JP5555424B2 - Purification method of alkaline aqueous solution - Google Patents

Purification method of alkaline aqueous solution Download PDF

Info

Publication number
JP5555424B2
JP5555424B2 JP2008522390A JP2008522390A JP5555424B2 JP 5555424 B2 JP5555424 B2 JP 5555424B2 JP 2008522390 A JP2008522390 A JP 2008522390A JP 2008522390 A JP2008522390 A JP 2008522390A JP 5555424 B2 JP5555424 B2 JP 5555424B2
Authority
JP
Japan
Prior art keywords
aqueous solution
alkaline aqueous
weight
basic anion
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008522390A
Other languages
Japanese (ja)
Other versions
JPWO2007148552A1 (en
Inventor
崇広 米原
真充 飯山
祐介 前田
嗣 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nomura Micro Science Co Ltd
Original Assignee
Nomura Micro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nomura Micro Science Co Ltd filed Critical Nomura Micro Science Co Ltd
Priority to JP2008522390A priority Critical patent/JP5555424B2/en
Publication of JPWO2007148552A1 publication Critical patent/JPWO2007148552A1/en
Application granted granted Critical
Publication of JP5555424B2 publication Critical patent/JP5555424B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D1/00Oxides or hydroxides of sodium, potassium or alkali metals in general
    • C01D1/04Hydroxides
    • C01D1/28Purification; Separation
    • C01D1/32Purification; Separation by absorption or precipitation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/024Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D7/00Carbonates of sodium, potassium or alkali metals in general
    • C01D7/22Purification
    • C01D7/26Purification by precipitation or adsorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/683Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water by addition of complex-forming compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

本発明は、アルカリ水溶液に含まれる金属不純物の濃度を、また、必要に応じてケイ素化不純物及び炭酸不純物の濃度も、非常に低い濃度にまで精製することのできるアルカリ水溶液の精製方法に関する。   The present invention relates to a method for purifying an aqueous alkali solution that can purify the concentration of metal impurities contained in the aqueous alkali solution and, if necessary, the concentration of siliconization impurities and carbonic acid impurities to a very low concentration.

アルカリは、シリコンウェーハを製造する際に生成される加工変質層を除去するエッチング工程や、pH調整及び緩衝目的でコロイダルシリカ等の研磨剤と組み合わせて研磨工程で用いられる。また、アルカリは、研磨工程の後のウェット洗浄でも用いられることが多い。エッチング工程では、水酸化ナトリウムや水酸化カリウム、研磨工程では水酸化ナトリウム、水酸化カリウム、水酸化テトラメチルアンモニウム、アンモニア、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム及び炭酸水素カリウム、洗浄工程ではアンモニアが用いられる。   Alkali is used in the polishing process in combination with an abrasive such as colloidal silica for the purpose of pH adjustment and buffering for the purpose of pH adjustment and buffering, in order to remove the work-affected layer produced when the silicon wafer is produced. Further, the alkali is often used in wet cleaning after the polishing step. In the etching process, sodium hydroxide and potassium hydroxide, in the polishing process, sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, ammonia, sodium carbonate, sodium bicarbonate, potassium carbonate and potassium bicarbonate, and in the cleaning process, ammonia is contained. Used.

アルカリ、例えば、水酸化ナトリウムは食塩の電解によって製造されており、生成した水酸化ナトリウムは、数ppmオーダーの各種金属不純物を含有している。これらの金属不純物中で、例えば、銅とニッケルは、シリコンウェーハに浸透し、残存して電気特性を変化させるなどシリコンウェーハ表面の平坦化を阻害する。そのため、これら金属不純物を含むアルカリ水溶液はエッチング剤として使うことができない。また、カルシウム、マグネシウム、マンガン、鉄、コバルト、亜鉛、アルミニウム、鉛などの金属は、シリコンウェーハの内部には拡散しづらいものの表面に残渣として残り、やはり電気特性などを阻害する。そのため、アルカリエッチング工程や研磨工程において使用される薬液、研磨液にこれら金属不純物が含有していると、その薬液、研磨液の使用が後段の洗浄工程の負荷となる。仮に銅、ニッケルの様なウェーハ内部に拡散しやすい金属とカルシウム、マグネシウム、マンガン、鉄、コバルト、亜鉛、アルミニウム、鉛などのウェーハ表面に留まる金属とについて、その濃度による影響を比較した場合、拡散しやすい金属の濃度は表面に留まる金属にくらべ、時として1/10〜1/1000に低減しなければならない場合がある。   Alkali, for example, sodium hydroxide is produced by electrolysis of sodium chloride, and the produced sodium hydroxide contains various metal impurities on the order of several ppm. Among these metal impurities, for example, copper and nickel penetrate into the silicon wafer and remain to inhibit the planarization of the surface of the silicon wafer, for example, by changing electrical characteristics. Therefore, an alkaline aqueous solution containing these metal impurities cannot be used as an etching agent. In addition, metals such as calcium, magnesium, manganese, iron, cobalt, zinc, aluminum, and lead are difficult to diffuse inside the silicon wafer, but remain as a residue on the surface, which also hinders electrical characteristics and the like. Therefore, when these metal impurities are contained in the chemical solution and polishing liquid used in the alkali etching process and polishing process, the use of the chemical liquid and polishing liquid becomes a burden on the subsequent cleaning process. If the influence of the concentration of a metal such as copper or nickel that easily diffuses inside the wafer and the metal that remains on the wafer surface such as calcium, magnesium, manganese, iron, cobalt, zinc, aluminum, or lead is compared, the diffusion In some cases, the concentration of the metal that is easy to do has to be reduced to 1/10 to 1/1000 compared to the metal that remains on the surface.

また、アルカリエッチングにおいて、水酸化ナトリウムや水酸化カリウムは、使用量を減らすことによるコスト低減を目的に、循環再利用されることがある。その場合、シリコンウェーハから溶け出したシリコンや空気雰囲気中の酸素がアルカリエッチング液に溶解することで、例えば、アルカリ水溶液が水酸化ナトリウムの場合、ケイ酸ナトリウム(NaSiO)が発生し、ウェーハの表面に残渣として残存し、後段の洗浄が困難になってしまう。これを防止する為には、新しいアルカリ液の補充量を増加させ回収率を落とす方法がある。In alkali etching, sodium hydroxide or potassium hydroxide may be recycled for the purpose of reducing costs by reducing the amount used. In that case, silicon dissolved from the silicon wafer and oxygen in the air atmosphere are dissolved in the alkaline etching solution. For example, when the alkaline aqueous solution is sodium hydroxide, sodium silicate (Na 2 SiO 3 ) is generated, It remains as a residue on the surface of the wafer, making subsequent cleaning difficult. In order to prevent this, there is a method of reducing the recovery rate by increasing the replenishment amount of a new alkaline solution.

さらに、空気雰囲気中の二酸化炭素は次式のようにアルカリ水溶液に容易に溶解する。

NaOH+CO → NaHCO
2NaHCO → NaCO+H

そのため、本来アルカリ成分として純度を保持しなければならないNaOHがNaCOとなり、エッチングに寄与しなくなるので、二酸化炭素の溶解量を低減する必要がある。また、当然の事ながら、主成分であるアルカリ金属や水酸化物等の濃度が変化するとエッチング処理に多大な影響を及ぼす。
Furthermore, carbon dioxide in the air atmosphere is easily dissolved in an alkaline aqueous solution as shown in the following formula.

NaOH + CO 2 → NaHCO 3
2NaHCO 3 → Na 2 CO 3 + H 2

Therefore, NaOH that originally has to maintain purity as an alkali component becomes Na 2 CO 3 and does not contribute to etching, so it is necessary to reduce the amount of dissolved carbon dioxide. As a matter of course, if the concentration of the alkali metal or hydroxide as the main component changes, the etching process is greatly affected.

しかし、研磨工程のスラリー中のようにNaSiOやNaCOが混入していても殆ど影響を及ぼさない状態や、あるいは必要として添加されている状態からアルカリ水溶液に含まれる金属不純物だけを選択的に低減しなければならない場合もある。アルカリを精製する手段として、再結晶法、蒸留法等が挙げられるが、何れもかなりな熱エネルギーを要し、装置も大掛かりで、運転管理も複雑となる。However, only the metal impurities contained in the alkaline aqueous solution from the state in which Na 2 SiO 3 or Na 2 CO 3 is mixed, such as in the slurry of the polishing process, has little effect or is added as necessary. May have to be reduced selectively. As means for purifying the alkali, there are a recrystallization method, a distillation method, and the like, but all of them require considerable heat energy, a large apparatus, and complicated operation management.

これに対し、容易に低コストでアルカリを精製する手段として、例えば、金属不純物を含んだ高濃度水酸化ナトリウム水溶液を、ヤシ殻系活性炭を硝酸で処理した後に賦活したものと接触させ、金属不純物を吸着除去する方法が提案されている(特開2004−344715号公報)。しかし、これでは専用の活性炭を準備する必要があるため、コスト上昇を招いてしまう。また、鉄を100ppb程度にまで精製できるが、銅やニッケルについては100ppb程度にまで精製できるだけで要求水準を満たすに至っていない。また、活性炭は素材に含まれている亜鉛やアルミなどの金属不純物が溶出し、これらは硝酸で賦活しても低減することは困難である。従って金属不純物の除去要求項目が鉄に限定されれば良いが、銅やニッケル等多項目になった場合は使用が困難となる。   On the other hand, as a means for easily purifying the alkali at low cost, for example, a high concentration sodium hydroxide aqueous solution containing metal impurities is brought into contact with the activated carbon shell activated carbon after being treated with nitric acid. Has been proposed (Japanese Patent Laid-Open No. 2004-344715). However, this necessitates the preparation of dedicated activated carbon, which leads to an increase in cost. Moreover, although iron can be refined to about 100 ppb, copper and nickel can only be refined to about 100 ppb and do not satisfy the required level. Moreover, activated carbon elutes metal impurities such as zinc and aluminum contained in the material, and these are difficult to reduce even if activated by nitric acid. Accordingly, it is sufficient that the metal impurity removal requirement item is limited to iron, but it becomes difficult to use when there are many items such as copper and nickel.

さらに、水酸化ナトリウム水溶液に含まれる金属不純物を低減する方法として、陽イオン交換膜を用いた水酸化ナトリウム水溶液の電解による精製方法が知られている(特開2002−317285号公報)。この方法によれば、水酸化ナトリウム水溶液中の金属不純物は10ppb以下にできるとされている。しかし、この方法は設備投資が高額となり、装置が複雑になるために精製コストが高く、運転管理が難しいという欠点がある。   Furthermore, as a method for reducing metal impurities contained in an aqueous sodium hydroxide solution, a purification method by electrolysis of an aqueous sodium hydroxide solution using a cation exchange membrane is known (Japanese Patent Laid-Open No. 2002-317285). According to this method, it is said that the metal impurities in the sodium hydroxide aqueous solution can be 10 ppb or less. However, this method has the disadvantages of high capital investment, complicated equipment, high purification costs, and difficult operation management.

さらに、水酸化ナトリウム、水酸化カリウム、水酸化テトラメチルアンモニウム、アンモニア、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウムなどを含むアルカリ水溶液は、単独での使用以外に、例えば、研磨用スラリーの添加剤として使用される。しかし、金属不純物を仮に100ppb以下に低減した高純度のアルカリ水溶液を使用箇所まで高純度の状態で維持する為には、アルカリ水溶液の製造工場やタンクローリ等の移送用手段、アルカリ水溶液を使用するウェーハ製造工場や半導体デバイス製造工場において、接続・供給配管やドラム・タンク等の容器を金属溶出が少ないフッ素樹脂等の高価な素材でライニングしたり、その素材を用いて製造したりしなければならない。また、ウェーハ製造工場や半導体デバイス製造工場で使用したアルカリ水溶液をリサイクルしたい場合でも、製造工程等から副生成的に発生する金属により汚染を受け、再使用が不可能な為、廃棄せざるを得ない。   Further, an alkaline aqueous solution containing sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, ammonia, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, etc. is used, for example, as a slurry for polishing. Used as an additive. However, in order to maintain a high-purity alkaline aqueous solution in which metal impurities are reduced to 100 ppb or less in a high-purity state up to the point of use, a transportation means such as an alkaline aqueous solution manufacturing plant or a tank truck, a wafer using an alkaline aqueous solution In manufacturing factories and semiconductor device manufacturing factories, containers such as connection / supply pipes and drums / tanks must be lined with or made of expensive materials such as fluororesins with little metal elution. Even if it is desired to recycle the alkaline aqueous solution used in wafer manufacturing plants or semiconductor device manufacturing plants, it must be discarded because it is contaminated by by-product metal from the manufacturing process and cannot be reused. Absent.

また、従来、金属不純物の除去に用いられている陽イオン交換樹脂を用いた水溶液の精製法では、高濃度にアルカリ成分が含まれている場合には、アルカリ成分も金属不純物と同様に樹脂と反応するため、金属不純物を選択的に除去することができない。したがって、さらに適切な処理を施さないと主成分であるアルカリ成分の濃度が変化してしまう恐れがある。
特開2004−344715公報 特開2002−317285公報
Further, in the conventional purification method of an aqueous solution using a cation exchange resin used for removal of metal impurities, when an alkali component is contained in a high concentration, the alkali component is also separated from the resin in the same manner as the metal impurity. Due to the reaction, metal impurities cannot be selectively removed. Therefore, the concentration of the alkali component as the main component may change unless further appropriate treatment is performed.
JP 2004-344715 A JP 2002-317285 A

上述したように、従来のアルカリ水溶液は、金属不純物を含んでいるため、シリコンウェーハのエッチング、研磨工程、洗浄工程のような用途に使用する為には一般的な製造方法、例えば、電解法等、だけで製造されたままでは使用は困難である。そのため、再結晶や蒸留、陽イオン交換膜法などを用いざるを得ない。しかし、これらの方法は、エネルギー効率が悪く、装置も大型、複雑で運転管理が容易ではなく、精製コストも高くなってしまう。このため、特に、カルシウム、マグネシウム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、アルミニウム、鉛などの金属不純物を極力少なくすることができる簡便なアルカリ水溶液の精製方法の開発が望まれている。また、主成分であるアルカリ水溶液の濃度を変化させずに、ケイ酸アルカリ、炭酸不純物の除去や、金属不純物を選択的に除去しなければならない。   As described above, since the conventional alkaline aqueous solution contains metal impurities, it is a general manufacturing method such as an electrolytic method for use in applications such as etching, polishing and cleaning of silicon wafers. It is difficult to use it as it is. Therefore, recrystallization, distillation, a cation exchange membrane method, etc. must be used. However, these methods are inefficient in energy, the apparatus is large and complicated, operation management is not easy, and purification costs are high. For this reason, in particular, development of a simple method for purifying an alkaline aqueous solution that can reduce metal impurities such as calcium, magnesium, manganese, iron, cobalt, nickel, copper, zinc, aluminum, and lead as much as possible is desired. Further, it is necessary to remove alkali silicate and carbonic acid impurities and to selectively remove metal impurities without changing the concentration of the alkaline aqueous solution as the main component.

本発明は、かかる従来の課題を解決すべくなされたもので、シリコンウェーハのエッチング、研磨工程、洗浄工程のような用途に使用される、比較的高濃度のアルカリ水溶液に含まれる前述不純物を簡便な方法で速やかに除去することのできるアルカリ水溶液の精製方法を提供することを目的とする。アルカリ水溶液としては、水酸化ナトリウム、水酸化カリウム、水酸化テトラメチルアンモニウム、アンモニア、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム及び炭酸水素カリウム及びその他のアルカリを含むものが挙げられる。   The present invention has been made in order to solve the above-described conventional problems, and can easily remove the impurities contained in a relatively high concentration alkaline aqueous solution used for applications such as etching, polishing and cleaning of silicon wafers. It is an object of the present invention to provide a method for purifying an alkaline aqueous solution that can be quickly removed by a simple method. Examples of the alkaline aqueous solution include those containing sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, ammonia, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate and other alkalis.

本発明のアルカリ水溶液の精製方法は、金属不純物を含むアルカリ水溶液を、繊維状又はビーズ状の強塩基性陰イオン交換体、弱塩基性陰イオン交換体及びキレート化材並びに賦活させた後に硝酸に接触させた活性炭から選択される少なくとも一種の材料に接触させることを特徴とする。   The method for purifying an alkaline aqueous solution of the present invention comprises an alkaline aqueous solution containing metal impurities, a fibrous or beaded strong basic anion exchanger, a weak basic anion exchanger, a chelating agent, and a nitric acid after activation. It is made to contact with at least 1 type of material selected from the contacted activated carbon.

また、本来アルカリ水溶液(中でも代表的ものとして水酸化ナトリウム水溶液等)は、強塩基性陰イオン交換体及び弱塩基性陰イオン交換体等の再生剤として使用されるものである。しかし、本発明では、予め強塩基性陰イオン交換体及び弱塩基性陰イオン交換体の末端基をOH型に処理しておくことで、アルカリ水溶液中では陰イオンとして存在する多くの金属化学種(不純物)を取り除くことが可能となり、かつアルカリ水溶液の濃度が変化しないことを特徴とする。   In addition, alkaline aqueous solutions (particularly, sodium hydroxide aqueous solutions, etc., are typically used as regenerants for strong basic anion exchangers and weak basic anion exchangers). However, in the present invention, by treating the end groups of the strongly basic anion exchanger and weakly basic anion exchanger with OH type in advance, many metal chemical species that exist as anions in an alkaline aqueous solution are used. (Impurities) can be removed, and the concentration of the aqueous alkali solution does not change.

更に、OH型に処理した繊維状又はビーズ状の強塩基性陰イオン交換体は、陰イオンとして存在する多くの金属不純物以外にも、ケイ酸化合物、炭酸根、硫酸根、塩素根等の不純物を除去することが可能である。また、ケイ素化不純物、炭酸不純物と金属不純物を含むアルカリ水溶液から、繊維状又はビーズ状の弱塩基性陰イオン交換体及びキレート化材並びに賦活させた後に硝酸に接触させた活性炭から選択される少なくとも一種の材料中に接触させ、金属不純物だけを除去することができる。   Furthermore, the fibrous or bead-like strong basic anion exchanger treated to OH type has impurities such as silicate compounds, carbonate radicals, sulfate radicals, chlorine radicals in addition to many metal impurities present as anions. Can be removed. Further, at least selected from an alkaline aqueous solution containing siliconized impurities, carbonic acid impurities and metal impurities, fibrous or beaded weakly basic anion exchangers and chelating agents, and activated carbon that has been activated and then contacted with nitric acid Only metal impurities can be removed by contact in a kind of material.

アルカリ水溶液を、繊維状又はビーズ状の強塩基性陰イオン交換体、弱塩基性陰イオン交換体及びキレート化材並びに賦活させた後に硝酸に接触させた活性炭から選択される少なくとも一種、目的によっては二種以上の材料に接触させるには、例えば、これら材料をカラム又は塔中に充填して、この中に精製すべきアルカリ水溶液を通水するか、精製すべきアルカリ水溶液を収容した反応槽中に、これらの材料を添加して精製すべきアルカリ水溶液を流動化させた後濾過すればよい。このとき、繊維状又はビーズ状の強塩基性陰イオン交換体、弱塩基性陰イオン交換体及びキレート化材はカートリッジフィルター状にしてもよい。   At least one selected from an aqueous alkaline solution selected from a fibrous or beaded strong basic anion exchanger, a weak basic anion exchanger, a chelating agent, and activated carbon that has been activated and then contacted with nitric acid, depending on the purpose In order to contact two or more kinds of materials, for example, these materials are packed in a column or a column, and an alkaline aqueous solution to be purified is passed therethrough, or in a reaction vessel containing an alkaline aqueous solution to be purified. In addition, these materials may be added and the aqueous alkaline solution to be purified may be fluidized and then filtered. At this time, the fibrous or beaded strong basic anion exchanger, weak basic anion exchanger, and chelating material may be in the form of a cartridge filter.

また、本発明は、低濃度から高濃度まで(例えば、アルカリ濃度0.01〜50重量%)のアルカリ水溶液に対して適用することができる。   In addition, the present invention can be applied to an alkaline aqueous solution having a low concentration to a high concentration (for example, an alkali concentration of 0.01 to 50% by weight).

本発明に使用する強塩基性陰イオン交換体、弱塩基性陰イオン交換体及びキレート化材としては、耐アルカリ性の合成樹脂繊維又は合成樹脂ビーズに、強塩基性陰イオン交換基、弱塩基性陰イオン交換基又はキレート官能基を結合させたものを使用することができる。また、これらの構造としては、ゲル型、ハイポーラス型、ポーラス型、マクロポーラス型又はマクロレテキュラ型が挙げられ、特に、比表面積の大きいハイポーラス型、ポーラス型、マクロポーラス型又はマクロレテキュラ型が好ましいものとして挙げられる。   As the strongly basic anion exchanger, weakly basic anion exchanger and chelating agent used in the present invention, an alkali-resistant synthetic resin fiber or synthetic resin bead, a strongly basic anion exchange group, a weakly basic Those having an anion exchange group or a chelate functional group bound thereto can be used. Further, examples of these structures include gel type, high porous type, porous type, macroporous type, and macroreticular type, and in particular, high porous type, porous type, macroporous type, or macroreticular type having a large specific surface area. A mold is preferable.

耐アルカリ性の合成樹脂繊維又は合成樹脂ビーズのベースとなる合成樹脂としては、ポリビニルアルコール、スチレン−ジビニルベンゼン共重合体、ポリサルホン、ポリフェニルサルホン、ポリヒドロキシメタクリレート、ポリエチレン、ポリプロピレン、アラミド、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)、PTFE(ポリテトラフルオロエチレン)系樹脂等が例示されるが、汎用性、価格の点でポリビニルアルコール、スチレン−ジビニルベンゼン共重合体、アラミド、ポリサルホン、ポリフェニルサルホン等が好適である。これらの合成樹脂は、高濃度のアルカリ水溶液、例えば、50%水酸化ナトリウム水溶液に対しても高い耐性を有している。これらは、単独でも複数種類を組み合わせても使用することができる。   The synthetic resin used as the base of the alkali-resistant synthetic resin fiber or synthetic resin beads includes polyvinyl alcohol, styrene-divinylbenzene copolymer, polysulfone, polyphenylsulfone, polyhydroxymethacrylate, polyethylene, polypropylene, aramid, PFA (tetra Fluoroethylene / perfluoroalkyl vinyl ether copolymer), PTFE (polytetrafluoroethylene) resin, etc. are exemplified, but in terms of versatility and price, polyvinyl alcohol, styrene-divinylbenzene copolymer, aramid, polysulfone, Polyphenylsulfone and the like are preferred. These synthetic resins have high resistance to a high concentration aqueous alkali solution, for example, a 50% aqueous sodium hydroxide solution. These can be used alone or in combination of a plurality of types.

このようなベースとなる合成樹脂に結合される強塩基性陰イオン交換基としては、第4級アミン基が例示され、弱塩基性陰イオン交換基としては第1級アミン基、第2級アミン基、第3級アミン基等が例示され、キレート化基としてはエチレンジアミン三酢酸基のようなポリアミノポリカルボン酸基、イミノ二酢酸基、イミノ酢酸基、アミノ燐酸基、燐酸基、ポリアミン基、チオ化合物類基等が例示される。   Examples of the strong basic anion exchange group bonded to the base synthetic resin include a quaternary amine group, and the weak basic anion exchange group includes a primary amine group and a secondary amine group. Groups, tertiary amine groups and the like. Examples of chelating groups include polyaminopolycarboxylic acid groups such as ethylenediaminetriacetic acid groups, iminodiacetic acid groups, iminoacetic acid groups, aminophosphoric acid groups, phosphoric acid groups, polyamine groups, thiols. Compound groups and the like are exemplified.

本発明で使用する硝酸で処理した活性炭の炭素材料は、ヤシ殻、石炭、石油ピッチ、フェノール樹脂などいずれでもよく、活性炭は繊維状又はビーズ状などの形状のものを使用することができる。本発明で活性炭を処理する硝酸濃度は、6.5N以上が好ましく、処理時間として1時間以上活性炭と接触させることが好ましい。また本発明で使用する繊維状又はビーズ状の硝酸で処理した活性炭は、カートリッジフィルター状にしてもよい。   The carbon material of activated carbon treated with nitric acid used in the present invention may be any of coconut shell, coal, petroleum pitch, phenol resin, etc., and the activated carbon may be in the form of fibers or beads. The concentration of nitric acid for treating activated carbon in the present invention is preferably 6.5 N or more, and the treatment time is preferably contacted with activated carbon for 1 hour or more. The activated carbon treated with the fibrous or beaded nitric acid used in the present invention may be in the form of a cartridge filter.

これらの使用方法としては次のものが挙げられる。強塩基性陰イオン交換体、弱塩基性陰イオン交換体、キレート化材及び硝酸で処理した活性炭から選ばれる材料のうち1種又は2種以上をカラム又は塔中に充填し、2種以上の場合には混合又は積層の形で充填し、あるいは2種以上を各々個別にカラム又は塔中に充填した後に連結し、これらに精製すべきアルカリ水溶液を通液して使用することができる。
また、強塩基性陰イオン交換体、弱塩基性陰イオン交換体、キレート化材、硝酸で処理した活性炭から選ばれる材料のうち1種又は2種以上を同一反応槽内に積層又は混合し、精製すべきアルカリ水溶液を流動化させ、次いでフィルターで濾過し使用することができる。
The following are mentioned as these usage methods. One or more materials selected from strong basic anion exchangers, weakly basic anion exchangers, chelating materials and activated carbon treated with nitric acid are packed in a column or tower, and two or more In some cases, the mixture can be packed or stacked, or two or more of them can be individually packed into a column or column and then connected, and an aqueous alkali solution to be purified can be passed through them for use.
Also, one or more materials selected from strong basic anion exchangers, weak basic anion exchangers, chelating materials, and activated carbon treated with nitric acid are laminated or mixed in the same reaction tank, The aqueous alkaline solution to be purified can be fluidized and then filtered and used.

本発明の方法は、アルカリ水溶液のアルカリの濃度が高濃度であっても使用できることが特徴であり、アルカリの濃度が0.01重量%以上、特に0.1重量%以上であっても精製が可能である。   The method of the present invention is characterized in that it can be used even when the alkali concentration of the aqueous alkali solution is high, and purification is possible even when the alkali concentration is 0.01 wt% or more, particularly 0.1 wt% or more. Is possible.

本発明の方法によれば、金属除去処理を行ったアルカリ水溶液中の金属濃度、例えば、カルシウム、マグネシウム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、アルミニウム、鉛などの濃度を50ppb以下に精製することが可能である。
本発明による金属不純物の除去は、例えば、図1に示すようにアルカリの濃度が高濃度のもとでは、金属は負電荷の水酸化物錯イオンを形成していることから、陰イオン交換体を用いることができ、さらに、アルカリ水溶液中に多量に存在する陰イオンである水酸化物イオン共存下でも陰イオン交換基と親和性の高い水酸化物錯イオンが選択的に吸着除去されることによると考えられる。
このとき、キレート化材の場合には、負電荷の水酸化物錯イオンは、その水酸化物イオンの代わりにキレート化材が金属イオンと結合することで除去されると考えられ、金属イオンと配位子である水酸化物イオンとの結合よりも強いキレート力を有する官能基を用いることが好ましい。
According to the method of the present invention, the metal concentration in the alkaline aqueous solution subjected to the metal removal treatment, for example, the concentration of calcium, magnesium, manganese, iron, cobalt, nickel, copper, zinc, aluminum, lead, etc. is purified to 50 ppb or less. Is possible.
The removal of metal impurities according to the present invention can be performed, for example, as shown in FIG. 1, since the metal forms a negatively charged hydroxide complex ion under a high alkali concentration. In addition, hydroxide complex ions having high affinity with anion exchange groups can be selectively adsorbed and removed even in the presence of hydroxide ions, which are anions present in large amounts in an alkaline aqueous solution. It is thought that.
At this time, in the case of the chelating material, it is considered that the negatively charged hydroxide complex ions are removed by bonding the chelating material to the metal ions instead of the hydroxide ions. It is preferable to use a functional group having a chelating power stronger than the bond with a hydroxide ion that is a ligand.

本発明によれば、低濃度から高濃度までのアルカリ水溶液に含まれる金属不純物を簡便な方法で速やかに除去することができる。   According to the present invention, metal impurities contained in an alkaline aqueous solution having a low concentration to a high concentration can be quickly removed by a simple method.

具体的には、銅及びニッケルの場合、その濃度を3ppb以下、条件によっては0.1ppb以下まで、除去率では50%以上の除去を達成することが可能である。また、本発明は実施例で示す水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、アンモニア、水酸化テトラメチルアンモニウム溶液の他、水酸化リチウム、水酸化セシウム等のアルカリ金属水酸化物溶液や水酸化バリウム等のアルカリ土類金属水酸化物溶液、セルロース等のアルカリ性水溶性高分子水溶液、酢酸アンモニウムなどの有機アルカリ水溶液の精製にも適用することができる。   Specifically, in the case of copper and nickel, it is possible to achieve removal of 50% or more in terms of the removal rate, with the concentration being 3 ppb or less, depending on conditions, to 0.1 ppb or less. In addition, the present invention includes sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, ammonia, tetramethylammonium hydroxide solution, lithium hydroxide, cesium hydroxide, etc. It can also be applied to the purification of alkaline earth metal hydroxide solutions such as barium hydroxide, alkaline earth metal hydroxide solutions such as barium hydroxide, alkaline water-soluble polymer aqueous solutions such as cellulose, and organic alkaline aqueous solutions such as ammonium acetate.

本発明が有効であるアルカリ水溶液の濃度は、水酸化ナトリウムでは0.01〜50重量%、水酸化カリウムでは0.01〜50重量%、炭酸ナトリウムでは0.01〜23重量%、炭酸カリウムでは0.01〜50重量%、炭酸水素ナトリムでは0.01〜8重量%、炭酸水素カリウムでは0.01〜50重量%、アンモニアでは0.01〜30重量%、水酸化テトラメチルアンモニウムでは0.01〜25重量%の濃度が好ましく、より好ましくは水酸化ナトリウムでは0.1〜50重量%、水酸化カリウムでは0.1〜50重量%、炭酸ナトリウムでは0.1〜23重量%、炭酸カリウムでは0.1〜50重量%、炭酸水素ナトリムでは0.1〜50重量%、炭酸水素カリウムでは0.1〜50重量%、アンモニアでは0.1〜30重量%、水酸化テトラメチルアンモニウムでは0.1〜25重量%の濃度である。特に、水酸化ナトリウムでは5〜50重量%、水酸化カリウムでは5〜50重量%、炭酸ナトリウムでは5〜23重量%、炭酸カリウムでは5〜50重量%、炭酸水素ナトリムでは5〜8重量%、炭酸水素カリウムでは5〜50重量%、アンモニアでは5〜30重量%、水酸化テトラメチルアンモニウムでは5〜25重量%の高濃度領域が好ましく、このとき本発明が最も効果を発揮する。 The concentration of the aqueous alkaline solution in which the present invention is effective is 0.01 to 50% by weight for sodium hydroxide, 0.01 to 50% by weight for potassium hydroxide, 0.01 to 23% by weight for sodium carbonate, 0.01 to 50 wt%, 0.01-8 wt% for sodium hydrogen carbonate U beam, from 0.01 to 50 wt% potassium hydrogen carbonate, 0.01 to 30 wt% with ammonia, the tetramethylammonium hydroxide A concentration of 0.01 to 25% by weight is preferred, more preferably 0.1 to 50% by weight for sodium hydroxide, 0.1 to 50% by weight for potassium hydroxide, 0.1 to 23% by weight for sodium carbonate, 0.1 to 50% by weight potassium carbonate, 0.1 to 50 wt% in sodium hydrogen carbonate U beam, 0.1 to 50 wt% potassium hydrogen carbonate, 0.1 to 3 in ammonia Wt%, the tetramethylammonium hydroxide at a concentration of 0.1 to 25 wt%. In particular, 5 to 50% by weight sodium hydroxide, 5-50 wt% potassium hydroxide, 5 to 23 wt% sodium carbonate, 5 to 50 wt% potassium carbonate, 5-8 weight by sodium hydrogen carbonate U beam %, 5 to 50% by weight for potassium hydrogen carbonate, 5 to 30% by weight for ammonia, and 5 to 25% by weight for tetramethylammonium hydroxide are preferred. The present invention is most effective.

アルカリ水溶液中における銅イオンの存在状態を示した図である。It is the figure which showed the presence state of the copper ion in alkaline aqueous solution.

次に、本発明の実施例について説明する。   Next, examples of the present invention will be described.

試料用のアルカリ水溶液として、旭硝子(株)製の50%水酸化ナトリウム水溶液、旭硝子(株)製の48%水酸化カリウム水溶液、和光純薬工業(株)製特級の炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、関東化学(株)製の28〜30%の特級アンモニア水、水酸化テトラメチルアンモニウム五水和物、セルロース、富山薬品工業(株)製の70%酢酸アンモニウム水溶液を用いて以下の方法で精製した。なお、実験を行う際の溶解、希釈等の操作にはすべて超純水を用いた。また、特に濃度の依存性を見る為に、希釈し金属不純物量が少なくなった0.1重量%及び0.01重量%水酸化ナトリウムについては、検討対象である金属をそれぞれ10ppb前後になる様に添加して精製処理を実施した。   As an alkaline aqueous solution for the sample, 50% aqueous sodium hydroxide solution manufactured by Asahi Glass Co., Ltd., 48% potassium hydroxide aqueous solution manufactured by Asahi Glass Co., Ltd., special grade sodium carbonate, potassium carbonate, carbonic acid manufactured by Wako Pure Chemical Industries, Ltd. Sodium hydrogen, potassium hydrogen carbonate, 28-30% special grade ammonia water manufactured by Kanto Chemical Co., Ltd., tetramethylammonium hydroxide pentahydrate, cellulose, 70% ammonium acetate aqueous solution manufactured by Toyama Pharmaceutical Co., Ltd. And purified by the following method. Note that ultrapure water was used for all operations such as dissolution and dilution during the experiment. In particular, in order to see the dependency of concentration, 0.1 wt% and 0.01 wt% sodium hydroxide diluted to reduce the amount of metal impurities, the metal to be studied is about 10 ppb each. And purified.

金属不純物の測定は、ICP−MS(パーキンエルマー社製 ELANDRC−II)により行った。また、ケイ素化合物並びに無機炭酸の測定は、ケイ素化合物をICP−AES((株)リガク製 CIROS120)、無機炭酸をNDIR法((株)島津製作所製 TOC5000A)にて行った。なお、以下の実施例及び比較例で使用した処理装置及び処理体は、次の通りのものである。   Measurement of metal impurities was performed by ICP-MS (ELANDRC-II manufactured by PerkinElmer). The silicon compound and inorganic carbonic acid were measured by ICP-AES (CIROS120 manufactured by Rigaku Corporation) for the silicon compound and NDIR method (TOC5000A manufactured by Shimadzu Corporation) for the inorganic carbonic acid. In addition, the processing apparatus and the processing body which were used by the following examples and comparative examples are as follows.

処理装置:
処理体充填カラム 3/4インチPFAカラム 200mm
(PFA:テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体)
試験系及び使用タンクの材質 PTFE(ポリテトラフルオロエチレン)
ポンプ ((株)イワキ社製 ベローズポンプ FS−15HT)
Processing equipment:
Processing body packed column 3/4 inch PFA column 200mm
(PFA: tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer)
Test system and tank material PTFE (Polytetrafluoroethylene)
Pump (Iwaki Co., Ltd. Bellows Pump FS-15HT)

使用した処理体:
(A)強塩基性陰イオン交換繊維:
メーカー:(株)ニチビ
商品名:IEF−SA
母材:ポリビニルアルコール
官能基:第4級アミン基
形状:直径100μm、長さ2〜5mm繊維状
Used treatment body:
(A) Strongly basic anion exchange fiber:
Manufacturer: Nichibi Corporation
Product Name: IEF-SA
Base material: Polyvinyl alcohol
Functional group: quaternary amine group
Shape: Diameter 100μm, length 2-5mm fiber

(B)弱塩基性イオン交換繊維:
メーカー:(株)ニチビ
商品名:IEF−WA
母材:ポリビニルアルコール
官能基:第1級〜第3級アミン基
形状:直径100μm、長さ2〜5mm繊維状
(B) Weakly basic ion exchange fiber:
Manufacturer: Nichibi Corporation
Product Name: IEF-WA
Base material: Polyvinyl alcohol
Functional group: primary to tertiary amine group
Shape: Diameter 100μm, length 2-5mm fiber

(C)弱塩基性陰イオン交換樹脂:
メーカー:ロームアンドハースジャパン(株)
商品名:DUOLITE A378D
母材:スチレン・ジビニルベンゼン共重合体
官能基:第1級〜第3級アミン基
形状:直径400〜650μmのビーズ状
(C) Weakly basic anion exchange resin:
Manufacturer: Rohm and Haas Japan Co., Ltd.
Product Name: DUOLITE A378D
Base material: Styrene / divinylbenzene copolymer
Functional group: primary to tertiary amine group
Shape: Bead shape with a diameter of 400-650 μm

(D)エチレンジアミン三酢酸・イミノ二酢酸混合キレート樹脂
メーカー:(株)日立ハイテクノロジー
商品名:ノビアスCHELATE−PA1
母材:ポリヒドロキシメタクリレート
官能基:エチレンジアミン三酢酸基、イミノ二酢酸基
形状:45〜90μmのビーズ状
(D) Ethylenediaminetriacetic acid / iminodiacetic acid mixed chelate resin
Manufacturer: Hitachi High-Technology Corporation
Product Name: NOBIAS CHELATE-PA1
Base material: Polyhydroxymethacrylate
Functional groups: ethylenediaminetriacetic acid group, iminodiacetic acid group
Shape: 45-90 μm beads

(E)キレート繊維:
メーカー:(株)ニチビ
商品名:IEF−IAc
母材:ポリビニルアルコール
官能基:イミノ酢酸基
形状:直径100μm、長さ2〜5mm繊維状
(E) Chelate fiber:
Manufacturer: Nichibi Corporation
Product Name: IEF-IAc
Base material: Polyvinyl alcohol
Functional group: iminoacetic acid group
Shape: Diameter 100μm, length 2-5mm fiber

(F)強塩基性陰イオン交換樹脂:
メーカー:ロームアンドハースジャパン(株)
商品名:A201CL
母材:スチレン・ジビニルベンゼン共重合体
官能基:第4級アミン基
形状:粒径500〜750μmのビーズ状
(F) Strongly basic anion exchange resin:
Manufacturer: Rohm and Haas Japan Co., Ltd.
Product name: A201CL
Base material: Styrene / divinylbenzene copolymer
Functional group: quaternary amine group
Shape: Bead shape with particle size of 500-750 μm

(G)強酸性陽イオン交換樹脂:
メーカー:ロームアンドハースジャパン(株)
商品名:DUOLITE C255LFH
母材:スチレン・ジビニルベンゼン共重合体
官能基:スルホン酸基
形状:粒径550μmのビーズ状
(G) Strongly acidic cation exchange resin:
Manufacturer: Rohm and Haas Japan Co., Ltd.
Product Name: DUOLITE C255LFH
Base material: Styrene / divinylbenzene copolymer
Functional group: sulfonic acid group
Shape: Bead shape with particle size of 550μm

(H)活性炭:
メーカー:三菱化学カルゴン(株)
商品名:W 10−30
母材:ヤシ殻系
形状:粒径10〜35mesh
(H) Activated carbon:
Manufacturer: Mitsubishi Chemical Calgon Co., Ltd.
Product Name: W 10-30
Base material: Coconut shell system
Shape: particle size 10-35 mesh

(I)活性炭:
メーカー:三菱化学カルゴン(株)
商品名:Filtrasorb 400
母材:石炭系
形状:粒径10〜35mesh
(I) Activated carbon:
Manufacturer: Mitsubishi Chemical Calgon Co., Ltd.
Product Name: Filtrasorb 400
Base material: Coal
Shape: particle size 10-35 mesh

(J)限外濾過膜:
メーカー:(株)アドバンテック
商品名:ウルトラフィルターQ0100
母材:ポリサルホン
分画分子量:MWCO 10000
形状:直径76mm薄膜
(J) Ultrafiltration membrane:
Manufacturer: Advantech Co., Ltd.
Product name: Ultra Filter Q0100
Base material: Polysulfone
Molecular weight cut-off: MWCO 10,000
Shape: 76mm diameter thin film

(K)活性炭フィルター:
メーカー:(株)ロキテクノ
商品名:マイクロチャコールMCKタイプ
母材:繊維状活性炭、ヤシ殻活性炭
(K) Activated carbon filter:
Manufacturer: Loki Techno Co., Ltd.
Product Name: Micro Charcoal MCK Type
Base material: Fibrous activated carbon, coconut shell activated carbon

なお、以下の実施例及び比較例においては、使用した処理体は、上記(A),(B),……の略号で表示した。ここで処理に用いた(A),(B),(C),(F)のイオン交換体は、末端基が90%以上OH基となっているものを使用した。   In the following examples and comparative examples, the used treatment bodies are indicated by the abbreviations (A), (B),. Here, the ion exchangers (A), (B), (C), and (F) used in the treatment were those having terminal groups of 90% or more as OH groups.

実施例1〜8、比較例2
(使用器具等の洗浄)
PTFE製タンク(容積1200ml)、PFA製カラム(φ3/4インチ、長さ200mm)、サンプリング用PE(ポリエチレン)製容器(容積1000ml)の全てを、金属汚染を排除するため、予め、1N硝酸に1時間以上浸漬させた後、超純水で流水洗浄した。洗浄に用いた硝酸は関東化学(株)製の電子工業用グレード(EL)であり、約1Nとなるよう超純水で希釈したものである。超純水は超純水製造システムで製造された金属含有量が各金属1ppt以下、Si50ppt以下、無機炭素10ppb以下のものである。
Examples 1-8, Comparative Example 2
(Washing equipment used)
In order to eliminate metal contamination, the PTFE tank (volume: 1200 ml), PFA column (φ3 / 4 inch, length: 200 mm) and sampling PE (polyethylene) container (volume: 1000 ml) were all preliminarily washed with 1N nitric acid. After immersing for 1 hour or longer, it was washed with running ultrapure water. The nitric acid used for washing is an electronic industrial grade (EL) manufactured by Kanto Chemical Co., Inc., which is diluted with ultrapure water so as to be about 1N. The ultrapure water has a metal content of 1 ppt or less, Si50 ppt or less, and inorganic carbon 10 ppb or less produced by an ultrapure water production system.

上記洗浄方法で洗浄された器具をPTFE製タンク、PFAカラム、の順にPFA配管で接続した。このシステムに超純水を通水しPFAカラム出口でPE容器に受けた時の試験系ブランクの分析結果を表1に示す。表から明らかなように、このシステムによる汚染は全くない。   The appliances cleaned by the above-described cleaning method were connected by PFA piping in the order of a PTFE tank and a PFA column. Table 1 shows the analysis results of the test system blank when ultrapure water was passed through this system and received in the PE container at the PFA column outlet. As can be seen from the table, there is no contamination by this system.

(処理操作)
対象のアルカリ水溶液の成分濃度が変化しないように末端基に処理を施した(A)〜(G)の各種吸着体をPFAカラム(φ3/4インチ、長さ200mm)に充填した。また、(H)、(I)の活性炭は予め6.5N硝酸中に1時間浸漬洗浄した後に使用した。
充填は十分洗浄したPTFE製の押し込み棒で軽く吸着体を押し込みながら徐々に充填し、カラム内部が密になるようにして充填した。
(Processing operation)
Various adsorbents (A) to (G) that had been treated on the end groups so as not to change the component concentration of the target aqueous alkaline solution were packed in a PFA column (φ3 / 4 inch, length 200 mm). The activated carbons (H) and (I) were used after being immersed and washed in 6.5N nitric acid for 1 hour in advance.
The packing was carried out gradually by pushing the adsorbent lightly with a well-washed PTFE push rod so that the inside of the column became dense.

吸着体が充填されたPFAカラムに超純水を10ml/minで12時間以上通液し、溶出してくる金属や有機物を十分洗い流した。PTFE製タンクの内部に水滴が残留しないようによく水を切り、試料のアルカリ水溶液である50%NaOHを投入した。アルカリ水溶液が投入されたPTFE製タンクと洗浄済みの充填物が詰まったPFAカラムを1/4インチのPFAチューブで接続し、PFAカラム出口にサンプリング容器を設置した。   Ultrapure water was passed through the PFA column packed with the adsorbent at 10 ml / min for 12 hours or more to sufficiently wash away the eluted metals and organic substances. Water was thoroughly drained so that no water droplets remained inside the PTFE tank, and 50% NaOH, which was an alkaline aqueous solution of the sample, was added. A PTFE tank filled with an alkaline aqueous solution and a PFA column packed with washed packing were connected by a 1/4 inch PFA tube, and a sampling vessel was installed at the PFA column outlet.

PTFE製タンクの上部から窒素ガスを導入し、容器内部の圧力を0.2MPaまで加圧し流量調整バルブを操作してPFAカラム出口から流出するアルカリ水溶液の流出速度を5ml/min以下に調整した。流出してくるアルカリ水溶液のpHをpH試験紙で測定し、供給したアルカリ水溶液と同じになったところでサンプルとしてPFAカラム出口の液体をPE容器に受けた。また、サンプルは供給したアルカリ水溶液と同じ成分濃度であること(例えば水酸化ナトリウムは入口出口のNa濃度を)を分析により確認した。   Nitrogen gas was introduced from the upper part of the PTFE tank, the pressure inside the container was increased to 0.2 MPa, and the flow rate adjusting valve was operated to adjust the flow rate of the alkaline aqueous solution flowing out from the PFA column outlet to 5 ml / min or less. The pH of the alkaline aqueous solution flowing out was measured with a pH test paper, and when it became the same as the supplied alkaline aqueous solution, the liquid at the outlet of the PFA column was received as a sample in the PE container. In addition, it was confirmed by analysis that the sample had the same component concentration as the supplied alkaline aqueous solution (for example, sodium hydroxide had a Na concentration at the inlet and outlet).

PE容器に受けたアルカリ水溶液は直ちに密栓し、ICP−MS、ICP−AES、NDIR法により金属、ケイ素化合物及び無機炭酸の分析を行なった。金属分析項目は、銅、ニッケルの様なウェーハ内部に拡散しやすい金属とカルシウム、マグネシウム、マンガン、鉄、コバルト、亜鉛、アルミニウム、鉛などのウェーハ表面に留まる金属とした。
ICP−MSによる分析では、分析器導入前の処理として必要に応じて固相抽出法によるNa及びK成分の除去を行った。
The alkaline aqueous solution received in the PE container was immediately sealed and analyzed for metals, silicon compounds and inorganic carbonic acid by ICP-MS, ICP-AES, and NDIR methods. Metal analysis items were metals such as copper and nickel that easily diffused inside the wafer and metals that remained on the wafer surface, such as calcium, magnesium, manganese, iron, cobalt, zinc, aluminum, and lead.
In the analysis by ICP-MS, Na and K components were removed by a solid phase extraction method as necessary as a process before introducing the analyzer.

なお、この実施例及び以下の各実施例並びに比較例における処理体量は40ml、試料通液速度は、5ml/min以下、通液量は1000ml、通液はすべて1回パスで、20〜25℃の温度条件で行ったが、25℃以上のアルカリ水溶液でも使用部材の耐熱性があれば用いることができる。
結果を表2に示す。
In this example and the following examples and comparative examples, the amount of treated body is 40 ml, the sample passing rate is 5 ml / min or less, the passing rate is 1000 ml, and the passing rate is 20 to 25 in one pass. Although it performed on the temperature conditions of (degreeC), even if it is 25 degreeC or more alkaline aqueous solution, if the heat resistance of a use member is available, it can be used.
The results are shown in Table 2.

実施例9、比較例3
(使用器具の洗浄)
上記と同様の方法で使用器具を洗浄した。
Example 9, Comparative Example 3
(Washing equipment used)
The instrument used was washed in the same manner as above.

(処理操作)
(J)の限外濾過膜は超純水で12時間通水洗浄した後に使用した。また(K)の活性炭フィルターは予め6.5N硝酸中に1時間浸漬洗浄を行い、超純水で12時間通水洗浄をした後に使用した。洗浄したフィルターは専用カートリッジに挿入し、ポンプでアルカリ水溶液を通液後に濾過液の金属、ケイ素化合物及び無機炭酸の濃度をICP−MS、ICP−AES、NDIR法により測定した。金属分析項目は、銅、ニッケルの様なウェーハ内部に拡散しやすい金属とカルシウム、マグネシウム、マンガン、鉄、コバルト、亜鉛、アルミニウム、鉛などのウェーハ表面に留まる金属とした。
結果を表2に示す。
(Processing operation)
The ultrafiltration membrane (J) was used after washing with ultrapure water for 12 hours. The activated carbon filter (K) was preliminarily washed by immersion in 6.5N nitric acid for 1 hour and then washed with ultrapure water for 12 hours before use. The washed filter was inserted into a dedicated cartridge, and after passing through an alkaline aqueous solution with a pump, the concentrations of metal, silicon compound and inorganic carbonic acid in the filtrate were measured by ICP-MS, ICP-AES and NDIR methods. Metal analysis items were metals such as copper and nickel that easily diffused inside the wafer and metals that remained on the wafer surface, such as calcium, magnesium, manganese, iron, cobalt, zinc, aluminum, and lead.
The results are shown in Table 2.

以下の実施例10〜47は、実施例1〜9までで、特に銅、ニッケルの様なウェーハ内部に拡散しやすい金属について良好な除去結果が得られたものを対象として試験を行った。濾過液の金属分析項目は、銅、ニッケルの様なウェーハ内部に拡散しやすい金属と鉄、亜鉛、アルミニウム、鉛などのウェーハ表面に留まり、洗浄の負荷となり易い金属を対象とした。   Examples 10 to 47 below were Examples 1 to 9, and tests were performed on the metal that easily diffused into the wafer, such as copper and nickel, with good removal results. The metal analysis items of the filtrate were metals such as copper and nickel that easily diffuse inside the wafer, and metals that remain on the wafer surface such as iron, zinc, aluminum, and lead, and that easily become a load of cleaning.

実施例10〜12
(使用器具の洗浄)
上記と同様の方法で使用器具を洗浄した。
Examples 10-12
(Washing equipment used)
The instrument used was washed in the same manner as above.

(処理操作)
上記と同様の方法で、実施例10として(A)の強塩基性陰イオン交換繊維及び(B)の弱塩基性陰イオン交換繊維を混合した試料、実施例11として(A)及び(D)のエチレンジアミン三酢酸・イミノ二酢酸混合キレート樹脂を混合した試料、実施例12として(A)及び(B)の混合体と(D)を直列に並べた試料をカラムに充填し、実施例1〜8と同様の方法で精製処理を行った。
結果を表3に示す。
(Processing operation)
In the same manner as described above, a sample prepared by mixing the strongly basic anion exchange fiber of (A) and the weakly basic anion exchange fiber of (B) as Example 10, and (A) and (D) as Example 11 A sample prepared by mixing the ethylenediamine triacetic acid / iminodiacetic acid mixed chelate resin of Example 1, and a sample in which the mixture of (A) and (B) and (D) are arranged in series as Example 12 was packed in a column. Purification was performed in the same manner as in No. 8.
The results are shown in Table 3.

実施例13〜15、比較例4〜5
(使用器具の洗浄)
上記と同様の方法で使用器具を洗浄した。
Examples 13-15, Comparative Examples 4-5
(Washing equipment used)
The instrument used was washed in the same manner as above.

(処理操作)
処理対象の50%NaOHを超純水で希釈した0.1%NaOHに代え、実施例13として(A)及び(B)を混合した試料、実施例14として(C)の弱塩基性陰イオン交換樹脂、実施例15として(A)及び(B)の混合体と(D)を直列に並べた試料、比較例4として(G)の強酸性陽イオン交換樹脂、をカラムに充填し、実施例1〜8と同様の方法で精製処理を行った。
結果を表4に示す。
(Processing operation)
A sample in which (A) and (B) were mixed as Example 13 instead of 0.1% NaOH diluted with ultrapure water, 50% NaOH to be treated, and (C) a weakly basic anion as Example 14 The exchange resin, a mixture of (A) and (B) as Example 15 and a sample in which (D) were arranged in series, and a strongly acidic cation exchange resin of (G) as Comparative Example 4 were packed in a column, and Purification was performed in the same manner as in Examples 1-8.
The results are shown in Table 4.

実施例16〜18、比較例6〜7
(使用器具の洗浄)
上記と同様の方法で使用器具を洗浄した。
Examples 16-18, Comparative Examples 6-7
(Washing equipment used)
The instrument used was washed in the same manner as above.

(処理操作)
処理対象の50%NaOHを超純水で希釈した0.01%NaOHに代え、実施例16として(A)及び(B)を混合した試料、実施例17として(C)、実施例18として(A)及び(B)の混合体と(D)を直列に並べた試料、比較例6として(G)をカラムに充填し、実施例1〜8と同様の方法で精製処理を行った。
結果を表5に示す。
(Processing operation)
A sample in which (A) and (B) were mixed as Example 16 instead of 0.01% NaOH diluted with ultrapure water, 50% NaOH to be treated, Example 17 (C), Example 18 ( A sample in which the mixture of A) and (B) and (D) were arranged in series, (G) as a comparative example 6 was packed in a column, and purification treatment was performed in the same manner as in Examples 1-8.
The results are shown in Table 5.

実施例19〜21、比較例8〜9
(使用器具の洗浄)
上記と同様の方法で使用器具を洗浄した。
Examples 19-21, Comparative Examples 8-9
(Washing equipment used)
The instrument used was washed in the same manner as above.

(処理操作)
処理対象のアルカリ水溶液を実施例19〜21では48%KOHに代え、実施例19として(A)及び(B)を混合した試料、実施例20として(C)、実施例21として(A)及び(B)の混合体と(D)を直列に並べた試料、比較例8として(G)、をカラムに充填し、実施例1〜8と同様の方法で精製処理を行った。
結果を表6に示す。
(Processing operation)
The alkaline aqueous solution to be treated was replaced with 48% KOH in Examples 19 to 21, and a sample prepared by mixing (A) and (B) as Example 19, (C) as Example 20, (A) and as Example 21 A sample in which the mixture of (B) and (D) were arranged in series, (G) as Comparative Example 8 was packed in a column, and purification treatment was performed in the same manner as in Examples 1-8.
The results are shown in Table 6.

実施例22〜24、比較例10〜11
(使用器具の洗浄)
上記と同様の方法で使用器具を洗浄した。
Examples 22-24, Comparative Examples 10-11
(Washing equipment used)
The instrument used was washed in the same manner as above.

(処理操作)
処理対象のアルカリ水溶液を実施例22〜24では23%NaCOに代え、実施例22として(A)及び(B)を混合した試料、実施例23として(C)、実施例24として(A)及び(B)の混合体と(D)を直列に並べた試料、比較例10として(G)、をカラムに充填し、実施例1〜8と同様の方法で精製処理を行った。
結果を表7に示す。
(Processing operation)
The alkaline aqueous solution to be treated was replaced with 23% Na 2 CO 3 in Examples 22 to 24, and a sample prepared by mixing (A) and (B) as Example 22, (C) as Example 23, and Example 24 ( A sample in which the mixture of A) and (B) and (D) were arranged in series, and (G) as Comparative Example 10 were packed in a column, and purification treatment was performed in the same manner as in Examples 1-8.
The results are shown in Table 7.

実施例25〜27、比較例12〜13
(使用器具の洗浄)
上記と同様の方法で使用器具を洗浄した。
Examples 25-27, Comparative Examples 12-13
(Washing equipment used)
The instrument used was washed in the same manner as above.

(処理操作)
処理対象のアルカリ水溶液を実施例25〜27では50%KCOに代え、実施例25として(A)及び(B)を混合した試料、実施例26として(C)、実施例27として(A)及び(B)の混合体と(D)を直列に並べた試料、比較例12として(G)、をカラムに充填し、実施例1〜8と同様の方法で精製処理を行った。
結果を表8に示す。
(Processing operation)
In Example 25 to 27, the alkaline aqueous solution to be treated was replaced with 50% K 2 CO 3 , a sample in which (A) and (B) were mixed as Example 25, (C) as Example 26, and Example 27 ( A sample in which the mixture of A) and (B) and (D) were arranged in series, (G) as Comparative Example 12 was packed in a column, and purification treatment was performed in the same manner as in Examples 1-8.
The results are shown in Table 8.

実施例28〜30、比較例14〜15
(使用器具の洗浄)
上記と同様の方法で使用器具を洗浄した。
Examples 28-30, Comparative Examples 14-15
(Washing equipment used)
The instrument used was washed in the same manner as above.

(処理操作)
処理対象のアルカリ水溶液を実施例28〜30では8%NaHCOに代え、実施例28として(A)及び(B)を混合した試料、実施例29として(C)、実施例32として(A)及び(B)の混合体と(D)を直列に並べた試料、比較例14として(G)、をカラムに充填し、実施例1〜8と同様の方法で精製処理を行った。
結果を表9に示す。
(Processing operation)
The alkaline aqueous solution to be treated was replaced with 8% NaHCO 3 in Examples 28 to 30, and a sample in which (A) and (B) were mixed as Example 28, (C) as Example 29, and (A) as Example 32 And the sample which arranged the mixture of (B) and (D) in series, (G) as the comparative example 14 was packed in the column, and the refinement | purification process was performed by the method similar to Examples 1-8.
The results are shown in Table 9.

実施例31〜33、比較例16〜17
(使用器具の洗浄)
上記と同様の方法で使用器具を洗浄した。
Examples 31-33, Comparative Examples 16-17
(Washing equipment used)
The instrument used was washed in the same manner as above.

(処理操作)
処理対象のアルカリ水溶液を実施例31〜33では50%KHCOに代え、実施例31として(A)及び(B)を混合した試料、実施例32として(C)、実施例33として(A)及び(B)の混合体と(D)を直列に並べた試料、比較例16として(G)、をカラムに充填し、実施例1〜8と同様の方法で精製処理を行った。
結果を表10に示す。
(Processing operation)
The alkaline aqueous solution to be treated was replaced with 50% KHCO 3 in Examples 31 to 33, and a sample in which (A) and (B) were mixed as Example 31, (C) as Example 32, and (A) as Example 33 And the sample which arranged the mixture of (B) and (D) in series, (G) as the comparative example 16 was packed in the column, and the refinement | purification process was performed by the method similar to Examples 1-8.
The results are shown in Table 10.

実施例34〜36、比較例18〜19
(使用器具の洗浄)
上記と同様の方法で使用器具を洗浄した。
Examples 34 to 36, Comparative Examples 18 to 19
(Washing equipment used)
The instrument used was washed in the same manner as above.

(処理操作)
処理対象のアルカリ水溶液を実施例34〜36では28%アンモニア水に代え、実施例34として(A)及び(B)を混合した試料、実施例35として(C)、実施例36として(A)及び(B)の混合体と(D)を直列に並べた試料、比較例18として(G)、をカラムに充填し、実施例1〜8と同様の方法で精製処理を行った。
結果を表11に示す。
(Processing operation)
In Examples 34 to 36, the alkaline aqueous solution to be treated was replaced with 28% aqueous ammonia, and a sample prepared by mixing (A) and (B) as Example 34, (C) as Example 35, and (A) as Example 36 And the sample which arranged the mixture of (B) and (D) in series, (G) as the comparative example 18 was packed in the column, and the refinement | purification process was performed by the method similar to Examples 1-8.
The results are shown in Table 11.

実施例37〜39、比較例20〜21
(使用器具の洗浄)
上記と同様の方法で使用器具を洗浄した。
Examples 37-39, Comparative Examples 20-21
(Washing equipment used)
The instrument used was washed in the same manner as above.

(処理操作)
処理対象のアルカリ水溶液を実施例37〜39では25%水酸化テトラメチルアンモニウム水溶液に代え、実施例37として(A)及び(B)を混合した試料、実施例38として(C)、実施例39として(A)及び(B)の混合体と(D)を直列に並べた試料、比較例20として(G)、をカラムに充填し、実施例1〜8と同様の方法で精製処理を行った。
結果を表12に示す。
(Processing operation)
The alkaline aqueous solution to be treated was replaced with a 25% tetramethylammonium hydroxide aqueous solution in Examples 37 to 39, a sample in which (A) and (B) were mixed as Example 37, (C) and Example 39 as Example 38. As a sample in which the mixture of (A) and (B) and (D) are arranged in series, and (G) as Comparative Example 20 are packed in a column, and purification treatment is performed in the same manner as in Examples 1-8. It was.
The results are shown in Table 12.

実施例40〜42
(使用器具の洗浄)
上記と同様の方法で使用器具を洗浄した。
Examples 40-42
(Washing equipment used)
The instrument used was washed in the same manner as above.

(処理操作)
実施例1〜8と同様の方法で、実施例40の(C)及び(F)の混合体と(A)及び(B)の混合体とをこの順番で直列に並べた試料、実施例41の(A)及び(B)の混合体と(C)及び(F)の混合体とをこの順番で直列に並べた試料、実施例42の(K)と、(C)及び(F)の混合体並びに(A)及び(B)の混合体をこの順番で直列に並べた試料をカラムに充填し、実施例1〜8と同様の方法で精製処理を行った。
結果を表13に示す。
(Processing operation)
A sample in which the mixture of (C) and (F) of Example 40 and the mixture of (A) and (B) were arranged in series in this order in the same manner as in Examples 1 to 8, Example 41 A sample in which the mixture of (A) and (B) and the mixture of (C) and (F) were arranged in series in this order, (K) of Example 42, and (C) and (F) A sample was prepared by arranging the mixture and the mixture of (A) and (B) in series in this order, and the column was packed, and purification was performed in the same manner as in Examples 1-8.
The results are shown in Table 13.

実施例43、44
(使用器具の洗浄)
PTFE製タンク(容積1200ml)、サンプリング用PE(ポリエチレン)製容器(容積1000ml)は全て金属汚染を排除するため予め、1N硝酸で1時間以上浸漬させた後超純水で流水洗浄した。
洗浄に用いた硝酸は関東化学(株)製の電子工業用グレード(EL)であり、約1Nとなるよう超純水で希釈したものであり、超純水は超純水製造システムで製造された金属含有量が各金属1ppt以下、Si50ppt以下、無機炭素10ppb以下のものである。
Examples 43 and 44
(Washing equipment used)
The PTFE tank (volume 1200 ml) and the sampling PE (polyethylene) container (volume 1000 ml) were all immersed in 1N nitric acid for 1 hour or more in advance and washed with running ultrapure water to eliminate metal contamination.
The nitric acid used for washing is an electronic industrial grade (EL) manufactured by Kanto Chemical Co., Inc., diluted with ultrapure water to be about 1N, and ultrapure water is produced by an ultrapure water production system. The metal content of each metal is 1 ppt or less, Si 50 ppt or less, and inorganic carbon 10 ppb or less.

(処理操作)
実施例43、44としてPTFE製タンク(容積1200ml)の中で50%NaOH及び50%KOHをそれぞれ(C)と24時間接触させたバッチ法による精製処理を行った。
結果を表14に示す。
(Processing operation)
As Examples 43 and 44, purification was performed by a batch method in which 50% NaOH and 50% KOH were contacted with (C) for 24 hours in a PTFE tank (volume: 1200 ml), respectively.
The results are shown in Table 14.

実施例45〜47
(使用器具の洗浄)
上記と同様の方法で使用器具を洗浄した。
(処理操作)
実施例45〜47としてPTFE製タンク(容積1200ml)の中に50%NaOHを貯留し、4インチシリコンウェーハを投入し、80℃にて3時間加熱後、徐冷したものを比較例10のアルカリ水溶液とした。これに(A)を24時間接触させたバッチ法及び(A)と(B)を実施例1〜9と同様なカラムにて精製処理を行った。
結果を表15に示す。
Examples 45-47
(Washing equipment used)
The instrument used was washed in the same manner as above.
(Processing operation)
In Examples 45 to 47, 50% NaOH was stored in a PTFE tank (volume: 1200 ml), a 4-inch silicon wafer was charged, heated at 80 ° C. for 3 hours, and gradually cooled. An aqueous solution was obtained. A batch method in which (A) was contacted for 24 hours and (A) and (B) were purified using the same column as in Examples 1-9.
The results are shown in Table 15.

実施例48〜49、比較例22〜23
(使用器具の洗浄)
上記と同様の方法で使用器具を洗浄した。
(処理操作)
実施例48〜49、比較例22として(A)の強塩基性陰イオン交換繊維、(E)キレート繊維及び(G)強酸性陽イオン交換樹脂を20mlと70%酢酸アンモニウム水溶液を200mlとをPE製容器内で混合し、24時間、バッチ法による精製処理を行った。
結果を表16に示す。
Examples 48-49, Comparative Examples 22-23
(Washing equipment used)
The instrument used was washed in the same manner as above.
(Processing operation)
In Examples 48 to 49 and Comparative Example 22, 20 ml of (A) strongly basic anion exchange fiber, (E) chelate fiber and (G) strongly acidic cation exchange resin and 200 ml of 70% aqueous ammonium acetate solution were added to PE. The mixture was mixed in a container and purified by a batch method for 24 hours.
The results are shown in Table 16.

実施例50、比較例24〜25
(使用器具の洗浄)
上記と同様の方法で使用器具を洗浄した。
(処理操作)
実施例50、比較例24として(E)キレート繊維及び(G)強酸性陽イオン交換樹脂を20mlと1%セルロース水溶液を200mlとをPE製容器内で混合し、24時間、バッチ法による精製処理を行った。
結果を表17に示す。
Example 50, Comparative Examples 24-25
(Washing equipment used)
The instrument used was washed in the same manner as above.
(Processing operation)
As Example 50 and Comparative Example 24, 20 ml of (E) chelate fiber and (G) strongly acidic cation exchange resin and 200 ml of 1% cellulose aqueous solution were mixed in a PE container, and purified for 24 hours by a batch method. Went.
The results are shown in Table 17.

表2において、比較例1に示している金属不純物を含む未処理の50%NaOHを用いて、実施例1〜9の処理を行った結果、金属不純物の除去能力を確認することができた。しかしながら実施例8や実施例9、実施例11のように50%NaOHと接触することで金属が溶出してくるケースも見られた。   In Table 2, the treatment of Examples 1 to 9 was performed using untreated 50% NaOH containing the metal impurities shown in Comparative Example 1, and as a result, the ability to remove metal impurities could be confirmed. However, as in Example 8, Example 9, and Example 11, there was a case where metal was eluted by contact with 50% NaOH.

ここで、50%NaOHのような強アルカリ溶液中では、金属は陽イオン化学種として存在する割合が低いため、比較例2で示されるように、一般的な(G)の強酸性陽イオン交換樹脂では金属不純物が除去できない結果が得られた。一方、実施例1〜3、6のように陰イオン交換繊維や樹脂では効果的に金属不純物が除去できた。特に50%NaOHのように炭酸不純物を吸収しやすい溶液の場合、強塩基性陰イオン交換基よりも弱塩基性陰イオン交換基の方が効果的に金属不純物を除去できる結果が得られた。また、実施例4及び実施例5のような特殊なキレート官能基を有する繊維や樹脂も金属不純物除去効果を発揮した。
しかし、比較例3のように限外濾過法を用いても微量な金属不純物は除去できなかった。
Here, in a strong alkaline solution such as 50% NaOH, since the proportion of metal present as a cationic species is low, as shown in Comparative Example 2, a general (G) strongly acidic cation exchange is performed. The result that the metal impurities could not be removed by the resin was obtained. On the other hand, metal impurities could be effectively removed with anion exchange fibers and resins as in Examples 1 to 3 and 6. In particular, in the case of a solution that easily absorbs carbonic acid impurities such as 50% NaOH, a result that metal impurities can be effectively removed by weakly basic anion exchange groups than by strong basic anion exchange groups was obtained. Moreover, the fiber and resin which have a special chelate functional group like Example 4 and Example 5 also exhibited the metal impurity removal effect.
However, even if the ultrafiltration method was used as in Comparative Example 3, a trace amount of metal impurities could not be removed.

表3において、実施例1〜9の試験で良好であった処理方法を組み合わせた場合の効果を調べた結果、実施例10〜12のように飛躍的に金属不純物除去能力が上がることが示された。特に銅とニッケルについては、1.0ppb以下までの除去が可能であった。   In Table 3, as a result of investigating the effect in the case of combining the processing methods that were good in the tests of Examples 1 to 9, it was shown that the metal impurity removal capability dramatically increased as in Examples 10 to 12. It was. In particular, copper and nickel could be removed to 1.0 ppb or less.

表4及び5では上記試験で特に良好であった実施例3、実施例10及び実施例12と同様の充填物にて実施し、比較例4として(G)の強酸性陽イオン交換樹脂を使用した場合を検討した。ここで比較例4では(G)での金属除去能力は確認できなかったが、比較例6では(G)が効果的に作用していることがわかった。すなわち、0.01重量%NaOH(pH=11.4)以下では金属が陽イオン化学種としても存在し、従来法の陽イオン交換法によって処理可能である。しかし、0.1重量%NaOH(pH=12.4)程度の濃度では、従来法の陽イオン交換法では金属を除去することができず、本発明による精製方法が有効であった。   In Tables 4 and 5, the same packing as in Example 3, Example 10 and Example 12, which was particularly good in the above test, was used, and (G) strong acid cation exchange resin was used as Comparative Example 4 Considered the case. Here, in Comparative Example 4, the metal removal ability in (G) could not be confirmed, but in Comparative Example 6, it was found that (G) was acting effectively. That is, at 0.01 wt% NaOH (pH = 11.4) or less, metal exists as a cation chemical species and can be treated by a conventional cation exchange method. However, at a concentration of about 0.1 wt% NaOH (pH = 12.4), the metal cannot be removed by the conventional cation exchange method, and the purification method according to the present invention is effective.

以下の表6〜12に示した実施例19〜39でも以上の処理と同様に試験を行い、ほぼ同様の結果が得られた。ただし炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウムを用いた場合は、(A)の強塩基性陰イオン交換繊維が炭酸化学種の影響を受け、多少除去能力が低下している傾向が見られた。また、表9及び表10で示されるように炭酸水素ナトリウム及び炭酸水素カリウムでは、弱塩基性であるため、従来の陽イオン交換法も効果がある結果も得られた。   In Examples 19 to 39 shown in Tables 6 to 12 below, tests were performed in the same manner as the above treatment, and almost the same results were obtained. However, when sodium carbonate, potassium carbonate, sodium hydrogen carbonate, or potassium hydrogen carbonate is used, the strong basic anion exchange fiber of (A) is affected by the carbonic acid chemical species, and the removal ability tends to be somewhat reduced. It was seen. In addition, as shown in Tables 9 and 10, sodium hydrogen carbonate and potassium hydrogen carbonate are weakly basic, so that results obtained by the conventional cation exchange method were also obtained.

そして、表13に示した実施例40〜42でも、以上の処理と同様に試験を行ったところ、強塩基性陰イオン交換繊維、弱塩基性陰イオン交換繊維、強塩基性陰イオン交換樹脂、弱塩基性陰イオン交換樹脂を組み合わせた場合には特に優れた金属不純物除去能力を有することがわかった。   And also in Examples 40 to 42 shown in Table 13, when a test was performed in the same manner as the above treatment, a strongly basic anion exchange fiber, a weakly basic anion exchange fiber, a strongly basic anion exchange resin, It has been found that when a weakly basic anion exchange resin is combined, it has a particularly excellent ability to remove metal impurities.

表14に示したバッチ法による精製処理である実施例43及び44でも、実施例3及び20と同等あるいはそれ以上に金属不純物除去能力がある結果が得られた。   Also in Examples 43 and 44, which are the purification processes by the batch method shown in Table 14, results with metal impurity removal ability equivalent to or higher than those in Examples 3 and 20 were obtained.

表15に示した実施例45〜47でも、以上の処理と同様に試験を行ったところ、特にケイ素化合物、無機炭酸が強塩基性陰イオン交換繊維にて除去精製されていることがわかった。逆に弱塩基性陰イオン交換繊維では、ケイ素化合物、無機炭酸が除去されていないことがわかった。これより、ケイ素化合物及び無機炭酸の除去精製の必要性の有無によって使いわけることができることがわかった。   Also in Examples 45 to 47 shown in Table 15, when tests were performed in the same manner as the above treatment, it was found that particularly silicon compounds and inorganic carbonic acid were removed and purified with strong basic anion exchange fibers. Conversely, it was found that the silicon compound and inorganic carbonic acid were not removed from the weakly basic anion exchange fiber. From this, it was found that the silicon compound and the inorganic carbonic acid can be used properly depending on the necessity of removal and purification.

表16に示した70%酢酸アンモニウム水溶液(pH=10.0)において、実施例48〜49の(A)及び(E)で効果が確認でき、比較例22の(G)では効果が確認できなかった。その理由として、高濃度に酢酸イオンやアンモニウムイオンが存在するため、それらとの金属の錯体を形成し、(G)では除去できない金属化学種として存在していると考えられる。そして、負電荷の酢酸−金属錯体が(A)では電気的に吸着され、(E)では酢酸イオンまたはアンモニウムイオンよりも強力な配位結合力によって吸着されたと考えられる。   In the 70% aqueous solution of ammonium acetate (pH = 10.0) shown in Table 16, the effects can be confirmed in (A) and (E) of Examples 48 to 49, and the effect can be confirmed in (G) of Comparative Example 22. There wasn't. The reason for this is that acetate ions and ammonium ions are present at high concentrations, so that metal complexes with them are formed, and it is considered that they exist as metal species that cannot be removed by (G). Then, it is considered that the negatively charged acetic acid-metal complex was electrically adsorbed in (A) and adsorbed in (E) with a stronger coordination bond force than acetate ions or ammonium ions.

表17に示した1%セルロース水溶液(pH=11.0)において、実施例50の(E)及び比較例24の(G)で効果が確認できた。この結果より、比較例6と同様に金属が陽イオン化学種としても存在していると考えられる。   In the 1% cellulose aqueous solution (pH = 11.0) shown in Table 17, the effect could be confirmed in (E) of Example 50 and (G) of Comparative Example 24. From this result, it is considered that the metal exists also as a cationic species as in Comparative Example 6.

Figure 0005555424
Figure 0005555424

Figure 0005555424
Figure 0005555424

Figure 0005555424
Figure 0005555424

Figure 0005555424
Figure 0005555424

Figure 0005555424
Figure 0005555424

Figure 0005555424
Figure 0005555424

Figure 0005555424
Figure 0005555424

Figure 0005555424
Figure 0005555424

Figure 0005555424
Figure 0005555424

Figure 0005555424
Figure 0005555424

Figure 0005555424
Figure 0005555424

Figure 0005555424
Figure 0005555424

Figure 0005555424
Figure 0005555424

Figure 0005555424
Figure 0005555424

Figure 0005555424
Figure 0005555424

Figure 0005555424
Figure 0005555424

Figure 0005555424
Figure 0005555424

本発明は、金属不純物を含有するアルカリ水溶液の精製において広く利用することができる。   The present invention can be widely used in the purification of an alkaline aqueous solution containing metal impurities.

Claims (7)

金属不純物を含むアルカリ水溶液を、繊維状の弱塩基性陰イオン交換体と接触させ、金属不純物を除去するアルカリ水溶液の精製方法であって、
前記アルカリ水溶液が、0.01〜50重量%の水酸化ナトリウム、0.01〜50重量%の水酸化カリウム、0.01〜30重量%のアンモニア、0.01〜25重量%の水酸化テトラメチルアンモニウム、5〜23重量%の炭酸ナトリウム、5〜50重量%の炭酸カリウム、5〜8重量%の炭酸水素ナトリウム又は5〜50重量%の炭酸水素カリウム、であることを特徴とするアルカリ水溶液の精製方法。
A method for purifying an alkaline aqueous solution, wherein an alkaline aqueous solution containing metal impurities is contacted with a fibrous weakly basic anion exchanger to remove metallic impurities,
The alkaline aqueous solution was 0.01 to 50% by weight sodium hydroxide, 0.01 to 50% by weight potassium hydroxide, 0.01 to 30% by weight ammonia, 0.01 to 25% by weight tetrahydroxide. Alkaline aqueous solution, characterized in that it is methylammonium, 5 to 23% by weight sodium carbonate, 5 to 50% by weight potassium carbonate, 5 to 8% by weight sodium bicarbonate or 5 to 50% by weight potassium bicarbonate. Purification method.
ケイ素化不純物と、炭酸不純物と、金属不純物とを含むアルカリ水溶液を、繊維状の弱塩基性陰イオン交換体と接触させ、金属不純物だけを除去するアルカリ水溶液の精製方法であって、
前記アルカリ水溶液が、0.01〜50重量%の水酸化ナトリウム、0.01〜50重量%の水酸化カリウム、0.01〜30重量%のアンモニア、0.01〜25重量%の水酸化テトラメチルアンモニウム、5〜23重量%の炭酸ナトリウム、5〜50重量%の炭酸カリウム、5〜8重量%の炭酸水素ナトリウム又は5〜50重量%の炭酸水素カリウム、であることを特徴とするアルカリ水溶液の精製方法。
A method for purifying an alkaline aqueous solution in which an alkaline aqueous solution containing a siliconized impurity, a carbonic acid impurity, and a metal impurity is brought into contact with a fibrous weakly basic anion exchanger to remove only the metal impurity,
The alkaline aqueous solution was 0.01 to 50% by weight sodium hydroxide, 0.01 to 50% by weight potassium hydroxide, 0.01 to 30% by weight ammonia, 0.01 to 25% by weight tetrahydroxide. Alkaline aqueous solution, characterized in that it is methylammonium, 5 to 23% by weight sodium carbonate, 5 to 50% by weight potassium carbonate, 5 to 8% by weight sodium bicarbonate or 5 to 50% by weight potassium bicarbonate. Purification method.
精製すべきアルカリ水溶液におけるアルカリ成分は、水酸化ナトリウム、水酸化カリウム、水酸化テトラメチルアンモニウム、炭酸ナトリウム及び炭酸カリウムから選択されたものであることを特徴とする請求項1記載のアルカリ水溶液の精製方法。   2. The purification of the alkaline aqueous solution according to claim 1, wherein the alkaline component in the alkaline aqueous solution to be purified is selected from sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide, sodium carbonate and potassium carbonate. Method. 繊維状の弱塩基性陰イオン交換体を、カラム又は塔中に充填し、或いは繊維状の弱塩基性陰イオン交換体と、繊維状の強塩基性陰イオン交換体、キレート化材及び賦活させた後に硝酸に接触させた活性炭から選択される材料とを、カラム若しくは塔中に混合若しくは積層の形で充填するか、又はカラム若しくは塔中に充填した後に各々を連結するかして、精製すべきアルカリ水溶液を通液させることを特徴とする請求項1記載のアルカリ水溶液の精製方法。 A weakly basic anion exchanger fibrous, to Hama charged into a column or tower, or a weakly basic anion exchanger fibrous, strongly basic anion exchanger fibrous, chelating materials and activated The material selected from activated carbon that has been contacted with nitric acid after being mixed is packed in the column or column in a mixed or stacked form, or is connected to each other after being packed in the column or column. The method for purifying an alkaline aqueous solution according to claim 1, wherein the aqueous alkaline solution to be produced is passed. 繊維状の弱塩基性陰イオン交換体を、精製すべきアルカリ水溶液とともに反応槽内に収容し、又は繊維状の弱塩基性陰イオン交換体と、繊維状の強塩基性陰イオン交換体、キレート化材及び賦活させた後に硝酸に接触させた活性炭から選択される材料とを、同一反応槽内に層状若しくは混合した形で配置し、精製すべきアルカリ水溶液を流動化させ、次いで濾過されることを特徴とする請求項1記載のアルカリ水溶液の精製方法。 A weakly basic anion exchanger fibrous, and yield capacity into the reaction vessel together with the aqueous alkali solution to be purified, or a weakly basic anion exchanger fibrous, strongly basic anion exchanger fibrous, and a material selected from activated carbon in contact with the nitric acid after chelated material and activated, and placed in a layered or mixed form in the same reaction vessel, the alkali aqueous solution to be made fine are fluidized and then filtered The method for purifying an alkaline aqueous solution according to claim 1. アルカリ水溶液のアルカリ成分の濃度が、水酸化ナトリウム又は水酸化カリウムの場合は5〜50重量%、水酸化テトラメチルアンモニウムの場合は5〜25重量%、であることを特徴とする請求項1記載のアルカリ水溶液の精製方法。 The concentration of the alkali component in the aqueous alkali solution is 5 to 50% by weight in the case of sodium hydroxide or potassium hydroxide , and 5 to 25% by weight in the case of tetramethylammonium hydroxide. Purification method of alkaline aqueous solution. 金属不純物がFe,Ni及びCuであり、精製されたアルカリ水溶液中の金属不純物の濃度が50ppb以下であることを特徴とする請求項1記載のアルカリ水溶液の精製方法。   2. The method for purifying an alkaline aqueous solution according to claim 1, wherein the metal impurities are Fe, Ni, and Cu, and the concentration of the metal impurity in the purified alkaline aqueous solution is 50 ppb or less.
JP2008522390A 2006-06-19 2007-06-11 Purification method of alkaline aqueous solution Active JP5555424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008522390A JP5555424B2 (en) 2006-06-19 2007-06-11 Purification method of alkaline aqueous solution

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006169420 2006-06-19
JP2006169420 2006-06-19
JP2008522390A JP5555424B2 (en) 2006-06-19 2007-06-11 Purification method of alkaline aqueous solution
PCT/JP2007/061710 WO2007148552A1 (en) 2006-06-19 2007-06-11 Method of purifying aqueous alkali solution

Publications (2)

Publication Number Publication Date
JPWO2007148552A1 JPWO2007148552A1 (en) 2009-11-19
JP5555424B2 true JP5555424B2 (en) 2014-07-23

Family

ID=38833293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008522390A Active JP5555424B2 (en) 2006-06-19 2007-06-11 Purification method of alkaline aqueous solution

Country Status (4)

Country Link
JP (1) JP5555424B2 (en)
KR (1) KR101167354B1 (en)
TW (1) TWI440608B (en)
WO (1) WO2007148552A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5049528B2 (en) * 2006-07-31 2012-10-17 東亞合成株式会社 Method for producing high purity alkali metal hydroxide
JP5053587B2 (en) * 2006-07-31 2012-10-17 東亞合成株式会社 High-purity production method of alkali metal hydroxide
JP2009167036A (en) * 2008-01-11 2009-07-30 Toagosei Co Ltd Method for producing high purity alkali metal carbonate aqueous solution
JP5369440B2 (en) * 2008-01-11 2013-12-18 東亞合成株式会社 Method for producing high-purity alkali metal carbonate aqueous solution and continuous production method for high-purity alkali metal carbonate aqueous solution
JP2009167050A (en) * 2008-01-15 2009-07-30 Toagosei Co Ltd Method for producing high purity alkali metal carbonate aqueous solution
JP5311227B2 (en) * 2009-08-05 2013-10-09 野村マイクロ・サイエンス株式会社 Anion exchanger, its pretreatment method and regeneration method, and purification method and purification apparatus of alkaline aqueous solution
JP2011051833A (en) * 2009-09-02 2011-03-17 Nomura Micro Sci Co Ltd Method for purification of alkaline aqueous solution
JP2014188514A (en) * 2013-03-28 2014-10-06 Mitsubishi Chemicals Corp Process for producing purified alkali metal aqueous solution
JP5648231B2 (en) * 2013-05-22 2015-01-07 野村マイクロ・サイエンス株式会社 Purification method of alkaline aqueous solution
CN112999694A (en) * 2021-03-24 2021-06-22 沧州信联化工有限公司 Raw material refining device for processing tetramethylammonium hydroxide and use method thereof
CN115744934B (en) * 2022-11-29 2024-03-22 福建省龙德新能源有限公司 Preparation method for producing electronic grade sodium fluoride by purifying industrial grade sodium carbonate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2789036A (en) * 1952-12-27 1957-04-16 Diamond Alkali Co Purification of concentrated alkali metal hydroxide by ion exchange
JPS52149297A (en) * 1976-06-07 1977-12-12 Toyo Soda Mfg Co Ltd Purification of caustic soda aq. solution
JPS6427648A (en) * 1987-07-20 1989-01-30 Sumitomo Chemical Co Method of refining alkaline solution
JPH10225643A (en) * 1997-02-14 1998-08-25 Yoshihiko Kanchiku Fibrous ion exchanger
WO2006018985A1 (en) * 2004-08-06 2006-02-23 Asahi Kasei Chemicals Corporation Method for purifying aqueous alkaline solution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2789036A (en) * 1952-12-27 1957-04-16 Diamond Alkali Co Purification of concentrated alkali metal hydroxide by ion exchange
JPS52149297A (en) * 1976-06-07 1977-12-12 Toyo Soda Mfg Co Ltd Purification of caustic soda aq. solution
JPS6427648A (en) * 1987-07-20 1989-01-30 Sumitomo Chemical Co Method of refining alkaline solution
JPH10225643A (en) * 1997-02-14 1998-08-25 Yoshihiko Kanchiku Fibrous ion exchanger
WO2006018985A1 (en) * 2004-08-06 2006-02-23 Asahi Kasei Chemicals Corporation Method for purifying aqueous alkaline solution

Also Published As

Publication number Publication date
JPWO2007148552A1 (en) 2009-11-19
TW200808663A (en) 2008-02-16
WO2007148552A1 (en) 2007-12-27
TWI440608B (en) 2014-06-11
KR101167354B1 (en) 2012-07-19
KR20090019843A (en) 2009-02-25

Similar Documents

Publication Publication Date Title
JP5555424B2 (en) Purification method of alkaline aqueous solution
CN113371683B (en) Electronic grade hydrogen peroxide production method
JP2008031004A (en) Method for producing high purity alkali metal hydroxide
JP2019509882A (en) Purification process for hydrophilic organic solvents
KR20160010832A (en) Purification of phosphoric acid
TWI705937B (en) Metal contamination prevention agent, metal contamination prevention film, metal contamination prevention method and product cleaning method
JP5088892B2 (en) Removal of metal ions from onium hydroxide and onium salt solutions
JPWO2020013070A1 (en) Acid solution regeneration device and regeneration method
JP5648231B2 (en) Purification method of alkaline aqueous solution
KR20190080193A (en) Method for purifying hydrogen peroxide solution using anion exchange resin and cation exchange resin
JP2008031009A (en) Method for producing high purity alkali metal hydroxide
JP5412115B2 (en) Purification method for chelating agent-added chemicals
JP2011051833A (en) Method for purification of alkaline aqueous solution
JP5311227B2 (en) Anion exchanger, its pretreatment method and regeneration method, and purification method and purification apparatus of alkaline aqueous solution
JPH09141262A (en) Use point filter system
JP2008050197A (en) Method for producing high-purity alkali metal hydroxide
KR102346921B1 (en) Mixed bed ion exchange resin comprising anion exchange resin and cation exchange resin, method for preparing the same and method for purifying hydrogen peroxide solution using the same
JP7248090B1 (en) Method for removing impurities from organic solvent
US20240083837A1 (en) Processes for purifying organic amines
CN118302242A (en) Purification of organic solvents
TW202229176A (en) Method and device for refining liquid to be processed containing tetraalkylammonium ions
CN117083124A (en) Method and apparatus for producing dry ion exchange resin, and method and apparatus for purifying liquid to be treated
TW202233516A (en) Method for producing aqueous solution of purified orthoperiodic acid, method for producing semiconductor device, and aqueous solution of orthoperiodic acid
JP2013132581A (en) Method for conditioning anion exchange resin

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100610

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140602

R150 Certificate of patent or registration of utility model

Ref document number: 5555424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250