JP5560375B2 - 振動式メータの振動式センサーコンポーネントの温度を求めるための方法および装置 - Google Patents

振動式メータの振動式センサーコンポーネントの温度を求めるための方法および装置 Download PDF

Info

Publication number
JP5560375B2
JP5560375B2 JP2013523127A JP2013523127A JP5560375B2 JP 5560375 B2 JP5560375 B2 JP 5560375B2 JP 2013523127 A JP2013523127 A JP 2013523127A JP 2013523127 A JP2013523127 A JP 2013523127A JP 5560375 B2 JP5560375 B2 JP 5560375B2
Authority
JP
Japan
Prior art keywords
temperature
signal
voltage
meter
sensor component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013523127A
Other languages
English (en)
Other versions
JP2013532840A (ja
Inventor
ウィリアム エム. マンスフィールド,
Original Assignee
マイクロ モーション インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マイクロ モーション インコーポレイテッド filed Critical マイクロ モーション インコーポレイテッド
Publication of JP2013532840A publication Critical patent/JP2013532840A/ja
Application granted granted Critical
Publication of JP5560375B2 publication Critical patent/JP5560375B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8431Coriolis or gyroscopic mass flowmeters constructional details electronic circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8436Coriolis or gyroscopic mass flowmeters constructional details signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/022Compensating or correcting for variations in pressure, density or temperature using electrical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/36Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using magnetic elements, e.g. magnets, coils
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions

Description

本発明は、振動式メータに関するものであり、とくに振動式メータの振動式センサーコンポーネントの温度を求めるための方法および装置に関するものである。
たとえばデンシトメータおよびコリオリフローメータの如き振動式センサーが、公知となっており、導管を流れる物質の質量流量および他の情報を測定するために用いられている。この物質は流れていてもよいしまたは静止していてもよい。典型的なコリオリフローメータは、J.E.スミスらへそのすべてが付与されている米国特許第4,109,524号、米国特許第4,491,025号およびRe第31,450号に開示されている。これらのフローメータは、直線構造または曲線構造を備えた1つ以上の導管を有している。コリオリ式質量フローメータの各導管構造は、単純曲げモード、ねじれモードまたはそれらを組み合わせタイプでありうる一組の固有振動モードを有している。好ましいモードで振動するように各導管を振動させることができる。
物質は、フローメータの流入口側に接続されている配管からフローメータの中に流れ込み、1つ以上の導管を通り、フローメータの流出口側から流出する。物質が充填されている振動するシステムの固有振動モードは、導管の質量および導管内を流れる物質の質量の合計により部分的に決まる。
フローメータになにも流れていないとき、振動力が導管に加えられると、導管に沿ったすべての部位が、同一の位相で振動するか、または僅かな時間だけ遅れて振動する。このゼロ流量で測定される時間遅れを「ゼロオフセット」と呼ぶ。フローメータを物質が流れ始めると、コリオリ力により、導管に沿った各ポイントが異なる位相を有するようになる。たとえば、フローメータの流入口端部の位相は中央のドライバの位置の位相より遅れており、流出口の位相は中央のドライバの位置の位相よりも進んでいる。導管上のピックオフセンサーは当該導管の運動を表す正弦波信号を発生する。ピックオフセンサーから出力される信号が処理されてピックオフセンサー間の位相差が求められる。2つ以上のピックオフセンサー間の時間遅れは、導管を流れる物質の質量流量に比例する。
ドライバに接続されているメータ電子機器は、ドライブ信号を出力してドライバを動作させ、またピックオフセンサーから受け取られる信号から材料の質量流量およびその他の特性を求める。ドライバは、複数の周知の構成のうちの1つの構成を有しうる。しかしながら、磁石および対向するドライブコイルは、振動メータ産業において非常に高い評価を受けている。適切なドライブコイルおよび磁石の構成としては、米国特許第7,628,083号、米国特許第7,287,438号に記載されている。これらの特許は、マイクロモーション社に付与されており、それらの内容は、ここで参照することにより本明細書に援用されるものとする。交流が、ドライブコイルに流され、所望のフローチューブの振幅および振動数で導管を振動させる。また、上述のドライバの構成と類似したマグネットとコイルとからなる構成のようにピックオフセンサーを形成することも当該技術分野において知られている。しかしながら、ドライバが運動を引き起こす電流を受け取り、ピックオフセンサーはドライバによって引き起こされる運動を利用して電圧を誘発することができる。ピックオフセンサーによって測定される時間遅れの大きさは非常に小さく、ナノセカンド単位で測られることが多い。したがって、トランスデューサの出力が非常に正確であることが必要となる。
図1には、フローメータ10とメータ電子機器20とを有しているコリオリフローメータの形態をとる従来の振動式センサー組立体5の一例が示されている。メータ電子機器20は、フローメータ10へ接続され、たとえば密度、質量流量、体積流量、総合質量流量、温度および他の情報の如き流動物質の特性を測定する。
フローメータ10は、一対のフランジ101、101’と、一対のマニホールド102、102’と、一対の導管103A、103Bとを有している。マニホールド102、102’は、導管103A、103Bの両側の端部に固定されている。従来のコリオリフローメータのフランジ101および101’は、スペーサ106の両端に固定されている。スペーサ106は、導管103A、103B内の不必要な振動を防止するためにマニホールド102とマニホールド102’との間の間隔を維持する。導管103A、103Bは、マニホールドから外側に向けてほぼ並列に延出している。流動物質を運ぶ配管システム(図示せず)の中にフローメータ10が挿入されると、流動物質がフランジ101を通ってフローメータ10の中に流入し、流入口マニホールド102を通り、ここで流動物質の全量が導管103A、103Bの中に流され、導管103A、103Bを流れ、流出口マニホールド102’の中へ流れ込み、ここでフランジ101’からフローメータ10の外へと流出する。
従来のフローメータ10はドライバ104を備えている。ドライバ104は、当該ドライバ104が導管103A、103Bをたとえばドライブモードで振動させることができる位置で導管103A、103Bに固定されている。さらに具体的にいえば、ドライバ104は、導管103Aに固定される第一のドライブコンポーネント(図示せず)と、導管103Bに固定される第二のドライブコンポーネント(図示せず)とを有している。ドライバ104は、コイルが導管103Aに取り付けられ、対向するマグネットが導管103Bに取り付けられる構成のような複数の周知の構成のうちの1つの構成を有していてもよい。
従来のコリオリフローメータの本実施形態では、ドライブモードは、第一の逆位相曲げモードである。導管103A、103Bは、それぞれ、曲げ軸線W−WおよびW’−W’に対して実質的に同一の質量分布、慣性モーメントおよび弾性モジュールを有するバランスの取れたシステムを提供するように、選択され、流入口マニホールド102および流出口マニホールド102’に適切に取り付けられることが好ましい。ドライブモードが第一の逆位相曲げモードである本実施形態では、導管103Aおよび導管103Bは、それぞれの対応する曲げ軸線Wおよび曲げ軸線W’を中心として、互に逆方向に向けてドライバ104によって振動させられるようになっている。交流の形態を有しているドライブ信号が、たとえば経路110を介して電子機器20によって提供され、コイルを通り抜けて両方の導管103A、103Bの振動を引き起こすようになっている。当業者にとって明らかなように、従来のコリオリフローメータにより他のドライブモードが用いられてもよい。
図示されているフローメータ10は、導管103A、103Bに固定されている一対のピックオフ105、105’を有している。さらに具体的にいえば、第一のピックオフコンポーネント(図示せず)が導管103Aの位置に設けられ、第二のピックオフコンポーネント(図示せず)が導管103Bの位置に設けられている。図示されている実施形態では、ピックオフ105、105’は、導管103A、103Bの速度および位置を表わすピックオフ信号を生じるたとえばピックオフマグネットおよびピックオフコイルである電磁検出器であってもよい。たとえば、ピックオフ105、105’は、経路111、111’を通じて電子機器20へピックオフ信号を送信するようになっていてもよい。当業者にとって明らかなように、導管103A、103Bの運動は、流動物質のなんらかの特性、たとえば導管103A、103Bを流れる物質の質量流量および密度に比例している。
図1に示されている実施形態では、メータ電子機器20は、ピックオフ105、105’からピックオフ信号を受信するようになっている。経路26は、1つ以上の電子機器20にオペレータと通信させることを可能とする入力手段および出力手段を提供している。メータ電子機器20は、たとえば位相差、周波数、時間遅延、密度、質量流量、体積流量、総合質量流量、温度、メータ検証、および他の情報の如き流動物質の特性を測定する。さらに具体的にいえば、メータ電子機器20は、たとえばピックオフ105、105’および1つ以上の温度センサー130から1つ以上の信号を受け取るようになっている。
コリオリフローメータによって達成可能な比較的小さな位相遅れおよび非常に正確な測定により、1つ以上のフロー導管のうちの少なくとも1つの導管の温度は、抵抗型温度検出器(RTD)130の如き温度計測デバイスを用いて通常測定される。プロセス物質の温度が急速に変わるものでない限り、フロー導管の温度は、プロセス物質の温度と関連し、流体、RTDおよび周囲温度の間の熱インピーダンスに比例する。したがって、導管の温度を測定することができる場合、個々の用途に依存しうる確実性の許容範囲内で流体の温度を求めることができる。したがって、従来のコリオリフローメータ10の如き従来の振動式メータは、周知のRTD130を用いてフロー導管の温度測定が行われている。従来のシステムでは、導管、導管を覆うケース、ブレースバーなどの温度測定値を得るために、複数のRTDを用いて複数の測定値が得られている。
RTDは、正確な温度測定値を提供するものとして広く受け入れられている。RTDは以下のように動作する。すなわち、RTDに電力が供給され、RTDの抵抗が算出される。このことは、通常、RTDに既知の電流を流して発生する電圧を測定することにより抵抗を計算することによって達成される。RTDの抵抗は温度に正比例している。たとえば、ほとんどのRTDが、0.0039/度の比較的線形の抵抗温度係数を有している白金から形成されている。したがって、RTDの測定抵抗に基づいて温度が求められるようにRTDを正確に校正することができる。RTDは、正確で、安定していて、かなり線形であるという長所を有し、温度範囲も広い。しかしながら、RTDを使用する場合の主要な問題のうちの一つは、RTDの運用に起因するコスト高である。コストの増大は、RTD自体に起因することに加えて、RTDでは通常信号レベルが低いためにその信号を処理することにも起因する。RTDに関連するコストの増大を正当化できる状況もあれば、RTDによってもたらされるような温度測定値の変動がないことや精度が高いということを必要としない状況もある。このような1つの例は、プロセス流体の温度が比較的安定しているような状況である。このような状況ではRTDは必要ないかもしれない。というのは、予想される温度範囲が比較的制限されており、密度または体積の測定と比較して温度の影響が小さいからである。
したがって、当該技術分野には、既存のセンサーコンポーネントを用いて振動式メータの導管のうちの少なくとも1つの導管の温度を測定する必要性が存在する。すなわち、従来のコリオリフローメータ10のRTD130の如き追加のコンポーネントを必要とすることなく温度を測定する必要性が存在する。本発明は、これらおよび他の課題を克服し、当該技術分野の進歩を実現するものである。
本発明のある実施形態に従って、振動式メータの導管と結合される振動式センサーコンポーネントの温度を求めるための方法が提供されている。かかる方法は、振動式センサーコンポーネントに温度決定信号を送るステップと、発生信号を測定するステップとを有している。本発明のある実施形態によれば、かかる方法は、温度決定信号および発生信号に基づいてセンサーコンポーネントの温度を求めるステップをさらに有している。
本発明のある実施形態に従って、振動式センサーの導管と結合されるセンサーコンポーネントの電圧/電流比と温度との間の相関関係を作成する方法が提供されている。かかる方法は、センサーコンポーネントに試験信号を送るステップを有している。かかる方法は、第一の発生信号を測定するステップと、試験信号および発生信号に基づいての第一の電圧/電流比を求めるステップとをさらに有している。本発明のある実施形態によれば、かかる方法は、センサーコンポーネントの第一の温度を測定するステップと、求められた第一の電圧/電流比を測定された第一の温度と共に格納するするステップとを有している。
本発明のある実施形態に従って、1つ以上の導管と、1つ以上の導管と結合される1つ以上のセンサーコンポーネントとを備える振動式メータ用のメータ電子機器が提供されている。かかるメータ電子機器は、1つ以上のセンサーコンポーネントのうちの1つのセンサーコンポーネントに温度決定信号を送るように構成される処理システムを備えている。かかる処理システムは、発生信号を測定するようにさらに構成されている。本発明のある実施形態によれば、かかる方法は、温度決定信号および発生信号に基づいてセンサーコンポーネントの温度を求めるようにさらに構成されている。
態様
本発明のある態様によれば、振動式メータの導管と結合される振動式センサーコンポーネントの温度を求めるための方法は、振動式センサーコンポーネントに温度決定信号を送るステップと、発生信号を測定するステップと、温度決定信号および発生信号に基づいてセンサーコンポーネントの温度を求めるステップとを有している。
好ましくは、センサーコンポーネントの温度を求めるステップは、温度決定信号および測定された発生信号から電圧/電流比を求めるステップと、 求められた電圧/電流比と温度との間の相関関係に基づいてセンサーコンポーネントの温度を求めるステップとを有している。
好ましくは、温度決定信号は、プロセス流体を含む、振動式メータの導管の共振周波数と実質的に等しい周波数を有する交流であり、かかる方法は、前もって決められた時間、温度決定信号を取り除くステップと、電圧を測定するステップと、逆起電力を求めるステップと、電圧/電流比を逆起電力について補償するステップとを有している。
好ましくは、温度決定信号は、プロセス流体を含む、振動式メータの導管の共振周波数とは異なる周波数を有する交流である。
好ましくは、温度決定信号は、プロセス流体を含む、振動式メータの導管の共振周波数と実質的に等しい周波数を有する交流である。
好ましくは、温度決定信号が交流であり、発生信号が電圧である。
好ましくは、温度決定信号が一定電圧であり、発生信号が電流である。
好ましくは、センサーコンポーネントはドライバコイルである。
好ましくは、センサーコンポーネントはピックオフセンサーコイルである。
本発明の他の態様によれば、振動式センサーの導管と結合されるセンサーコンポーネントの電圧/電流比と温度との間の相関関係を作成する方法は、センサーコンポーネントに試験信号を送るステップと、第一の発生信号を測定するするステップと、試験信号および発生信号に基づいて第一の電圧/電流比を求めるステップと、センサーコンポーネントの第一の温度を測定するするステップと、 求められた第一の電圧/電流比を測定された第一の温度と共に格納するするステップとを有している。
好ましくは、かかる方法は、センサーコンポーネント第二の温度を測定するステップと、 センサーコンポーネントの第二の温度が第一の温度から量閾値を超えて変化している場合、第二の発生信号を測定して少なくとも第二の電圧/電流比を求めるステップと、第二の電圧/電流比を第二の温度と共に格納するステップとをさらに有している。
好ましくは、センサーコンポーネントはドライバコイルである。
好ましくは、センサーコンポーネントはピックオフセンサーコイルある。
好ましくは、試験信号が交流であり、発生信号が発生電圧である。
好ましくは、試験信号が一定電圧であり、発生信号は発生電流である。
本発明の他の態様によれば、振動式メータ用のメータ電子機器は、1つ以上の導管と、当該1つ以上の導管と結合される1つ以上のセンサーコンポーネントと、処理システムとを備えており、当該処理システムが、1つ以上のセンサーコンポーネントのうちの1つのセンサーコンポーネントに温度決定信号を送り、発生信号を測定し、温度決定信号および発生信号に基づいてセンサーコンポーネントの温度を求めるように構成されている。
好ましくは、かかる処理システムは、温度決定信号および発生信号に基づいて電圧/電流比を求め、 求められた電圧/電流比と温度との間の相関関係に基づいてセンサーコンポーネントの温度を求めるように構成されている。
好ましくは、温度決定信号は、プロセス流体を含む、振動式メータの導管の共振周波数と実質的に等しい周波数を有する交流であり、処理システムは、前もって決められた時間、温度決定信号を取り除き、電圧を測定し、逆起電力を求め、 電圧/電流比を逆起電力について補償するようにさらに構成されている。
好ましくは、温度決定信号は、プロセス流体を含む、振動式メータの導管の共振周波数と異なる周波数を有する交流である。
好ましくは、温度決定信号は、プロセス流体を含む、振動式メータの導管の共振周波数と実質的に等しい周波数を有する交流である。
好ましくは、温度決定信号が交流であり、発生信号が電圧である。
好ましくは、温度決定信号が一定電圧であり、発生信号が電流である。
好ましくは、センサーコンポーネントはドライブコイルである。
好ましくは、センサーコンポーネントはピックオフコイルである。
従来のコリオリセンサー組立体を示す図である。 本発明のある実施形態にかかる振動式メータを示す図である。 本発明のある実施形態にかかるメータ電子機器を示す図である。 本発明のある実施形態にかかる温度決定ルーチンを示す図である。 本発明のある実施形態にかかるドライブコイルについての抵抗と温度との間の関係を示すグラフである。 本発明のある実施形態にかかるドライブ信号温度ルーチンを示す図である。 本発明のある実施形態にかかる温度相関ルーチンを示す図である。
図2〜図7および下記の記載には、本発明を最良のモードで実施および利用する方法を当業者に教示するための具体的な実施形態が示されている。本発明の原理を教示するために、従来技術の一部が単純化または省略されているものもある。当業者にとって明らかなように、これらの実施形態の変形例もまた本発明の技術範囲内に含まれる。また、当業者にとって明らかなように、以下の記載の構成要素をさまざまな方法で組み合わせて本発明の複数の変形例を形成することもできる。したがって、本発明は、以下の記載の特定の実施形態に限定されるものではなく、特許請求の範囲およびその均等物によってのみ限定されるものである。
図2には、センサー組立体210と1つ以上のメータ電子機器220とを有しているメータの形態をとる振動式メータ200が示されている。振動式メータ200は、コリオリフローメータ、体積フローメータ、振動式デンシトメータなどであってもよい。したがって、本発明はコリオリフローメータに限定されるべきではない。メータ電子機器220は、リード線215を介してセンサー組立体210へ接続され、たとえば流体密度、質量流量、体積流量、総合質量流量、温度、および、パス226を介した他の情報の如き物質の1つ以上の特性を測定するようになっている。従来のフローメータ5と共通するコンポーネントは、同様の参照番号が用いられるが、その場合、「1」ではなく「2」から始まる番号である。たとえば、従来の導管が103Aおよび103Bの符号が付けられている場合、本発明の導管は203Aおよび203Bの符号が付けられる。
さらに、ドライバ204は、第一の部分204Aと第二の部分204Bとを含むように示されている。1つの例示の実施形態では、第一の部分204Aがコイルであり、第二の部分204Bが磁石である。第一の部分204Aおよび第二の部分204Bは、ろう付、ボンディング、溶接、接着剤、メカニカルファスナーなどの如き周知の技術によって導管203Aおよび導管203Bとそれぞれ結合される。いうまでもなく、第一の部分204Aおよび第二の部分204Bは、マグネット−コイルの組み合わせに限定されるわけではなく、電気的ドライブ信号を受け取り、下記に述べられるように温度に関連付け可能な電気抵抗を提供する他の公知のドライバシステムから構成されていてもよい。他の実施形態は圧電型ドライブシステムから構成されてもよい。したがって、明細書ではドライバおよびピックオフコイル204A、205A、205’Aについて説明されているが、いうまでもなく、他のタイプのセンサーコンポーネントが用いられてもよい。ドライバ204が2つの別個のコンポーネントを含むように示されていることに加えて、ピックオフセンサー205、205’が第一の部分205A、205’Aと第二の部分205B、205’Bを含むように示されている。ドライバ204と同様に、ピックオフセンサー205、205’は、マグネット−コイルの組み合わせで、コイルが第一の部分205A、205’Aであり、磁石が第二の部分205B、205’Bであってもよい。
振動式メータ200が2つの導管203A、203Bを有しているように示されているが、いうまでもなく、振動式メータ200は2つの導管よりも少ない数または多い数の導管を有していてもよい。たとえば、振動式メータ200が単一導管システムである場合、たとえば、ドライバおよびピックオフの第一の部分204A、205A、205’Aを導管と結合させることができ、第二の部分204B、205B、205’Bを静止物と結合させることができる。したがって、ドライバ204およびピックオフ205、205’のうちの、リード線210、211、211’を介してメータ電子機器220と通信する部分を単一導管と結合させることができる。さらに、2つの導管203A、203Bが、湾曲した導管であるように示されているが、振動式メータ200は真っ直ぐな導管形状を有していてもよい。
振動式メータ200は、導管203A、203Bのうちの1つ以上の導管の温度を測定すること以外は従来のフローメータ5とほとんど同様に動作する。上述のように、従来の振動式メータは、導管とRTDを結合させ、RTDに電流を流し、生じた電圧を測定することにより温度を求めるようになっている。電流を流して生じた電圧は、RTDの抵抗を求めるのに用いられる。次いで、RTDの抵抗は特定温度に関連づけされる。図面から分かるように、本発明にかかる振動式メータ200はRTDを有していない。有利なことには、RTD、配線および回路と関連するコストが必要でなくなる。しかしながら、本発明の振動式メータ200の場合において、温度測定が必要となる場合もある。本発明のある実施形態によれば、下記に詳細に記載されているような複数のセンサーコンポーネントのうちの1つ以上のセンサーコンポーネントの温度を求めることにより温度測定を実現することが可能となる。本出願において用いられる用語「センサーコンポーネント」は、振動する導管203A、203Bのうちの1つ以上の導管に対して振動を課するまたは振動する導管203A、203Bのうちの1つ以上の導管からの振動を受けるために用いられるトランスデューサのことである。センサーコンポーネントとしては、ドライブコイル204、ピックオフコイル205A、205’Aの如きピックオフコイル、フォトダイオードピックオフセンサー、圧電型ドライバなどが挙げられる。振動式センサーコンポーネント204A、205A、205’Aのうちの少なくとも1つの振動式センサーコンポーネントの温度は、メータ電子機器220によって提供されるような1つ以上のオペレーティングルーチンによって求めることができる。センサーコンポーネントの温度から、導管203A、203Bおよび導管203A、203B内のプロセス流体の温度を求めることができる。
図3には、本発明のある実施形態にかかるメータ電子機器220が示されている。メータ電子機器220は、インタフェース301と、処理システム303とを有しうる。処理システム303は格納システム304を有しうる。格納システム304は、図示されているような内部メモリーを有していてもよいし、またはそれに代えて、外部メモリーを有していてもよい。メータ電子機器220は、ドライブ信号311を発生し、このドライブ信号311をドライバ204、さらに詳細にいえば、図2示されているリード線210を介してドライブコイル204Aへ送ることができる。メータ電子機器220は、温度決定信号313を発生し、この温度決定信号313をドライブコイル204Aへ送ることができる。それに加えて、メータ電子機器220は、図2に示されているリード線211、211’を介してフローメータ210から、すなわち、ピックオフセンサー205、205’などからセンサー信号310を受け取ることができる。実施形態によっては、センサー信号310はドライバ204から受け取られる場合もある。このような構成は、マイクロモーション社に付与されている米国特許第6,230,104号により明らかであり、その内容はここで参照することによって本明細書に援用されるものとする。メータ電子機器220は、デンシトメータとして動作することもできるし、または、コリオリ質量流量メータとして動作することもできる。いうまでもなく、メータ電子機器220は、他のタイプの振動式センサー組立体として動作してもよく、どのような具体例が示されるかによって本発明の技術範囲が限定されるべきでない。メータ電子機器220は、導管203A、203Bを流れる物質の1つ以上のフロー特性を求めるためにセンサー信号310を処理することができる。実施形態によっては、メータ電子機器220は、ドライバ204およびピックオフ205、205’のうちの1つ以上のこれらの温度を求めるために、センサー信号310を処理して電圧/電流比(V/I)を求めるようになっていてもよい。
インタフェース301は、リード線210、211、211’を介して、ドライバ204またはピックオフセンサー205、205’からセンサー信号310を受け取ることができる。インタフェース301は、いかなるフォーマッティング、増幅、バッファリングなどの如きいかなる必要なまたは所望の信号調節を行なうようになっていてもよい。あるいは、信号調節のうちの一部または全部を処理システム303において行なうようにすることもできる。それに加えて、インタフェース301は、メータ電子機器220と外部デバイスとの間の通信を可能とする。インタフェース301は、いかなる電子通信、光学通信または無線通信を可能とすることもできる。
一つの実施形態におけるインタフェース301は、センサー信号310がアナログセンサー信号であるデジタイザー(図示せず)を有することができる。デジタイザーは、アナログセンサー信号をサンプリングし、デジタル化されたセンサー信号を生じることができる。また、デジタイザーは、必要とされる信号処理量を減らして処理時間を短縮するようにデジタルセンサー信号が縮小(decimated)されるいかなる必要なデシメーションをも実行することもできる。
処理システム303は、メータ電子機器220のオペレーションを行うことができ、また、フローメータ210からのフロー測定結果を処理することもできる。処理システム303は、温度決定ルーチン313、ドライブ信号温度ルーチン318および温度相関ルーチン320の如き1つ以上の処理ルーチンを実行し、温度補償された1つ以上の流れ特性を求めるためにフロー測定結果を処理することができる。
処理システム303は、汎用コンピュータであってもよいし、マイクロプロセッシングシステムであってもよいし、論理回路であってもよいし、または他のなんらかの汎用のもしくはカスタム化された処理デバイスであってもよい。処理システム303は複数の処理デバイス間に分散されるようになっていてもよい。処理システム303は、格納システム304の如きいかなる統合されたまたは独立した電子格納媒体を有していてもよい。
いうまでもなく、メータ電子機器220は、当該技術分野において公知となっているさまざま他の構成要素および機能を有するようになっていてもよい。便宜上、これらさらなる特徴は明細書および図面からは省略されている。したがって、記載のまたは説明されている特定の実施形態によって本発明が限定されるべきではない。
処理システム303は、たとえば質量流量または体積流量の如きさまざまなフロー特性を演算するので、プロセス流体、導管203A、203Bまたはその両方の温度変化に起因して、演算された特性には誤差がある恐れがある。たとえば、導管の温度の変化は、式(1)に基づいて質量流量を演算するために用いられるメータのフロー校正係数(FCF)に影響を与えてしまう場合がある。
Figure 0005560375
ここで、[数1]は質量流量を示すものであり、FCFはフロー校正であり、Δtmeasuredは、ピックオフ205とピックオフ205’との間の測定時間遅れであり、Δtは、ゼロフローにおけるピックオフとピックオフとの間の初期時間遅れである。
フロー校正係数は、たとえば導管203A、203Bの弾性率によって影響を受ける。導管203A、203Bの弾性率は温度とともに変化する。したがって、導管203A、203Bの温度が考慮に入っていなかった場合、フロー校正係数が正確ではない可能性があり、流量計測結果が不正確なものとなる。
図1に関して先に記載したように、振動式メータ200の動作時、メータ電子機器220は、ドライバ204のコイルを励磁するために、交流の形態を通常有するドライブ信号311をパス210を介して提供することができる。RTDと同様に、ドライバ204に用いられるコイル204Aの抵抗が温度とともに変わるので、導管203A、203Bのうちの1つの導管と結合されるコイルの抵抗(または交流を用いた場合、インピーダンス)を求めることができれば、コイルの温度についても、前に算出された相関関係に基づいて求めることができる。いったんシステムが定常状態に達すると、コイルの温度は、導管203A、203Bの温度と実質的に等しくなる。導管がたとえばメータケース(図示せず)によって完全に隔離されている場合、定常状態を早く達成することができる。いったんプロセス流体の温度について定常状態に到達すれば、導管203A、203Bの温度は、プロセス流体の温度と実質的に等しくなりうる。
一つの実施形態によれば、ドライブ信号311および/または温度決定信号313の形態を有する交流により励起される回路としてドライバ204およびリード線210を記載することができる。オームの法則によれば、回路に交流が加えられると、生じる電圧は、回路のインピーダンス、この場合ドライバコイル204Aのインピーダンスに依存して異なる。このことは式(2)から分かる。
Figure 0005560375
この式で、Vは電圧であり、Rは抵抗であり、jは−1の平方根であり、fは交流の周波数であり、Lはコイル204Aのインダクタンスであり、Iは電流である。
インピーダンス(R+j2πL)を求めるために式(2)を解くことができる。
本発明の他の実施形態によれば、交流ではなく直流でコイルを励磁することができる。いうまでもなく、直流を用いた場合にはDC信号がインダクタンスを生じることはないので、式(2)は式(3)まで簡略化することができる。
Figure 0005560375
本発明の他の実施形態によれば、交流をドライブコイル204Aに流す場合に計算を単純化させるために、誘導リアクタンスの項(j2πfL)を無視することができる。このことは、交流の周波数が比較的小さく、それにより抵抗項が著しく大きくなる場合に容認可能となる。たとえば、典型的なドライブ信号311は約250Hzであるが、温度を求めるためにコイルに送られる信号が約100Hzまで減らされた場合、誘導リアクタンス項が無視されてもよい。したがって、インピーダンスは抵抗へと単純化できることが多いので、特に断りのない限り、AC信号が提供されている場合であっても、明細書の後述の部分では、電圧/電流比(V/I)を「抵抗」の点から記載する。当業者にとって明らかなように、より高い精度が望まれる場合、コイル204Aのインダクタンスを次の方法によって考慮に入れることができる:たとえば、加えられた信号に対する既知のインダクタンス(L)を用いる方法、または、AC信号の周波数および初期校正中に求められたコイルのインダクタンスに基づいて誘導リアクタンス項(j2πfL)を算出する方法である。
本発明のある実施形態によれば、導管203Aおよび導管203Bのうちの少なくとも1つの導管の温度を下記の方法のうちの1つに従って求めることができる。下記の方法の各々では、かかる温度は、温度決定信号から求められる。温度決定信号は、ドライブ信号および測定された発生信号を含んでいてもよい。本発明のある実施形態によれば、かかる温度は、RTDの抵抗と温度との間の相関ではなく、V/I比と、関連するセンサーコンポーネントの温度との間の相関から求められる。有利なことには、本発明は、温度を求めるために既存のセンサーコンポーネントを用いている。
本発明の一つの実施形態によれば、センサーコンポーネント204A、205A、205’Aのうちの少なくとも1つのセンサーコンポーネントの温度を温度決定ルーチン312に従って求めるようにメータ電子機器220を構成することができる。
図4には、本発明のある実施形態にかかる温度決定ルーチン312が示されている。温度決定ルーチン312は、センサーコンポーネントに温度決定信号313を加えらるステップ401から開始される。本発明のある実施形態によれば、センサーコンポーネントはドライブコイル204Aである。本発明の他の実施形態によれば、センサーコンポーネントは、ピックオフコイル205Aまたはピックオフコイル205’Aの如きピックオフコイルである。したがって、実施形態によっては、メータ電子機器220は、ピックオフ205、205’への信号の送信およびピックオフ205、205’からの信号の受取りの両方を行うように構成されている場合もある。整合性を保つために、本温度決定ルーチン312がドライブコイル204Aに信号を送信するように記載されているが、発明をそのように限定すべきではない。
本発明のある実施形態によれば、温度決定信号313は、正常動作中にドライブコイル204Aへ送信されるドライブ信号311とは異なっている。しかしながら、他の実施形態によれば、温度決定信号にはドライブ信号311が含まれる。温度決定信号313は、ドライブ信号311に代えてまたはドライブ信号311に加えて、ドライブコイル204Aへ送られるようになっていてもよい。たとえば、温度決定信号313はドライブ信号311に重畳されてもよい。あるいは、温度決定信号312がピックオフセンサー205、205’のうちの一つに送られる場合であっても、ドライブ信号311を今までどおりドライバ204に送ることができる。
本発明のある実施形態によれば、温度決定信号313は、既知の振幅および周波数を有する交流である。しかしながら、他の実施形態では、それに代えて、温度決定信号313は一定電圧である。本発明のある実施形態によれば、温度決定信号313は、ドライブ信号311の周波数であることが一般的である、流体で満たされている導管の共振周波数とは異なる周波数を有している。好ましくは、温度決定信号313は、ドライブ信号311より低い周波数を有している。しかしながら、温度決定信号313は、ドライブ信号311より高い周波数を有するようになっていてもよい。たとえば、図2に示されているようなU字型の導管の場合、ドライブ信号311は約250Hzで送られる(真っ直ぐな導管型の振動式メータの場合、ドライブ信号は1000Hzに近くてもよいし1000Hzを超えていてもよいし)。しかしながら、本発明のある実施形態によれば、約100Hzで温度決定信号313を送ることができる。
ステップ402では、発生信号が測定される。温度決定信号が交流または直流である実施形態によれば、発生信号には、コイル204Aの両端の電圧Vcが含まれる場合もある。コイルの両端の電圧Vcはたとえば電圧計(図示せず)を用いて求められてもよい。この電圧計は、メータ電子機器220の一体的なコンポーネントであってもよいし、または外部のコンポーネントであってもよい。あるいは、温度決定信号313に一定電圧が含まれている場合、発生信号は、電流であり、たとえばオーム計で測定することができる。さらに他の実施形態では、発生信号は、オーム計(図示せず)を用いて求められうる抵抗でありうる。整合性を保つため、電圧Vcについて説明する。
ステップ403では、センサーコンポーネントの温度を温度決定信号および発生信号に基づいて求めることができる。本発明のある実施形態によれば、電圧/電流比V/Iに基づいてセンサーコンポーネントの温度を求めることができる。上述の式(3)を用いると、電圧/電流比をドライブコイル204Aの抵抗に簡略化することができる。V/I比は抵抗に簡略化されてもよいしまたはインピーダンスに簡略化されてもよい。いずれの場合であっても、V/I比は温度とともに変わる。したがって、参照表、チャート、グラフ、式などを用いて、求められるV/I比と温度との相関関係を求めることができる。相関関係を格納システム304に格納し、必要なときに検索することができる。したがって、図3に示されているように、格納システム304は、参照表315、温度相関関係式316またはグラフ317を有することができる。適切な相関式の一例が式(4)に示されている。
Figure 0005560375
この式で、Rは求められる抵抗であり、Rrefは基準温度における抵抗であり、αは導体材料の抵抗の温度係数であり、Tは温度であり、 Trefは基準温度である。
したがって、ドライブコイル204Aの基準抵抗が初期校正時に基準温度で求められた場合、ステップ403で求められた抵抗に基づいてTの解を求めるように式(4)を再整理することができる。ドライブコイル204Aの抵抗の温度係数αはドライブコイルに用いられる材料に基づくものである。この材料として、通常銅または同様の公知の金属もしくは合金が挙げられる。銅は約0.004/℃の抵抗温度係数αを有している。計算例として、ドライブコイル204Aが銅を含む場合、20℃の基準温度におけるRrefは25オームであると求められる。0.005Aの電流が供給されると、20℃において測定された基準電圧は0.125ボルトであった。したがって、基準抵抗は25オーム(0.125V/.005A)となる。0.005Aの同一電流がドライブコイル204Aに加えられ、0.152ボルトの電圧が測定される場合、ドライブコイル204Aの抵抗は30.4オームまで増大する。温度の解を求めるように再整理された式(4)を用いると、コイル温度は74.0℃となる。定常状態に達している場合、ドライブコイル204Aの温度は、プロセス流体の温度と関連する、上述の導管203Bの温度とほぼ等しい。したがって、センサーコンポーネント、この場合ドライブコイル204Aを用いて導管203Bの温度測定値を求めるために温度決定ルーチン312を用いることができる。それに加えて、定常状態では、導管203Bの温度は導管内のプロセス材料の温度とほぼ等しくなり、それにより、導管内のプロセス流体の温度が良好に推定される。
上述のように、グラフを用いて、温度もV/Iまたは抵抗とに関連づけされるようにしてもよい。図5には、コイル抵抗をコイル温度に関連づけする相関グラフ500が示されている。したがって、実施形態によっては、温度決定信号がセンサーコンポーネントに送られる場合もあり、また、発生信号がオーム計(図示せず)により求められるような抵抗である場合もある。オーム計は、メータ電子機器220の一体的なコンポーネントであってもよいしまたは外部のコンポーネントであってもよい。したがって、相関グラフ500は、V/I比を求める必要もなく、オーム計により求められるコイル抵抗とコイル温度と間の相関関係を直接提供することが可能である。
他の相関関係は、以下の表1に記載の参照表の形態を有していてもよい。
Figure 0005560375
たとえば、表1は、たとえばオーブンを用いてさまざまな前もって決められた温度にコイルをさらす初期校正ルーチン時に作成されるようになっていてもよい。それに代えてまたはそれに加えて、温度は、RTDの如き温度計測デバイスを用いて確認するようにされてもよい。表1は、上述の式の相関関係を求めるために用いられた電流と同じ電流値を用いて作成されている。いうまでもなく、求められた抵抗30.4オームを用いて補間法により温度を求めることができる。抵抗30.4オームから74.0℃の温度が求められる。(70+(100−70)(30.4−30)/(33−30)=74)。
上述の例では、抵抗と温度との間の相関関係が記載されているが、他の相関関係が用いられてもよい。たとえば、式(2)の誘導リアクタンス項を考慮に入れるためにインピーダンスと温度との間の相関関係を同様に作成することができる。したがって、実施形態によっては、対象となる値としては、抵抗だけである必要はなく、V/I比も含まれる。したがって、参照表またはグラフは、V/I対温度の相関関係であってもよい。しかしながら、このアプローチを用いる場合、コイルのインダクタンスおよび周波数に応じて変わる式(2)の誘導リアクタンスを考慮するために、相関関係の作成時の電流の周波数およびアンペア数が運転時のものと同一であればさらに正確な校正を達成することができる。
上述の例では、温度決定信号313は、ドライブ信号周波数311とは異なる周波数の交流であった。それに代えて、本発明の他の実施形態によれば、温度決定信号313は、センサーコンポーネントに一定電圧を与えることができる。この実施形態によれば、電圧/電流比(V/I)を求めるために電圧計ではなく電流計を用いて発生電流が測定されうる。さらに他の実施形態によれば、温度決定信号313はDC信号であってもよい。この実施形態では、インピーダンスは実質的にゼロであり、推定する必要もなければ、無視される必要もない。
本発明の他の実施形態によれば、メータ電子機器220は、第二の信号を送るのではなく、ドライブ信号温度ルーチン317を用いてドライブコイル204Aの温度を求めるためにドライブ信号311を用いることができる。換言すれば、温度決定信号313はドライブ信号311であってもよい。
図6には、本発明のある実施形態にかかるドライブ信号温度ルーチン317が示されている。本発明のある実施形態によれば、メータ電子機器20は、ドライブ信号温度ルーチン317を実行するように構成されていてもよい。本発明のある実施形態によれば、ドライブ信号温度ルーチン317は、温度決定信号がドライブコイル204Aに送られるステップ601から開始される。本発明のある実施形態によれば、温度決定信号は、ドライブコイル204Aに送られるドライブ信号311であってもよい。本発明のある実施形態によれば、ドライブ信号311は、既知の振幅および周波数を有する交流であってもよい。ドライブ信号温度ルーチン317において用いられるドライブ信号311は、振動式メータ200の正常動作時に用いられるのと同一のドライブ信号311であってもよい。プロセス流体で満たされている導管の共振周波数で1つ以上の導管203A、203Bを振動させるためにドライブ信号311を提供することができる。
ステップ602では、発生電圧が上述のように求められる。
ステップ603では、前もって決められた時間、ドライブ信号311が取り除かれる。プロセス流体に満たされている導管の共振周波数でドライブ信号311が送られるので、ドライブ信号311はゼロまで落とされる。したがって、ドライブ信号311がドライブコイル204Aに送られると、導管203A、203Bは共振周波数で振動する。その結果、測定電圧Vcは、ドライブ信号電流、ドライブコイルの両端の抵抗、ドライブコイルのインダクタンス、および逆起電力(EMF)により影響を受ける。逆起電力は式(5)に記載のように電流に対抗する電圧のことである。
Figure 0005560375
この式で、Vcは電圧であり、Iは電流であり、Rは抵抗であり、jは−1の平方根であり、fはドライブ信号周波数であり、 Lはドライブコイルインダクタンスである。
導管が共振して振動しているので、逆起電力が生じる。したがって、ドライブ信号311が一時的に取り除かれると、R、LおよびIはゼロにまで落ちることになる。
ステップ604では、ドライブコイル204Aの両端の電圧を先の場合と同様に求めることができる。電圧(Vc)は、ステップ402に記載の方法と同様に求めることができる。ドライブ信号311を一時的に取り除き、電圧を再び測定し、ステップ605で、逆起電力(back EMF)を求めることができる。逆起電力を求めると、V/I比は、ステップ602で求められた電圧を用いて逆起電力に関して補償され、コイルの抵抗が求められる。たとえば、V/I比と温度との間の相関関係には逆起電力が含まれていない場合もある。したがって、V/I比から逆起電を引き、相関関係に用いる正確なV/I比を求めることができる。
ステップ606では、ドライブコイル204Aの抵抗が求められる。さらに詳細にいえば、V/I比が求められる。先に記載の実施形態と同様に、「抵抗」について記載されているが、ドライブコイルのインダクタンスLが既知の場合、抵抗ではなくインピーダンスを算出することができる。
ステップ607では、ドライブコイル204Aの温度を上述のように求めることができる。
上述の実施形態では、V/Iと温度との間の相関関係またはその分散が前もって求められている。しかしながら、下記に記載の相関ルーチン320に従って振動式メータに対する初期の相関を更新するまたは実行することが望ましい場合もある。
図7には、本発明のある実施形態にかかる相関ルーチン320が示されている。相関ルーチン330は、たとえばメータ電子機器220により実行されてもよい。相関ルーチン330は、ユーザによって実行されてもよいしまたはオペレータによって実行されてもよい。相関ルーチン330は、製造業者によって実行されてもよい。相関ルーチン320は、振動式メータのセンサーコンポーネントのうちの1つ以上のセンサーコンポーネントのV/I比と温度との間の相関関係を作成するために実行することができる。たとえば、ドライブコイル204Aの抵抗とドライブコイル204Aの温度との間の相関関係を作成するために相関ルーチン320を実行することができる。
相関ルーチン320は、試験信号がセンサーコンポーネント、この場合ドライバコイル204Aに送られるステップ701から開始される。たとえば、試験信号は交流であってもよい。あるいは、試験信号は一定電圧または直流であってもよい。
ステップ702では、第一の発生信号が測定される。発生信号は、試験信号が交流である場合には電圧であってもよい。あるいは、発生信号は、一定電圧が試験信号として送られる場合には、測定電流であってもよい。
ステップ703では、試験信号および第一の発生信号に基づいて第一のV/I比が求められる。実施形態によっては、V/I比は、センサーコンポーネントの抵抗である場合もある。他の実施形態では、V/I比は、センサーコンポーネントのインピーダンスである場合もある。さらに他の実施形態では、V/I比は、抵抗、インピーダンスおよび/または逆起電力を組み合わせたものである場合もある。
ステップ704では、第一の温度が測定される。温度は、たとえばRTDまたは熱電対の如き温度計測デバイスから測定されてもよい。温度計測デバイスは センサーコンポーネントと結合されていてもよいしまたはセンサーコンポーネントの近傍に設けられてもよい。実施形態によっては、温度計測デバイスの温度がセンサーコンポーネントの温度となるような定常状態が達成されたときに、相関ルーチン320が実行されるようになっている場合もある。オーブン内で校正を行うことにより温度測定値を正確なものとするようになっていてもよい。
ステップ705では、第一のV/I比が第一の測定温度と共に格納される。
ステップ706では、第二の温度測定値を得るために温度がもう一度測定される。第二の温度が、あるしきい値を超える値だけ第一の測定温度と異なる場合、相関ルーチン320が、第二の発生信号が求められるステップ702まで戻るようになっていてもよい。第二の温度が前の測定温度と同じまたは差閾値内に含まれる場合、相関ルーチン320が終了するようになっていてもよい。V/I比と温度との間の複数の相関関係を求めるためにシステム温度を変えることができる。複数の相関関係は、表、チャート、グラフ、式などを含むさまざまな手法で格納することができ、センサーコンポーネントの温度を求めるために使用時に検索することができる。
上述の発明は、振動式メータのセンサーコンポーネントの温度を求めるための方法および装置を提供している。RTDの如きコンポーネントのさらなる使用を必要とする従来のアプローチとは対照的に、本発明は、センサーコンポーネント自体のV/Iと温度との間の相関関係を利用している。有利には、センサーコンポーネントの温度を求めることができ、次いで、この温度を用いてセンサーコンポーネントと結合されている導管の温度を求めることが可能となる。RTDの必要性を排除することによって、RTDおよび配線に関連するコストをなくすことができる。
上述の実施形態の詳細な記載は、本発明の技術範囲内に含まれるものとして本発明者が考えているすべての実施形態を完全に網羅するものではない。さらに正確にいえば、当業者にとって明らかなように、上述の実施形態のうちの一部の構成部材をさまざまに組み合わせてまたは除去してさらなる実施形態を作成してもよいし、また、このようなさらなる実施形態も本発明の技術範囲内および教示範囲内に含まれる。また、当業者にとって明らかなように、本発明の技術および教示の範囲に含まれるさらなる実施形態を作成するために、上述の実施形態を全体的にまたは部分的に組み合わせてもよい。
以上のように、本発明の特定の実施形態または実施例が例示の目的で記載されているが、当業者にとって明らかなように、本発明の技術範囲内において、さまざまな変更が可能である。本明細書に記載の教示を上述のかつそれに対応する図に記載の実施形態のみでなく他の振動式メータにも適用することができる。したがって、本発明の技術範囲は添付の請求項によって決められる。

Claims (24)

  1. 振動式メータの導管と結合される振動式センサーコンポーネントの温度を求めるための方法であって、
    前記振動式センサーコンポーネントに温度決定信号を送ることと、
    発生信号を測定することと、
    前記温度決定信号および前記発生信号に基づいて前記センサーコンポーネントの温度を求めることと
    を含む、方法。
  2. 前記センサーコンポーネントの温度を求めるステップが、前記温度決定信号および測定された前記発生信号から電圧/電流比を求めることと、 求められた前記電圧/電流比と温度との間の相関関係に基づいて前記センサーの温度を求めることとを含む、請求項1に記載の方法。
  3. 前記温度決定信号が、プロセス流体を含む、前記振動式メータの前記導管の共振周波数と実質的に等しい周波数を有する交流であり、前記方法が、前もって決められた時間、前記温度決定信号を取り除くステップと、電圧を測定するステップと、逆起電力を求めるステップと、前記電圧/電流比を前記逆起電力について補償するステップとを有する、請求項2に記載の方法。
  4. 前記温度決定信号が、プロセス流体を含む、前記振動式メータの前記導管の共振周波数とは異なる周波数を有する交流である、請求項1に記載の方法。
  5. 前記温度決定信号が、プロセス流体を含む、前記振動式メータの前記導管の共振周波数と実質的に等しい周波数を有する交流である、請求項1に記載の方法。
  6. 前記温度決定信号が交流であり、前記発生信号が電圧である、請求項1に記載の方法。
  7. 前記温度決定信号が一定電圧であり、前記発生信号が電流である、請求項1に記載の方法。
  8. 前記センサーコンポーネントがドライバコイルである、請求項1に記載の方法。
  9. 前記センサーコンポーネントがピックオフセンサーコイルである、請求項1に記載の方法。
  10. 振動式センサーの導管と結合されるセンサーコンポーネントの電圧/電流比と温度との間の相関関係を作成する方法であって、
    前記センサーコンポーネントに試験信号を送ることと、
    第一の発生信号を測定することと、
    前記試験信号および前記発生信号に基づいて第一の電圧/電流比を求めることと、
    前記センサーコンポーネントの第一の温度を測定することと、
    求められた前記第一の電圧/電流比を測定された前記第一の温度と共に格納することとを含む、方法。
  11. 前記センサーコンポーネントの第二の温度を測定するステップと、
    前記センサーコンポーネント前記第二の温度が前記第一の温度から量閾値を超えて変化している場合、第二の発生信号を測定して少なくとも第二の電圧/電流比を求めるステップと、
    前記第二の電圧/電流比を前記第二の温度と共に格納するステップとをさらに有する、請求項10に記載の方法。
  12. 前記センサーコンポーネントがドライバコイルである、請求項10に記載の方法。
  13. 前記センサーコンポーネントがピックオフセンサーコイルである、請求項10に記載の方法。
  14. 前記試験信号が交流であり、前記発生信号が電圧である、請求項10に記載の方法。
  15. 前記試験信号が一定電圧であり、前記発生信号が電流である、請求項10に記載の方法。
  16. 振動式メータ(200)用のメータ電子機器(220)であって、
    1つ以上の導管(203A、203B)と、
    前記1つ以上の導管(203A、203B)と結合される1つ以上のセンサーコンポーネント(204A、205A、205’A)と、
    処理システム(303)とを備えており、該処理システム(303)が、
    前記1つ以上のセンサーコンポーネント(204A、205A、205’A)のうちの1つのセンサーコンポーネント(204A、205A、205’A)に温度決定信号を送り、
    発生信号を測定し、
    前記温度決定信号および前記発生信号に基づいて前記センサーコンポーネントの温度を求めるように構成されてなる、メータ電子機器。
  17. 前記処理システム(303)が、前記温度決定信号および前記発生信号に基づいて電圧/電流比を求め、求められた前記電圧/電流比と温度との間の相関関係に基づいて、前記センサーコンポーネントの前記温度を求めるように構成されてなる、請求項16に記載のメータ電子機器(220)。
  18. 前記温度決定信号が、プロセス流体を含む、前記振動式メータの前記導管の共振周波数と実質的に等しい周波数を有する交流であり、
    前記処理システム(303)が、前もって決められた時間、前記温度決定信号を取り除き、電圧を測定し、逆起電力を求め、前記電圧/電流比を前記逆起電力について補償するようにさらに構成されてなる、請求項17に記載のメータ電子機器(220)。
  19. 前記温度決定信号が、プロセス流体を含む、前記振動式メータ(200)の前記導管(203A、203B)の共振周波数とは異なる周波数を有する交流である、請求項16に記載のメータ電子機器(220)。
  20. 前記温度決定信号が、プロセス流体を含む、前記振動式メータ(200)の前記導管(203A、203B)の共振周波数と実質的に等しい周波数を有する交流である、請求項16に記載のメータ電子機器(220)。
  21. 前記温度決定信号が交流であり、前記発生信号が電圧である、請求項16に記載のメータ電子機器(220)。
  22. 前記温度決定信号が一定電圧であり、前記発生信号が電流である、請求項16に記載のメータ電子機器(220)。
  23. 前記センサーコンポーネントがドライブコイル(204A)である、請求項16に記載のメータ電子機器(220)。
  24. 前記センサーコンポーネントがピックオフコイル(205A、205’A)である、請求項16に記載のメータ電子機器(220)。
JP2013523127A 2010-08-02 2010-08-02 振動式メータの振動式センサーコンポーネントの温度を求めるための方法および装置 Active JP5560375B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2010/044071 WO2012018323A1 (en) 2010-08-02 2010-08-02 Method and apparatus for determining a temperature of a vibrating sensor component of a vibrating meter

Publications (2)

Publication Number Publication Date
JP2013532840A JP2013532840A (ja) 2013-08-19
JP5560375B2 true JP5560375B2 (ja) 2014-07-23

Family

ID=44227820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013523127A Active JP5560375B2 (ja) 2010-08-02 2010-08-02 振動式メータの振動式センサーコンポーネントの温度を求めるための方法および装置

Country Status (12)

Country Link
US (1) US9435695B2 (ja)
EP (1) EP2601487B1 (ja)
JP (1) JP5560375B2 (ja)
KR (2) KR101869733B1 (ja)
CN (2) CN103154678A (ja)
AU (1) AU2010358559B2 (ja)
BR (1) BR112013002138B1 (ja)
CA (1) CA2806150C (ja)
MX (1) MX2013000647A (ja)
RU (1) RU2545081C2 (ja)
SG (1) SG187056A1 (ja)
WO (1) WO2012018323A1 (ja)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101569887B1 (ko) * 2010-11-16 2015-11-27 마이크로 모우션, 인코포레이티드 다중 온도 센서 시스템
BR112014009741B1 (pt) * 2011-10-26 2020-10-13 Micro Motion, Inc. componente de acionador e de sensor de desvio combinados para um medidor vibratório, e, método para formar o mesmo
JP5974518B2 (ja) * 2012-02-06 2016-08-23 横河電機株式会社 コリオリ質量流量計
BR112016000910B1 (pt) * 2013-07-19 2020-12-15 Micro Motion, Inc Método de detectar um material de processo em uma linha de processo usando um medidor, sistema de medição, e, eletrônica de medidor
DE102014103430A1 (de) 2014-03-13 2015-09-17 Endress + Hauser Flowtec Ag Wandlervorrichtung sowie damit gebildetes Meßsystem
DE102014103427A1 (de) 2014-03-13 2015-09-17 Endress + Hauser Flowtec Ag Wandlervorrichtung sowie damit gebildetes Meßsystem
DE102015100573A1 (de) * 2015-01-15 2016-07-21 Krohne Ag Verfahren zum Betreiben eines Coriolis-Massedurchflussmessgeräts
CN107131948A (zh) * 2016-02-26 2017-09-05 高准公司 确定振动传感器类型
DE102016112599A1 (de) 2016-07-08 2018-01-11 Endress + Hauser Flowtec Ag Meßsystem
DE102016112600A1 (de) 2016-07-08 2018-01-11 Endress + Hauser Flowtec Ag Meßsystem
JP6739616B2 (ja) * 2016-07-20 2020-08-12 マイクロ モーション インコーポレイテッド メーターの検証時に最大センサー電流およびテストトーン振幅の温度補償を実行するための方法
EP3548850B1 (en) * 2016-11-30 2021-03-31 Micro Motion Inc. Temperature compensation of a test tone used in meter verification
DE102017106211A1 (de) 2016-12-29 2018-07-05 Endress+Hauser Flowtec Ag Vibronisches Meßsystem zum Messen einer Massendurchflußrate
US10928233B2 (en) 2016-12-29 2021-02-23 Endress+Hauser Flowtec Ag Vibronic measuring system for measuring a mass flow rate
EP3563122A1 (de) 2016-12-29 2019-11-06 Endress+Hauser Flowtec AG VIBRONISCHES MEßSYSTEM ZUM MESSEN EINER MASSENDURCHFLUßRATE
KR102012841B1 (ko) 2017-08-11 2019-08-21 양희준 프리플렉스 거더 및 그 제작방법
KR101897660B1 (ko) 2017-11-01 2018-09-12 김민중 프리스트레스트 강재거더 및 그 제작방법
DE102018102379B4 (de) * 2018-02-02 2023-02-02 Endress + Hauser Flowtec Ag Coriolis-Messaufnehmer eines Coriolis-Messgeräts mit einer in Schwingungserreger bzw. Schwingungssensor integrierten Temperaturmessvorrichtung und ein solches Coriolis-Messgerät
DE102018132672A1 (de) * 2018-12-18 2020-06-18 Endress+Hauser Flowtec Ag Vibronischer Messaufnehmer mit mindestens zwei Temperatursensoren
NL2023792B1 (en) * 2019-08-16 2021-03-24 Illumina Inc Method for measuring thermal resistance at interface between consumable and thermocycler
DE102019134600A1 (de) * 2019-12-16 2021-06-17 Endress + Hauser Flowtec Ag Messaufnehmer und Coriolis-Messgerät
US11300435B2 (en) * 2020-04-10 2022-04-12 Malema Engineering Corporation Coriolis mass flow sensors having different resonant frequencies
DE102020120054A1 (de) 2020-07-29 2022-02-03 Endress + Hauser Flowtec Ag Verfahren zum Ermitteln einer Meßstoff-Temperatur sowie Meßsystem dafür

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4109524A (en) 1975-06-30 1978-08-29 S & F Associates Method and apparatus for mass flow rate measurement
USRE31450E (en) 1977-07-25 1983-11-29 Micro Motion, Inc. Method and structure for flow measurement
US4491025A (en) 1982-11-03 1985-01-01 Micro Motion, Inc. Parallel path Coriolis mass flow rate meter
DE3585222D1 (de) * 1984-07-11 1992-02-27 Exac Corp Geraet zum messen des massenflussdebits und der dichte.
JPH04340424A (ja) * 1991-05-17 1992-11-26 Yamatake Honeywell Co Ltd 電磁流量計
JP3175887B2 (ja) * 1992-10-27 2001-06-11 株式会社半導体エネルギー研究所 測定装置
US6230104B1 (en) 1997-09-30 2001-05-08 Micro Motion, Inc. Combined pickoff and oscillatory driver for use in coriolis flowmeters and method of operating the same
JP4004148B2 (ja) 1998-04-06 2007-11-07 株式会社ノーケン 振動式レベル検出装置
US5987998A (en) * 1998-08-26 1999-11-23 Micro Motion, Inc. High temperature drive system for a coriolis mass flowmeter
JP3753057B2 (ja) * 2001-12-04 2006-03-08 株式会社日立製作所 気体流量測定装置
JP4044376B2 (ja) * 2002-06-24 2008-02-06 株式会社ノーケン 振動式レベルセンサの温度測定方法,物体検出方法および物体検出装置
KR20100099321A (ko) 2003-04-17 2010-09-10 마이크로 모우션, 인코포레이티드 코리올리 유량계에서 힘의 균형을 맞추기 위한 장치 및 방법
DE10351310B4 (de) * 2003-10-31 2009-08-13 Abb Ag Vorrichtung und Verfahren zum Betrieb eines Coriolis-Massendurchflussmessers
KR100987103B1 (ko) 2004-04-16 2010-10-11 마이크로 모우션, 인코포레이티드 힘 평형 방법 및 장치
DE102004019189B3 (de) * 2004-04-16 2005-08-18 Krohne Ag Magnetisch-induktives Durchflußmeßverfahren und magnetisch-induktives Durchflußmeßgerät
PL1756533T3 (pl) * 2004-06-14 2009-01-30 Micro Motion Inc Przepływomierz Coriolisa i sposób ustalania różnicy sygnałów w okablowaniu i w czujnikach przesuwu pierwszym i drugim
CN1285889C (zh) * 2004-09-01 2006-11-22 西安东风机电有限公司 一种双c型管科里奥利质量流量计
RU2344376C1 (ru) 2004-09-17 2009-01-20 Эмерсон Электрик Ко. Способ и устройство компенсации для кориолисова расходомера
US7000465B1 (en) * 2004-09-17 2006-02-21 Mks Instruments, Inc. Attitude error self-correction for thermal sensors of mass flow meters and controllers
EP1789758A1 (en) 2004-09-17 2007-05-30 Emerson Electric Co. Compensation method and apparatus for a coriolis flow meter
US7694538B2 (en) * 2005-02-14 2010-04-13 Emerson Electric Co. Device and method for sensing temperature of a rotating electromagnetic machine
CN100595539C (zh) * 2005-08-01 2010-03-24 李韫言 采用微机械加工热隔离结构的热式传感器及其制造方法
US7480576B2 (en) * 2006-02-13 2009-01-20 Invensys Systems, Inc. Compensating for frequency change in flowmeters
JP4913548B2 (ja) * 2006-10-31 2012-04-11 株式会社山武 容量式電磁流量計
US7550979B2 (en) * 2007-05-29 2009-06-23 Georg Fischer Signet Llc System and method for measuring conductivity of fluid
DK2168024T3 (da) * 2007-06-28 2013-04-08 Micro Motion Inc Instrumenteffektregulator og fremgangsmåde til adaptiv tilvejebringelse af en udgangsspænding og en udgangsstrøm, som sammen opretholder en i det væsentlige konstant elektrisk udgangseffekt
JP4598100B2 (ja) * 2008-04-17 2010-12-15 三菱電機株式会社 変速機の制御装置
JP4469008B1 (ja) * 2008-11-18 2010-05-26 株式会社オーバル コリオリ流量計
DE102009030903B4 (de) * 2009-06-26 2013-06-27 Krohne Ag Verfahren zum Betreiben eines Massedurchflussmessgeräts und Massedurchflussmessgerät
KR101569887B1 (ko) 2010-11-16 2015-11-27 마이크로 모우션, 인코포레이티드 다중 온도 센서 시스템

Also Published As

Publication number Publication date
RU2545081C2 (ru) 2015-03-27
BR112013002138B1 (pt) 2019-12-10
CA2806150A1 (en) 2012-02-09
KR20160063427A (ko) 2016-06-03
BR112013002138A2 (pt) 2016-05-24
EP2601487B1 (en) 2021-11-03
SG187056A1 (en) 2013-02-28
CA2806150C (en) 2016-12-06
KR20130093108A (ko) 2013-08-21
CN109341798A (zh) 2019-02-15
US9435695B2 (en) 2016-09-06
AU2010358559B2 (en) 2013-11-07
US20130121376A1 (en) 2013-05-16
EP2601487A1 (en) 2013-06-12
MX2013000647A (es) 2013-04-03
AU2010358559A1 (en) 2013-01-31
KR101869733B1 (ko) 2018-06-21
WO2012018323A1 (en) 2012-02-09
RU2013109302A (ru) 2014-09-20
CN103154678A (zh) 2013-06-12
JP2013532840A (ja) 2013-08-19

Similar Documents

Publication Publication Date Title
JP5560375B2 (ja) 振動式メータの振動式センサーコンポーネントの温度を求めるための方法および装置
KR101201392B1 (ko) 유동 물질의 유체 온도를 결정하기 위한 방법 및 진동 유량계
JP4588293B2 (ja) 物質の密度により流量に許容できない誤差が生じたときに物質の質量流量を補償する装置及び方法
JP5307292B2 (ja) 振動式フローメーターの流量誤差を求める方法および装置
KR102042009B1 (ko) 진동 유량계에서 가변 제로 알고리즘을 적용하기 위한 장치 및 관련된 방법
JP2004521319A5 (ja)
JP2005502039A5 (ja)
EP3488193B1 (en) Method and meter electronics for performing temperature compensation of a test tone amplitude during meter verification in a flow meter
JP5952928B2 (ja) 流量計における幾何学的熱補償のための計器電子装置及び方法
JP5728052B2 (ja) 流量計における幾何学的熱補償のための計器電子装置及び方法
RU2443980C2 (ru) Вибрационный расходомер и способ определения температуры жидкости текущего материала

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140609

R150 Certificate of patent or registration of utility model

Ref document number: 5560375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250