JP5565727B2 - Distortion compensation circuit - Google Patents

Distortion compensation circuit Download PDF

Info

Publication number
JP5565727B2
JP5565727B2 JP2010151349A JP2010151349A JP5565727B2 JP 5565727 B2 JP5565727 B2 JP 5565727B2 JP 2010151349 A JP2010151349 A JP 2010151349A JP 2010151349 A JP2010151349 A JP 2010151349A JP 5565727 B2 JP5565727 B2 JP 5565727B2
Authority
JP
Japan
Prior art keywords
circuit
distortion
distortion compensation
bias voltage
input signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010151349A
Other languages
Japanese (ja)
Other versions
JP2012015860A (en
Inventor
洋一郎 高山
晃洋 安藤
和彦 本城
亮 石川
剛 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE UNIVERSITY OF ELECTRO-COMUNICATINS
Original Assignee
THE UNIVERSITY OF ELECTRO-COMUNICATINS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE UNIVERSITY OF ELECTRO-COMUNICATINS filed Critical THE UNIVERSITY OF ELECTRO-COMUNICATINS
Priority to JP2010151349A priority Critical patent/JP5565727B2/en
Publication of JP2012015860A publication Critical patent/JP2012015860A/en
Application granted granted Critical
Publication of JP5565727B2 publication Critical patent/JP5565727B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Amplifiers (AREA)

Description

本発明は、歪補償回路と、この歪補償回路を用いる歪補償増幅回路と、この歪補償回路を用いる歪補償方法とに係り、特に、ダイオードを用いる歪補償回路と、この歪補償回路を用いる歪補償増幅回路と、この歪補償回路を用いる歪補償方法とに係る。   The present invention relates to a distortion compensation circuit, a distortion compensation amplifier circuit using the distortion compensation circuit, and a distortion compensation method using the distortion compensation circuit. In particular, the distortion compensation circuit using a diode and the distortion compensation circuit are used. The present invention relates to a distortion compensation amplifier circuit and a distortion compensation method using the distortion compensation circuit.

ワイヤレス通信システムの高度化に伴い、マイクロ波送信用電力増幅器に対する要求は、高効率の面のみならず、低歪化の面においても、益々厳しくなっている。マイクロ波用の歪補償技術の分野では、小型で、かつ、広い帯域を有することを特徴とする、ダイオードを用いた歪補償回路が広く利用されている。   With the advancement of wireless communication systems, the requirements for microwave transmission power amplifiers are becoming increasingly severe not only in terms of high efficiency but also in terms of low distortion. In the field of microwave distortion compensation technology, a distortion compensation circuit using a diode, which is small and has a wide band, is widely used.

図1は、従来技術による歪補償回路の構成例を示す回路図である。図1の歪補償回路は、入力部1と、出力部2と、ダイオード3と、第1、第2の容量4、5と、第1、第2のチョークコイル6、10と、第1、第2のマイクロ波主線路7、8と、バイアス抵抗9と、バイアス電圧供給部11とを具備している。   FIG. 1 is a circuit diagram showing a configuration example of a distortion compensation circuit according to the prior art. 1 includes an input unit 1, an output unit 2, a diode 3, first and second capacitors 4, 5, first and second choke coils 6, 10, and first, Second microwave main lines 7 and 8, a bias resistor 9, and a bias voltage supply unit 11 are provided.

図1の歪補償回路における構成要素の接続関係について説明する。入力部1は、第1の容量4の一方の端部に接続されている。第1の容量4の他方の端部は、第1のマイクロ波主線路7に接続されている。第1のマイクロ波主線路7は、バイアス抵抗9の一方の端部と、ダイオード3のアノードに接続されている。ダイオード3のカソードは、第2のマイクロ波主線路8に接続されている。第2のマイクロ波主線路8は、第1のチョークコイル6の一方の端部と、第2の容量5の一方の端部とに接続されている。第1のチョークコイル6の他方の端部は、グランドに接地されている。第2の容量5の他方の端部は、出力部2に接続されている。出力部2は、図示しない増幅器に接続される。バイアス抵抗9の他方の端部は、第2のチョークコイル10の一方の端部に接続されている。第2のチョークコイル10の他方の端部は、バイアス電圧供給部11に接続されている。このように、図1の歪補償回路では、ダイオード3が主線路7、8に直列に挿入されている。   The connection relationship of the components in the distortion compensation circuit of FIG. 1 will be described. The input unit 1 is connected to one end of the first capacitor 4. The other end of the first capacitor 4 is connected to the first microwave main line 7. The first microwave main line 7 is connected to one end of the bias resistor 9 and the anode of the diode 3. The cathode of the diode 3 is connected to the second microwave main line 8. The second microwave main line 8 is connected to one end of the first choke coil 6 and one end of the second capacitor 5. The other end of the first choke coil 6 is grounded. The other end of the second capacitor 5 is connected to the output unit 2. The output unit 2 is connected to an amplifier (not shown). The other end of the bias resistor 9 is connected to one end of the second choke coil 10. The other end of the second choke coil 10 is connected to the bias voltage supply unit 11. Thus, in the distortion compensation circuit of FIG. 1, the diode 3 is inserted in series with the main lines 7 and 8.

図1のような歪補償回路は、任意の増幅器の後段に接続されて、この増幅器が有する歪特性の相殺、すなわち歪補償を行う。増幅器の歪特性を相殺するためには、歪補償回路自身の歪特性を、増幅器の歪特性に合わせて精度良く調節する必要がある。歪特性は、利得偏移特性および位相偏移特性に分けて考えることが出来る。   The distortion compensation circuit as shown in FIG. 1 is connected to a subsequent stage of an arbitrary amplifier, and cancels distortion characteristics of the amplifier, that is, performs distortion compensation. In order to cancel the distortion characteristics of the amplifier, it is necessary to accurately adjust the distortion characteristics of the distortion compensation circuit itself in accordance with the distortion characteristics of the amplifier. The distortion characteristics can be considered by dividing them into gain shift characteristics and phase shift characteristics.

図1の歪補償回路における利得偏移特性および位相偏移特性は、バイアス抵抗9およびチョークコイル10を介してダイオード3に印加されるバイアス電圧によって調整可能であり、バイアス抵抗などダイオード周辺の素子の特性にも依存するが、まずはダイオード3自体の特性に大きく依存する。このように、歪特性を調節する条件には限りがあるので、歪補償にも限界がある。したがって、超高周波入力信号における平均電力の広い範囲にわたって、増幅器とは逆の利得偏移特性および位相偏移特性を持つ歪補償回路を作ることは、容易ではない。   The gain shift characteristic and the phase shift characteristic in the distortion compensation circuit of FIG. 1 can be adjusted by a bias voltage applied to the diode 3 via the bias resistor 9 and the choke coil 10. Although it depends on the characteristics, first, it largely depends on the characteristics of the diode 3 itself. As described above, since the conditions for adjusting the distortion characteristics are limited, there is a limit to distortion compensation. Therefore, it is not easy to produce a distortion compensation circuit having gain shift characteristics and phase shift characteristics opposite to those of the amplifier over a wide range of average power in the ultrahigh frequency input signal.

図2は、従来技術によるダイオード歪補償回路を含む増幅器の特性例を示すグラフである。図2のグラフは、ダイオードを用いた歪補償回路を備えた超高周波電力増幅器における、超高周波W−CDMA(Wideband Code Division Multiple Access)変調信号の平均入力電力に対する増幅出力のACPR(Adjacent −Channel Power Ratio:隣接チャネル漏洩電力比)特性を、歪補償の前後で比較した結果を示している。   FIG. 2 is a graph showing an example of characteristics of an amplifier including a diode distortion compensation circuit according to the prior art. The graph of FIG. 2 shows an ACPR (Adjacent-Channel Power) of an amplified output with respect to an average input power of an ultra-high frequency W-CDMA (Wideband Code Division Multiple Access) modulation signal in an ultra-high frequency power amplifier having a distortion compensation circuit using a diode. (Ratio: Adjacent channel leakage power ratio) characteristics are compared before and after distortion compensation.

図2のグラフにおいて、横軸は平均出力電力を示し、縦軸はACPRを示している。図2のグラフには、第1〜第3のグラフ12〜14が描かれている。ここで、第1のグラフ12は、歪補償が無い特性を示す。第2のグラフ13は、入力信号平均電力の広い範囲でACPRを改善した場合の、歪補償特性を示す。第3のグラフ14は、入力信号平均電力の狭い範囲でACPRを改善した場合の、歪補償特性を示す。図2から、一般的には入力信号電力の範囲を狭くすれば歪特性がより改善できることが分かる。   In the graph of FIG. 2, the horizontal axis represents average output power, and the vertical axis represents ACPR. The first to third graphs 12 to 14 are drawn on the graph of FIG. Here, the first graph 12 shows characteristics without distortion compensation. The second graph 13 shows distortion compensation characteristics when ACPR is improved over a wide range of input signal average power. A third graph 14 shows distortion compensation characteristics when ACPR is improved in a narrow range of input signal average power. From FIG. 2, it can be seen that generally the distortion characteristics can be further improved by narrowing the range of the input signal power.

以上に関連して、特許文献1(特開2000−151295号公報)には、歪補償回路に係る記載が開示されている。特許文献1に記載の歪補償回路は、ベクトル調整器と、リニアライザと、非線形信号抽出経路と、レベル検出器と、制御回路とを備えたことを特徴としている。ここで、ベクトル調整器は、入力信号の振幅及び位相特性を電気的に調整可能である。リニアライザは、アナログの線形及び非線形素子で構成され、ベクトル調整器の出力である入力電力の変化に対して後段に接続された増幅器と逆の振幅及び位相特性を有し、入力電力の変化に対する振幅及び位相特性を電気的に調整可能である。非線形信号抽出経路は、ベクトル調整器の入力側から入力信号の一部を抽出する線形信号抽出経路と、増幅器の出力側から出力信号の一部を抽出する。レベル検出器は、線形信号抽出経路及び非線形信号抽出経路の合成電力レベルを検出する。制御回路は、検出合成電力レベルに応じてリニアライザのバイアス調整を行い、レベル検出器における検出電力が最小となるようにリニアライザを電気的に調整を行うとともに、リニアライザの調整を行う度に、レベル検出器における検出電力が最小となるようにベクトル調整器の調整を行う。   In relation to the above, Patent Document 1 (Japanese Patent Laid-Open No. 2000-151295) discloses a description relating to a distortion compensation circuit. The distortion compensation circuit described in Patent Document 1 includes a vector adjuster, a linearizer, a nonlinear signal extraction path, a level detector, and a control circuit. Here, the vector adjuster can electrically adjust the amplitude and phase characteristics of the input signal. The linearizer is composed of analog linear and nonlinear elements, and has the amplitude and phase characteristics opposite to those of the amplifier connected in the subsequent stage with respect to the change of the input power that is the output of the vector adjuster, and the amplitude with respect to the change of the input power. And the phase characteristics can be adjusted electrically. The nonlinear signal extraction path extracts a linear signal extraction path for extracting a part of the input signal from the input side of the vector adjuster and a part of the output signal from the output side of the amplifier. The level detector detects the combined power level of the linear signal extraction path and the nonlinear signal extraction path. The control circuit adjusts the bias of the linearizer according to the detected combined power level, electrically adjusts the linearizer so that the detection power at the level detector is minimized, and detects the level each time the linearizer is adjusted. The vector adjuster is adjusted so that the detected power at the detector is minimized.

また、特許文献2(特開2004−343296号公報)には、ダイオードリニアライザを用いた歪補償回路に係る記載が開示されている。特許文献2に記載のダイオードリニアライザを用いた歪補償回路は、無線周波数帯の入力信号を増幅するパワーアンプの前段に設けられてこのパワーアンプの出力歪みを補償するダイオードリニアライザを用いており、以下のことを特徴とする。すなわち、この歪補償回路は、パワーアンプに供給される入力信号のレベルに基づいて、ダイオードリニアライザのバイアス電圧を、少なくとも、第1バイアス電圧値又はこれとは異なる第2バイアス電圧値に切り替える切替制御手段を有する。ここで、第1バイアス電圧は、入力信号のレベルが所定の基準レベル以下の範囲において、第2バイアス電圧よりも、大きく出力歪みを補償する値である。第2バイアス電圧は、入力信号のレベルが基準レベルよりも高い範囲において、第1バイアス電圧よりも、大きく出力歪みを補償する値である。切替制御手段は、入力信号と所定の基準レベルとを比較し、入力信号のレベルが基準レベル以下の範囲では、バイアス電圧を第1バイアス電圧値に切り替え、入力信号のレベルが基準レベルより高い範囲では、バイアス電圧を第2バイアス電圧に切り替える。   Patent Document 2 (Japanese Patent Application Laid-Open No. 2004-343296) discloses a description relating to a distortion compensation circuit using a diode linearizer. A distortion compensation circuit using a diode linearizer described in Patent Document 2 uses a diode linearizer that is provided in a preceding stage of a power amplifier that amplifies an input signal in a radio frequency band and compensates for output distortion of the power amplifier. It is characterized by this. That is, this distortion compensation circuit switches the bias voltage of the diode linearizer to at least the first bias voltage value or a second bias voltage value different from the bias voltage value based on the level of the input signal supplied to the power amplifier. Have means. Here, the first bias voltage is a value that compensates for output distortion larger than the second bias voltage in a range where the level of the input signal is equal to or lower than a predetermined reference level. The second bias voltage is a value that compensates for output distortion more than the first bias voltage in a range where the level of the input signal is higher than the reference level. The switching control means compares the input signal with a predetermined reference level, and switches the bias voltage to the first bias voltage value in a range where the level of the input signal is equal to or lower than the reference level. Then, the bias voltage is switched to the second bias voltage.

特開2000−151295号公報JP 2000-151295 A 特開2004−343296号公報JP 2004-343296 A

本発明の目的は、ダイオードに印加するバイアス電圧を自動的に制御して超高周波入力信号平均電力における広い範囲に渡って低歪化を行う歪補償回路を提供することである。   An object of the present invention is to provide a distortion compensation circuit that automatically controls a bias voltage applied to a diode to reduce distortion over a wide range in the average power of an ultrahigh frequency input signal.

以下に、(発明を実施するための形態)で使用される番号を用いて、課題を解決するための手段を説明する。これらの番号は、(特許請求の範囲)の記載と(発明を実施するための形態)との対応関係を明らかにするために付加されたものである。ただし、それらの番号を、(特許請求の範囲)に記載されている発明の技術的範囲の解釈に用いてはならない。   The means for solving the problem will be described below using the numbers used in the (DETAILED DESCRIPTION). These numbers are added to clarify the correspondence between the description of (Claims) and (Mode for Carrying Out the Invention). However, these numbers should not be used to interpret the technical scope of the invention described in (Claims).

本発明による歪補償回路は、増幅器に接続されている。本発明による歪補償回路は、制御回路部と、歪発生ダイオード回路部とを具備する。ここで、制御回路部は、入力信号の一部を検出して得られる入力信号の平均電力に応じてバイアス電圧をアナログ回路で生成する。歪発生ダイオード回路部は、増幅器の歪特性を補償するための歪をバイアス電圧に応じて生成し、入力信号に歪を加える。   The distortion compensation circuit according to the present invention is connected to an amplifier. A distortion compensation circuit according to the present invention includes a control circuit unit and a distortion generation diode circuit unit. Here, the control circuit unit generates a bias voltage by an analog circuit according to the average power of the input signal obtained by detecting a part of the input signal. The distortion generating diode circuit unit generates distortion for compensating for distortion characteristics of the amplifier according to the bias voltage, and adds distortion to the input signal.

本発明による歪補償方法は、入力信号の一部を検出するステップと、検出するステップで得られる入力信号の平均電力に応じたバイアス電圧をアナログ回路で生成するステップと、増幅器の歪特性を補償するための歪をバイアス電圧に応じて生成するステップと、歪をバイアス電圧に応じて生成するステップで得られる歪を入力信号に加えるステップとを具備する。   A distortion compensation method according to the present invention includes a step of detecting a part of an input signal, a step of generating a bias voltage according to an average power of the input signal obtained in the detection step by an analog circuit, and a distortion characteristic of the amplifier. Generating a distortion for performing the distortion according to the bias voltage, and adding a distortion obtained by the distortion according to the bias voltage to the input signal.

本発明の歪補償回路によれば、ダイオードに印加するバイアス電圧を入力信号に基づいて自動的に制御することで、超高周波入力信号平均電力における広い範囲に渡って低歪化が可能となる。   According to the distortion compensation circuit of the present invention, by automatically controlling the bias voltage applied to the diode based on the input signal, it is possible to reduce the distortion over a wide range in the average power of the ultrahigh frequency input signal.

図1は、従来技術による歪補償回路の構成例を示す回路図である。FIG. 1 is a circuit diagram showing a configuration example of a distortion compensation circuit according to the prior art. 図2は、従来技術によるダイオード歪補償回路を含む増幅器の特性例を示すグラフである。FIG. 2 is a graph showing an example of characteristics of an amplifier including a diode distortion compensation circuit according to the prior art. 図3は、本発明の第1の実施形態による歪補償回路および歪補償増幅回路の構成を示す回路図である。FIG. 3 is a circuit diagram showing a configuration of the distortion compensation circuit and the distortion compensation amplifier circuit according to the first embodiment of the present invention. 図4は、本発明の第1の実施形態による歪発生ダイオード回路部の別の構成例を示す回路図である。FIG. 4 is a circuit diagram showing another configuration example of the distortion generating diode circuit unit according to the first embodiment of the present invention. 図5は、平均出力電力およびACPRの関係における、本発明および従来技術の比較を示すグラフである。FIG. 5 is a graph showing a comparison between the present invention and the prior art in relation to average output power and ACPR. 図6は、RF入力平均電力および最適ダイオードバイアス電圧の関係を示すグラフである。FIG. 6 is a graph showing the relationship between the RF input average power and the optimum diode bias voltage. 図7は、本発明の第2の実施形態による歪補償回路および歪補償増幅回路の構成を示す回路図である。FIG. 7 is a circuit diagram showing a configuration of a distortion compensation circuit and a distortion compensation amplifier circuit according to the second embodiment of the present invention. 図8は、本発明の第3の実施形態による歪補償回路および歪補償増幅回路の構成を示す回路図である。FIG. 8 is a circuit diagram showing a configuration of a distortion compensation circuit and a distortion compensation amplifier circuit according to the third embodiment of the present invention. 図9は、本発明の第4の実施形態による歪補償回路および歪補償増幅回路の構成を示す回路図である。FIG. 9 is a circuit diagram showing a configuration of a distortion compensation circuit and a distortion compensation amplifier circuit according to the fourth embodiment of the present invention. 図10は、本発明による歪補償回路における、平均出力電力と、ダイオードバイアス電圧を制御する制御電圧と、IMD3との関係を示すグラフである。FIG. 10 is a graph showing the relationship between the average output power, the control voltage for controlling the diode bias voltage, and the IMD 3 in the distortion compensation circuit according to the present invention. 図11は、本発明による歪補償回路における、平均入力電力と、最適ダイオードバイアス電圧との関係を示すグラフである。FIG. 11 is a graph showing the relationship between the average input power and the optimum diode bias voltage in the distortion compensation circuit according to the present invention. 図12は、本発明の第4の実施形態による直流増幅器の構成の具体例を示す回路図である。FIG. 12 is a circuit diagram showing a specific example of the configuration of the DC amplifier according to the fourth embodiment of the present invention. 図13Aは、本発明の第5の実施形態による歪補償回路および歪補償増幅回路の構成例を示す回路図である。FIG. 13A is a circuit diagram showing a configuration example of a distortion compensation circuit and a distortion compensation amplifier circuit according to the fifth embodiment of the present invention. 図13Bは、本発明の第5の実施形態による歪補償回路および歪補償増幅回路の別の構成例を示す回路図である。FIG. 13B is a circuit diagram showing another configuration example of the distortion compensation circuit and the distortion compensation amplifier circuit according to the fifth embodiment of the present invention. 図14Aは、本発明の第5の実施形態による歪発生ダイオード回路部33aの構成例を示す回路図である。FIG. 14A is a circuit diagram showing a configuration example of a distortion generating diode circuit unit 33a according to the fifth embodiment of the present invention. 図14Bは、本発明の第5の実施形態による歪発生ダイオード回路部33aの構成例を示す回路図である。FIG. 14B is a circuit diagram showing a configuration example of the distortion generating diode circuit unit 33a according to the fifth embodiment of the present invention. 図14Cは、本発明の第5の実施形態による歪発生ダイオード回路部33aの構成例を示す回路図である。FIG. 14C is a circuit diagram showing a configuration example of the distortion generating diode circuit unit 33a according to the fifth embodiment of the present invention. 図14Dは、本発明の第5の実施形態による歪発生ダイオード回路部33aの構成例を示す回路図である。FIG. 14D is a circuit diagram showing a configuration example of the distortion generating diode circuit unit 33a according to the fifth embodiment of the present invention.

添付図面を参照して、本発明による歪補償回路と、この歪補償回路を用いる歪補償増幅回路と、この歪補償回路を用いる歪補償方法とを実施するための形態を以下に説明する。   With reference to the attached drawings, embodiments for implementing a distortion compensation circuit according to the present invention, a distortion compensation amplifier circuit using the distortion compensation circuit, and a distortion compensation method using the distortion compensation circuit will be described below.

(第1の実施形態)
図3は、本発明の第1の実施形態による歪補償回路30および歪補償増幅回路の構成を示す回路図である。図3の歪補償回路30は、入力部31と、制御回路部32aと、歪発生ダイオード回路部33と、出力部35とを具備している。図3の歪補償増幅回路は、歪補償回路30と、増幅器34とを具備している。
(First embodiment)
FIG. 3 is a circuit diagram showing configurations of the distortion compensation circuit 30 and the distortion compensation amplifier circuit according to the first embodiment of the present invention. The distortion compensation circuit 30 in FIG. 3 includes an input unit 31, a control circuit unit 32a, a distortion generation diode circuit unit 33, and an output unit 35. The distortion compensation amplifier circuit in FIG. 3 includes a distortion compensation circuit 30 and an amplifier 34.

図3の歪補償回路30の構成要素の接続関係について説明する。入力部31は、制御回路部32aの入力部に接続されている。制御回路部32aの第1の出力部は、歪発生ダイオード回路部33の第1の入力部33Aに接続されている。制御回路部32aの第2の出力部は、歪発生ダイオード回路部33の第2の入力部33Bに接続されている。歪発生ダイオード回路部33の出力部33Cは、出力部35に接続されている。なお、出力部35は、歪補償回路30の後段に接続された超高周波増幅回路34の入力部に接続されている。   The connection relationship of the components of the distortion compensation circuit 30 in FIG. 3 will be described. The input unit 31 is connected to the input unit of the control circuit unit 32a. The first output section of the control circuit section 32 a is connected to the first input section 33 A of the distortion generating diode circuit section 33. The second output unit of the control circuit unit 32 a is connected to the second input unit 33 B of the distortion generating diode circuit unit 33. The output unit 33 </ b> C of the distortion generating diode circuit unit 33 is connected to the output unit 35. The output unit 35 is connected to the input unit of the ultrahigh frequency amplifier circuit 34 connected to the subsequent stage of the distortion compensation circuit 30.

図3の歪補償回路30の動作、すなわち本発明の第1の実施形態による歪補償方法について説明する。制御回路部32aは、入力信号の一部を取り込んで対数検波する。その結果、入力信号の平均電力が得られる。制御回路部32aは、後述するように、入力信号の一部を入力し、入力信号全体の平均電力を得て、入力信号の平均電力に応じたバイアス電圧を自動的に生成する。歪発生ダイオード回路部33は、このバイアス電圧に基づいた歪を入力信号に加えて出力する。ここで、バイアス電圧と歪みとの関係は、歪補正回路30の後段に接続された出力部34の特性に応じて予め設定されている。すなわち、本発明による歪補償回路は、上述した特許文献1に記載の歪補償回路とは異なり、出力部から入力部へのフィードバックを行わないことに注目されたい。   The operation of the distortion compensation circuit 30 in FIG. 3, that is, the distortion compensation method according to the first embodiment of the present invention will be described. The control circuit unit 32a takes in a part of the input signal and performs logarithmic detection. As a result, the average power of the input signal is obtained. As will be described later, the control circuit unit 32a receives a part of the input signal, obtains the average power of the entire input signal, and automatically generates a bias voltage according to the average power of the input signal. The distortion generating diode circuit unit 33 outputs distortion based on the bias voltage in addition to the input signal. Here, the relationship between the bias voltage and the distortion is set in advance according to the characteristics of the output unit 34 connected to the subsequent stage of the distortion correction circuit 30. That is, it should be noted that the distortion compensation circuit according to the present invention does not perform feedback from the output unit to the input unit, unlike the distortion compensation circuit described in Patent Document 1 described above.

また、入力信号の平均電力からバイアス電圧への変換は、アナログ回路を用いて行われる。すなわち、本発明による歪補償回路は、上述した特許文献2に記載のダイオードリニアライザを用いた歪補償回路のようなデジタル回路を用いていないことに注目されたい。   Further, the conversion from the average power of the input signal to the bias voltage is performed using an analog circuit. That is, it should be noted that the distortion compensation circuit according to the present invention does not use a digital circuit such as the distortion compensation circuit using the diode linearizer described in Patent Document 2 described above.

歪発生ダイオード回路部33は、図1に示した従来技術による歪補償回路と同様に動作する。ここで、図1の歪補償回路の構成および動作について再度説明する。図1の歪補償回路は、入力部1と、出力部2と、ダイオード3と、第1、第2の容量4、5と、第1、第2のチョークコイル6、10と、第1、第2のマイクロ波主線路7、8と、バイアス抵抗9と、バイアス電圧供給部11とを具備している。入力部1は、第1の容量4の一方の端部に接続されている。第1の容量4の他方の端部は、第1のマイクロ波主線路7に接続されている。第1のマイクロ波主線路7は、バイアス抵抗9の一方の端部と、ダイオード3のアノードに接続されている。ダイオード3のカソードは、第2のマイクロ波主線路8に接続されている。第2のマイクロ波主線路8は、第1のチョークコイル6の一方の端部と、第2の容量5の一方の端部とに接続されている。第1のチョークコイル6の他方の端部は、グランドに接地されている。第2の容量5の他方の端部は、出力部2に接続されている。出力部2は、図示しない増幅器に接続される。バイアス抵抗9の他方の端部は、第2のチョークコイル10の一方の端部に接続されている。第2のチョークコイル10の他方の端部は、バイアス電圧供給部11に接続されている。ダイオード3は、入力部1から容量4を介して入力信号をアノードに供給されると同時に、バイアス電圧供給部11からチョークコイル10およびバイアス抵抗9を介してバイアス電圧がアノードに印加される。ダイオード3は、入力信号およびバイアス電圧に応じた信号をカソードから出力し、この信号はチョークコイル6および容量5からなるフィルタ回路を介して出力部2から出力される。このとき、ダイオード3の特性に応じた歪が出力信号に乗るが、バイアス電圧を調節することでこの歪を制御することが可能である。   The distortion generating diode circuit unit 33 operates in the same manner as the conventional distortion compensation circuit shown in FIG. Here, the configuration and operation of the distortion compensation circuit of FIG. 1 will be described again. 1 includes an input unit 1, an output unit 2, a diode 3, first and second capacitors 4, 5, first and second choke coils 6, 10, and first, Second microwave main lines 7 and 8, a bias resistor 9, and a bias voltage supply unit 11 are provided. The input unit 1 is connected to one end of the first capacitor 4. The other end of the first capacitor 4 is connected to the first microwave main line 7. The first microwave main line 7 is connected to one end of the bias resistor 9 and the anode of the diode 3. The cathode of the diode 3 is connected to the second microwave main line 8. The second microwave main line 8 is connected to one end of the first choke coil 6 and one end of the second capacitor 5. The other end of the first choke coil 6 is grounded. The other end of the second capacitor 5 is connected to the output unit 2. The output unit 2 is connected to an amplifier (not shown). The other end of the bias resistor 9 is connected to one end of the second choke coil 10. The other end of the second choke coil 10 is connected to the bias voltage supply unit 11. The diode 3 is supplied with an input signal from the input unit 1 through the capacitor 4 to the anode, and at the same time, a bias voltage is applied from the bias voltage supply unit 11 through the choke coil 10 and the bias resistor 9 to the anode. The diode 3 outputs an input signal and a signal corresponding to the bias voltage from the cathode, and this signal is output from the output unit 2 through a filter circuit including the choke coil 6 and the capacitor 5. At this time, distortion corresponding to the characteristics of the diode 3 is added to the output signal, but this distortion can be controlled by adjusting the bias voltage.

ここで、図3の歪発生ダイオード回路部33における第1の入力部33A、第2の入力部33Bおよび出力部33Cは、図1の歪補償回路における入力部1、バイアス電圧供給部11および出力部2にそれぞれ対応している。すなわち、歪発生ダイオード回路部33は、第1の入力部33Aに供給された入力信号に、第2の入力部33Bに印加されるダイオードバイアス電圧に応じた歪を加えて、出力部33Cから出力する。   Here, the first input unit 33A, the second input unit 33B, and the output unit 33C in the distortion generating diode circuit unit 33 in FIG. 3 are the input unit 1, the bias voltage supply unit 11, and the output in the distortion compensation circuit in FIG. Each corresponds to part 2. That is, the distortion generating diode circuit unit 33 adds distortion corresponding to the diode bias voltage applied to the second input unit 33B to the input signal supplied to the first input unit 33A, and outputs it from the output unit 33C. To do.

また、図3の歪発生ダイオード回路部33は、図1の歪補償回路以外の別の構成であっても良い。図4は、本発明の第1の実施形態による歪発生ダイオード回路部33の別の構成例を示す回路図である。   3 may have another configuration other than the distortion compensation circuit of FIG. FIG. 4 is a circuit diagram showing another configuration example of the distortion generating diode circuit unit 33 according to the first embodiment of the present invention.

図4の歪発生ダイオード回路部の構成要素について説明する。図4の歪発生ダイオード回路部は、入力部1と、第1の容量4と、第1のマイクロ波主線路7と、ダイオード3と、バイアス抵抗9と、チョークコイル10と、バイアス電圧供給部11と、第2のマイクロ波主線路8と、第2の容量5と、出力部2とを具備している。   The components of the distortion generating diode circuit section of FIG. 4 will be described. 4 includes an input unit 1, a first capacitor 4, a first microwave main line 7, a diode 3, a bias resistor 9, a choke coil 10, and a bias voltage supply unit. 11, a second microwave main line 8, a second capacitor 5, and an output unit 2.

図4の歪発生ダイオード回路部の構成要素の接続関係について説明する。入力部1は、第1の容量4の一方の端部に接続されている。第1の容量4の他方の端部は、第1のマイクロ波主線路7に接続されている。第1のマイクロ波主線路7は、ダイオード3のアノードと、バイアス抵抗9の一方の端部と、第2のマイクロ波主線路8とに接続されている。ダイオード3のカソードは、グランドに接地されている。バイアス抵抗9の他方の端部は、第2のチョークコイル10の一方の端部に接続されている。第2のチョークコイル10の他方の端部は、バイアス電圧供給部11に接続されている。第2のマイクロ波主線路8は、第2の容量5の一方の端部に接続されている。第2の容量5の他方の端部は、出力部2に接続されている。   The connection relationship of the constituent elements of the distortion generating diode circuit section of FIG. 4 will be described. The input unit 1 is connected to one end of the first capacitor 4. The other end of the first capacitor 4 is connected to the first microwave main line 7. The first microwave main line 7 is connected to the anode of the diode 3, one end of the bias resistor 9, and the second microwave main line 8. The cathode of the diode 3 is grounded. The other end of the bias resistor 9 is connected to one end of the second choke coil 10. The other end of the second choke coil 10 is connected to the bias voltage supply unit 11. The second microwave main line 8 is connected to one end of the second capacitor 5. The other end of the second capacitor 5 is connected to the output unit 2.

図4のように、歪発生ダイオード回路部におけるダイオード3は、マイクロ波主線路7、8に対して並列に接続されていても、バイアス電圧供給部11に印加されるバイアス電圧に応じた歪を入力信号に加えて出力する。   As shown in FIG. 4, even if the diode 3 in the distortion generating diode circuit unit is connected in parallel to the microwave main lines 7 and 8, the diode 3 has a distortion corresponding to the bias voltage applied to the bias voltage supply unit 11. Output in addition to the input signal.

上記のように設計された本発明の第1の実施形態による歪補正回路の性能について説明する。なお、本発明の歪補正回路30、特に制御回路部32aの具体的な構成およびその設計方法については、本発明の全ての実施形態に共通するが、後述する本発明の第4の実施形態の説明において詳細に述べる。図5は、平均出力電力およびACPRの関係における、本発明および従来技術の比較を示すグラフである。図5のグラフにおいて、横軸は平均出力電力を示し、縦軸はACPRを示している。図5のグラフは、4本の曲線22〜25を有している。曲線22は、歪補償を行わない場合を示している。曲線23は、平均出力電力P1においてACPRが最小となるようなダイオードバイアス電圧V1を印加した場合を示している。曲線24は、平均出力電力P2においてACPRが最小となるようなダイオードバイアス電圧V2を印加した場合を示している。曲線25は、各平均出力電力Piにおいて、ACPRが最小となるようなダイオードバイアス電圧Viをそれぞれ印加する本発明の場合を示している。   The performance of the distortion correction circuit according to the first embodiment of the present invention designed as described above will be described. Note that the specific configuration and design method of the distortion correction circuit 30 of the present invention, particularly the control circuit unit 32a, are common to all the embodiments of the present invention, but in the fourth embodiment of the present invention described later. Details will be described in the description. FIG. 5 is a graph showing a comparison between the present invention and the prior art in relation to average output power and ACPR. In the graph of FIG. 5, the horizontal axis indicates average output power, and the vertical axis indicates ACPR. The graph of FIG. 5 has four curves 22-25. A curve 22 shows a case where distortion compensation is not performed. A curve 23 shows a case where a diode bias voltage V1 that minimizes ACPR at the average output power P1 is applied. A curve 24 shows a case where a diode bias voltage V2 that minimizes the ACPR at the average output power P2 is applied. A curve 25 shows the case of the present invention in which a diode bias voltage Vi that minimizes ACPR is applied at each average output power Pi.

なお、図5では、変調方式として、W−CDMA変調信号を用いることを想定している。ただし、これはあくまでも一例に過ぎず、本発明において他の変調信号の使用を制限するものではない。   In FIG. 5, it is assumed that a W-CDMA modulation signal is used as the modulation method. However, this is only an example and does not limit the use of other modulation signals in the present invention.

図6は、RF入力平均電力および最適ダイオードバイアス電圧の関係を示すグラフである。図6のグラフにおいて、横軸はRF入力平均電力を示し、縦軸は最適ダイオードバイアス電圧を示している。図6の曲線から、例えば、RF入力平均電力がP1のときは最適ダイオードバイアス電圧がV1で、RF入力平均電力がP2のときは最適ダイオードバイアス電圧がV2であることが読み取れる。制御回路部32aの特性を、図6のグラフに合わせて予め調整しておくことによって、平均入力電力に基づく最適なダイオードバイアス電圧を生成することが可能である。   FIG. 6 is a graph showing the relationship between the RF input average power and the optimum diode bias voltage. In the graph of FIG. 6, the horizontal axis indicates the RF input average power, and the vertical axis indicates the optimum diode bias voltage. From the curve of FIG. 6, for example, it can be read that the optimum diode bias voltage is V1 when the RF input average power is P1, and the optimum diode bias voltage is V2 when the RF input average power is P2. By adjusting the characteristics of the control circuit section 32a in advance according to the graph of FIG. 6, it is possible to generate an optimum diode bias voltage based on the average input power.

以上のように、本発明の第1の実施形態に係る歪補償回路30では、入力信号の一部を取り込むアナログ回路としての制御回路部32aを具備しているので、ダイオードに印加するバイアス電圧を入力信号に基づいて自動的に制御することで、超高周波入力信号平均電力における広い範囲にわたって低歪化が可能となる。   As described above, the distortion compensation circuit 30 according to the first embodiment of the present invention includes the control circuit unit 32a as an analog circuit that captures a part of the input signal. By controlling automatically based on the input signal, it is possible to reduce distortion over a wide range in the average power of the ultrahigh frequency input signal.

(第2の実施形態)
図7は、本発明の第2の実施形態による歪補償回路30aおよび歪補償増幅回路の構成を示す回路図である。図7の歪補償回路30aは、図3の歪補償回路30に以下の変更を加えたものに等しい。すなわち、図7の制御回路部32aは、容量36および制御回路部32bを具備している。図7の歪補償増幅回路は、図7の歪補償回路30aの後段に増幅器34を接続したものに等しい。
(Second Embodiment)
FIG. 7 is a circuit diagram showing configurations of the distortion compensation circuit 30a and the distortion compensation amplifier circuit according to the second embodiment of the present invention. The distortion compensation circuit 30a in FIG. 7 is equivalent to the distortion compensation circuit 30 in FIG. 3 with the following modifications. That is, the control circuit unit 32a in FIG. 7 includes a capacitor 36 and a control circuit unit 32b. The distortion compensation amplifier circuit of FIG. 7 is equivalent to a circuit in which an amplifier 34 is connected to the subsequent stage of the distortion compensation circuit 30a of FIG.

ここで、入力部31は、容量36の一方の端部と、歪発生ダイオード回路33の第1の入力部33Aとに接続されている。容量36の他方の端部は、制御回路部32bの入力部に接続されている。制御回路部32bの出力部は、歪発生ダイオード回路33の第2の入力部33Bに接続されている。   Here, the input unit 31 is connected to one end of the capacitor 36 and the first input unit 33 </ b> A of the distortion generating diode circuit 33. The other end of the capacitor 36 is connected to the input unit of the control circuit unit 32b. The output part of the control circuit part 32 b is connected to the second input part 33 B of the distortion generating diode circuit 33.

本発明の第2の実施形態による歪補償回路30aにおけるその他の構成、設計方法、動作などは、本発明の第1の実施形態の場合と同じであるので、共通する構成要素については同じ番号を用いた上で、さらなる詳細な説明を省略する。   Since other configurations, design methods, operations, and the like in the distortion compensation circuit 30a according to the second embodiment of the present invention are the same as those in the first embodiment of the present invention, common constituent elements are denoted by the same numbers. After use, further detailed description is omitted.

容量36は、入力信号の一部を取り出して制御回路部32bに向けて供給する。   The capacitor 36 extracts a part of the input signal and supplies it to the control circuit unit 32b.

以上のように、本発明の第2の実施形態に係る歪補償回路30aでは、入力信号の一部を取り込む容量36と、その後段に接続されたアナログ回路としての制御回路部32bを具備しているので、ダイオードに印加するバイアス電圧を入力信号に基づいて自動的に制御することで、超高周波入力信号平均電力における広い範囲にわたって低歪化が可能となる。また、容量36を用いることで、歪補償回路部30aを簡単かつ小型な回路で構成することができる。   As described above, the distortion compensation circuit 30a according to the second embodiment of the present invention includes the capacitor 36 for capturing a part of the input signal and the control circuit unit 32b as an analog circuit connected to the subsequent stage. Therefore, by automatically controlling the bias voltage applied to the diode based on the input signal, the distortion can be reduced over a wide range in the average power of the super-high frequency input signal. Further, by using the capacitor 36, the distortion compensation circuit unit 30a can be configured with a simple and small circuit.

(第3の実施形態)
図8は、本発明の第3の実施形態による歪補償回路30bおよび歪補償増幅回路の構成を示す回路図である。図8の歪補償回路30bは、図7の歪補償回路30aに以下の変更を加えたものに等しい。すなわち、図8に示されるように、歪補償回路30bは、入力部31および歪発生ダイオード回路33の間を結ぶ線路と、制御回路32bとの接続点に、方向性結合器37が設けられている。図8の歪補償増幅回路は、図8の歪補償回路の後段に増幅器34を接続したものに等しい。
(Third embodiment)
FIG. 8 is a circuit diagram showing configurations of a distortion compensation circuit 30b and a distortion compensation amplifier circuit according to the third embodiment of the present invention. The distortion compensation circuit 30b shown in FIG. 8 is equivalent to the distortion compensation circuit 30a shown in FIG. That is, as shown in FIG. 8, in the distortion compensation circuit 30b, a directional coupler 37 is provided at a connection point between the line connecting the input unit 31 and the distortion generating diode circuit 33 and the control circuit 32b. Yes. The distortion compensation amplifier circuit of FIG. 8 is equivalent to a circuit in which an amplifier 34 is connected after the distortion compensation circuit of FIG.

ここで、入力部31は、方向性結合器37の入力部37Aに接続されている。方向性結合器37の一方の出力部37Bは、歪発生ダイオード回路33の第1の入力部33Aに接続されている。方向性結合器37の第2の出力部37Cは、制御回路部32bの入力部に接続されている。   Here, the input unit 31 is connected to the input unit 37 </ b> A of the directional coupler 37. One output portion 37 </ b> B of the directional coupler 37 is connected to the first input portion 33 </ b> A of the distortion generating diode circuit 33. The second output unit 37C of the directional coupler 37 is connected to the input unit of the control circuit unit 32b.

本発明の第3の実施形態による歪補償回路30bにおけるその他の構成、設計方法、動作などは、本発明の第2の実施形態の場合と同じであるので、共通する構成要素については同じ番号を用いた上で、さらなる詳細な説明を省略する。   Since other configurations, design methods, operations, and the like in the distortion compensation circuit 30b according to the third embodiment of the present invention are the same as those in the second embodiment of the present invention, common constituent elements are denoted by the same numbers. After use, further detailed description is omitted.

本発明の第3の実施形態における方向性結合器37は、本発明の第2の実施形態における容量36と同様に、入力信号の一部を取り出して制御回路部32bに向けて供給する。なお、本発明の第3の実施形態における方向性結合器37および制御回路部32bが、本発明の第1の実施形態における制御回路部32aに含まれている、と捉えても良い。   The directional coupler 37 according to the third embodiment of the present invention extracts a part of the input signal and supplies it to the control circuit unit 32b, similarly to the capacitor 36 according to the second embodiment of the present invention. Note that the directional coupler 37 and the control circuit unit 32b according to the third embodiment of the present invention may be regarded as being included in the control circuit unit 32a according to the first embodiment of the present invention.

以上のように、本発明の第3の実施形態に係る歪補償回路30bでは、入力信号の一部を取り込む方向性結合器37と、その後段に接続されたアナログ回路としての制御回路部32bを具備しているので、ダイオードに印加するバイアス電圧を入力信号に基づいて自動的に制御することで、超高周波入力信号平均電力における広い範囲にわたって低歪化が可能となる。   As described above, in the distortion compensation circuit 30b according to the third embodiment of the present invention, the directional coupler 37 that captures a part of the input signal and the control circuit unit 32b as an analog circuit connected to the subsequent stage are provided. Thus, by automatically controlling the bias voltage applied to the diode based on the input signal, the distortion can be reduced over a wide range in the average power of the ultrahigh frequency input signal.

(第4の実施形態)
図9は、本発明の第4の実施形態による歪補償回路30cおよび歪補償増幅回路の構成を示す回路図である。図9の歪補償回路30cは、図7の歪補償回路に以下の変更を加えたものに等しい。すなわち、図9に示されるように、図7における制御回路部32aを、図9における制御回路部32bと、容量36とに置き換える。制御回路部32bは、対数検波回路41と、LPF(Low Pass Filter:低域通過フィルタ)42と、直流増幅回路43とで構成されている。図9の歪補償増幅回路は、図9の歪補償回路30cの後段に増幅器34を接続したものに等しい。
(Fourth embodiment)
FIG. 9 is a circuit diagram showing configurations of a distortion compensation circuit 30c and a distortion compensation amplifier circuit according to the fourth embodiment of the present invention. The distortion compensation circuit 30c in FIG. 9 is equivalent to the distortion compensation circuit in FIG. 7 with the following modifications. That is, as shown in FIG. 9, the control circuit unit 32 a in FIG. 7 is replaced with the control circuit unit 32 b and the capacitor 36 in FIG. 9. The control circuit unit 32 b includes a logarithmic detection circuit 41, an LPF (Low Pass Filter) 42, and a DC amplification circuit 43. The distortion compensation amplifier circuit of FIG. 9 is equivalent to an amplifier 34 connected to the subsequent stage of the distortion compensation circuit 30c of FIG.

ここで、入力部31は、容量36の一方の端部と、歪発生ダイオード回路部33の第1の入力部33Aとに接続されている。容量36の他方の端部は、対数検波回路部41の入力部に接続されている。対数検波回路部41の出力部は、LPF42の入力部に接続されている。LPF42の出力部は、直流増幅回路部43の入力部に接続されている。直流増幅回路部43の出力部は、歪発生ダイオード回路34の第2の入力部33Bに接続されている。   Here, the input unit 31 is connected to one end of the capacitor 36 and the first input unit 33 </ b> A of the distortion generating diode circuit unit 33. The other end of the capacitor 36 is connected to the input unit of the logarithmic detection circuit unit 41. The output unit of the logarithmic detection circuit unit 41 is connected to the input unit of the LPF 42. The output part of the LPF 42 is connected to the input part of the DC amplification circuit part 43. The output section of the DC amplification circuit section 43 is connected to the second input section 33B of the distortion generating diode circuit 34.

本発明の第4の実施形態による歪補償回路30cにおけるその他の構成は、本発明の第2の実施形態の場合と同じであるので、共通する構成要素については同じ番号を用いた上で、さらなる詳細な説明を省略する。   Since the other configuration of the distortion compensation circuit 30c according to the fourth embodiment of the present invention is the same as that of the second embodiment of the present invention, the same reference numerals are used for common components, and further Detailed description is omitted.

本発明の第4の実施形態による歪補償回路30cの動作について説明する。入力部31に入力された入力信号のうち、一部分は容量36に供給され、残りの大部分は歪発生ダイオード回路34に供給される。対数検波回路41は、容量36に供給された入力信号の一部分を対数検波して、LPF42に向けて出力する。なお、対数検波回路41として、所定の特性を有するダイオードを用いても良い。   The operation of the distortion compensation circuit 30c according to the fourth embodiment of the present invention will be described. Part of the input signal input to the input unit 31 is supplied to the capacitor 36, and most of the remaining signal is supplied to the distortion generating diode circuit 34. The logarithmic detection circuit 41 logarithmically detects a part of the input signal supplied to the capacitor 36 and outputs it to the LPF 42. As the logarithmic detection circuit 41, a diode having a predetermined characteristic may be used.

LPF42は、対数検波回路41の出力信号から直流成分を取り出して直流増幅回路43に向けて出力する。なお、LPF42は、受動的なフィルタであっても良いし、オペアンプなどを用いた能動的なフィルタであっても良い。   The LPF 42 extracts a direct current component from the output signal of the logarithmic detection circuit 41 and outputs it to the direct current amplifier circuit 43. Note that the LPF 42 may be a passive filter or an active filter using an operational amplifier or the like.

対数検波回路41およびLPF42の後段に配置された直流増幅回路43は、入力信号の平均電力に対応する信号を入力する。直流増幅回路43は、入力信号の平均電力に基づいて、歪発生ダイオード回路を制御するダイオードバイアス電圧を出力する。ここで、直流増幅回路43は、入力信号の平均電力ごとに最適なダイオードバイアス電圧を出力するように設計されている。   A DC amplification circuit 43 disposed at the subsequent stage of the logarithmic detection circuit 41 and the LPF 42 inputs a signal corresponding to the average power of the input signal. The DC amplifier circuit 43 outputs a diode bias voltage for controlling the distortion generating diode circuit based on the average power of the input signal. Here, the DC amplification circuit 43 is designed to output an optimum diode bias voltage for each average power of the input signal.

本発明の制御回路部32a(その中でも特に制御回路部32bに内蔵された直流増幅回路43)の設計方法について説明する。なお、この設計方法は、前述したとおり、本発明の第4の実施形態のみならず、他の全ての実施形態の制御回路部32aにおいても同様に用いられる。まず、歪発生ダイオード回路33および増幅回路34のみを接続した回路、言い換えれば図9の回路から制御回路部32aを取り除いた回路で、平均出力電圧ごとにIMD3(third−order InterModulation Distortion:三次相互変調歪)が最適となるダイオードバイアス電圧を求める。次に、やはり歪発生ダイオード回路33および増幅回路34のみを接続した回路における、平均入力電圧と、最適なダイオードバイアス電圧との関係性を求める。最後に、上記の関係性にしたがって、平均入力電圧に応じて最適なダイオードバイアス電圧を出力する制御回路部32a(その中でも特に直流増幅回路43)を、アナログ的に調節する。以下、上記3つのステップについて詳細に説明する。   A method for designing the control circuit unit 32a of the present invention (in particular, the DC amplifier circuit 43 built in the control circuit unit 32b) will be described. As described above, this design method is used not only in the fourth embodiment of the present invention but also in the control circuit unit 32a of all other embodiments. First, a circuit in which only the distortion generating diode circuit 33 and the amplifier circuit 34 are connected, in other words, a circuit in which the control circuit unit 32a is removed from the circuit in FIG. 9, and an IMD3 (third-order intermodulation distortion: third-order intermodulation) for each average output voltage. The diode bias voltage at which the distortion is optimal is obtained. Next, the relationship between the average input voltage and the optimum diode bias voltage in a circuit in which only the distortion generating diode circuit 33 and the amplifier circuit 34 are connected is obtained. Finally, in accordance with the above relationship, the control circuit unit 32a (in particular, the DC amplification circuit 43) that outputs an optimum diode bias voltage according to the average input voltage is adjusted in an analog manner. Hereinafter, the three steps will be described in detail.

まず、平均出力電圧ごとにIMD3が最適となるダイオードバイアス電圧を求めるステップについて説明する。図10は、本発明による歪補償回路30、30a〜30cにおける、平均出力電力と、ダイオードバイアス電圧を制御する制御電圧と、IMD3との関係を示すグラフである。図10のグラフにおいて、横軸は平均出力電力を示し、縦軸はIMD3を示す。   First, the step of obtaining a diode bias voltage at which the IMD 3 is optimal for each average output voltage will be described. FIG. 10 is a graph showing the relationship between the average output power, the control voltage for controlling the diode bias voltage, and the IMD 3 in the distortion compensation circuits 30 and 30a to 30c according to the present invention. In the graph of FIG. 10, the horizontal axis represents average output power, and the vertical axis represents IMD3.

図10のグラフには、12対の曲線が描かれている。これら12対の曲線のうち、11対の曲線は、0.50V、0.52V、…、0.70Vの制御電圧Vcにそれぞれ対応する。残る1対の曲線は、制御電圧を印加しない、すなわちバイアス電圧を印加しなかった場合に対応する。また、これら12対の曲線のそれぞれは、実線の曲線と、破線の曲線とを有している。ここで、実線の曲線は、上側IMD3に対応し、破線の曲線は下側IMD3に対応する。なお、図10のグラフは、実測データに基づいて作成されている。   In the graph of FIG. 10, 12 pairs of curves are drawn. Of these 12 pairs of curves, 11 pairs of curves correspond to control voltages Vc of 0.50 V, 0.52 V,. The remaining pair of curves corresponds to the case where no control voltage is applied, that is, no bias voltage is applied. Each of these 12 pairs of curves has a solid curve and a dashed curve. Here, the solid curve corresponds to the upper IMD3, and the broken curve corresponds to the lower IMD3. In addition, the graph of FIG. 10 is created based on actual measurement data.

図10のグラフにおいて、12対の曲線は、縦軸で下に行くほど結果が良いことを示す。したがって、12対の曲線に下から接する包絡線を求めることで、平均出力電力と、制御電圧との、理想的な関係が得られる。   In the graph of FIG. 10, the 12 pairs of curves indicate that the results are better as they go down on the vertical axis. Therefore, an ideal relationship between the average output power and the control voltage can be obtained by obtaining an envelope that touches the 12 pairs of curves from below.

なお、図10のグラフにおいて、横軸に平均出力電力を用いているが、これはあくまでも慣例に従ってのことであって、代わりに平均入力電力を用いても構わない。また、平均出力電力と、平均入力電力とは、増幅器の特性に応じて一対一に対応する。したがって、平均出力電力および最適制御電圧の関係を得ることは、平均入力電力および制御電圧の関係を得ることと同意である。   In the graph of FIG. 10, the average output power is used on the horizontal axis, but this is only in accordance with the conventional practice, and the average input power may be used instead. Further, the average output power and the average input power correspond one-on-one according to the characteristics of the amplifier. Therefore, obtaining the relationship between average output power and optimal control voltage is equivalent to obtaining the relationship between average input power and control voltage.

次に、平均入力電圧と、最適なダイオードバイアス電圧との関係性を求めるステップについて説明する。図11は、本発明による歪補償回路30、30a〜30cにおける、平均入力電力と、最適ダイオードバイアス電圧との関係を示すグラフである。図11のグラフにおいて、横軸は平均入力電力を示し、縦軸は最適ダイオードバイアス電圧を示す。   Next, the step of obtaining the relationship between the average input voltage and the optimum diode bias voltage will be described. FIG. 11 is a graph showing the relationship between the average input power and the optimum diode bias voltage in the distortion compensation circuits 30 and 30a to 30c according to the present invention. In the graph of FIG. 11, the horizontal axis represents average input power, and the vertical axis represents optimum diode bias voltage.

図11のグラフは、2つの点群を有している。黒丸は、図10のグラフに基づいてプロットされた、平均入力電力および最適ダイオードバイアス電圧の関係を示す点群である。白丸は、黒丸の電圧を得るように設計調整した制御回路の出力電圧の測定値である。なお、図11の黒丸を適切につなげることで、図6のグラフが得られる。   The graph of FIG. 11 has two point groups. A black circle is a point group showing the relationship between the average input power and the optimum diode bias voltage plotted based on the graph of FIG. The white circle is a measured value of the output voltage of the control circuit designed and adjusted to obtain the voltage of the black circle. In addition, the graph of FIG. 6 is obtained by connecting the black circles of FIG. 11 appropriately.

次に、平均入力電圧に対して最適なダイオードバイアス電圧を出力するように直流増幅回路をアナログ的に調節するステップについて説明する。図12は、本発明の第4の実施形態による直流増幅回路43の構成の具体例を示す回路図である。図12の直流増幅回路43は、前段のLPF42に接続された入力部Inと、第1〜第4のオペアンプA1〜A4と、第1および第2のダイオードD1、D2と、第1〜第3の容量C1〜C3と、第1〜第5の抵抗R1〜R5と、第1〜第3の可変抵抗VR1〜VR3と、後段の歪発生ダイオード回路33に接続された出力部Outとを具備している。   Next, the step of adjusting the DC amplifier circuit in an analog manner so as to output an optimum diode bias voltage with respect to the average input voltage will be described. FIG. 12 is a circuit diagram showing a specific example of the configuration of the DC amplifier circuit 43 according to the fourth embodiment of the present invention. The DC amplifier circuit 43 of FIG. 12 includes an input unit In connected to the preceding LPF 42, first to fourth operational amplifiers A1 to A4, first and second diodes D1 and D2, and first to third diodes. Capacitances C1 to C3, first to fifth resistors R1 to R5, first to third variable resistors VR1 to VR3, and an output unit Out connected to the subsequent distortion generating diode circuit 33. ing.

図12の直流増幅回路43の構成要素の具体例を示す。第1のオペアンプA1としては、アナログ・デバイセズ製のAD817を用いている。第2〜第4のオペアンプA2〜A3としては、NEC製のμPC4570を用いている。なお、これらはあくまでも一例であって、これらの構成要素を限定するものではない。   The specific example of the component of the DC amplifier circuit 43 of FIG. 12 is shown. As the first operational amplifier A1, AD817 manufactured by Analog Devices is used. As the second to fourth operational amplifiers A2 to A3, NEC-made μPC4570 is used. Note that these are merely examples and do not limit these components.

図12の直流増幅回路43の構成要素同士の接続関係について説明する。入力部Inは、第1の抵抗R1の一方の端部に接続されている。第1の抵抗R1の他方の端部は、第1の容量C1の一方の端部と、第2の抵抗R2の一方の端部とに接続されている。第1の容量C1の他方の端部は、グランドに接地されている。第2の抵抗R2の他方の端部は、第2の容量C2の一方の端部と、第3の抵抗R3の一方の端部とに接続されている。第3の抵抗R3の他方の端部は、第3の容量C3の一方の端部と、第1のオペアンプA1の非反転側入力部とに接続されている。第3の容量C3の他方の端部は、グランドに接地されている。第2の容量C2の他方の端部は、第1のオペアンプA1における反転側入力部および出力部と、第2の可変抵抗VR2の一方の端部とに接続されている。第2の可変抵抗VR2の他方の端部は、グランドに接地されている。第2の可変抵抗VR2の可動端部は、第2のオペアンプA2の非反転側入力部に接続されている。第2のオペアンプA2の反転側入力部は、第4の抵抗R4の一方の端部と、第5の抵抗R5の一方の端部とに接続されている。第4の抵抗R4の他方の端部は、第2のオペアンプA2の出力部と、第1のダイオードD1のアノードとに接続されている。第5の抵抗R5の他方の端部は、第3のオペアンプA3における反転側入力部および出力部に接続されている。第3のオペアンプA3の非反転側入力部は、第1の可変抵抗VR1の可動端部に接続されている。第1の可変抵抗VR1の一方の端部は、電源電圧供給部VDDに接続されている。第1の可変抵抗VR1の他方の端部は、グランドに接地されている。第1のダイオードD1のカソードは、第2のダイオードD2のカソードと、第4のオペアンプA4の非反転側入力部とに接続されており、グランドに接地されている。第2のダイオードD2のアノードは、第3の可変抵抗VR3の可動端部に接続されている。第3の可変抵抗VR3の一方の端部は、電源電圧供給部VDDに接続されている。第3の可変抵抗VR3の他方の端部は、グランドに接地されている。第4のオペアンプA4の反転側入力部は、第4のオペアンプA4の出力部と、出力部Outとに接続されている。   A connection relationship between the components of the DC amplifier circuit 43 in FIG. 12 will be described. The input part In is connected to one end of the first resistor R1. The other end of the first resistor R1 is connected to one end of the first capacitor C1 and one end of the second resistor R2. The other end of the first capacitor C1 is grounded. The other end of the second resistor R2 is connected to one end of the second capacitor C2 and one end of the third resistor R3. The other end of the third resistor R3 is connected to one end of the third capacitor C3 and the non-inverting side input of the first operational amplifier A1. The other end of the third capacitor C3 is grounded. The other end of the second capacitor C2 is connected to the inversion side input unit and the output unit of the first operational amplifier A1 and one end of the second variable resistor VR2. The other end of the second variable resistor VR2 is grounded. The movable end portion of the second variable resistor VR2 is connected to the non-inverting side input portion of the second operational amplifier A2. The inverting side input section of the second operational amplifier A2 is connected to one end of the fourth resistor R4 and one end of the fifth resistor R5. The other end of the fourth resistor R4 is connected to the output of the second operational amplifier A2 and the anode of the first diode D1. The other end of the fifth resistor R5 is connected to the inverting side input and output of the third operational amplifier A3. The non-inverting side input portion of the third operational amplifier A3 is connected to the movable end portion of the first variable resistor VR1. One end of the first variable resistor VR1 is connected to the power supply voltage supply unit VDD. The other end of the first variable resistor VR1 is grounded. The cathode of the first diode D1 is connected to the cathode of the second diode D2 and the non-inversion side input section of the fourth operational amplifier A4, and is grounded to the ground. The anode of the second diode D2 is connected to the movable end of the third variable resistor VR3. One end of the third variable resistor VR3 is connected to the power supply voltage supply unit VDD. The other end of the third variable resistor VR3 is grounded. The inverting side input section of the fourth operational amplifier A4 is connected to the output section of the fourth operational amplifier A4 and the output section Out.

図12の直流増幅回路43の動作について説明する。入力部Inの直後には、差周波帯域を直流成分(例:100Hz程度以下)にするためのローパスフィルタが配置されている。このローパスフィルタは、RC回路と、第1のオペアンプA1を用いたオペアンプ正帰還型ローパスフィルタ回路を含む。これらのローパスフィルタの後段には、除算回路およびボルテージフォロア回路として動作する第2、第3のオペアンプA2、A3が配置されている。除算回路およびボルテージフォロア回路では、第1、第2の可変抵抗VR1、VR2の抵抗値をそれぞれ調節することで、RF入力信号に対する出力電圧の傾きおよび切片を調整できる。最終段には、OR回路として動作する第4のオペアンプA4が配置されている。ここで、RF入力電圧が小さいときに、ダイオードバイアス電圧を0.5V以上かかるように設定されている。RF入力電圧が小さいまたは無い場合の出力電圧は、第3の可変抵抗VR3の抵抗値を調整することで決定できる。   The operation of the DC amplifier circuit 43 in FIG. 12 will be described. Immediately after the input unit In, a low-pass filter for making the difference frequency band a DC component (eg, about 100 Hz or less) is arranged. This low-pass filter includes an RC circuit and an operational amplifier positive feedback low-pass filter circuit using the first operational amplifier A1. The second and third operational amplifiers A2 and A3 that operate as a divider circuit and a voltage follower circuit are disposed after these low-pass filters. In the divider circuit and the voltage follower circuit, the slope and intercept of the output voltage with respect to the RF input signal can be adjusted by adjusting the resistance values of the first and second variable resistors VR1 and VR2, respectively. In the final stage, a fourth operational amplifier A4 that operates as an OR circuit is arranged. Here, the diode bias voltage is set to be 0.5 V or more when the RF input voltage is small. The output voltage when the RF input voltage is small or not can be determined by adjusting the resistance value of the third variable resistor VR3.

このように、第1〜第3の可変抵抗VR1〜VR3の抵抗値をアナログ的に調整することで、直流増幅回路は平均入力電圧に対して最適なダイオードバイアス電圧を出力出来る。なお、当然ながら、可変抵抗VR1〜VR3の抵抗値を調整する前に、第1〜第4のオペアンプA1〜A4や第1、第2のダイオードD1、D2としてそれぞれに適切な素子を選択し、第1〜第5の抵抗R1〜R5の抵抗値および第1〜第3の容量C1〜C3の容量値をそれぞれ適切に設定することも重要である。   Thus, by adjusting the resistance values of the first to third variable resistors VR1 to VR3 in an analog manner, the DC amplifier circuit can output an optimum diode bias voltage with respect to the average input voltage. Of course, before adjusting the resistance values of the variable resistors VR1 to VR3, appropriate elements are selected as the first to fourth operational amplifiers A1 to A4 and the first and second diodes D1 and D2, respectively. It is also important to appropriately set the resistance values of the first to fifth resistors R1 to R5 and the capacitance values of the first to third capacitors C1 to C3.

ここまで説明した図12の直流増幅回路43の構成要素、接続関係、動作などは、あくまでも一例であって、本発明による歪補正回路を限定するものではなく、他の構成を用いても良いことは言うまでもない。   The components, connection relationships, operations, and the like of the DC amplifier circuit 43 in FIG. 12 described so far are merely examples, and do not limit the distortion correction circuit according to the present invention, and other configurations may be used. Needless to say.

以上のように、本発明の第4の実施形態に係る歪補償回路30cでは、入力信号の一部を取り込む方向性結合器36と、その後段に直列に接続された対数検波回路41、低域通過フィルタ42および直流増幅回路43を具備しており、直流増幅回路43は平均入力電圧に応じて最適なダイオードバイアス電圧を自動的に出力するように調節されているので、超高周波入力信号平均電力における広い範囲にわたって低歪化が可能となる。   As described above, in the distortion compensation circuit 30c according to the fourth embodiment of the present invention, the directional coupler 36 that captures a part of the input signal, the logarithmic detection circuit 41 that is connected in series to the subsequent stage, the low frequency band A pass filter 42 and a DC amplifier circuit 43 are provided, and the DC amplifier circuit 43 is adjusted so as to automatically output an optimum diode bias voltage according to the average input voltage. The distortion can be reduced over a wide range.

(第5の実施形態)
図13Aは、本発明の第5の実施形態による歪補償回路30dおよび歪補償増幅回路の構成例を示す回路図である。図13Aの歪補償回路30dは、図3に示した本発明の第1の実施形態による歪補償回路30に、以下の変更を加えたものに等しい。すなわち、図3の歪発生ダイオード回路部33の代わりに図13Aの歪発生ダイオード回路部33aが配置されており、第2の制御回路部32cが追加されている。図13Aの歪補償増幅回路は、図13Aの歪補償回路の後段に増幅器34を接続したものに等しい。
(Fifth embodiment)
FIG. 13A is a circuit diagram showing a configuration example of a distortion compensation circuit 30d and a distortion compensation amplifier circuit according to the fifth embodiment of the present invention. The distortion compensation circuit 30d in FIG. 13A is equivalent to the distortion compensation circuit 30 according to the first embodiment of the present invention shown in FIG. That is, the distortion generating diode circuit unit 33a of FIG. 13A is arranged instead of the distortion generating diode circuit unit 33 of FIG. 3, and a second control circuit unit 32c is added. The distortion compensation amplifier circuit in FIG. 13A is equivalent to a circuit in which an amplifier 34 is connected after the distortion compensation circuit in FIG. 13A.

本発明の第5の実施形態による歪補償回路30dでは、歪発生ダイオード回路部33aが複数のダイオードを具備しており、これら複数のダイオードにダイオードバイアス電圧を供給する複数の制御回路部32a、32cが設けられている。ここでは、歪発生ダイオード回路部33aが2つのダイオードを具備し、歪補償回路30dが2つの制御回路部32a、32cを具備している例について説明するが、これらの数を2つに限定するものではない。   In the distortion compensating circuit 30d according to the fifth embodiment of the present invention, the distortion generating diode circuit unit 33a includes a plurality of diodes, and a plurality of control circuit units 32a and 32c that supply a diode bias voltage to the plurality of diodes. Is provided. Here, an example in which the distortion generating diode circuit unit 33a includes two diodes and the distortion compensation circuit 30d includes two control circuit units 32a and 32c will be described. However, the number of these is limited to two. It is not a thing.

また、歪発生ダイオード回路部33aが具備するダイオードの数と、歪補償回路30dが具備する制御回路の数とは、必ずしも一致する必要は無い。図13Bは、本発明の第5の実施形態による歪補償回路30eおよび歪補償増幅回路の別の構成例を示す回路図である。図13Bの歪補償回路30eは、図13Aに示した本発明の第5の実施形態による歪補償回路30dから、第2の制御回路32cを取り除いたものである。この場合は、1つの制御回路32aが出力する同じダイオードバイアス電圧を、歪発生ダイオード回路部33aの2つのダイオードに供給している。   In addition, the number of diodes included in the distortion generating diode circuit unit 33a and the number of control circuits included in the distortion compensation circuit 30d do not necessarily match. FIG. 13B is a circuit diagram showing another configuration example of the distortion compensation circuit 30e and the distortion compensation amplifier circuit according to the fifth embodiment of the present invention. The distortion compensation circuit 30e in FIG. 13B is obtained by removing the second control circuit 32c from the distortion compensation circuit 30d according to the fifth embodiment of the present invention shown in FIG. 13A. In this case, the same diode bias voltage output from one control circuit 32a is supplied to the two diodes of the distortion generating diode circuit unit 33a.

本発明の第5の実施形態による歪補償回路30d、30eの、歪発生ダイオード回路部33aの構成について説明する。図14A〜図14Dは、本発明の第5の実施形態による歪発生ダイオード回路部33aの構成例を示す回路図である。   A configuration of the distortion generating diode circuit unit 33a of the distortion compensation circuits 30d and 30e according to the fifth embodiment of the present invention will be described. 14A to 14D are circuit diagrams showing a configuration example of a distortion generating diode circuit unit 33a according to the fifth embodiment of the present invention.

図14Aは、2つのダイオードが2本のマイクロ波主線路に対してそれぞれ直列に接続されて、かつ、2つのダイオードが互いに並列に接続されている場合の歪発生ダイオード回路部33aの構成を示す回路図である。図14Aの歪発生ダイオード回路部33aは、図1の歪補償回路に以下の変更を加えたものに等しい。すなわち、第2のダイオード3aと、第3、第4の容量4a、5aと、第3、第4のチョークコイル6a、10aと、第3、第4のマイクロ波主線路7a、8aと、第2のバイアス抵抗9aと、第2のバイアス電圧供給部11aとを追加する。ここで、入力部1と、第2のダイオード3aと、第3、第4の容量4a、5aと、第3、第4のチョークコイル6a、10aと、第3、第4のマイクロ波主線路7a、8aと、第2のバイアス抵抗9aと、第2のバイアス電圧供給部11aと、出力部2との接続関係は、入力部1と、第1のダイオード3と、第1、第2の容量4、5と、第1、第2のチョークコイル6、10と、第1、第2のマイクロ波主線路7、8と、第1のバイアス抵抗9と、第1のバイアス電圧供給部11と、出力部2との接続関係と、同様である。   FIG. 14A shows a configuration of the distortion generating diode circuit unit 33a in the case where two diodes are connected in series to two microwave main lines, and the two diodes are connected in parallel to each other. It is a circuit diagram. The distortion generating diode circuit unit 33a in FIG. 14A is equivalent to the distortion compensation circuit in FIG. That is, the second diode 3a, the third and fourth capacitors 4a and 5a, the third and fourth choke coils 6a and 10a, the third and fourth microwave main lines 7a and 8a, A second bias resistor 9a and a second bias voltage supply unit 11a are added. Here, the input unit 1, the second diode 3a, the third and fourth capacitors 4a and 5a, the third and fourth choke coils 6a and 10a, and the third and fourth microwave main lines. 7a, 8a, the second bias resistor 9a, the second bias voltage supply unit 11a, and the output unit 2 are connected to each other in terms of the input unit 1, the first diode 3, the first and second Capacitors 4 and 5, first and second choke coils 6 and 10, first and second microwave main lines 7 and 8, a first bias resistor 9, and a first bias voltage supply unit 11 The connection relationship with the output unit 2 is the same.

図14Bは、2つのダイオードが1本のマイクロ波主線路に対して並列に接続されて、かつ、2つのダイオードが互いに並列に接続されている場合の歪発生ダイオード回路部33aの構成を示す回路図である。図14Bの歪発生ダイオード回路部33aは、図4の歪補償回路に以下の変更を加えたものに等しい。すなわち、第2のダイオード3aと、第3の容量4aと、第3、第4のマイクロ波主線路7a、8aと、第2のバイアス抵抗9aと、第3のチョークコイル10aと、第2のバイアス電圧供給部11aとを追加する。ここで、第2のダイオード3aと、第3の容量4aと、第3、第4のマイクロ波主線路7a、8aと、第2のバイアス抵抗9aと、第3のチョークコイル10aと、第2のバイアス電圧供給部11aとの接続関係は、第1のダイオード3と、第1の容量4と、第1、第2のマイクロ波主線路7、8と、第1のバイアス抵抗9と、第2のチョークコイル10と、第1のバイアス電圧供給部11との接続関係と、同様である。そして、第2のマイクロ波主線路8および第2の容量5の間に第3の容量4aから第4のマイクロ波主線路8aまでの回路部が配置されている。   FIG. 14B is a circuit showing a configuration of the distortion generating diode circuit unit 33a in a case where two diodes are connected in parallel to one microwave main line and two diodes are connected in parallel to each other. FIG. The distortion generating diode circuit unit 33a in FIG. 14B is equivalent to the distortion compensation circuit in FIG. 4 with the following modifications. That is, the second diode 3a, the third capacitor 4a, the third and fourth microwave main lines 7a and 8a, the second bias resistor 9a, the third choke coil 10a, and the second A bias voltage supply unit 11a is added. Here, the second diode 3a, the third capacitor 4a, the third and fourth microwave main lines 7a and 8a, the second bias resistor 9a, the third choke coil 10a, the second The bias voltage supply unit 11a is connected to the first diode 3, the first capacitor 4, the first and second microwave main lines 7 and 8, the first bias resistor 9, and the first bias resistor 9. The connection relationship between the two choke coils 10 and the first bias voltage supply unit 11 is the same. A circuit portion from the third capacitor 4 a to the fourth microwave main line 8 a is arranged between the second microwave main line 8 and the second capacitor 5.

図14Cは、2つのダイオードが1本のマイクロ波主線路に対して直列に接続されて、かつ、2つのダイオードが互いに直列に接続されている場合の歪発生ダイオード回路部33aの構成を示す回路図である。図14Cの歪発生ダイオード回路部33aは、図1の歪補償回路に以下の変更を加えたものに等しい。すなわち、第2のダイオード3aと、第3の容量4aと、第3、第4のチョークコイル6a、10aと、第3、第4のマイクロ波主線路7a、8aと、第2のバイアス抵抗9aと、第2のバイアス電圧供給部11aとを追加する。ここで、第2のダイオード3aと、第3の容量4aと、第3、第4のチョークコイル6a、10aと、第3、第4のマイクロ波主線路7a、8aと、第2のバイアス抵抗9aと、第2のバイアス電圧供給部11aとの接続関係は、第1のダイオード3と、第1の容量4と、第1、第2のチョークコイル6、10と、第1、第2のマイクロ波主線路7、8と、第1のバイアス抵抗9と、第1のバイアス電圧供給部11との接続関係と、同様である。そして、第2のマイクロ波主線路8および第2の容量5の間に第3の容量4aから第4のマイクロ波主線路8aまでの回路部が配置されている。   FIG. 14C is a circuit showing a configuration of the distortion generating diode circuit unit 33a in the case where two diodes are connected in series to one microwave main line and the two diodes are connected in series to each other. FIG. The distortion generating diode circuit unit 33a in FIG. 14C is equivalent to the distortion compensation circuit in FIG. 1 with the following modifications. That is, the second diode 3a, the third capacitor 4a, the third and fourth choke coils 6a and 10a, the third and fourth microwave main lines 7a and 8a, and the second bias resistor 9a And a second bias voltage supply unit 11a. Here, the second diode 3a, the third capacitor 4a, the third and fourth choke coils 6a and 10a, the third and fourth microwave main lines 7a and 8a, and the second bias resistor 9a and the second bias voltage supply unit 11a are connected to each other in terms of the first diode 3, the first capacitor 4, the first and second choke coils 6, 10, and the first and second The connection relationship among the microwave main lines 7 and 8, the first bias resistor 9, and the first bias voltage supply unit 11 is the same. A circuit portion from the third capacitor 4 a to the fourth microwave main line 8 a is arranged between the second microwave main line 8 and the second capacitor 5.

図14Dは、2つのダイオードが1本のマイクロ波主線路に対して並列に接続されて、かつ、2つのダイオードが互いに直列に接続されている場合の歪発生ダイオード回路部33aの構成を示す回路図である。図14Dの歪発生ダイオード回路部33aは、入力部1と、出力部2と、第1、第2のダイオード3、3aと、第1、第2の容量4、4aと、第1〜第3のチョークコイル6、10、10aと、第1、第2のマイクロ波主線路7、8と、第1、第2のバイアス抵抗9、9aと、第1、第2のバイアス電圧供給部11、11aとを具備している。入力部1は、第1のマイクロ波主線路7に接続されている。第1のマイクロ波主線路7は、第1の容量4の一方の端部と、第2のマイクロ波主線路8とに接続されている。第2のマイクロ波主線路8は、出力部2に接続されている。第1の容量4の他方の端部は、第1のバイアス抵抗9の一方の端部と、第1のダイオード3のアノードとに接続されている。第1のバイアス抵抗9の他方の端部は、第2のチョークコイル10の一方の端部に接続されている。第2のチョークコイル10の他方の端部は、第1のバイアス電圧供給部11に接続されている。第1のダイオード3のカソードは、第1のチョークコイル6の一方の端部と、第2の容量4aの一方の端部に接続されている。第1のチョークコイル6の他方の端部は、グランドに接地されている。第2の容量4aの他方の端部は、第2のバイアス抵抗9aの一方の端部と、第2のダイオード3aのカソードとに接続されている。第2のバイアス抵抗9aの他方の端部は、第3のチョークコイル10aの一方の端部に接続されている。第3のチョークコイル10aの他方の端部は、第2のバイアス電圧供給部11aに接続されている。第2のダイオード3aのアノードは、グランドに接地されている。   FIG. 14D is a circuit showing a configuration of the distortion generating diode circuit unit 33a when two diodes are connected in parallel to one microwave main line and two diodes are connected in series with each other. FIG. 14D includes an input unit 1, an output unit 2, first and second diodes 3, 3a, first and second capacitors 4, 4a, and first to third. Choke coils 6, 10, 10 a, first and second microwave main lines 7, 8, first and second bias resistors 9, 9 a, first and second bias voltage supply units 11, 11a. The input unit 1 is connected to the first microwave main line 7. The first microwave main line 7 is connected to one end of the first capacitor 4 and the second microwave main line 8. The second microwave main line 8 is connected to the output unit 2. The other end of the first capacitor 4 is connected to one end of the first bias resistor 9 and the anode of the first diode 3. The other end of the first bias resistor 9 is connected to one end of the second choke coil 10. The other end of the second choke coil 10 is connected to the first bias voltage supply unit 11. The cathode of the first diode 3 is connected to one end of the first choke coil 6 and one end of the second capacitor 4a. The other end of the first choke coil 6 is grounded. The other end of the second capacitor 4a is connected to one end of the second bias resistor 9a and the cathode of the second diode 3a. The other end of the second bias resistor 9a is connected to one end of the third choke coil 10a. The other end of the third choke coil 10a is connected to the second bias voltage supply unit 11a. The anode of the second diode 3a is grounded.

このように、図14A〜図14Dの歪発生ダイオード回路部33aは、2つのバイアス電圧をそれぞれ独立に印加される2つのダイオード3、3aによって、本発明の第1の実施形態の場合よりも複雑な歪を発生させることが可能である。   As described above, the distortion generating diode circuit unit 33a of FIGS. 14A to 14D is more complicated than the case of the first embodiment of the present invention by the two diodes 3 and 3a to which two bias voltages are applied independently. It is possible to generate a distortion.

また、図14A〜図14Dの例以外にも、ダイオードの数や、ダイオードの主線路に対する接続関係や、ダイオード同士の接続関係や、バイアス電圧の数などは自由に組み合わせることが可能である。この点において、本発明による制御回路部、その中でも特に直流増幅回路は、その数を増やすことで、複数のバイアス電圧を独立に調整して出力することが可能である。   In addition to the examples of FIGS. 14A to 14D, the number of diodes, the connection relationship of the diodes to the main line, the connection relationship between the diodes, the number of bias voltages, and the like can be freely combined. In this respect, the control circuit unit according to the present invention, in particular, the DC amplifier circuit, in particular, can output a plurality of bias voltages independently adjusted by increasing the number thereof.

以上のように、本発明の第5の実施形態に係る歪補償回路30d、30eでは、入力信号の一部を取り込むアナログ回路としての制御回路部32aなどを具備しているので、ダイオードに印加するバイアス電圧を入力信号に基づいて自動的に制御することで、超高周波入力信号平均電力における広い範囲にわたって低歪化が可能となる。   As described above, the distortion compensation circuits 30d and 30e according to the fifth embodiment of the present invention include the control circuit unit 32a as an analog circuit that captures a part of the input signal, and is applied to the diode. By automatically controlling the bias voltage based on the input signal, it is possible to reduce distortion over a wide range in the average power of the ultrahigh frequency input signal.

ここまでに説明した本発明の実施形態は、技術的に矛盾しない範囲で、自由に組み合わせることが可能であることは言うまでもない。例えば、第4の実施形態における容量36の代わりに、第3の実施形態における方向性結合回路37を用いても、なんら問題は無い。   It goes without saying that the embodiments of the present invention described so far can be freely combined within a technically consistent range. For example, there is no problem even if the directional coupling circuit 37 in the third embodiment is used instead of the capacitor 36 in the fourth embodiment.

1 入力部
2 出力部
3、3a ダイオード
4、4a 容量
5、5a 容量
6、6a チョークコイル
7、7a マイクロ波主線路
8、8a マイクロ波主線路
9、9a バイアス抵抗
10、10a チョークコイル
11、11a バイアス電圧供給部
12〜14 ダイオード歪補償回路を含む増幅器の特性を示すグラフ曲線
22〜25 平均出力電力およびACPRの関係を示すグラフ曲線
30、30a、30b、30c、30d 歪補償回路
31 入力部
32a 制御回路部
32b 制御回路部
33、33a 歪発生ダイオード回路部
34 増幅器
35 出力部
36 キャパシタ
37 方向性結合器
41 対数検波回路
42 低域通過フィルタ
43 直流増幅回路
A1〜A4 オペアンプ
C1〜C3 容量
D1、D2 ダイオード
VR1〜VR3 可変抵抗
R1〜R5 抵抗
DESCRIPTION OF SYMBOLS 1 Input part 2 Output part 3, 3a Diode 4, 4a Capacitance 5, 5a Capacitance 6, 6a Choke coil 7, 7a Microwave main line 8, 8a Microwave main line 9, 9a Bias resistor 10, 10a Choke coil 11, 11a Bias voltage supply unit 12-14 Graph curve showing characteristics of amplifier including diode distortion compensation circuit 22-25 Graph curve showing relationship between average output power and ACPR 30, 30a, 30b, 30c, 30d Distortion compensation circuit 31 Input unit 32a Control circuit section 32b Control circuit section 33, 33a Distortion generating diode circuit section 34 Amplifier 35 Output section 36 Capacitor 37 Directional coupler 41 Logarithmic detection circuit 42 Low-pass filter 43 DC amplifier circuit A1-A4 Operational amplifier C1-C3 Capacitance D1, D2 Diode VR1 to VR3 Variable resistance R 1 to R5 resistance

Claims (8)

増幅器に接続されて使用される歪補償回路であって、
入力信号の一部を検出し、前記入力信号の平均電力に応じてバイアス電圧をアナログ回路で生成する制御回路部と、
前記増幅器の歪特性を補償するための歪を前記バイアス電圧に応じて生成し、前記入力信号に前記歪を加える歪発生ダイオード回路部と
を具備し、
前記制御回路部は、
前記入力信号の一部を対数検波して前記入力信号の平均電力を得る対数検波回路と、
前記対数検波回路の出力信号の直流成分を得るLPF(Low Pass Filter:低域通過フィルタ)と、
前記LPFの出力信号を増幅して前記バイアス電圧を生成する直流増幅回路と
を具備する
歪補償回路。
A distortion compensation circuit used connected to an amplifier,
A control circuit unit that detects a part of the input signal and generates a bias voltage in an analog circuit according to the average power of the input signal;
A distortion generating diode circuit unit that generates distortion for compensating for distortion characteristics of the amplifier according to the bias voltage, and adds the distortion to the input signal;
The control circuit unit is
A logarithmic detection circuit that obtains an average power of the input signal by logarithmically detecting a part of the input signal;
LPF (Low Pass Filter) for obtaining a DC component of the output signal of the logarithmic detection circuit;
A distortion compensation circuit comprising: a DC amplification circuit that amplifies an output signal of the LPF to generate the bias voltage.
請求項1に記載の歪補償回路において、
前記制御回路部は、
前記入力信号の一部を取り出す容量
をさらに具備する
歪補償回路。
The distortion compensation circuit according to claim 1,
The control circuit unit is
A distortion compensation circuit further comprising a capacitor for extracting a part of the input signal.
請求項1または2に記載の歪補償回路において、
前記制御回路部は、
前記入力信号の一部を取り出す方向性結合回路
をさらに具備する
歪補償回路。
The distortion compensation circuit according to claim 1 or 2,
The control circuit unit is
A distortion compensation circuit further comprising a directional coupling circuit for extracting a part of the input signal.
請求項1〜3のいずれかに記載の歪補償回路において、
前記歪発生ダイオード回路部は、
前記バイアス電圧に応じて前記歪を生成する複数のダイオード
をさらに具備し、
前記複数のダイオードは、線路に対して直列または並列に接続され、かつ、互いに直列または並列に接続されている
歪補償回路。
The distortion compensation circuit according to any one of claims 1 to 3,
The distortion generating diode circuit section is
A plurality of diodes for generating the distortion in response to the bias voltage;
The distortion compensation circuit, wherein the plurality of diodes are connected in series or parallel to the line and are connected in series or parallel to each other.
請求項1〜3のいずれかに記載の歪補償回路において、
前記入力信号の平均電力に応じて別のバイアス電圧を生成する別の制御部
をさらに具備し、
前記歪発生ダイオード回路部は、
前記バイアス電圧および前記別のバイアス電圧に応じて前記歪を生成する複数のダイオード
をさらに具備し、
前記複数のダイオードは、線路に対して直列または並列に接続され、かつ、互いに直列または並列に接続されている
歪補償回路。
The distortion compensation circuit according to any one of claims 1 to 3,
Further comprising another control unit that generates another bias voltage according to the average power of the input signal,
The distortion generating diode circuit section is
A plurality of diodes for generating the distortion in response to the bias voltage and the other bias voltage;
The distortion compensation circuit, wherein the plurality of diodes are connected in series or parallel to the line and are connected in series or parallel to each other.
請求項1〜5のいずれかに記載の歪補償回路において、
前記制御回路部は、ACPR(Adjacent −Channel Power Ratio:隣接チャネル漏洩電力比)またはIMD3(third−order InterModulation Distortion:三次相互変調歪)の変調を受けた高周波信号の平均出力電力の特性を用いて設計されている
歪補償回路。
In the distortion compensation circuit according to any one of claims 1 to 5,
The control circuit unit uses a characteristic of an average output power of a high-frequency signal subjected to ACPR (Adjacent-Channel Power Ratio: adjacent channel leakage power ratio) or IMD3 (third-order InterModulation Distortion: third-order intermodulation distortion). Designed distortion compensation circuit.
請求項1〜6のいずれかに記載の歪補償回路を有し、
前記増幅器が前記歪補償回路の後段に接続された
歪補償増幅回路。
The distortion compensation circuit according to any one of claims 1 to 6,
A distortion compensation amplifier circuit in which the amplifier is connected to a subsequent stage of the distortion compensation circuit.
入力信号を検出するステップと、
前記検出するステップで得られる前記入力信号の平均電力に応じたバイアス電圧をアナログ回路で生成するステップと、
増幅器の歪特性を補償するための歪を前記バイアス電圧に応じて生成するステップと、
前記歪をバイアス電圧に応じて生成するステップで得られる歪を前記入力信号に加えるステップと
を具備し、
前記バイアス電圧を生成するステップは、
前記入力信号の一部を対数検波回路で対数検波して前記入力信号の平均電力を得るステップと、
前記対数検波回路の出力信号の直流成分を得るステップと、
前記LPFの出力信号を増幅して前記バイアス電圧を生成するステップと
を具備する
歪補償方法。
Detecting an input signal;
Generating a bias voltage according to an average power of the input signal obtained in the detecting step by an analog circuit;
Generating distortion to compensate for distortion characteristics of the amplifier according to the bias voltage;
Adding the distortion obtained in the step of generating the distortion according to a bias voltage to the input signal,
Generating the bias voltage comprises:
Logarithmically detecting a part of the input signal with a logarithmic detection circuit to obtain an average power of the input signal;
Obtaining a DC component of the output signal of the logarithmic detection circuit;
And a step of amplifying an output signal of the LPF to generate the bias voltage.
JP2010151349A 2010-07-01 2010-07-01 Distortion compensation circuit Active JP5565727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010151349A JP5565727B2 (en) 2010-07-01 2010-07-01 Distortion compensation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010151349A JP5565727B2 (en) 2010-07-01 2010-07-01 Distortion compensation circuit

Publications (2)

Publication Number Publication Date
JP2012015860A JP2012015860A (en) 2012-01-19
JP5565727B2 true JP5565727B2 (en) 2014-08-06

Family

ID=45601748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010151349A Active JP5565727B2 (en) 2010-07-01 2010-07-01 Distortion compensation circuit

Country Status (1)

Country Link
JP (1) JP5565727B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179087A1 (en) * 2017-03-28 2018-10-04 三菱電機株式会社 Diode linearizer
JP2020129721A (en) * 2019-02-07 2020-08-27 株式会社東芝 High-frequency amplifier circuit

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116719U (en) * 1984-01-17 1985-08-07 株式会社東芝 Field effect transistor amplifier circuit
JPH0230912Y2 (en) * 1984-10-09 1990-08-21
JP2000216650A (en) * 1999-01-20 2000-08-04 Mitsubishi Electric Corp Microwave low distortion amplifier
JP2000261255A (en) * 1999-03-12 2000-09-22 Kokusai Electric Co Ltd Distortion compensating power amplifier circuit
JP2000286656A (en) * 1999-03-29 2000-10-13 Matsushita Electric Ind Co Ltd Level detecting circuit for radio equipment and radio equipment
JP3951521B2 (en) * 1999-10-27 2007-08-01 三菱電機株式会社 Distortion compensation circuit and method of using the same
JP3939888B2 (en) * 2000-01-19 2007-07-04 独立行政法人科学技術振興機構 Nonlinear distortion compensation power amplifier
JP2001203541A (en) * 2000-01-20 2001-07-27 Sony Corp Distortion compensation device and distortion compensation method, amplifier and wireless transmitter
JP2001352219A (en) * 2000-06-08 2001-12-21 Sony Corp Nonlinear distortion compensating device
JP2002084143A (en) * 2000-09-11 2002-03-22 Mitsubishi Electric Corp Linearizer circuit and method for adjusting the same
JP2004254095A (en) * 2003-02-20 2004-09-09 Mitsubishi Electric Corp Distortion compensation circuit and low distortion semiconductor amplifier
JP2006033487A (en) * 2004-07-16 2006-02-02 Japan Radio Co Ltd Distortion detection circuit, and feed-forward amplifier and pre-distortion amplifier using it
JP4319681B2 (en) * 2004-10-28 2009-08-26 三菱電機株式会社 Linearizer
JP4283294B2 (en) * 2006-09-20 2009-06-24 株式会社日立国際電気 Doherty amplifier
JP2008172544A (en) * 2007-01-12 2008-07-24 Mitsubishi Electric Corp Distortion compensation circuit using diode linearizer

Also Published As

Publication number Publication date
JP2012015860A (en) 2012-01-19

Similar Documents

Publication Publication Date Title
US7710201B2 (en) Power amplifier circuit, control method thereof and control program thereof
KR101232407B1 (en) Amplifier with gain expansion stage
US20110006846A1 (en) High-frequency amplifier
KR100427878B1 (en) Amplifier circuit
CN102217192A (en) Variable gain amplifier
US10892719B2 (en) Multistage power amplifier with linearity compensating function
US20120139632A1 (en) Differential amplifier circuit
US20100148862A1 (en) Method and apparatus for enhancing performance of doherty power amplifier
US7696822B2 (en) Amplifying circuit and associated linearity improving method
WO2018162746A1 (en) Power amplifier with stepwise envelope tracking and adaptive load
JP5565727B2 (en) Distortion compensation circuit
JP2014138323A (en) Amplification device, distortion compensation device and distortion compensation method
JP4536468B2 (en) Class E amplifier and EER modulation amplifier
US20090273400A1 (en) Device and method for generating an output signal
US8035450B2 (en) Operational transconductance amplifier having two amplification stages
JP2008271172A (en) High efficiency amplifier
TWI623193B (en) Power amplifier circuit
US10965252B2 (en) Broadband driver with extended linear output voltage
TWI716988B (en) Logarithmic power detector
US20030076187A1 (en) Dynamics compressor for an analog signal to be compressed
JP4691785B2 (en) Amplifier circuit
KR101977783B1 (en) Method and Apparatus for Compensating Power Amplifier Performance
KR101480622B1 (en) Predistorter using virtual ground
JP2001203541A (en) Distortion compensation device and distortion compensation method, amplifier and wireless transmitter
CN106034095B (en) Digital predistortion transmitter and its control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140606

R150 Certificate of patent or registration of utility model

Ref document number: 5565727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250