力手段を有することを特徴とする堆肥化装置。
A rotating shaft provided in the container, a plurality of stirring blades attached thereto, an air feeding means for taking outside air into the container, and an exhaust for discharging the inside air accumulated in the container to the outside of the container A closed-type composting device comprising means,
The composting apparatus is configured to introduce organic air into the container by the air supply means, and discharge organic air from the container by the exhaust means, and introduces organic waste into the container from an inlet. Is subjected to a composting process that is fermented and dried while stirring with the stirring blade and discharged from the outlet as compost,
The composting apparatus calculates the amount of fermentation heat and the amount of evaporated water per predetermined time as a fermentation index based on the temperature and amount of outside air introduced into the vessel and the temperature and amount of inside air exhausted from the vessel. A composting apparatus characterized by having fermentation index output means that can output as a result.
前記回転軸は前記容器内に縦方向に設けられ、
前記投入口は前記容器上部に、前記取出口は前記容器下部に設けられ、
前記撹拌翼は、前記容器内において前記回転軸の下部から上部にかけて所定間隔で離間して多段に設けられており、最下段の撹拌翼に、前記送気手段と連通され、該送気手段からの外気を該容器内に導入するための通気孔を有することを特徴とする請求項1記載の堆肥化装置。
The rotating shaft is provided in the container in the vertical direction,
The inlet is provided in the upper part of the container, and the outlet is provided in the lower part of the container;
The stirring blade is provided in multiple stages in the container with a predetermined interval from the lower part to the upper part of the rotating shaft, and is communicated with the air supply means to the lowermost stirring blade. The composting apparatus according to claim 1, further comprising a vent hole for introducing the outside air into the container.
請求項1または請求項2記載の堆肥化装置を用いた堆肥化制御方法であって、
前記堆肥化装置において、前記送気手段により前記容器内に外気を導入し、かつ、前記排気手段により前記容器内から内気を排気しつつ、前記容器内に投入口から投入される有機性廃棄物を前記撹拌翼で撹拌しながら発酵および乾燥させて堆肥とし取出口から排出する堆肥化処理を連続的に行なう工程において、
該工程中の任意のタイミングで、前記発酵指標出力手段から得られた発酵熱量および蒸発水分量から選ばれる少なくとも一方の発酵指標に基づいて、堆肥原料となる前記有機性廃棄物の投入量、前記容器内に導入される外気の温度、前記容器内に導入される外気の量、および高発熱原料の投入量、の少なくとも1つを調整して堆肥化を制御する制御工程を有することを特徴とする堆肥化制御方法。
A composting control method using the composting apparatus according to claim 1 or 2,
In the composting apparatus, the organic waste introduced into the container from the inlet while introducing the outside air into the container by the air feeding means and exhausting the inside air from the container by the exhaust means. In the step of continuously performing a composting treatment that is fermented and dried while stirring with the stirring blade and discharged from the outlet as compost,
Based on at least one fermentation index selected from the amount of heat of fermentation and the amount of evaporated water obtained from the fermentation index output means at an arbitrary timing during the process, the input amount of the organic waste as a compost raw material, It has a control step of controlling composting by adjusting at least one of the temperature of the outside air introduced into the container, the amount of outside air introduced into the container, and the amount of high heat-generating raw material introduced. Composting control method.
前記制御工程が、前記発酵熱量に基づいて、前記高発熱原料の投入量を調整する工程であることを特徴とする請求項3記載の堆肥化制御方法。   The composting control method according to claim 3, wherein the control step is a step of adjusting an input amount of the highly exothermic raw material based on the amount of fermentation heat. 前記制御工程が、前記蒸発水分量に基づいて、堆肥原料となる前記有機性廃棄物の投入量、前記容器内に導入される外気の温度、および前記容器内に導入される外気の量の少なくとも1つを調整することを特徴とする請求項3記載の堆肥化制御方法。   Based on the amount of evaporated water, the control step includes at least an input amount of the organic waste as a compost raw material, a temperature of outside air introduced into the container, and an amount of outside air introduced into the container. 4. The composting control method according to claim 3, wherein one is adjusted. 前記制御工程が、前記発酵熱量に基づいて、前記容器内に導入される外気の量を調整する入気量調整工程を含み、
前記入気量調整工程は、所定時間間隔で前記発酵熱量を算出し、任意の算出時の発酵熱量がその前回に算出された発酵熱量に対して、増加した場合には前記容器内に導入される外気の量を増加させ、減少した場合には前記容器内に導入される外気の量を減少させることを特徴とする請求項3記載の堆肥化制御方法。
The control step includes an intake air amount adjustment step of adjusting the amount of outside air introduced into the container based on the fermentation heat amount,
The air intake amount adjustment step calculates the fermentation heat quantity at predetermined time intervals, and is introduced into the container when the fermentation heat quantity at the time of arbitrary calculation increases with respect to the fermentation heat quantity calculated last time. 4. The composting control method according to claim 3, wherein the amount of outside air is increased and the amount of outside air introduced into the container is reduced when the amount is reduced.
前記入気量調整工程は、前記堆肥化装置に備えられた制御装置により、作業者の設定した前記所定時間間隔、および外気の量の調整幅で、自動で実施されることを特徴とする請求項6記載の堆肥化制御方法。   The air intake amount adjusting step is automatically performed by the control device provided in the composting device at the predetermined time interval set by an operator and the adjustment amount of the amount of outside air. Item 7. The composting control method according to Item 6. 前記制御工程において、任意の算出時の発酵熱量と、その際の堆肥化装置の消費電力量とから、(発酵熱量/消費電力量)で表される堆肥化効率を算出し、該堆肥化効率に基づいて、堆肥原料となる前記有機性廃棄物の投入量、前記容器内に導入される外気の温度、前記容器内に導入される外気の量、および高発熱原料の投入量、の少なくとも1つを調整して堆肥化を制御する制御工程を有することを特徴とする請求項3記載の堆肥化制御方法。   In the control step, the composting efficiency expressed by (fermentation heat amount / power consumption amount) is calculated from the amount of fermentation heat at the time of arbitrary calculation and the power consumption amount of the composting apparatus at that time, and the composting efficiency is calculated. At least one of the input amount of the organic waste as the compost raw material, the temperature of the outside air introduced into the container, the amount of the outside air introduced into the container, and the input amount of the highly exothermic raw material 4. The composting control method according to claim 3, further comprising a control step of adjusting compost to control composting.
JP2018069588A 2017-03-31 2018-03-30 Composting control method Active JP7058413B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017073020 2017-03-31
JP2017073020 2017-03-31

Publications (2)

Publication Number Publication Date
JP2018172272A true JP2018172272A (en) 2018-11-08
JP7058413B2 JP7058413B2 (en) 2022-04-22

Family

ID=64106995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018069588A Active JP7058413B2 (en) 2017-03-31 2018-03-30 Composting control method

Country Status (1)

Country Link
JP (1) JP7058413B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112268830A (en) * 2020-10-13 2021-01-26 蚌埠绿都秸秆生物科技有限公司 Rapid sampling and detecting device for maturity degree in crop straw compost fermentation process
JP2021159804A (en) * 2020-03-30 2021-10-11 中部エコテック株式会社 Fermentation dryer, cement production system, and fermentation drying method
CN114570752A (en) * 2022-05-02 2022-06-03 扬州鑫威环保生物科技有限公司 Waste fermentation device based on microbial flora
WO2022210218A1 (en) * 2021-03-31 2022-10-06 Ube三菱セメント株式会社 Fermentation/drying control method and fermentation/drying device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179487A (en) * 2000-12-12 2002-06-26 Kureha Techno Enji Kk Method and device for composting garbage
JP2007269517A (en) * 2006-03-30 2007-10-18 National Agriculture & Food Research Organization Exhaust gas treatment apparatus and exhaust gas treatment method of suction ventilation type compost manufacturing facility
CN102030569A (en) * 2009-09-25 2011-04-27 中部埃科特克株式会社 Fermenting and drying treatment device for organic wastes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179487A (en) * 2000-12-12 2002-06-26 Kureha Techno Enji Kk Method and device for composting garbage
JP2007269517A (en) * 2006-03-30 2007-10-18 National Agriculture & Food Research Organization Exhaust gas treatment apparatus and exhaust gas treatment method of suction ventilation type compost manufacturing facility
CN102030569A (en) * 2009-09-25 2011-04-27 中部埃科特克株式会社 Fermenting and drying treatment device for organic wastes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
川村英輔ら著: "密閉縦型発酵装置の発酵熱と回収可能熱量", 日豚会誌, vol. 53, no. 2, JPN6021052098, June 2016 (2016-06-01), pages 21 - 31, ISSN: 0004671294 *
金子栄廣ら著: "好気微生物反応を利用した生物系廃棄物の乾燥", 廃棄物資源循環学会論文誌, vol. 27, JPN6021052099, 2016, pages 1 - 6, ISSN: 0004671295 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021159804A (en) * 2020-03-30 2021-10-11 中部エコテック株式会社 Fermentation dryer, cement production system, and fermentation drying method
JP7326204B2 (en) 2020-03-30 2023-08-15 中部エコテック株式会社 Fermentation drying apparatus, cement production system, and fermentation drying method
CN112268830A (en) * 2020-10-13 2021-01-26 蚌埠绿都秸秆生物科技有限公司 Rapid sampling and detecting device for maturity degree in crop straw compost fermentation process
CN112268830B (en) * 2020-10-13 2022-08-23 蚌埠绿都秸秆生物科技有限公司 Rapid sampling and detecting device for maturity degree in crop straw compost fermentation process
WO2022210218A1 (en) * 2021-03-31 2022-10-06 Ube三菱セメント株式会社 Fermentation/drying control method and fermentation/drying device
JP7217484B1 (en) * 2021-03-31 2023-02-03 Ube三菱セメント株式会社 Fermentation drying control method and fermentation drying apparatus
CN114570752A (en) * 2022-05-02 2022-06-03 扬州鑫威环保生物科技有限公司 Waste fermentation device based on microbial flora

Also Published As

Publication number Publication date
JP7058413B2 (en) 2022-04-22

Similar Documents

Publication Publication Date Title
CN104907322B (en) Food waste treatment equipment
CN203128439U (en) Rotary drum type aerobic fermentation treatment device for organic wastes
JP7058413B2 (en) Composting control method
CN201165498Y (en) Organic refuse fermentation automatic detection control composting system
JP6512859B2 (en) Waste disposal apparatus and waste disposal method
CN106431540A (en) Intelligent control method and system for microbial decomposition process of organic matters
CN110511857A (en) It is a kind of to can be carried out water supply in media-temperature dynamic regulation aerobic fermentation equipment
CN104289497B (en) A kind of multi-stage Semi-continuous Organic Refuse Bioreactor and method
CN106061634B (en) Waste treatment apparatus and refuse processing method
JP6235253B2 (en) Waste treatment equipment
JP7190133B2 (en) Composting device and its control method
CN106942463A (en) A kind of kitchen accessory substance method for innocent treatment
CN112279700A (en) Multifunctional fermentation device
JP7326204B2 (en) Fermentation drying apparatus, cement production system, and fermentation drying method
JP2015160767A (en) Waste treatment apparatus
CN210080332U (en) Device for degrading kitchen waste by using microorganisms
CN203128437U (en) Internal environment control system for rotary roller organic waste aerobic fermentation treatment device
KR20120014425A (en) A compost fermentation tank apparatus
CN203728835U (en) Garbage disposal device
JP7217484B1 (en) Fermentation drying control method and fermentation drying apparatus
CN218146289U (en) Be used for beer sludge treatment device
JPH09132490A (en) Organic matter treating device
JP2022029378A (en) Fermentation and drying apparatus and fermentation and drying method
JP2024057543A (en) Fermentation and drying apparatus and fermentation and drying method
EP3071342A2 (en) Improved apparatus for composting and digestion of biodegradable waste

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180330

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220331

R150 Certificate of patent or registration of utility model

Ref document number: 7058413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150