JP5563362B2 - Photovoltaic module support structure and support height adjustment method thereof - Google Patents

Photovoltaic module support structure and support height adjustment method thereof Download PDF

Info

Publication number
JP5563362B2
JP5563362B2 JP2010106644A JP2010106644A JP5563362B2 JP 5563362 B2 JP5563362 B2 JP 5563362B2 JP 2010106644 A JP2010106644 A JP 2010106644A JP 2010106644 A JP2010106644 A JP 2010106644A JP 5563362 B2 JP5563362 B2 JP 5563362B2
Authority
JP
Japan
Prior art keywords
photovoltaic module
support
support structure
column
receiving beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010106644A
Other languages
Japanese (ja)
Other versions
JP2011238665A (en
JP2011238665A5 (en
Inventor
博和 安田
義仁 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Civil Engineering and Construction Corp
Original Assignee
JFE Steel Corp
JFE Civil Engineering and Construction Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Civil Engineering and Construction Corp filed Critical JFE Steel Corp
Priority to JP2010106644A priority Critical patent/JP5563362B2/en
Publication of JP2011238665A publication Critical patent/JP2011238665A/en
Publication of JP2011238665A5 publication Critical patent/JP2011238665A5/en
Application granted granted Critical
Publication of JP5563362B2 publication Critical patent/JP5563362B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/48Arrangements for moving or orienting solar heat collector modules for rotary movement with three or more rotation axes or with multiple degrees of freedom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/13Transmissions
    • F24S2030/134Transmissions in the form of gearings or rack-and-pinion transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/13Transmissions
    • F24S2030/135Transmissions in the form of threaded elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、ソーラーパネルなどと呼ばれる光発電モジュールを支持する光発電モジュール支持構造に関し、特に大面積の光発電モジュールを縦方向並びに横方向に多数並べて支持するのに好適なものである。   The present invention relates to a photovoltaic module support structure that supports a photovoltaic module called a solar panel and the like, and is particularly suitable for supporting a large number of photovoltaic modules having a large area side by side in the vertical and horizontal directions.

地球温暖化に深刻な影響を与えるCOの排出量を低減するために、COを排出しない太陽光発電が積極的に開発されている。太陽光発電に用いられるソーラーパネルなどを光発電モジュールとも称するが、電力は蓄電しにくいので、面積の大きな光発電モジュールを多数並べて発電することにより、発電効率が向上する。このような大面積の光発電モジュールを支持する光発電モジュール支持構造としては、例えば下記特許文献1に記載されるものがある。この光発電モジュール支持構造では、光発電モジュールを揺動可能に支持する揺動用支柱や、光発電モジュールの揺動に合わせて長さを可変とするスライド柱を備え、これらにより大面積の光発電モジュールを確実に支持すると共に、少人数で光発電モジュールの傾斜角度を調整できるようにしている。 In order to reduce the amount of CO 2 emissions that have a serious impact on global warming, solar power generation that does not emit CO 2 has been actively developed. Although a solar panel or the like used for solar power generation is also referred to as a photovoltaic module, it is difficult to store electric power. Therefore, by generating a large number of photovoltaic modules having a large area, power generation efficiency is improved. As a photovoltaic module support structure for supporting such a photovoltaic module having a large area, there is one described in Patent Document 1 below, for example. This photovoltaic module support structure includes a swinging column that supports the photovoltaic module in a swingable manner, and a slide column whose length can be changed according to the oscillation of the photovoltaic module. The module is supported securely and the inclination angle of the photovoltaic module can be adjusted with a small number of people.

特開2005−64147号公報JP 2005-64147 A

最近、こうした光発電モジュールを、例えばゴミ集積所のような場所に配設したいという要求がある。ゴミ集積所は、有機物の化学変化などにより、土壌部分の収縮率の違いは予測もできない。つまり、例えば光発電モジュールを基礎上の支柱で支持するような場合、その支柱がどれぐらい沈下するかは予測できない。大面積の光発電モジュールを支持するためには、少なくとも数本の支柱が必要となるから、それらの支柱の間で等しくない沈下、所謂不等沈下が生じると光発電モジュールに歪みが生じる。光発電モジュールの大部分は硝子などの脆性材なので、許容範囲以上の歪みが生じると光発電モジュールが破損するという問題が生じる。このような問題は、不等沈下が生じる可能性のあるあらゆる土地で発生する恐れがある。
本発明は、上記のような問題点に着目してなされたものであり、不等沈下が生じる可能性のある土地でも光発電モジュールの破損を抑制防止することが可能な光発電モジュール支持構造を提供することを目的とするものである。
Recently, there is a demand for arranging such a photovoltaic module in a place such as a garbage dump. The garbage dump cannot predict the difference in the shrinkage rate of the soil due to chemical changes in organic matter. That is, for example, when a photovoltaic module is supported by a support on a foundation, it cannot be predicted how much the support will sink. In order to support a photovoltaic module having a large area, at least several support columns are required. Therefore, if an uneven subsidence, that is, a so-called uneven settlement occurs between the support columns, the photovoltaic module is distorted. Since most of the photovoltaic modules are brittle materials such as glass, there arises a problem that the photovoltaic modules are damaged when distortion exceeding an allowable range occurs. Such problems can occur on any land where unequal subsidence can occur.
The present invention has been made paying attention to the above-described problems, and provides a photovoltaic module support structure capable of suppressing and preventing damage to photovoltaic modules even on land where unequal settlement may occur. It is intended to provide.

上記課題を解決するために、本発明の光発電モジュール支持構造は、光発電モジュールを縦方向並びに横方向に多数並べて支持する光発電モジュール支持構造であって、平面視で方形の4隅に位置する4本の支柱と、前記4本の支柱のうちの横並びの2本の支柱毎に跳ね出し状に支持される2本の受梁と、前記2本の受梁上に跳ね出し状に支持され且つ光発電モジュールを搭載支持する複数の根太と、前記根太と光発電モジュールとの間に介装され且つ光発電モジュールを揺動可能に支持する揺動支持機構と、前記支柱と受梁との間に介装され且つ支柱の不等沈下に対応して受梁の高さを調整可能とした支持高さ調整機構とを備えたことを特徴とするものである。   In order to solve the above-described problems, the photovoltaic module support structure of the present invention is a photovoltaic module support structure that supports a large number of photovoltaic modules arranged side by side in the vertical direction and the horizontal direction, and is positioned at four corners of a square in plan view. 4 supporting columns, two receiving beams supported in a protruding manner for each of the two supporting columns arranged side by side, and supported in a protruding manner on the two receiving beams. A plurality of joists for mounting and supporting the photovoltaic module, a swing support mechanism interposed between the joists and the photovoltaic module and supporting the photovoltaic module so as to be swingable, the support column and the receiving beam. And a support height adjusting mechanism that can adjust the height of the receiving beam in response to uneven settlement of the support column.

また、前記支柱間の水平方向の距離を6m以上としたことを特徴とするものである。
また、前記受梁の全長に対する当該受梁の支柱からの跳ね出し片側長さの比及び前記根太の全長に対する当該根太の受梁からの跳ね出し片側長さの比を0.20以上0.22以下としたことを特徴とするものである。
また、前記支持高さ調整機構は、光発電モジュールの水平面に対する傾斜角度を調整する傾斜角度調整機構を備えることを特徴とするものである。
Moreover, the horizontal distance between the columns is 6 m or more.
Further, the ratio of the length of one side projecting from the column of the receiving beam to the entire length of the receiving beam and the ratio of the length of one side projecting from the beam of the joist to the total length of the joist are 0.20 or more and 0.22. It is characterized by the following.
In addition, the support height adjusting mechanism includes an inclination angle adjusting mechanism that adjusts an inclination angle of the photovoltaic module with respect to a horizontal plane.

また、前記支持高さ調整機構は、受梁の連結点を上下方向に移動するための支柱部材移動機構を備え、前記傾斜角度調整機構は、受梁の連結点を回転する回転連結機構を備えることを特徴とするものである。
また、前記支柱部材移動機構は、支柱部材の移動を規制する規制機構を備えたことを特徴とするものである。
Further, the support height adjusting mechanism includes a support member moving mechanism for moving the connecting point of the receiving beam in the vertical direction, and the tilt angle adjusting mechanism includes a rotation connecting mechanism for rotating the connecting point of the receiving beam. It is characterized by this.
The support member moving mechanism includes a restricting mechanism for restricting the movement of the support member.

而して、本発明の光発電モジュール支持構造によれば、大面積の光発電モジュールを縦方向並びに横方向に多数並べて支持するにあたり、4本の支柱のうちの横並びの2本の支柱毎に2本の受梁を跳ね出し状に支持し、その2本の受梁上に複数の根太を跳ね出し状に支持し、それらの根太に光発電モジュールを搭載支持すると共に、根太と光発電モジュールとの間に、光発電モジュールを揺動可能に支持する揺動支持機構を介装し、支柱と受梁との間に、支柱の不等沈下に対応して受梁の高さを調整可能とした支持高さ調整機構を介装したことにより、支柱の不等沈下に伴う光発電モジュールの歪みを低減することができると共に、不等沈下が生じても受梁の高さを調整して光発電モジュールの歪みを低減することができるので、光発電モジュールの破損を抑制防止することができる。   Thus, according to the photovoltaic module support structure of the present invention, when supporting a large number of photovoltaic modules having a large area arranged side by side in the vertical direction and the horizontal direction, every two of the four columns arranged side by side are supported. Two receiving beams are supported in a projecting manner, a plurality of joists are supported in a projecting manner on the two receiving beams, and photovoltaic modules are mounted and supported on the joists, and the joists and photovoltaic modules are supported. A swing support mechanism that supports the photovoltaic module in a swingable manner is installed in between, and the height of the support beam can be adjusted between the support column and the support beam in response to uneven settlement of the support column. By interposing the support height adjustment mechanism, it is possible to reduce the distortion of the photovoltaic module due to unequal settlement of the struts, and to adjust the height of the receiving beam even if unequal settlement occurs Since the distortion of the photovoltaic module can be reduced, the photovoltaic module Corruption Lumpur can be prevented suppressed.

また、支柱間の水平方向の距離を6m以上としたことにより、支柱の不等沈下に伴う光発電モジュールの歪みを小さくすることができる。
また、受梁の全長に対する当該受梁の支柱からの跳ね出し片側長さの比及び根太の全長に対する当該根太の受梁からの跳ね出し片側長さの比を0.20以上0.22以下としたことにより、受梁や根太の強度を小さくすることが可能となるから、それらの重量を小さくすることができ、土地の沈下そのものを低減することができる。
In addition, by setting the horizontal distance between the columns to 6 m or more, it is possible to reduce the distortion of the photovoltaic module due to the uneven settlement of the columns.
Further, the ratio of the length of one side protruding from the support column of the receiving beam to the total length of the receiving beam and the ratio of the length of one side protruding from the joist of the joist to the total length of the joist are 0.20 or more and 0.22 or less. As a result, it is possible to reduce the strength of the receiving beams and joists, so that their weight can be reduced and the settlement of the land itself can be reduced.

また、支持高さ調整機構に、光発電モジュールの水平面に対する傾斜角度を調整する傾斜角度調整機構を備えたことにより、光発電モジュールへの日射量を調整して光発電モジュールによる発電量を調整することが可能となる。
また、支持高さ調整機構に、受梁の連結点を上下方向に移動するための支柱部材移動機構を備え、傾斜角度調整機構に、受梁の連結点を回転する回転連結機構を備えたことにより、支柱と受梁の連結点を上下方向に移動させるだけで光発電モジュールの傾斜角度を調整することが可能となる。
また、支柱部材移動機構は、支柱部材の移動を規制する規制機構を備えたことにより、受梁の連結点の高さを所定の状態に保持しやすい。
In addition, the support height adjustment mechanism includes an inclination angle adjustment mechanism that adjusts the inclination angle of the photovoltaic module with respect to the horizontal plane, thereby adjusting the amount of solar radiation to the photovoltaic module and adjusting the amount of power generated by the photovoltaic module. It becomes possible.
In addition, the support height adjustment mechanism was equipped with a strut member movement mechanism for moving the connection point of the receiving beam in the vertical direction, and the tilt angle adjustment mechanism was equipped with a rotation connection mechanism for rotating the connection point of the reception beam Thus, it is possible to adjust the inclination angle of the photovoltaic module simply by moving the connecting point between the support column and the receiving beam in the vertical direction.
Further, since the support member moving mechanism includes a control mechanism that controls the movement of the support member, the height of the connection point of the receiving beam can be easily maintained in a predetermined state.

本発明の光発電モジュール支持構造の第1実施例を示す全体構成図であり、(a)は平面図、(b)は正面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole block diagram which shows 1st Example of the photovoltaic module support structure of this invention, (a) is a top view, (b) is a front view. 図1の光発電モジュール支持構造の模式図である。It is a schematic diagram of the photovoltaic module support structure of FIG. 図2の張り出し梁構造における断面係数及び断面二次モーメントの説明図である。It is explanatory drawing of a section modulus and a section secondary moment in the projecting beam structure of FIG. 光発電モジュール支持構造の基礎及び架台コストの説明図である。It is explanatory drawing of the foundation of a photovoltaic module support structure, and a gantry cost. 不等沈下が発生したときの光発電モジュールの歪み算出の説明図である。It is explanatory drawing of distortion calculation of the photovoltaic module when uneven settlement occurs. 基礎(支柱)スパンと許容相対沈下量の説明図である。It is explanatory drawing of a foundation (support | pillar) span and allowable relative settlement. 図1の光発電モジュール支持構造の詳細を示す説明図であり、(a)は左側面図、(b)は正面図である。It is explanatory drawing which shows the detail of the photovoltaic module support structure of FIG. 1, (a) is a left view, (b) is a front view. 光発電モジュールと根太の接続部分の説明図である。It is explanatory drawing of the connection part of a photovoltaic module and joist. 支柱部分における沈下量モニタの説明図であり、(a)は全体図、(b)はモニタの単体図、(c)は沈下量をモニタしている状態の説明図である。It is explanatory drawing of the subsidence amount monitor in a support | pillar part, (a) is a general view, (b) is a single-piece | unit figure of a monitor, (c) is explanatory drawing of the state which monitors the subsidence amount. 光発電モジュール支持構造の第2実施例を示す正面図である。It is a front view which shows 2nd Example of a photovoltaic module support structure. 光発電モジュール支持構造の第3実施例を示す正面図である。It is a front view which shows 3rd Example of a photovoltaic module support structure. 図11の支柱部材規制機構の一例を示す説明図であり、(a)は支柱部材の正面図、(b)は図11のA−A断面図、(c)は図11のB−B断面図である。It is explanatory drawing which shows an example of the support | pillar member control mechanism of FIG. 11, (a) is a front view of a support | pillar member, (b) is AA sectional drawing of FIG. 11, (c) is BB cross section of FIG. FIG. 図11の支柱部材規制機構の他の例を示す正面図である。It is a front view which shows the other example of the support | pillar member control mechanism of FIG. 図13の支柱部材規制機構に用いられたブレーキ部材の説明図である。It is explanatory drawing of the brake member used for the support | pillar member control mechanism of FIG. (a)は図13のC−C断面図、(b)は図13のD−D断面図である。(A) is CC sectional drawing of FIG. 13, (b) is DD sectional drawing of FIG. 図11の支柱部材規制機構の更に他の例を示す正面図である。It is a front view which shows the further another example of the support | pillar member control mechanism of FIG. 図16の支柱部材規制機構の作用の説明図である。It is explanatory drawing of an effect | action of the support | pillar member control mechanism of FIG. 光発電モジュール支持構造の第4実施例を示す正面図である。It is a front view which shows 4th Example of a photovoltaic module support structure. 図18のテンショナの説明図である。It is explanatory drawing of the tensioner of FIG. 光発電モジュール支持構造の第5実施例を示す正面図である。It is a front view which shows 5th Example of a photovoltaic module support structure. 図20のE−E断面図である。It is EE sectional drawing of FIG. 光発電モジュール支持構造の第6実施例を示す正面図である。It is a front view which shows 6th Example of a photovoltaic module support structure.

次に、本発明の光発電モジュール支持構造の一実施形態について図面を用いて説明する。図1は、本実施形態の光発電モジュール支持構造の全体図、図2は、図1の光発電モジュール支持構造の模式図である。本実施形態の光発電モジュール支持構造は、平面視で方形の4隅に位置する4本を1組とする支柱1と、前記4本の支柱1のうちの横並びの2本の支柱1毎に跳ね出し状に支持される2本の受梁2と、前記2本の受梁2上に跳ね出し状に支持される複数の根太3とを備え、前記根太3の上に光発電モジュール4を搭載する。この支柱1、受梁2、根太3の部分を架台とも呼ぶが、このような架台構造とすることにより、後述するように、より軽量な架台に多数の光発電モジュール4を搭載することが可能となるのである。勿論、各支柱の下方の地面には基礎5が構築される。なお、本発明では受梁2の長手方向を横方向、根太3の長手方向を縦方向と定義する。   Next, an embodiment of the photovoltaic module support structure of the present invention will be described with reference to the drawings. FIG. 1 is an overall view of the photovoltaic module support structure of the present embodiment, and FIG. 2 is a schematic diagram of the photovoltaic module support structure of FIG. The photovoltaic module support structure according to the present embodiment is provided for each of the four columns 1 located at the four corners of the square in a plan view and the two columns 1 arranged side by side among the four columns 1. Two receiving beams 2 supported in a projecting manner and a plurality of joists 3 supported in a projecting manner on the two receiving beams 2. A photovoltaic module 4 is mounted on the joists 3. Mount. The column 1, the support beam 2, and the joist 3 are also referred to as a gantry. By adopting such a gantry structure, as will be described later, a large number of photovoltaic modules 4 can be mounted on a lighter gantry. It becomes. Of course, the foundation 5 is constructed on the ground below each column. In the present invention, the longitudinal direction of the receiving beam 2 is defined as the horizontal direction, and the longitudinal direction of the joists 3 is defined as the vertical direction.

また、本実施形態では、前記根太3と光発電モジュール4との間に、当該光発電モジュール4を揺動可能に支持する揺動支持機構6を介装し、前記支柱1と受梁2との間に、当該支柱1(基礎5)の不等沈下に対応して受梁2の高さを調整可能とした支持高さ調整機構7を介装した。これらは、何れも不等沈下に追従する構成である。従来、土壌の不等沈下に対しては、基礎も架台も沈下しないように剛性を高めて対応している。しかしながら、前述したゴミ集積所などでは、有機物の化学変化などによって、どの程度の不等沈下が発生するか、予測もできない。そこで、本実施形態では、前記揺動支持機構6や支持高さ調整機構7によって不等沈下に追従するものとし、そのための条件として前記架台構造や後述する大型化などが重要となるのである。   Further, in the present embodiment, a swing support mechanism 6 that supports the photovoltaic module 4 so as to be swingable is interposed between the joist 3 and the photovoltaic module 4, so that the support column 1, the receiving beam 2, In the meantime, a support height adjusting mechanism 7 that can adjust the height of the receiving beam 2 corresponding to the uneven settlement of the support column 1 (foundation 5) is interposed. These are all configured to follow uneven settlement. Conventionally, the uneven settlement of soil has been dealt with by increasing the rigidity so that neither the foundation nor the platform will sink. However, it is impossible to predict how much unequal settlement will occur due to chemical changes in organic matter at the garbage collection sites described above. Therefore, in the present embodiment, it is assumed that the swing support mechanism 6 and the support height adjustment mechanism 7 follow the uneven settlement, and as a condition for that purpose, the gantry structure and the later-described enlargement are important.

図3は、前記支柱1と受梁2の間の張り出し状の支持構造、或いは受梁2と根太3の間の張り出し状の支持構造における所用(必要)断面係数及び所用(必要)断面二次モーメントを求めたものである。図中の符号Sは受梁2又は根太3の全長、符号Xは受梁2の支柱1からの張り出し片側長さ又は根太3の受梁2からの張り出し片側長さであり、横軸はX/Sを変数としてある。つまり、X/Sが0に近づくほど、図の左方に示す支点は梁の外側にセットされ、0.5に近づくほど中央にセットされる。また、符号ITは梁全体の所用断面二次モーメント、符号Icは梁中央部の所用断面二次モーメント、符号Zsは支点部分の所用断面係数、符号Zcは梁中央部の所用断面係数を示す。   FIG. 3 shows the required (necessary) section modulus and the required (necessary) cross-section secondary in the protruding support structure between the support column 1 and the receiving beam 2 or the protruding support structure between the receiving beam 2 and the joist 3. This is the moment. In the figure, symbol S is the total length of the support beam 2 or joist 3, and symbol X is the length of one side of the support beam 2 protruding from the column 1 or the length of the joist 3 from the support beam 2, and the horizontal axis is X / S is a variable. That is, as X / S approaches 0, the fulcrum shown on the left side of the figure is set to the outside of the beam, and as it approaches 0.5, it is set to the center. Further, symbol IT represents a desired sectional secondary moment of the whole beam, symbol Ic represents a desired sectional secondary moment of the central portion of the beam, symbol Zs represents a desired sectional modulus of the fulcrum portion, and symbol Zc represents a desired sectional modulus of the central portion of the beam.

断面二次モーメントは曲げモーメントに対する変形しにくさ(剛性)を表し、断面係数は曲げ抵抗強度を表すから、所用断面二次モーメントや所用断面係数は小さいほど、断面積を小さくすることができ、結果的に梁の重量を低減することができる。前述したように、本実施形態の光発電モジュール支持構造は、沈下する土壌を対象としているから、架台構造の重量を低減することは非常に重要な要素である。また、図から明らかなように、X/Sの剛性最適点は0.22、強度最適点は0.21であることから、本実施形態では、受梁2の全長に対する当該受梁2の支柱1からの跳ね出し片側長さの比及び根太3の全長に対する当該根太3の受梁2からの跳ね出し片側長さの比を0.20以上0.22以下とした。   The sectional moment represents the difficulty of deformation (rigidity) with respect to the bending moment, and the section modulus represents the bending resistance strength. The smaller the required sectional secondary moment and the required section modulus, the smaller the sectional area. As a result, the weight of the beam can be reduced. As described above, since the photovoltaic module support structure of this embodiment is intended for sinking soil, reducing the weight of the gantry structure is a very important factor. Further, as apparent from the figure, the optimum stiffness point of X / S is 0.22 and the optimum strength point is 0.21, and therefore in this embodiment, the support post of the receiving beam 2 with respect to the entire length of the receiving beam 2 The ratio of the length of one side projecting from 1 and the ratio of the length of one side projecting from the receiving beam 2 of the joist 3 to the total length of the joist 3 were set to 0.20 or more and 0.22 or less.

図4には、光発電モジュール支持構造の流れ長さ、本実施形態では根太3の長さ、及び光発電モジュール4の傾斜角度に対する基礎のコスト、及び架台のコストを示す。同図から明らかなように、光発電モジュール支持構造の流れ長さ、即ち根太3の長さを10000mm以上、つまり10m以上にすると傾斜角度が5°であるときの基礎のコストを小さくすることができる。また、コスト面だけでなく、後述するように、光発電モジュール4の歪みを小さくするためにも、光発電モジュール支持構造全体の平面視の大きさを大型化するのが望ましい。   FIG. 4 shows the flow length of the photovoltaic module support structure, the length of the joist 3 in this embodiment, the cost of the foundation with respect to the inclination angle of the photovoltaic module 4, and the cost of the gantry. As is clear from the figure, if the flow length of the photovoltaic module support structure, that is, the length of the joist 3 is 10000 mm or more, that is, 10 m or more, the basic cost when the inclination angle is 5 ° can be reduced. it can. Further, not only in terms of cost, but also as described later, in order to reduce the distortion of the photovoltaic module 4, it is desirable to increase the size of the entire photovoltaic module support structure in plan view.

図5は、4カ所の基礎、つまり基礎上の4本の支柱のうち、1カ所の基礎、つまり1本の支柱だけが沈下して不等沈下が生じた場合に、根太上の光発電モジュールに生じる歪みを算出する説明図である。例えば、図5aの右方向にX軸をとり、上方向にY軸をとり、左下の支柱位置(0,0)を原点として、右下の支柱位置を(0,S1)、左上の支柱位置を(S2,0)、右上の支柱位置を(S2,S1)とし、右上の支柱だけが不等沈下したものとして、図5bの光発電モジュールの4隅の座標(x1,y1)、(x2,y2)、(x3,y3)、(x4,y4)に生じる面外歪み量dを求め、その面外歪み量dが許容範囲内であるときの支柱、即ち基礎の許容相対沈下量δを求める。面外歪み量とは、光発電モジュールの大部分を占める硝子などの平面部材が、その平面から外れる方向に歪む量である。   FIG. 5 shows a photovoltaic module on joists when four foundations, that is, four struts on the foundation, sunk only on one foundation, that is, one strut, resulting in uneven settlement. It is explanatory drawing which calculates the distortion which arises. For example, in FIG. 5a, the X-axis is taken to the right, the Y-axis is taken upward, the lower left column position (0, 0) is the origin, the lower right column position is (0, S1), and the upper left column position. (S2, 0), the right upper column position is (S2, S1), and only the upper right column is sunk unevenly, the coordinates (x1, y1), (x2) of the four corners of the photovoltaic module in FIG. , Y2), (x3, y3), and (x4, y4), an out-of-plane strain amount d is obtained, and an allowable relative settlement amount δ of the column, that is, the foundation when the out-of-plane strain amount d is within the allowable range. Ask. The out-of-plane strain amount is an amount by which a planar member such as glass that occupies most of the photovoltaic module is distorted in a direction away from the plane.

図6には、基礎の許容相対沈下量δの算出結果を示す。図中の基礎スパンとは、例えば図5aの左下の支柱の基礎と右下の支柱の基礎の間隔を示し、基礎スパン縦横比とは、例えば図5aの左下の支柱の基礎と左上の支柱の基礎の間隔に対する、左下の支柱の基礎と右下の支柱の基礎の間隔の比を示す。同図から明らかなように、基礎の間隔を大きくするほど基礎の許容相対沈下量は大きくなり、基礎の間隔を6000mm、即ち6mとし、基礎間隔の縦横比が1であるときの基礎の許容相対沈下量δは300mmとなる。そこで、本実施形態では、支柱1間の平面視の、つまり水平方向の距離を6m以上とした。また、前述したように、本実施形態では、受梁2の全長に対する当該受梁2の支柱1からの跳ね出し片側長さの比及び根太3の全長に対する当該根太3の受梁2からの跳ね出し片側長さの比を0.20以上0.22以下としたので、受梁2の全長や根太3の全長は10m以上となり、大型の光発電モジュール支持構造となる。   FIG. 6 shows the calculation result of the allowable relative settlement amount δ of the foundation. The base span in the figure indicates, for example, the distance between the foundation of the lower left support column and the lower right support column in FIG. 5a, and the aspect ratio of the foundation span refers to, for example, the base of the lower left support column and the upper left support column in FIG. The ratio of the distance between the foundation of the lower left column and the foundation of the lower right column relative to the distance between the foundations is shown. As can be seen from the figure, the larger the gap between the foundations, the larger the allowable relative settlement of the foundation. The gap between the foundations is set to 6000 mm, that is, 6 m. The settlement amount δ is 300 mm. Therefore, in the present embodiment, the distance between the columns 1 in a plan view, that is, in the horizontal direction is set to 6 m or more. Further, as described above, in the present embodiment, the ratio of the length of one side of the support beam 2 that protrudes from the support column 1 to the total length of the support beam 2 and the jump of the joist 3 from the support beam 2 with respect to the total length of the joist 3. Since the ratio of the length of the protruding piece side is 0.20 or more and 0.22 or less, the total length of the receiving beam 2 and the total length of the joists 3 are 10 m or more, and a large photovoltaic module supporting structure is obtained.

図7には、基礎5から光発電モジュール4までの構造の第1実施例の詳細を示す。この光発電モジュール支持構造は、例えば基礎5が沈下した支柱1を長くして受梁2を高くすることで、不等沈下に対応する支持高さ調整機構7を備える。本実施例では、光発電モジュール4の傾斜角度を調整する機構は備えていない。本実施例では、基礎5の支柱1設置部位に4本のアンカーボルト8を埋設し、そのネジ部8aを長く上方に突出させている。アンカーボルト8のネジ部8aには、防錆用のカバー14が被せられている。このアンカーボルト8のネジ部8aにナット9を螺合し、次いで4本のアンカーボルト8のネジ部8aを支柱部材10の基板11の図示しない貫通穴に挿通し、その基板11の上方から、更にアンカーボルト8のネジ部8aにナット9を螺合する。ちなみに、基板11の上方のナット9は二重に重ねる、所謂ダブルナットになっていて緩まないようになっている。   In FIG. 7, the detail of 1st Example of the structure from the foundation 5 to the photovoltaic module 4 is shown. This photovoltaic module support structure includes a support height adjusting mechanism 7 corresponding to unequal subsidence, for example, by elongating the support column 1 with the foundation 5 subsided to make the receiving beam 2 higher. In this embodiment, no mechanism for adjusting the inclination angle of the photovoltaic module 4 is provided. In the present embodiment, four anchor bolts 8 are buried in the support 1 installation site of the foundation 5, and the threaded portion 8a is long and protrudes upward. The screw part 8a of the anchor bolt 8 is covered with a cover 14 for rust prevention. The nut 9 is screwed into the threaded portion 8a of the anchor bolt 8, and then the threaded portions 8a of the four anchor bolts 8 are inserted into through holes (not shown) of the substrate 11 of the column member 10, and from above the substrate 11, Further, the nut 9 is screwed into the threaded portion 8 a of the anchor bolt 8. Incidentally, the nut 9 above the substrate 11 is a so-called double nut that overlaps in a double manner and does not loosen.

基板11の上には、上方が開いた二股の支柱部材10が溶接などによって固定され、その上端部に上板12が溶接などによって固定されている。この上板12にボルト・ナットなどの固定具を用いて揺動機構13を取付け、その揺動機構13がボルト・ナットなどの固定具を用いて前記受梁2に取付けられている。揺動機構13は、断面形状がT字状の連結部材を、リブ(垂直部)同士が重なるように配置し、それらのリブを1本のボルト13aで連結することにより、当該ボルト13aの周りに揺動可能としたものである。受梁2の上方には、ボルト・ナットなどの固定具を用いて複数の根太3が固定され、それらの根太3の上方に、後述する揺動支持機構を介して、光発電モジュール4が取付けられている。   A bifurcated support member 10 having an open top is fixed on the substrate 11 by welding or the like, and an upper plate 12 is fixed to the upper end portion thereof by welding or the like. A swing mechanism 13 is attached to the upper plate 12 using a fastener such as a bolt or nut, and the swing mechanism 13 is attached to the receiving beam 2 using a fastener such as a bolt or nut. The swinging mechanism 13 is arranged around the bolt 13a by arranging connecting members having a T-shaped cross section so that the ribs (vertical portions) overlap each other and connecting these ribs with a single bolt 13a. Can be swung. A plurality of joists 3 are fixed to the upper portion of the receiving beam 2 using a fixing tool such as a bolt and a nut, and the photovoltaic module 4 is attached to the upper portions of the joists 3 via a swing support mechanism described later. It has been.

この光発電モジュール支持構造では、不等沈下が生じると、アンカーボルト8のカバー14を外し、支柱部材10の基板11の上方のナット9を弛めて上方に移動し、必要に応じて二股の支柱部材10の間で上板12をジャッキアップし、支柱部材10の基板11の下方のナット9を回転させて上方に移動させる。支柱部材10の基板11の下方のナット9を必要な高さ、つまり沈下分だけ上方に移動したら、そのナット9の上方に支柱部材10の基板11を搭載し、基板11の上方のナット9を螺合し締め付けて固定する。これにより、支柱1が実質的に沈下分だけ長くなったことになり、受梁2の高さが高くなって不等沈下が吸収され、光発電モジュール4の歪みが解消される。   In this photovoltaic module support structure, when uneven settlement occurs, the cover 14 of the anchor bolt 8 is removed, the nut 9 above the substrate 11 of the column member 10 is loosened and moved upward, and if necessary, the bifurcated The upper plate 12 is jacked up between the support members 10, and the nut 9 below the substrate 11 of the support member 10 is rotated and moved upward. When the nut 9 below the substrate 11 of the support member 10 is moved upward by a necessary height, that is, the sinking amount, the substrate 11 of the support member 10 is mounted above the nut 9 and the nut 9 above the substrate 11 is attached. Screw and tighten to fix. As a result, the support column 1 becomes substantially longer by the amount of settlement, the height of the receiving beam 2 is increased, the uneven settlement is absorbed, and the distortion of the photovoltaic module 4 is eliminated.

図8には、根太3と光発電モジュール4の間に介装された揺動支持機構6の詳細を示す。光発電モジュール4は、例えば実際に光発電を行うパネル部41と、その周囲を支持する枠体42を備え、枠体42の下方に断面コ字状の脚部43が延設されている。本実施例では、一枚の板金を折り曲げて取付部材19を作成する。この取付部材19は、前記脚部43の下側の板材に当接する上板部15と、その上板15に連接する垂直板部16と、その垂直板部16に連接する下板部17を断面コ字状に形成し、その下板17に連接して垂直下方向きの取付部18を形成し、取付部18をボルト・ナットなどの固定具で根太3に取付け、前記上板部15を光発電モジュール4の脚部43の下側の板材にボルト・ナットなどの固定具で取付ける。前記上板15、垂直板部16、下板部17で構成される板金の断面コ字状部は弾性変形して光発電モジュール4の揺動を吸収する。そのため、支柱1の不等沈下によって光発電モジュール4が局所的に変位しても、その変位を取付部材19の断面コ字状部が吸収し、光発電モジュール4に応力が集中して破損するのを抑制防止することができる。   In FIG. 8, the detail of the rocking | fluctuation support mechanism 6 interposed between the joist 3 and the photovoltaic module 4 is shown. The photovoltaic module 4 includes, for example, a panel portion 41 that actually performs photovoltaic power generation and a frame body 42 that supports the periphery thereof, and a leg portion 43 having a U-shaped cross section extends below the frame body 42. In this embodiment, the attachment member 19 is created by bending a single sheet metal. The mounting member 19 includes an upper plate portion 15 that contacts the lower plate member of the leg portion 43, a vertical plate portion 16 that is connected to the upper plate 15, and a lower plate portion 17 that is connected to the vertical plate portion 16. It is formed in a U-shaped cross section, and is connected to the lower plate 17 to form a vertically downward mounting portion 18. The mounting portion 18 is attached to the joist 3 with a fixture such as a bolt and a nut, and the upper plate portion 15 is It attaches to the board | plate material of the leg part 43 of the photovoltaic module 4 with fixing tools, such as a volt | bolt and a nut. The U-shaped section of the sheet metal formed by the upper plate 15, the vertical plate portion 16, and the lower plate portion 17 is elastically deformed to absorb the swing of the photovoltaic module 4. Therefore, even if the photovoltaic module 4 is locally displaced due to unequal settlement of the support column 1, the displacement is absorbed by the U-shaped section of the mounting member 19 and the photovoltaic module 4 is damaged due to stress concentration. Can be suppressed and prevented.

図9には、支柱部分における沈下量モニタ20を示す。この沈下量モニタ20は、図9bに示すように、透明な樹脂製カップで構成され、下部には連結用パイプ22が突設され、樹脂製カップの内部は連結用パイプ22の先端で外部と連通している。この沈下量モニタ20を4本の支柱1の夫々の上端部に同じ高さに取付け、前記連結用パイプ22にチューブ21を差し込んで4つの沈下量モニタ20を連結する(使用しない連結用パイプ22はプラグなどで閉塞する)。その状態で、全ての沈下量モニタ20に水などの液体を供給する。沈下量モニタ20の高さは同じなので、内部の液体の液面高さも同じになる。しかしながら、支柱1に不等沈下が生じると、図9cに示すように沈下量モニタ20の高さが変化し、内部の液体の液面高さが変化する。沈下量モニタ20の内部の液体の液面高さが高いほど沈下しており、低いほど沈下していない。従って、前記支持高さ調整機構7で受梁2の高さを調整する場合には、沈下量モニタ20の内部の液体の液面高さが最も低い支柱1に合わせて、その他の支持高さ調整機構7で受梁2の高さを調整すればよい。   FIG. 9 shows a sinking amount monitor 20 in the column portion. As shown in FIG. 9 b, the sinking amount monitor 20 is configured by a transparent resin cup, and a connecting pipe 22 projects from the lower part. The inside of the resin cup is connected to the outside at the tip of the connecting pipe 22. Communicate. The sinking amount monitors 20 are attached to the upper ends of the four columns 1 at the same height, and the tubes 21 are inserted into the connecting pipes 22 to connect the four sinking amount monitors 20 (unused connecting pipes 22 Is plugged with a plug). In this state, a liquid such as water is supplied to all the settlement amount monitors 20. Since the sinking amount monitor 20 has the same height, the liquid level of the internal liquid is also the same. However, when uneven settlement occurs in the support column 1, the height of the settlement amount monitor 20 changes as shown in FIG. 9c, and the liquid level of the internal liquid changes. The higher the liquid level of the liquid in the subsidence amount monitor 20, the lower the liquid level, and the lower the liquid level, the lower the liquid level. Therefore, when the height of the receiving beam 2 is adjusted by the support height adjusting mechanism 7, the other support heights are set in accordance with the column 1 having the lowest liquid level inside the sinking amount monitor 20. The height of the receiving beam 2 may be adjusted by the adjusting mechanism 7.

図10は、支持高さ調整機構7の第2実施例を示す。この支持高さ調整機構7は、光発電モジュール4の傾斜角度を調整するための傾斜角度調整機構23を備える。本実施形態では、基礎5の上に箱形の基台24を立設し、上板25に開設した貫通穴に、支柱部材であるネジ桿26を上側から挿通する。ネジ桿26には、当該ネジ桿26に螺合するネジ穴の形成された上側球面部材28が螺合されている。この上側球面部材28は、お椀の高台部分をくりぬいたような形状で、外周部に二面幅(六角形でも可)が形成されており、お椀の球面部を下向きにしてネジ桿26に螺合されている。そして、前記上板25の貫通穴に挿通されたネジ桿26の下端部から下側球面部材27を被せるようにして、当該下側球面部材27の貫通穴内にネジ桿26を差し込む。この下側球面部材27は、お椀の高台を長くしたような形状で、お椀の球面部を上向きにしてネジ桿26に被嵌され、その高台部分が前記上側球面部材28のくりぬき部分に嵌入する。下側球面部材27の高台部分を上側球面部材28のくりぬき部分に嵌入したら、上側球面部材28の外周面からボルト29を螺合し締め付けて下側球面部材27を上側球面部材28に固定する。なお、ネジ桿26自体は、図示しない保持機構によって保持される。   FIG. 10 shows a second embodiment of the support height adjusting mechanism 7. The support height adjusting mechanism 7 includes an inclination angle adjusting mechanism 23 for adjusting the inclination angle of the photovoltaic module 4. In this embodiment, a box-shaped base 24 is erected on the foundation 5, and a screw rod 26, which is a support member, is inserted into the through hole formed in the upper plate 25 from above. An upper spherical member 28 having a screw hole that is screwed into the screw rod 26 is screwed into the screw rod 26. The upper spherical member 28 has a shape in which the height of the bowl is hollowed out and has a two-sided width (or may be a hexagonal shape) on the outer periphery, and is screwed onto the screw bowl 26 with the bowl spherical portion facing downward. Are combined. Then, the screw rod 26 is inserted into the through hole of the lower spherical member 27 so as to cover the lower spherical member 27 from the lower end portion of the screw rod 26 inserted into the through hole of the upper plate 25. The lower spherical member 27 has a shape that makes the bowl height longer, and is fitted on the screw rod 26 with the bowl spherical portion facing upward, and the raised portion fits into the hollow portion of the upper spherical member 28. . When the raised portion of the lower spherical member 27 is inserted into the hollowed portion of the upper spherical member 28, a bolt 29 is screwed and tightened from the outer peripheral surface of the upper spherical member 28 to fix the lower spherical member 27 to the upper spherical member 28. The screw rod 26 itself is held by a holding mechanism (not shown).

一方、ネジ桿26の上端部にはアイナット30が螺合され、その下方にナット31を螺合して、所謂ダブルナットによって両者が固定されている。アイナット30のリング部内には、軸線が光発電モジュール4の傾斜方向と直交するピン32が挿通され、そのピン32が、受梁2から突設されたリブ33に貫通されている。従って、受梁2とネジ桿26はピン32を軸として光発電モジュール3の傾斜方向に回転可能であることから、本実施例の傾斜角度調整機構23は受梁2の連結点を回転する回転連結機構を備える。   On the other hand, an eye nut 30 is screwed to the upper end portion of the screw rod 26, and a nut 31 is screwed below the eye nut 30, and both are fixed by a so-called double nut. A pin 32 whose axis is orthogonal to the inclination direction of the photovoltaic module 4 is inserted into the ring portion of the eyenut 30, and the pin 32 is passed through a rib 33 protruding from the receiving beam 2. Therefore, since the receiving beam 2 and the screw rod 26 can rotate in the inclination direction of the photovoltaic module 3 with the pin 32 as an axis, the inclination angle adjusting mechanism 23 of this embodiment rotates to rotate the connection point of the receiving beam 2. A coupling mechanism is provided.

本実施例では、基台25の貫通穴の周囲を上側球面部材28の球面部で上方から押さえ付け且つ下側球面部材27の球面部で下方から押さえ付けている。上側球面部材28の外周面には二面幅(又は六角形)が形成されているので、この二面幅にレンチなどの工具をかけて上側球面部材28を回転させれば上側球面部材28のネジ穴がネジ桿26のネジに沿って当該ネジ桿26の軸線方向に移動する。実際には、上側球面部材28も下側球面部材27も上下方向には移動できないので、ネジ桿26が基台24に対して上下方向に移動される。従って、不等沈下が発生したら、沈下した支柱1の上側球面部材28を回転させてネジ桿26を上昇させれば受梁3の連結点が上方に移動するので、不等沈下を吸収して光発電モジュール4の歪みを解消することができる。   In this embodiment, the periphery of the through hole of the base 25 is pressed from above by the spherical portion of the upper spherical member 28 and pressed from below by the spherical portion of the lower spherical member 27. Since the outer surface of the upper spherical member 28 has a two-sided width (or hexagon), if the upper spherical member 28 is rotated by applying a tool such as a wrench to the two-sided width, The screw hole moves in the axial direction of the screw rod 26 along the screw of the screw rod 26. Actually, since neither the upper spherical member 28 nor the lower spherical member 27 can move in the vertical direction, the screw rod 26 is moved in the vertical direction with respect to the base 24. Therefore, if unequal settlement occurs, the upper spherical member 28 of the sunk column 1 is rotated to raise the screw rod 26, and the connecting point of the receiving beam 3 moves upward. The distortion of the photovoltaic module 4 can be eliminated.

また、支柱部材であるネジ桿26を上下方向に移動する際、他の支柱1との長さの違いによって、ネジ桿26が、例えば図10の紙面方向に回転する可能性がある。しかしながら、本実施例では、基台24の上板25の貫通穴の周囲を上側球面部材28の球面部と下側球面部材27の球面部が押さえ付けるように接触し、且つ受梁2及びネジ桿26がピン32の周りに相対回転可能としてあるので、ネジ桿26の回転を許容することができる。また、前記支柱部材であるネジ桿26の上下方向への移動により、横並びの何れか一方の支柱1に対し、他方の支柱1を高くしたり低くしたりすることにより、光発電モジュール4の傾斜角度を変更することも可能となる。光発電モジュール4の傾斜角度を変更すると、受光する日光量や発電量を変更することができるので、所望する日光量や発電量に応じてネジ桿26を上下方向に移動させて光発電モジュール4の傾斜角度を変更すればよい。従って、本実施例の支持高さ調整機構7は受梁2の連結点を上下方向に移動するための支柱部材移動機構を備える。   Further, when the screw rod 26 that is the column member is moved in the vertical direction, the screw rod 26 may be rotated in the paper surface direction of FIG. 10, for example, due to a difference in length from the other column 1. However, in this embodiment, the spherical surface portion of the upper spherical member 28 and the spherical surface portion of the lower spherical member 27 are in contact with each other so that the periphery of the through hole of the upper plate 25 of the base 24 is pressed, and the receiving beam 2 and screw Since the flange 26 is capable of relative rotation around the pin 32, the screw rod 26 can be allowed to rotate. In addition, by moving the screw rod 26, which is the column member, in the vertical direction, the other column 1 is raised or lowered with respect to any one column 1 side by side, whereby the photovoltaic module 4 is inclined. It is also possible to change the angle. When the inclination angle of the photovoltaic module 4 is changed, the amount of received sunlight and the amount of power generated can be changed. Therefore, the screw module 26 is moved in the vertical direction in accordance with the desired amount of sunlight and the amount of power generation. What is necessary is just to change the inclination angle. Therefore, the support height adjusting mechanism 7 of this embodiment includes a support member moving mechanism for moving the connecting point of the receiving beam 2 in the vertical direction.

図11は、支持高さ調整機構7の第3実施例を示す。また、図12は、図11の支柱部材規制機構の一例を示す説明図であり、図12aは支柱部材の正面図、図12bは図11のA−A断面図、図12cは図11のB−B断面図である。この支持高さ調整機構7は、光発電モジュール4の傾斜角度を調整するための傾斜角度調整機構23を備える。傾斜角度調整機構23の構成は、前記図10の第2実施例のものと同等であるので、同等の構成には同等の符号を付してその詳細な説明を省略する。本実施例では、前記第2実施例のネジ桿に代えて太径の丸棒からなる支柱部材34を用い、当該支柱部材34の上端部に雄ネジ34aを形成し、その雄ネジ34aに前記傾斜角度調整機構23を取付けてある。なお、以下の実施例でも、支柱部材34自体は、図示しない保持機構によって保持される。   FIG. 11 shows a third embodiment of the support height adjusting mechanism 7. 12 is an explanatory view showing an example of the strut member regulating mechanism of FIG. 11. FIG. 12a is a front view of the strut member, FIG. 12b is a cross-sectional view taken along line AA of FIG. 11, and FIG. It is -B sectional drawing. The support height adjusting mechanism 7 includes an inclination angle adjusting mechanism 23 for adjusting the inclination angle of the photovoltaic module 4. Since the configuration of the tilt angle adjusting mechanism 23 is the same as that of the second embodiment of FIG. 10, the same components are denoted by the same reference numerals and detailed description thereof is omitted. In the present embodiment, instead of the screw rod of the second embodiment, a pillar member 34 made of a large-diameter round bar is used, and a male screw 34a is formed at the upper end of the pillar member 34, and the male screw 34a An inclination angle adjusting mechanism 23 is attached. In the following embodiments, the column member 34 itself is held by a holding mechanism (not shown).

基台24の上板には、光発電モジュール4の傾斜角度方向に平行な2枚のリブ35を立設し、それらのリブ35の間に角パイプからなる支持部材36を差し込み、リブ35の外側からボルト37を支持部材36のネジ穴に螺合し締め付け、これにより支持部材36をボルト37の周りに回転可能に支持する。そして、支持部材36の内側に支柱部材34を挿通する。支柱部材34の外周には、等間隔に断面円形の窪み38が形成されており、支持部材36の外側からボルト39を螺合し、当該ボルト39の先端丸棒部を窪み38に差し込むことで支柱部材34の移動を規制する。即ち、本実施例の支柱部材移動機構は、支柱部材36の移動を規制する規制機構を備える。なお、図12aに示すように、窪み38の奥側端部に隅Rを施しておくことにより、ボルト39の先端丸棒部が突き当たったとき、支柱部材34を長手方向、つまり上下方向に移動させる力が作用し、例えば支柱部材34と支持部材36が噛んでしまったような場合に、ボルト39を回すことで、それを解消することが可能となる。   Two ribs 35 parallel to the inclination angle direction of the photovoltaic module 4 are erected on the upper plate of the base 24, and a support member 36 made of a square pipe is inserted between the ribs 35. From the outside, the bolt 37 is screwed into the screw hole of the support member 36 and tightened, whereby the support member 36 is rotatably supported around the bolt 37. Then, the support member 34 is inserted inside the support member 36. On the outer periphery of the support member 34, recesses 38 having a circular cross section are formed at equal intervals. A bolt 39 is screwed from the outside of the support member 36, and a tip round bar portion of the bolt 39 is inserted into the recess 38. The movement of the support member 34 is restricted. That is, the support member moving mechanism of this embodiment includes a restriction mechanism that restricts the movement of the support member 36. As shown in FIG. 12a, by providing a corner R at the back end of the recess 38, the column member 34 is moved in the longitudinal direction, that is, the vertical direction when the round end of the bolt 39 hits. When the force to act acts, for example, when the column member 34 and the support member 36 are bitten, it is possible to eliminate it by turning the bolt 39.

前記支柱部材36の下端部には索条40の一端が取付けられており、その索条40は、プーリ41を介して手動ウインチ42に巻回されている。この手動ウインチ42に巻回されている索条40を払い出せば支柱部材34は下降し、索条40を手動ウインチ42で巻き取れば支柱部材34は上昇する。従って、不等沈下が発生したら、沈下した支柱1の手動ウインチ42で索条40を巻き取って支柱部材34を上昇させれば受梁3の連結点が上方に移動するので、不等沈下を吸収して光発電モジュール4の歪みを解消することができる。また、支柱部材34の上下方向への移動により、横並びの何れか一方の支柱1に対し、他方の支柱1を高くしたり低くしたりすることにより、光発電モジュール4の傾斜角度を変更することも可能となるので、所望する日光量や発電量に応じて支柱部材34を上下方向に移動させて光発電モジュール4の傾斜角度を変更すればよい。なお、索条40は、炭素繊維のような軽量なものが望ましく、帯状であれば更に好ましい。   One end of a rope 40 is attached to the lower end of the column member 36, and the rope 40 is wound around a manual winch 42 via a pulley 41. When the rope 40 wound around the manual winch 42 is discharged, the support member 34 is lowered. When the rope 40 is wound up by the manual winch 42, the support member 34 is raised. Therefore, when uneven settlement occurs, the connecting point of the receiving beam 3 moves upward by winding the rope 40 with the manual winch 42 of the settled support column 1 and raising the support member 34. The distortion of the photovoltaic module 4 can be eliminated by absorption. Moreover, the inclination angle of the photovoltaic module 4 is changed by raising or lowering the other support column 1 with respect to any one of the support columns 1 arranged side by side in the vertical direction of the support member 34. Therefore, it is only necessary to change the inclination angle of the photovoltaic module 4 by moving the support member 34 in the vertical direction according to the desired amount of sunlight and the amount of power generated. The rope 40 is desirably a lightweight material such as carbon fiber, and more preferably a strip shape.

図13は、図11の支柱部材規制機構の他の例を示す正面図であり、図14は、図13の支柱部材規制機構に用いられたブレーキ部材の説明図であり、図15aは、図13のC−C断面図、図15bは、図13のD−D断面図である。この実施例では、前記図11、図12のように支柱部材34の窪み39にボルト39を差し込んで当該支柱部材34の移動を規制するのに対し、個別のブレーキ部材40をボルト39で支柱部材34の外周面に押し付け、その摩擦力で支柱部材34の移動を規制するものである。本実施例では、支持部材36が角パイプから丸パイプに変更されたり、ボルト39の先端部47が丸棒でなかったりするが、機能的には同等であるから、同等の構成には同等の符号を付してその詳細な説明を省略する。ブレーキ部材40は、丸棒である支柱部材34の外周面に緊密に当接する円弧状の板材であり、上端部に、落下防止用の係止部40aが垂直に突設されている。この係止部40aが上側になるようにしてブレーキ部材40を支柱部材34と支持部材36との間の隙間に差し込み、ボルト39でブレーキ部材40を支柱部材34の外周面に押し付けて、当該支柱部材34の上下方向への移動を規制する。なお、リブ35の外側から螺合したボルト37でも、ブレーキ部材40を支柱部材34の外周面に押し付けるようにしてもよい。   13 is a front view showing another example of the support member regulating mechanism of FIG. 11, FIG. 14 is an explanatory view of a brake member used in the support member regulating mechanism of FIG. 13, and FIG. 13 is a cross-sectional view taken along the line CC of FIG. 13, and FIG. 15b is a cross-sectional view taken along the line DD of FIG. In this embodiment, as shown in FIGS. 11 and 12, the bolt 39 is inserted into the recess 39 of the support member 34 to restrict the movement of the support member 34, whereas the individual brake member 40 is connected to the support member by the bolt 39. It is pressed against the outer peripheral surface of 34, and the movement of the column member 34 is regulated by the frictional force. In the present embodiment, the support member 36 is changed from a square pipe to a round pipe, or the tip portion 47 of the bolt 39 is not a round bar. Reference numerals are assigned and detailed description thereof is omitted. The brake member 40 is an arc-shaped plate member that comes into close contact with the outer peripheral surface of the column member 34, which is a round bar, and a locking portion 40a for preventing fall is provided vertically at the upper end portion. The brake member 40 is inserted into the gap between the support member 34 and the support member 36 so that the locking portion 40a is on the upper side, and the brake member 40 is pressed against the outer peripheral surface of the support member 34 with a bolt 39, The movement of the member 34 in the vertical direction is restricted. It should be noted that the brake member 40 may be pressed against the outer peripheral surface of the column member 34 even with the bolt 37 screwed from the outside of the rib 35.

図16は、図11の支柱部材規制機構の更に他の例を示す正面図であり、図17は、図16の支柱部材規制機構の作用の説明図である。この実施例では、支柱部材34の外周面に直接的に2つのバンド部材43をボルト・ナットなどの固定具で取付け、それらのバンド部材43の連結部43aを支持部材36に突設された連結部36aに被せ、それらをボルト・ナットなどの固定具で固定して、支柱部材34を支持部材36に固定し、支柱部材34の上下方向への移動を規制する。   16 is a front view showing still another example of the column member regulating mechanism of FIG. 11, and FIG. 17 is an explanatory diagram of the operation of the column member regulating mechanism of FIG. In this embodiment, two band members 43 are directly attached to the outer peripheral surface of the support member 34 with a fixture such as a bolt and a nut, and a connecting portion 43a of these band members 43 is connected to the support member 36 in a protruding manner. The support member 36 is fixed to the support member 36 by fixing them with a fixture such as a bolt or nut, and the vertical movement of the support member 34 is restricted.

図18は、光発電モジュール支持構造の第4実施例を示す正面図であり、図19は、図18のテンショナの説明図である。この支持高さ調整機構7は、光発電モジュール4の傾斜角度を調整するための傾斜角度調整機構23を備える。傾斜角度調整機構23の構成は、前記図10の第2実施例のものと同等であるので、同等の構成には同等の符号を付してその詳細な説明を省略する。また、支柱部材34と傾斜角度調整機構23の構成並びに支柱部材規制機構の構成は前記図11の第3実施例のものと同等であるので、同等の構成には同等の符号を付してその詳細な説明を省略する。   FIG. 18 is a front view showing a fourth embodiment of the photovoltaic module support structure, and FIG. 19 is an explanatory view of the tensioner of FIG. The support height adjusting mechanism 7 includes an inclination angle adjusting mechanism 23 for adjusting the inclination angle of the photovoltaic module 4. Since the configuration of the tilt angle adjusting mechanism 23 is the same as that of the second embodiment of FIG. 10, the same components are denoted by the same reference numerals and detailed description thereof is omitted. Further, the structure of the support member 34 and the tilt angle adjusting mechanism 23 and the structure of the support member regulating mechanism are the same as those of the third embodiment of FIG. Detailed description is omitted.

本実施例では、支柱部材34の上端部と下端部に索条40を連結し、その索条40を基台24の支持台44上のプーリ41に架ける。プーリ41は、テンショナ45を介して、手動ハンドル46に連結されており、手動ハンドル46を回転させると索条40が移動し、それに伴って支柱部材34が上下方向に移動される。従って、不等沈下が発生したら、沈下した支柱1の手動ハンドル46で索条40を移動して支柱部材34を上昇させれば受梁3の連結点が上方に移動するので、不等沈下を吸収して光発電モジュール4の歪みを解消することができる。また、支柱部材34の上下方向への移動により、横並びの何れか一方の支柱1に対し、他方の支柱1を高くしたり低くしたりすることにより、光発電モジュール4の傾斜角度を変更することも可能となるので、所望する日光量や発電量に応じて支柱部材34を上下方向に移動させて光発電モジュール4の傾斜角度を変更すればよい。   In the present embodiment, the rope 40 is connected to the upper end portion and the lower end portion of the support member 34, and the rope 40 is hung on the pulley 41 on the support base 44 of the base 24. The pulley 41 is connected to a manual handle 46 via a tensioner 45. When the manual handle 46 is rotated, the rope 40 moves, and the support member 34 is moved in the vertical direction accordingly. Therefore, if unequal subsidence occurs, the connecting point of the receiving beam 3 moves upward by moving the rope 40 with the manual handle 46 of the subsidence post 1 and raising the post member 34. The distortion of the photovoltaic module 4 can be eliminated by absorption. Moreover, the inclination angle of the photovoltaic module 4 is changed by raising or lowering the other support column 1 with respect to any one of the support columns 1 arranged side by side in the vertical direction of the support member 34. Therefore, it is only necessary to change the inclination angle of the photovoltaic module 4 by moving the support member 34 in the vertical direction according to the desired amount of sunlight and the amount of power generated.

テンショナ45は、プーリ41を支持する断面コ字状の可動ブラケット47と、開口側が前記可動ブラケット47と同じ向きの断面コ字状の固定ブラケット48を有し、固定ブラケット48は支持台44に固定されている。可動ブラケット47のウエブにはナット49が溶接固定されており、固定ブラケット48のウエブには貫通穴が開設されている。そして、固定ブラケット48のウエブの外側から貫通穴にボルト50を挿通し、そのボルト50を可動ブラケット47のナット49に螺合する。ボルト50をナット49に締め込むように回転させれば可動ブラケット47が固定ブラケット48側に移動されるので索条40のテンションを高めることができる。逆に、ボルト50をナット49から抜き出すように回転させれば可動ブラケット47は固定ブラケット48から離間するので索条40のテンションを低くすることができる。   The tensioner 45 has a U-shaped movable bracket 47 that supports the pulley 41 and a U-shaped fixed bracket 48 whose opening side is in the same direction as the movable bracket 47. The fixed bracket 48 is fixed to the support base 44. Has been. A nut 49 is welded and fixed to the web of the movable bracket 47, and a through hole is formed in the web of the fixed bracket 48. Then, the bolt 50 is inserted into the through hole from the outside of the web of the fixed bracket 48, and the bolt 50 is screwed into the nut 49 of the movable bracket 47. If the bolt 50 is rotated so as to be fastened to the nut 49, the movable bracket 47 is moved to the fixed bracket 48 side, so that the tension of the rope 40 can be increased. On the contrary, if the bolt 50 is rotated so as to be extracted from the nut 49, the movable bracket 47 is separated from the fixed bracket 48, so that the tension of the rope 40 can be lowered.

図20は、光発電モジュール支持構造の第5実施例を示す正面図であり、図21は、図20のE−E断面図である。この支持高さ調整機構7は、光発電モジュール4の傾斜角度を調整するための傾斜角度調整機構23を備える。傾斜角度調整機構23の構成は、前記図10の第2実施例のものと同等であるので、同等の構成には同等の符号を付してその詳細な説明を省略する。本実施例では、支柱部材34を角柱とし、その上端部に雄ネジ34aを形成し、その雄ネジ34aに前記傾斜角度調整機構23を取付けてある。角柱の支柱部材34を支持する支持部材52は断面コ字状とし、そのウエブに支柱部材34を当接させる。支持部材52のリブ35への支持構造は、前記図11の第3実施例と同等であるので、同等の構成には同等の符号を付してその詳細な説明を省略する。   FIG. 20 is a front view showing a fifth embodiment of the photovoltaic module support structure, and FIG. 21 is a sectional view taken along line EE of FIG. The support height adjusting mechanism 7 includes an inclination angle adjusting mechanism 23 for adjusting the inclination angle of the photovoltaic module 4. Since the configuration of the tilt angle adjusting mechanism 23 is the same as that of the second embodiment of FIG. 10, the same components are denoted by the same reference numerals and detailed description thereof is omitted. In this embodiment, the column member 34 is a prism, a male screw 34a is formed at the upper end, and the tilt angle adjusting mechanism 23 is attached to the male screw 34a. The support member 52 that supports the prism column member 34 has a U-shaped cross section, and the column member 34 is brought into contact with the web. Since the support structure of the support member 52 to the rib 35 is equivalent to that of the third embodiment of FIG. 11, the same reference numerals are given to the same components, and the detailed description thereof is omitted.

支柱部材34には、長手方向に沿って、即ち上下方向にチェーン51が取付けられており、そのチェーン51に噛合するスプロケット53が、前記支持部材52に回転自在に取付けられ、そのスプロケット53にハンドル46が連結されている。また、前記断面コ字状の支持部材52の2枚のリブには貫通穴が開設されており、その貫通穴にボルト54を挿通し、そのボルト54にナット55を螺合すると、ボルト54の軸部がスプロケット53の歯と歯の間に位置するようになっている。従って、不等沈下が発生したら、沈下した支柱1の手動ハンドル46でスプロケット53を回転し、そのスプロケット53の回転に伴ってチェーン51を移動して支柱部材34を上昇させれば受梁3の連結点が上方に移動するので、不等沈下を吸収して光発電モジュール4の歪みを解消することができる。また、支柱部材34の上下方向への移動により、横並びの何れか一方の支柱1に対し、他方の支柱1を高くしたり低くしたりすることにより、光発電モジュール4の傾斜角度を変更することも可能となるので、所望する日光量や発電量に応じて支柱部材34を上下方向に移動させて光発電モジュール4の傾斜角度を変更すればよい。また、支柱部材34を所定位置に移動したら、断面コ字状の支持部材52の貫通穴にボルト54を挿通し、そのボルト54にナット55を螺合すると、ボルト54の軸部がスプロケット53の歯と歯の間に位置し、スプロケット53の回転が規制され、結果的にチェーン51の移動、即ち支柱部材34の上下方向への移動が規制される。   A chain 51 is attached to the support member 34 along the longitudinal direction, that is, in the vertical direction. A sprocket 53 meshing with the chain 51 is rotatably attached to the support member 52, and a handle is attached to the sprocket 53. 46 is connected. Further, through holes are formed in the two ribs of the support member 52 having a U-shaped cross section, and when bolts 54 are inserted into the through holes and nuts 55 are screwed into the bolts 54, The shaft portion is positioned between the teeth of the sprocket 53. Therefore, if uneven settlement occurs, the sprocket 53 is rotated by the manual handle 46 of the pillar 1 that has been lowered, and the chain 51 is moved along with the rotation of the sprocket 53 to raise the pillar member 34. Since the connection point moves upward, the uneven settling can be absorbed and the distortion of the photovoltaic module 4 can be eliminated. Moreover, the inclination angle of the photovoltaic module 4 is changed by raising or lowering the other support column 1 with respect to any one of the support columns 1 arranged side by side in the vertical direction of the support member 34. Therefore, it is only necessary to change the inclination angle of the photovoltaic module 4 by moving the support member 34 in the vertical direction according to the desired amount of sunlight and the amount of power generated. When the column member 34 is moved to a predetermined position, the bolt 54 is inserted into the through hole of the support member 52 having a U-shaped cross section, and the nut 55 is screwed into the bolt 54. Positioned between the teeth, the rotation of the sprocket 53 is restricted, and as a result, the movement of the chain 51, that is, the movement of the column member 34 in the vertical direction is restricted.

図22は、光発電モジュール支持構造の第6実施例を示す正面図である。この支持高さ調整機構7は、光発電モジュール4の傾斜角度を調整するための傾斜角度調整機構23を備える。傾斜角度調整機構23の構成は、前記図10の第2実施例のものと同等であるので、同等の構成には同等の符号を付してその詳細な説明を省略する。また、本実施例の支柱部材34及び支持部材52及びそれらの取付構造は、前記図20の第5実施例と同等であるので、同等の構成には同等の符号を付してその詳細な説明を省略する。   FIG. 22 is a front view showing a sixth embodiment of the photovoltaic module support structure. The support height adjusting mechanism 7 includes an inclination angle adjusting mechanism 23 for adjusting the inclination angle of the photovoltaic module 4. Since the configuration of the tilt angle adjusting mechanism 23 is the same as that of the second embodiment of FIG. 10, the same components are denoted by the same reference numerals and detailed description thereof is omitted. Further, the column member 34, the support member 52, and the mounting structure thereof in this embodiment are the same as those in the fifth embodiment of FIG. Is omitted.

本実施例では、前記第5実施例のチェーンに代えて、支柱部材34の長手方向に沿って、即ち上下方向にラック56が取付けられており、そのラック56に噛合するピニオン57が支持部材52に回転自在に取付けられ、そのピニオン57にハンドル46が連結されている。また、前記第5実施例と同様に、支持部材52の2枚のリブの貫通穴にはボルト54が挿通可能であり、そのボルト54にナット55を螺合すると、ボルト54の軸部がラック57の歯と歯の間に位置するようになっている。従って、不等沈下が発生したら、沈下した支柱1の手動ハンドル46でピニオン57を回転し、そのピニオン57の回転に伴ってラック56を移動して支柱部材34を上昇させれば受梁3の連結点が上方に移動するので、不等沈下を吸収して光発電モジュール4の歪みを解消することができる。また、支柱部材34の上下方向への移動により、横並びの何れか一方の支柱1に対し、他方の支柱1を高くしたり低くしたりすることにより、光発電モジュール4の傾斜角度を変更することも可能となるので、所望する日光量や発電量に応じて支柱部材34を上下方向に移動させて光発電モジュール4の傾斜角度を変更すればよい。また、支柱部材34を所定位置に移動したら、断面コ字状の支持部材52の貫通穴にボルト54を挿通し、そのボルト54にナット55を螺合すると、ボルト54の軸部がラック56の歯と歯の間に位置し、ラック57の回転が規制され、結果的にラック56の移動、即ち支柱部材34の上下方向への移動が規制される。   In this embodiment, instead of the chain of the fifth embodiment, a rack 56 is attached along the longitudinal direction of the column member 34, that is, in the vertical direction, and a pinion 57 that meshes with the rack 56 is a support member 52. A handle 46 is connected to the pinion 57. Similarly to the fifth embodiment, a bolt 54 can be inserted into the through-holes of the two ribs of the support member 52. When a nut 55 is screwed into the bolt 54, the shaft portion of the bolt 54 is racked. It is located between 57 teeth. Therefore, if unequal settlement occurs, the pinion 57 is rotated by the manual handle 46 of the post 1 that has been sunk, and the rack 56 is moved along with the rotation of the pinion 57 to raise the support member 34. Since the connection point moves upward, the uneven settling can be absorbed and the distortion of the photovoltaic module 4 can be eliminated. Moreover, the inclination angle of the photovoltaic module 4 is changed by raising or lowering the other support column 1 with respect to any one of the support columns 1 arranged side by side in the vertical direction of the support member 34. Therefore, it is only necessary to change the inclination angle of the photovoltaic module 4 by moving the support member 34 in the vertical direction according to the desired amount of sunlight and the amount of power generated. When the column member 34 is moved to a predetermined position, the bolt 54 is inserted into the through hole of the support member 52 having a U-shaped cross section, and the nut 55 is screwed into the bolt 54. Positioned between the teeth, the rotation of the rack 57 is restricted, and as a result, the movement of the rack 56, that is, the movement of the column member 34 in the vertical direction is restricted.

このように本実施形態の光発電モジュール支持構造では、大面積の光発電モジュール4を縦方向並びに横方向に多数並べて支持するにあたり、4本の支柱1のうちの横並びの2本の支柱1毎に2本の受梁2を跳ね出し状に支持し、その2本の受梁2上に複数の根太3を跳ね出し状に支持し、それらの根太3に光発電モジュール4を搭載支持すると共に、根太3と光発電モジュール4との間に、光発電モジュール4を揺動可能に支持する揺動支持機構6を介装し、支柱1と受梁2との間に、支柱1の不等沈下に対応して受梁2の高さを調整可能とした支持高さ調整機構7を介装したことにより、支柱1の不等沈下に伴う光発電モジュール4の歪みを低減することができると共に、不等沈下が生じても受梁2の高さを調整して光発電モジュール4の歪みを低減することができるので、光発電モジュール4の破損を抑制防止することができる。   As described above, in the photovoltaic module support structure of the present embodiment, when supporting a large number of photovoltaic modules 4 arranged in the vertical direction and in the horizontal direction, each of the two columns 1 arranged side by side out of the four columns 1 is supported. The two receiving beams 2 are supported in a projecting manner, a plurality of joists 3 are supported in a projecting manner on the two receiving beams 2, and the photovoltaic module 4 is mounted and supported on these joists 3. A swing support mechanism 6 that supports the photovoltaic module 4 so as to be swingable is interposed between the joist 3 and the photovoltaic module 4, and the unequality of the support 1 is between the support 1 and the receiving beam 2. By interposing the support height adjusting mechanism 7 that can adjust the height of the receiving beam 2 corresponding to the settlement, the distortion of the photovoltaic module 4 due to the uneven settlement of the support column 1 can be reduced. Even if uneven settlement occurs, the photovoltaic module 4 is adjusted by adjusting the height of the receiving beam 2. It is possible to reduce distortion, breakage of the photovoltaic module 4 can be prevented suppressed.

また、支柱1間の水平方向の距離を6m以上としたことにより、支柱1の不等沈下に伴う光発電モジュール4の歪みを小さくすることができる。
また、受梁2の全長に対する当該受梁2の支柱1からの跳ね出し片側長さの比及び根太3の全長に対する当該根太3の受梁2からの跳ね出し片側長さの比を0.20以上0.22以下としたことにより、受梁2や根太3の強度を小さくすることが可能となるから、それらの重量を小さくすることができ、土地の沈下そのものを低減することができる。
Moreover, the distortion of the photovoltaic module 4 accompanying the uneven settlement of the support | pillar 1 can be made small by making the distance of the horizontal direction between the support | pillars 1 into 6 m or more.
Further, the ratio of the length of one side of the support beam 2 protruding from the support column 1 with respect to the total length of the receiving beam 2 and the ratio of the length of the protrusion side of the joist 3 with respect to the total length of the joist 3 are 0.20. By setting it to 0.22 or less, the strength of the receiving beam 2 and the joists 3 can be reduced, so that their weight can be reduced and the settlement of the land itself can be reduced.

また、支持高さ調整機構7に、光発電モジュール4の水平面に対する傾斜角度を調整する傾斜角度調整機構23を備えたことにより、光発電モジュール4への日射量を調整して光発電モジュール4による発電量を調整することが可能となる。
また、支持高さ調整機構7に、受梁2の連結点を上下方向に移動するための支柱部材移動機構を備え、傾斜角度調整機構23に、受梁2の連結点を回転する回転連結機構を備えたことにより、支柱1と受梁2の連結点を上下方向に移動させるだけで光発電モジュール4の傾斜角度を調整することが可能となる。
また、支柱部材移動機構は、支柱部材34の移動を規制する規制機構を備えたことにより、受梁2の連結点の高さを所定の状態に保持しやすい。
Further, the support height adjustment mechanism 7 includes the inclination angle adjustment mechanism 23 that adjusts the inclination angle of the photovoltaic module 4 with respect to the horizontal plane, thereby adjusting the amount of solar radiation to the photovoltaic module 4 and using the photovoltaic module 4. It is possible to adjust the power generation amount.
Further, the support height adjusting mechanism 7 includes a support member moving mechanism for moving the connecting point of the receiving beam 2 in the vertical direction, and the tilt angle adjusting mechanism 23 rotates the connecting point of the receiving beam 2. With this, it is possible to adjust the inclination angle of the photovoltaic module 4 simply by moving the connecting point of the support column 1 and the receiving beam 2 in the vertical direction.
Further, since the support member moving mechanism includes a restriction mechanism that restricts the movement of the support member 34, the height of the connection point of the receiving beam 2 is easily maintained in a predetermined state.

1は支柱、2は受梁、3は根太、4は光発電モジュール、5は基礎、6は揺動支持機構、7は支持高さ調整機構、8はアンカーボルト、9はナット、10は支柱部材、11は基板、12は上板、13は揺動機構、14はカバー、15は上板部、16は垂直板部、17は下板部、18は取付部、19は取付部材、20は沈下量モニタ、21はチューブ、22は連結用パイプ、23は傾斜角度調整機構、24は基台、25は上板、26はネジ桿(支柱部材)、27は下側球面部材、28は上側球面部材、29はボルト、30はアイナット、31はナット、32はピン、33はリブ、34は支柱部材、35はリブ、36は支持部材、37はボルト、38は窪み、39はボルト、40は索条、41はプーリ、42は手動ウインチ、43はバンド部材、44は支持台、45はテンショナ、46は手動ハンドル、47は可動ブラケット、48は固定ブラケット、49はナット、50はボルト、51はチェーン、52は支持部材、53はスプロケット、54はボルト、55はナット   1 is a support, 2 is a receiving beam, 3 is a joist, 4 is a photovoltaic module, 5 is a foundation, 6 is a swing support mechanism, 7 is a support height adjustment mechanism, 8 is an anchor bolt, 9 is a nut, and 10 is a support Member, 11 substrate, 12 upper plate, 13 swing mechanism, 14 cover, 15 upper plate portion, 16 vertical plate portion, 17 lower plate portion, 18 mounting portion, 19 mounting member, 20 Is a settling amount monitor, 21 is a tube, 22 is a connecting pipe, 23 is a tilt angle adjusting mechanism, 24 is a base, 25 is an upper plate, 26 is a screw rod (post member), 27 is a lower spherical member, and 28 is Upper spherical member, 29 is bolt, 30 is eye nut, 31 is nut, 32 is pin, 33 is rib, 34 is support member, 35 is rib, 36 is support member, 37 is bolt, 38 is recessed, 39 is bolt, 40 is a rope, 41 is a pulley, 42 is a manual winch, 43 is a band member, 4 is a support base, 45 is a tensioner, 46 is a manual handle, 47 is a movable bracket, 48 is a fixed bracket, 49 is a nut, 50 is a bolt, 51 is a chain, 52 is a support member, 53 is a sprocket, 54 is a bolt, 55 Is a nut

Claims (6)

光発電モジュールを縦方向並びに横方向に多数並べて支持する光発電モジュール支持構造であって、平面視で方形の4隅に位置し、下部が連結されていない4本の支柱と、前記4本の支柱のうちの横並びの2本の支柱毎に跳ね出し状に支持される2本の受梁と、前記2本の受梁上に跳ね出し状に支持され且つ光発電モジュールを搭載支持する複数の根太と、前記根太と光発電モジュールとの間に介装され且つ光発電モジュールを揺動可能に支持する揺動支持機構と、前記支柱と受梁との間に介装され且つ支柱の不等沈下に対応して受梁の高さを調整可能とした支持高さ調整機構とを備え、前記受梁の全長に対する当該受梁の支柱からの跳ね出し片側長さの比及び前記根太の全長に対する当該根太の受梁からの跳ね出し片側長さの比を0.20以上0.22以下としたことを特徴とする光発電モジュール支持構造。 A photovoltaic module support structure that supports a large number of photovoltaic modules arranged side by side in the vertical direction and the lateral direction, and is arranged at four corners of a square in a plan view and has four pillars that are not connected to the lower part , Two receiving beams supported in a protruding manner for each of the two supporting columns arranged side by side, and a plurality of supporting beams supported in a protruding manner on the two receiving beams and mounting and supporting the photovoltaic module A joist, a rocking support mechanism interposed between the joist and the photovoltaic module and supporting the photovoltaic module so as to be able to rock; A support height adjustment mechanism that can adjust the height of the receiving beam in response to the settlement, and the ratio of the length of one side of the receiving beam that protrudes from the column to the entire length of the receiving beam and the total length of the joist The ratio of the length of one side protruding from the joist beam is 0.20. Photovoltaic module support structure, characterized in that the above 0.22 or less. 前記支柱間の水平方向の距離を6m以上としたことを特徴とする請求項1に記載の光発電モジュール支持構造。   The photovoltaic module support structure according to claim 1, wherein a horizontal distance between the columns is 6 m or more. 前記支持高さ調整機構は、光発電モジュールの水平面に対する傾斜角度を調整する傾斜角度調整機構を備えることを特徴とする請求項1又は2に記載の光発電モジュール支持構造。 The photovoltaic module support structure according to claim 1 or 2 , wherein the support height adjustment mechanism includes an inclination angle adjustment mechanism that adjusts an inclination angle of the photovoltaic module with respect to a horizontal plane. 前記支持高さ調整機構は、受梁の連結点を上下方向に移動するための支柱部材移動機構を備え、前記傾斜角度調整機構は、受梁の連結点を回転する回転連結機構を備えることを特徴とする請求項に記載の光発電モジュール支持構造。 The support height adjusting mechanism includes a support member moving mechanism for moving the connecting point of the receiving beam in the vertical direction, and the inclination angle adjusting mechanism includes a rotating connecting mechanism for rotating the connecting point of the receiving beam. The photovoltaic module support structure according to claim 3 , wherein 前記支柱部材移動機構は、支柱部材の移動を規制する規制機構を備えたことを特徴とする請求項に記載の光発電モジュール支持構造。 The photovoltaic module support structure according to claim 4 , wherein the support member moving mechanism includes a restriction mechanism that restricts movement of the support member. 請求項1乃至の何れか一項に記載の光発電モジュール支持構造に対し、
透明な樹脂製カップで構成されると共に下部には連結用パイプが突設され、前記樹脂製カップの内部は連結用パイプの先端で外部と連通している沈下量モニタを、前記4本の支柱の夫々に同じ高さに取付け、
前記連結用パイプにチューブを差し込んで前記4つの沈下量モニタを連結し、
その状態で、全ての前記沈下量モニタの内部に液体を供給し、
前記沈下量モニタの内部の液体の液面高さが変化した場合、前記沈下量モニタの内部の液体の液面高さが最も低い支柱に合わせて、その他の支柱の受梁の高さを前記支持高さ調整機構で調整することを特徴とする光発電モジュール支持構造の支持高さ調整方法。
For the photovoltaic module support structure according to any one of claims 1 to 5 ,
It is composed of a transparent resin cup, and a connecting pipe projects from the lower part, and the inside of the resin cup is connected to the outside at the tip of the connecting pipe. Installed at the same height on each of
Insert a tube into the connecting pipe to connect the four sinkage amount monitors,
In that state, liquid is supplied to all the sinkage amount monitors,
When the liquid level height of the liquid inside the subsidence amount monitor changes, the height of the receiving beam of the other column is adjusted according to the column where the liquid level of the liquid inside the subsidence amount monitor is the lowest. A method for adjusting the support height of the photovoltaic module support structure, wherein the support height adjustment mechanism is used for adjustment.
JP2010106644A 2010-05-06 2010-05-06 Photovoltaic module support structure and support height adjustment method thereof Expired - Fee Related JP5563362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010106644A JP5563362B2 (en) 2010-05-06 2010-05-06 Photovoltaic module support structure and support height adjustment method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010106644A JP5563362B2 (en) 2010-05-06 2010-05-06 Photovoltaic module support structure and support height adjustment method thereof

Publications (3)

Publication Number Publication Date
JP2011238665A JP2011238665A (en) 2011-11-24
JP2011238665A5 JP2011238665A5 (en) 2013-06-13
JP5563362B2 true JP5563362B2 (en) 2014-07-30

Family

ID=45326357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010106644A Expired - Fee Related JP5563362B2 (en) 2010-05-06 2010-05-06 Photovoltaic module support structure and support height adjustment method thereof

Country Status (1)

Country Link
JP (1) JP5563362B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11689147B2 (en) 2020-08-20 2023-06-27 Parasol Structures Inc. Photovoltaic module mounting structure

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5986409B2 (en) * 2012-03-26 2016-09-06 トヨタ自動車北海道株式会社 Mounted solar power panel installation stand
JP5956214B2 (en) * 2012-03-28 2016-07-27 日鐵住金建材株式会社 Foundation structure for the solar cell module support
JP6064425B2 (en) * 2012-08-09 2017-01-25 株式会社大林組 Installation panel for solar cell panel and installation method for solar cell panel
JP6042159B2 (en) * 2012-10-01 2016-12-14 シャープ株式会社 Photovoltaic power generation device and method for detecting misalignment of solar power generation device
JP2015201998A (en) * 2014-04-09 2015-11-12 山陽ロード工業株式会社 Installation frame of solar panel and installation method of solar panel
CN105553407B (en) * 2014-10-29 2017-12-05 中国科学院苏州纳米技术与纳米仿生研究所 Photovoltaic module positioner
JP6667280B2 (en) * 2015-12-14 2020-03-18 株式会社Lixil Mounting structure and method of mounting
JP7025884B2 (en) * 2017-10-17 2022-02-25 大成建設株式会社 Stand for installing solar cell module

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682857B2 (en) * 1991-06-25 1994-10-19 株式会社四国総合研究所 Foundation structure for solar cell array mount
JPH11177114A (en) * 1997-12-12 1999-07-02 Ntt Power And Building Facilities Inc Rack for installing solar battery module
JP2000101123A (en) * 1998-09-25 2000-04-07 Aichi Electric Co Ltd Solar battery fitting rack device
JP2001108607A (en) * 1999-10-08 2001-04-20 Kanegafuchi Chem Ind Co Ltd Weather resistance-testing device
JP2004063932A (en) * 2002-07-31 2004-02-26 Kyocera Corp Fixing apparatus and sunlight utilizing apparatus using it
WO2009119774A1 (en) * 2008-03-26 2009-10-01 京セラ株式会社 Solar cell module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11689147B2 (en) 2020-08-20 2023-06-27 Parasol Structures Inc. Photovoltaic module mounting structure

Also Published As

Publication number Publication date
JP2011238665A (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP5563362B2 (en) Photovoltaic module support structure and support height adjustment method thereof
JP5856511B2 (en) Pile foundation structure
JP5901912B2 (en) Solar panel mount
KR101238273B1 (en) A height control post of solar photovoltaic power generator
JP5235816B2 (en) Guard fence with tilting column
JP6035071B2 (en) Construction method for solar power panel
JP5529677B2 (en) Solar panel mount
KR101470372B1 (en) Apparatus for reinforcing the girder and the roof frame structure using the same
KR101912800B1 (en) Bridge lifting apparatus and bridge lifting method therefor
JP2012202030A (en) Frame for solar cell module and solar cell system using the frame
CN210687447U (en) Municipal administration is fixed bolster for heating power pipeline
JP2006214120A (en) Uplift damping unit and uplift damping structure
JP2011238665A5 (en) Photovoltaic module support structure and support height adjustment method thereof
KR100941458B1 (en) Safety devices for dual axis solar tracking system and driving method
JP2016220326A (en) Cradle for solar battery module and photovoltaic power generation device
JP2015068028A (en) Support frame for planar article such as solar panel, and pile member and supporting position adjustment member therefor
JP5956214B2 (en) Foundation structure for the solar cell module support
JP6746861B2 (en) Screw pile joint member and pile foundation
JP2015195701A (en) Solar cell panel trestle
CN2509281Y (en) Adjustable bearing structure for overhead floors
JP2014163140A (en) Trestle for photovoltaic power generation panel
CN106368322B (en) A kind of installation method for the bi-directional symmetrical inclination steel column between super high-rise building conversion layer
CN211690191U (en) Protective structure of hydraulic and hydroelectric engineering side slope
JP6072444B2 (en) Solar cell module mounting structure
CN209797309U (en) Bracket for temporary hoisting of municipal pipeline

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140612

R150 Certificate of patent or registration of utility model

Ref document number: 5563362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees