JP5553463B1 - Pulse compression ultrasonic detector - Google Patents

Pulse compression ultrasonic detector Download PDF

Info

Publication number
JP5553463B1
JP5553463B1 JP2014049773A JP2014049773A JP5553463B1 JP 5553463 B1 JP5553463 B1 JP 5553463B1 JP 2014049773 A JP2014049773 A JP 2014049773A JP 2014049773 A JP2014049773 A JP 2014049773A JP 5553463 B1 JP5553463 B1 JP 5553463B1
Authority
JP
Japan
Prior art keywords
signal
pulse
transmission
output
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014049773A
Other languages
Japanese (ja)
Other versions
JP2015175614A (en
Inventor
孝夫 鵜澤
康男 野瀬
宏 伊藤
Original Assignee
株式会社ソニック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソニック filed Critical 株式会社ソニック
Priority to JP2014049773A priority Critical patent/JP5553463B1/en
Application granted granted Critical
Publication of JP5553463B1 publication Critical patent/JP5553463B1/en
Publication of JP2015175614A publication Critical patent/JP2015175614A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

【課題】パルス圧縮超音波探知装置の受信器内に受波信号の周波数掃引幅拡大回路を設けることにより、送信パルスの周波数変調掃引幅を拡大しなくとも、恰も拡大したと同様のサイドローブレベルの抑圧を実現する。
【解決手段】入力信号である正弦波受波信号を二乗算器1で二乗することにより、直流分を含んだ2倍周波数の正弦波信号を得、その直流分を直流分遮断器2で除去した後、振幅特性が入力振幅の二乗特性になっているのを直線特性に戻すため平方根算出器4を通し、正弦波信号が平方根算出器4で処理された結果生ずる不要の高調波成分を高調波遮断ろ波器5でろ波して出力する。こうして周波数が2倍となることから入力でのf→fの周波数掃引幅は出力では2f→2f=2(f→f)となり2倍の幅となる。本発明をn段重ねると2倍となる。
【選択図】図1
Side-lobe levels similar to those obtained when the frequency modulation sweep width of a transmission pulse is not enlarged by providing a frequency sweep width enlargement circuit of a received signal in the receiver of a pulse compression ultrasonic detector. Realize repression.
A sine wave signal that is an input signal is squared by a double multiplier 1 to obtain a double frequency sine wave signal including a DC component, and the DC component is removed by a DC component breaker 2. After that, the square root calculator 4 is passed through to return the amplitude characteristic to the square characteristic of the input amplitude to the linear characteristic, and unnecessary harmonic components generated as a result of processing the sine wave signal by the square root calculator 4 are converted into harmonics. Filter with wave breaking filter 5 and output. Since the frequency is doubled in this way, the frequency sweep width of f 1 → f 2 at the input becomes 2f 1 → 2f 2 = 2 (f 1 → f 2 ) at the output, which is twice as wide. When n stages of the present invention are stacked, the number becomes 2 n times.
[Selection] Figure 1

Description

本発明は、パルス圧縮超音波探知装置において、パルス圧縮に起因して生じ、受信S/Nや距離分解能に悪影響を与えるレンジサイドローブのレベルを抑圧する技術の分野に属する。   The present invention belongs to the field of technology for suppressing the level of a range side lobe that occurs due to pulse compression and adversely affects the received S / N and distance resolution in a pulse compression ultrasonic detector.

従来のパルス圧縮処理を行う超音波探知装置やレーダーにおいては、レンジサイドローブを低減させるために、窓関数の係数を生成して受信信号に乗じている(特許文献1、2)。パルス圧縮処理をした信号は、送信パルスの周波数変調掃引幅を大きくすると、メインローブが鋭くなることが知られている。
レンジサイドローブを低減するために、受信信号に窓関数を掛けてパルス圧縮処理をした信号は、送信パルスの周波数変調掃引幅を大きくするとメインローブが鋭くなると同時に、レンジサイドローブレベルが減少することを発明者らはシミュレーションや実験で確認した(図10、図11)。従って、送信パルスの周波数変調掃引幅を広帯域化すればレンジサイドローブを抑制したパルス圧縮が可能となる。
Conventional ultrasonic detection devices and radars that perform pulse compression processing generate window function coefficients and multiply the received signals in order to reduce range side lobes (Patent Documents 1 and 2). It is known that a signal subjected to pulse compression processing has a sharp main lobe when the frequency modulation sweep width of a transmission pulse is increased.
In order to reduce the range side lobe, a signal that has been subjected to pulse compression processing by multiplying the received signal by a window function will sharpen the main lobe and reduce the range side lobe level when the frequency modulation sweep width of the transmission pulse is increased. The inventors confirmed this through simulations and experiments (FIGS. 10 and 11) . Therefore, if the frequency modulation sweep width of the transmission pulse is widened, pulse compression with suppressed range side lobe becomes possible.

特開2009−288038号公報(段落[0014]、[0026])JP 2009-288038 A (paragraphs [0014] and [0026]) 特開2008−175552号公報(段落[0012]、[0026])JP 2008-175552 A (paragraphs [0012] and [0026]) 特願2013−155535号公報(段落[0009]、[0012]、[0014])Japanese Patent Application No. 2013-155535 (paragraphs [0009], [0012], [0014])

しかしながら、送信パルスの周波数変調掃引幅を大きくすることには、以下のような問題がある。
第1に、送受波器に用いる圧電セラミック素子の広帯域化が充分ではなく、広帯域化の工夫として音響整合層の改良や複数の共振点を持たせるなどの工夫をしているが、特性が安定化せず且つ高価になるという問題がある。
第2に、送受信の周波数が広帯域化すると、他の水中超音波機器の発する超音波の干渉を受ける機会が多くなるという問題がある。
第3に、送受信の周波数を広帯域化すると、周波数によって水中伝搬中の減衰の程度が異なるため、受波した1パルス内におけるレベルが一様でなくなり、このような信号をパルス圧縮した信号の精度や信頼性に問題がある。
However, increasing the frequency modulation sweep width of the transmission pulse has the following problems.
First, the piezoelectric ceramic elements used in transducers are not sufficiently widened. As a means of widening the band, the acoustic matching layer has been improved and multiple resonance points are provided, but the characteristics are stable. There is a problem that it does not become expensive and becomes expensive.
Secondly, when the frequency of transmission and reception is widened, there is a problem that the chance of receiving interference of ultrasonic waves generated by other underwater ultrasonic devices increases.
Thirdly, when the transmission / reception frequency is widened, the level of attenuation during underwater propagation varies depending on the frequency, so the level within one received pulse is not uniform, and the accuracy of the signal obtained by pulse compression of such a signal There is a problem with reliability.

本発明は、パルス圧縮超音波探知装置において、送信パルスの周波数変調掃引幅を拡大する、上記のような問題点があることに鑑み、送信パルスの周波数変調掃引幅を拡大することなく、受信系に工夫をすることによって、恰も送受信の周波数変調掃引幅を拡大したと同等の効果を得られるようにしたものである。 The present invention provides a pulse compression ultrasound detection device, when expanding the frequency modulation sweep width of the transmitted pulse, considering that there are problems as described above, without expanding the frequency modulation sweep width of the transmitted pulse, received By devising the system, it is possible to obtain the same effect as expanding the frequency modulation sweep width of transmission and reception.

本発明は、送信装置の送信パルスの周波数変調掃引幅は拡大することなく、送受波器から水中へ送波された送信波が水中標的から反射されてきて送受波器で受波され受信装置へ入力された受信波について、その周波数を逓倍することにより、恰も周波数変調掃引幅が拡大された送信パルスが送信されてその反射波が受波されたかのようにすることにより、送信パルスの周波数変調掃引幅が拡大されたのと同じ効果を生ぜしめ、これによりレンジサイドローブを抑圧しようとするものである。
即ち、受信装置内に、受信信号の周波数を逓倍することによる周波数変調掃引幅拡大回路を設け、これに受信信号を通過させるというものである。
In the present invention, a transmission wave transmitted from a transducer to water is reflected from an underwater target and received by the transducer and transmitted to a reception device without increasing the frequency modulation sweep width of the transmission pulse of the transmission device. By multiplying the frequency of the input received wave, the transmission pulse whose frequency modulation sweep width has been expanded is transmitted and the reflected wave is received, so that the frequency modulation sweep of the transmission pulse is performed. It produces the same effect as the width is expanded, thereby trying to suppress the range side lobe.
That is, a frequency modulation sweep width expansion circuit by multiplying the frequency of the reception signal is provided in the reception device, and the reception signal is passed through this circuit.

パルス圧縮相関係数の生成は、送受信切替器の送信端から受信端へ漏洩し、受波信号と同様に前記周波数変調掃引幅拡大回路を通過して掃引幅が拡大した漏洩送信パルスを基にして生成されるので、受信部内に周波数変調掃引幅拡大回路を設けたことによる問題はない。   The generation of the pulse compression correlation coefficient is based on a leaked transmission pulse that leaks from the transmission end to the reception end of the transmission / reception switch and passes through the frequency modulation sweep width expanding circuit in the same manner as the received signal, and the sweep width is expanded. Therefore, there is no problem caused by providing a frequency modulation sweep width expanding circuit in the receiving unit.

このようにして、送受信共に周波数変調掃引幅が拡大されたと同様になり、パルス圧縮相関係数に窓関数がかかっていることと相俟って、パルス圧縮後のレンジサイドローブのレベルを抑圧することができるという効果がある。   In this way, the frequency modulation sweep width is increased for both transmission and reception, and in combination with the window function applied to the pulse compression correlation coefficient, the level of the range side lobe after pulse compression is suppressed. There is an effect that can be.

本発明の構成は、下記(イ)、(ロ)、(ハ)、(ニ)、(ホ)、(ヘ)の各手段を具備することを特徴とするパルス圧縮超音波探知装置である。
(イ) 後記(ロ)の送受信切替器の受信端に接続され、受波信号を増幅する増幅器と、増幅された信号をデジタル信号に変換するA/D変換器と、受波信号の周波数掃引幅を拡大する、下記(a)又は(b)の周波数変調掃引幅拡大回路とを具備し、その拡大出力デジタル信号を、後記(ニ)のパルス圧縮相関係数生成回路の相関係数RAMと、後記(ヘ)のパルス圧縮器へ送出する受信部
(a)入力された周波数変調パルス信号を二乗して出力する二乗算器と、
該二乗算器の出力を受けその出力中に含まれる直流成分を遮断する直流分遮断器と、
該直流分遮断器の出力の絶対値の平方根と前記出力の符号を乗算した値を出力する平方根算出器と、
該平方根算出器の出力中の基本周波数以外の高調波成分を除去して出力する高調波遮断ろ波器とから構成される、周波数変調パルス信号の周波数変調掃引幅拡大回路
(b)入力正弦波信号をπ/2ラジアン移相して出力する(π/2)移相器と、
該(π/2)移相器への入力信号と該移相器の出力信号とを受けてこれを乗算して出力する乗算器と、
該乗算器の出力の絶対値の平方根と前記出力の符号を乗算した値を出力する平方根算出器と、
該平方根算出器の出力信号を受け、その出力信号中に含まれる基本周波数以外の高調波成分を除去して出力する高調波遮断ろ波器とから構成される、周波数変調パルス信号の周波数変調掃引幅拡大回路
(ロ) 送信端へ入力された送信信号が送受波器端へ伝送される他、一部が、受信器が接続される受信端へ漏出する送受信切替器
(ハ) 前記(ロ)の送受信切替器の送信端へ接続され、周波数変調された送信パルスを送出する送信部
(ニ) 受信部の出力中、送受信切替器において送信端から受信端へ漏出した送信パルス部分の受信部出力信号を、時間軸で細分化し、相関係数RAMの記憶素子列へ順次記憶させて行き、送信パルス終了後から前記記憶素子列から記憶順とは逆順で読み出したものに窓関数を乗じたものをパルス圧縮相関係数として出力し、又は前記送信パルス部分の受信部漏出出力信号を時間軸で細分化し、これに窓関数を乗じたものを前記相関係数RAMの記憶素子列へ順次記憶させて行き、送信パルス終了後逆順で読み出したものをパルス圧縮相関係数として出力するパルス圧縮相関係数生成回路
(ホ) 前記(ロ)の送受信切替器の送受波器端に接続された送受波器
(ヘ) 前記(イ)の受信部からの受信デジタル信号と、前記(ニ)のパルス圧縮相関係数生成回路からのパルス圧縮相関係数信号を受け、相関係数信号により受信デジタル信号に対し畳み込み演算によるパルス圧縮を行うパルス圧縮器
Configuration of the present invention, the following (a), is (b), (c), (d), (e), the pulse compression ultrasound detection device characterized by comprising the means of the (f) .
(A) An amplifier that amplifies a received signal, an A / D converter that converts the amplified signal into a digital signal, and a frequency sweep of the received signal, which are connected to the receiving end of the transmission / reception switcher described later (b) A frequency modulation sweep width expansion circuit of (a) or (b) below , which expands the width, and outputs the expanded output digital signal as a correlation coefficient RAM of a pulse compression correlation coefficient generation circuit (d) , Receiving unit to send to the pulse compressor described later (f)
(A) a double multiplier that squares and outputs an input frequency modulation pulse signal;
A direct current circuit breaker that receives an output of the double multiplier and blocks a direct current component included in the output;
A square root calculator for outputting a value obtained by multiplying the square root of the absolute value of the output of the DC circuit breaker by the sign of the output;
A frequency modulation sweep width expansion circuit for a frequency modulation pulse signal, comprising: a harmonic cutoff filter that removes and outputs a harmonic component other than the fundamental frequency in the output of the square root calculator
(B) a phase shifter that shifts and outputs an input sine wave signal by π / 2 radians;
A multiplier for receiving and multiplying an input signal to the (π / 2) phase shifter and an output signal of the phase shifter;
A square root calculator that outputs a value obtained by multiplying the square root of the output of the multiplier by the sign of the output;
A frequency modulation sweep of a frequency modulation pulse signal, which comprises an output signal of the square root calculator and a harmonic cutoff filter that removes and outputs harmonic components other than the fundamental frequency contained in the output signal Widening circuit (b) A transmission signal input to the transmission end is transmitted to the transmitter / receiver end, and a part of the transmission / reception switch (c) leaks to the reception end to which the receiver is connected. Transmitter connected to the transmission end of the transmission / reception switch and transmitting the frequency-modulated transmission pulse (d) The output of the reception portion of the transmission pulse leaked from the transmission end to the reception end in the transmission / reception switch during the output of the reception unit The signal is subdivided along the time axis and stored sequentially in the storage element array of the correlation coefficient RAM. After the transmission pulse, the signal read from the storage element array in the reverse order of the storage order is multiplied by the window function. The pulse compression correlation coefficient and Or the reception part leakage output signal of the transmission pulse part is subdivided by the time axis, and the result multiplied by the window function is sequentially stored in the storage element array of the correlation coefficient RAM, and the transmission pulse ends. A pulse compression correlation coefficient generation circuit (e) that outputs the data read in the reverse order as a pulse compression correlation coefficient (e) A transmitter / receiver (f) connected to the transmitter / receiver end of the transmission / reception switcher of (b) B) receiving the received digital signal from the receiving unit and the pulse compressed correlation coefficient signal from the pulse compression correlation coefficient generating circuit of (d) above, and performing pulse compression by convolution operation on the received digital signal with the correlation coefficient signal Perform pulse compressor

本発明のパルス圧縮超音波探知装置はその受信部に前記構成(イ)の(a)又は(b)の周波数変調掃引幅拡大回路を有するものであり、受波した周波数変調パルスの周波数掃引幅を拡大して出力する。
(a)の構成は、図1に示すように、二乗算器1、直流分遮断器2、平方根算出器4、高調波遮断ろ波器5がこの順序で縦続に接続されている。
Those having a pulse frequency modulation sweep width expansion circuit of the compression the configuration to the receiver of the ultrasound detection device Waso of (i) (a) or (b) of the present invention, the frequency of the received wave with frequency-modulated pulses The sweep width is expanded and output.
In the configuration of (a) , as shown in FIG. 1, a double multiplier 1, a DC component breaker 2, a square root calculator 4, and a harmonic cut-off filter 5 are connected in cascade in this order.

今、二乗算器1にAsinωtなる信号が入力されると、その出力はA(1−cos2ωt)/2となる。ここで、入力正弦波の角速度がωであるのに対して、出力余弦波の角速度が2倍の2ωになっており、周波数が2倍になっていることが分かる。この出力を次段の直流分遮断器2を通過させ直流成分を除去するとその出力は(Acos2ωt)/2となり、これを入出力振幅特性の直線性を回復するために次段の平方根算出器4に入力するとその出力は、A√cos2ωt/√2となる。この式の出力波形はcos2ωtの正弦波形(図3の(a)参照)の平方根であり、その周期は同じく2ωであるが、その波形は、図3の(b)のように正弦波形から変形した、高調波を含むものとなる。そこで、この信号を高調波遮断ろ波器5を通過させ、高調波成分を除去すると(A/√2)cos2ωt即ち、周波数が2倍の正弦波が得られることになる。 Now, when a signal of Asinωt is input to the double multiplier 1, the output is A 2 (1-cos2ωt) / 2. Here, it can be seen that the angular velocity of the input sine wave is ω, whereas the angular velocity of the output cosine wave is 2ω, which is twice, and the frequency is doubled. When this output is passed through the DC breaker 2 of the next stage and the DC component is removed, the output becomes (A 2 cos2ωt) / 2, and this is calculated as the square root of the next stage in order to restore the linearity of the input / output amplitude characteristics. When input to the device 4, the output becomes A√cos 2ωt / √2. The output waveform of this equation is the square root of a sine waveform of cos 2ωt (see FIG. 3A), and its period is also 2ω, but the waveform is transformed from the sine waveform as shown in FIG. 3B. The harmonics are included. Therefore, when this signal is passed through the harmonic cut-off filter 5 and the harmonic component is removed, (A / √2) cos 2ωt, that is, a sine wave having a frequency twice is obtained.

従って、図6のように、一定のパルス幅内での正弦波でパルスの立ち上り時点の周波数がf、立ち下り(終了)時点の周波数がfというように、パルス幅内で周波数がfからf(>f)に掃引されている信号を上記の周波数変調掃引幅拡大回路へ入力し通過させると、パルスの立ち上り時点での周波数は2fとなり、パルスの終了時点での周波数は2fとなる。 Therefore, as shown in FIG. 6, the frequency at the rising edge of the pulse is f 1 and the frequency at the falling (end) time is f 2 in the sine wave within a certain pulse width, and the frequency is f within the pulse width. When a signal swept from 1 to f 2 (> f 1 ) is input to the frequency modulation sweep width expanding circuit and passed therethrough, the frequency at the rising edge of the pulse becomes 2f 1 , and the frequency at the end of the pulse It becomes a 2f 2.

従って、その周波数掃引幅は、2f−2f=2(f−f)となり、入力信号の周波数掃引幅f−fの2倍に拡大されることが分かる。以上のことから、周波数変調掃引幅拡大回路をn個縦続に接続して信号を順次通過させるとその出力の周波数変調掃引幅は、最初の入力信号の周波数変調掃引幅の2倍に拡大されることになる。 Accordingly, it can be seen that the frequency sweep width is 2f 2 −2f 1 = 2 (f 2 −f 1 ), which is twice as large as the frequency sweep width f 2 −f 1 of the input signal. Expanded from the above, when the frequency modulation sweep width enlarging circuit is connected to the signal successively passes through the n-number cascaded frequency modulation sweep width of its output, to 2 n times the frequency modulation sweep width of the first input signal Will be.

従って、この周波数変調掃引幅拡大回路を、パルス圧縮超音波探知装置の受信部内に設け、これに受波信号および漏洩送信パルスを通過させると、それらの周波数変調掃引幅が拡大され、恰も、拡大された周波数変調掃引幅の送信波が送信部から送信され、それが水中を伝搬し、反射物で反射され、それが送受波器で受波され、受信部へ入力されたと同様の効果をもたらす。その結果、窓関数が乗算されたパルス圧縮相関係数を用いるパルス圧縮超音波探知装置におけるレンジサイドローブレベルを一層抑圧できるという効果をもたらす。   Therefore, if this frequency modulation sweep width expansion circuit is provided in the receiving part of the pulse compression ultrasonic detector, and the received signal and leaked transmission pulse are passed through it, their frequency modulation sweep width is expanded and the expansion is also increased. A transmission wave having a frequency-modulated sweep width is transmitted from the transmission unit, propagates in the water, is reflected by the reflector, is received by the transducer, and has the same effect as input to the reception unit. . As a result, it is possible to further suppress the range side lobe level in the pulse compression ultrasonic detector using the pulse compression correlation coefficient multiplied by the window function.

(b)の構成(図2)は、同じく周波数変調掃引幅拡大回路であり、(a)の構成におけるヘッドの二乗算器1に代えて(π/2)移相器7と乗算器8とを用いたものである。
入力信号Asinωtをπ/2ラジアン移相するとAcosωtとなる。これと入力信号Asinωtを乗算器8で乗算すると、振幅がA/2で2倍周波数2ωtの正弦波
(A/2)sin2ωtが得られる。
The configuration (b) (FIG. 2) is also a frequency modulation sweep width expansion circuit, and instead of the head double multiplier 1 in the configuration (a) , (π / 2) a phase shifter 7 and a multiplier 8 Is used.
When the input signal Asinωt is phase-shifted by π / 2 radians, Acosωt is obtained. When multiplied by the multiplier 8 to as input signal Asinomegati, amplitude sine wave frequency doubled 2ωt with A 2/2 (A 2/ 2) sin2ωt is obtained.

次に、振幅は入力信号と直線的に変化するようにするため平方根算出器4で√(A/2)√sin2ωt=(A/√2)√sin2ωtとし、次に√sin2ωtの波形に含まれる高調波を除去するために高調波遮断ろ波器5を通過させて出力(A/√2)sin2ωtとし入力信号の2倍周波の正弦波信号を出力させることになる。 Then, the amplitude √ square root calculator 4 so that changes input signal and a linear (A 2/2) and √sin2ωt = (A / √2) √sin2ωt , then included in the waveform of √Sin2omegati In order to remove the higher harmonics, the signal is passed through the harmonic cutoff filter 5 to output (A / √2) sin2ωt, and a sine wave signal having a frequency twice that of the input signal is output.

本発明の構成は、その(イ)の受信部に、前記(a)の構成または(b)の構成の周波数変調掃引幅拡大回路を有し、送受信切替器の送信端から受信端へ漏洩した送信パルスおよび、送受波器端から受信端へ入力された反射受波信号を入力信号として受け、漏洩送信パルスおよび反射受波信号の両方に対しそれらの周波数変調掃引幅の拡大を行っているので、窓関数付きパルス圧縮相関係数によるパルス圧縮超音波探知装置におけるレンジサイドローブに対する抑圧効果が大となり、レンジサイドローブ抑圧のために、従来考えられていた、送信周波数の周波数変調掃引幅を拡大する必要がなくなり、その結果、技術的困難の多い超音波振動子の周波数帯域の拡張も必要なく、従って超音波振動子も高価なものとならず、経済的効果があり、また送受信の周波数帯域が広くなると、他の水中超音波機器との干渉と言う問題が発生するが送受信の周波数帯域幅を広げなくてもよいということになれば、そのような問題も生じない。 The configuration of the present invention has a frequency modulation sweep width expansion circuit of the configuration of (a) or (b) in the receiving section of (A) , and leaked from the transmission end of the transmission / reception switch to the reception end. Because the received pulse and the reflected received signal input from the transmitter / receiver end to the receiving end are received as input signals, and the frequency modulation sweep width of both the leaked transmitted pulse and reflected received signal is expanded. The suppression effect on the range side lobe in the pulse compression ultrasonic detector by the pulse compression correlation coefficient with the window function becomes large, and the frequency modulation sweep width of the transmission frequency, which has been considered conventionally, has been expanded to suppress the range side lobe. As a result, it is not necessary to expand the frequency band of ultrasonic vibrators, which are technically difficult, and therefore the ultrasonic vibrators are not expensive and have an economic effect. And the frequency band of the transmission and reception becomes wide, if the fact that although problems called interference with other underwater ultrasound equipment may not expand the frequency bandwidth of the transmission and reception, does not occur such a problem.

また、送受信帯域幅を広帯域化すると、周波数によって水中伝搬中の減衰程度が異なるために、受波した1パルス内におけるレベルが一様でなくなり、このような信号をパルス圧縮した信号の精度や信頼性に問題が生ずるが、送信パルスや受信帯域幅を広帯域化しないで済めばそのような問題は生じないという効果がある。   In addition, when the transmission / reception bandwidth is widened, the level of attenuation during underwater propagation varies depending on the frequency, so the level within one received pulse is not uniform, and the accuracy and reliability of a signal obtained by pulse-compressing such a signal is reduced. However, if the transmission pulse and the reception bandwidth are not widened, such a problem does not occur.

本願発明装置の受信部(イ)中の(a)の周波数変調掃引幅拡大回路のブロック図であり、入力初段に二乗算器を用いる例である。It is a block diagram of the frequency modulation sweep width expansion circuit of (a) in the receiving section (A) of the device of the present invention, and is an example in which a double multiplier is used at the input first stage. 本願発明装置の受信部(イ)中の(b)の周波数変調掃引幅拡大回路のブロック図であり、入力初段にπ/2移相器と乗算器を用いる例である。It is a block diagram of the frequency modulation sweep width expansion circuit of (b) in the receiving section (a) of the device of the present invention, and is an example using a π / 2 phase shifter and a multiplier at the first input stage. 正弦波波形図と、その平方根値の波形を示す図である。It is a figure which shows the waveform of a sine wave waveform, and the waveform of the square root value. 図3の(a)の正弦波波形の周波数スペクトラムと図3の(b)の正弦波平方根波形の周波数スペクトラムの比較図である。It is a comparison figure of the frequency spectrum of the sine wave waveform of (a) of FIG. 3, and the frequency spectrum of the sine wave square root waveform of (b) of FIG. 受信部に周波数変調掃引幅拡大回路を設けた、本願発明の超音波探知装置の構成ブロック図である。Digits set frequency modulation sweep width expansion circuit to the receiver, which is a block diagram of an ultrasonic detection device of the present invention. 周波数掃引変調パルスの説明図である。It is explanatory drawing of a frequency sweep modulation | alteration pulse. パルス圧縮相関係数生成回路の構成例を示す構成図で、相関係数RAMから読み出した信号に窓関数を乗算している例である。It is a block diagram which shows the structural example of a pulse compression correlation coefficient production | generation circuit, and is an example which multiplies the signal read from correlation coefficient RAM by the window function. パルス圧縮相関係数生成回路の構成例を示す構成図で、相関係数RAMへ記憶させる受信器出力における漏洩送信パルスデジタル信号に窓関数を乗算している例である。It is a block diagram which shows the structural example of a pulse compression correlation coefficient production | generation circuit, and is an example which multiplies the window function to the leak transmission pulse digital signal in the receiver output memorize | stored in correlation coefficient RAM. 本発明実施例でパルス圧縮器として用いるFIR(FiniteImpulse Respons)の構成図である。It is a block diagram of FIR (Finite Impulse Respons) used as a pulse compressor in the Example of this invention. 受信パルス内周波数掃引幅を10KHzから2倍の20KHzに拡大したときのレンジサイドローブの抑圧度を比較するシミュレーション図である。It is a simulation figure which compares the suppression degree of a range side lobe when the frequency sweep width in a reception pulse is expanded from 10 KHz to 20 KHz which is twice. 受信パルス内周波数掃引幅を10KHzから4倍の40KHzに拡大したときのレンジサイドローブの抑圧度を比較するシミュレーション図である。It is a simulation figure which compares the suppression degree of a range side lobe when the frequency sweep width in a receiving pulse is expanded from 10 KHz to 40 times KHz.

本発明の実施の形態としては、本発明の課題解決手段の構成(イ)(受信部)中の(a)、(b)の構成は、受信部に入力された周波数変調パルス信号の周波数変調掃引幅拡大回路であり、複数の機能単位から構成されているが、それらがまとまって、周波数変調掃引幅の拡大という機能を果すものであるから、各機能単位を配置的に1つのまとまった構成(例えばユニット)とし、これをパルス圧縮を行う超音波探知装置の受信部内に組み込むと言う形態が考えられるが、特にユニットにまとめないで周波数変調掃引幅拡大回路を構成する各構成部分を、超音波探知装置或いは受信部内における信号授受の関係や、実装空間の状況に応じて分散配置するという形態で実施することも可能である。 As an embodiment of the present invention, the configurations (a) and (b) of the configuration (a) (receiving unit) of the problem solving means of the present invention include the frequency modulation of the frequency modulation pulse signal input to the receiving unit. Sweep width expansion circuit, which is composed of a plurality of functional units. However, these functions are combined to perform the function of expanding the frequency modulation sweep width, so that each functional unit is arranged in a single arrangement. (For example, a unit), and this may be incorporated in the receiving unit of an ultrasonic detector that performs pulse compression, but each component that constitutes the frequency modulation sweep width expansion circuit without being combined into a unit is super It is also possible to carry out in the form of distributed arrangement according to the relationship of signal transmission and reception in the acoustic wave detection device or the receiving unit and the situation of the mounting space.

また、本発明の周波数変調掃引幅拡大回路は、1ユニットの拡大幅は2倍である。従って、2ユニットを縦続接続すると2×2で拡大幅は4倍となり、同様にしてn個を縦続に接続すると2倍となる。
従って、単位拡大回路をユニット化しておくと、所望の拡大幅に応じた個数のユニットを縦続接続することにより所望の拡大ができることになる。
In the frequency modulation sweep width expanding circuit of the present invention, the expansion width of one unit is doubled. Therefore, when 2 units are connected in cascade, the enlargement width is 2 × 2 and the enlargement width is 4 times. Similarly, when n units are connected in cascade, it is 2n times.
Therefore, if the unit enlargement circuit is unitized, a desired enlargement can be achieved by cascading a number of units corresponding to the desired enlargement width.

更に、複数の周波数変調掃引幅拡大ユニットを用意しておき、その縦続個数を、スイッチ切替えにより変えることができるようにしておくことにより、1つの超音波探知装置において受信部内での周波数変調掃引幅を状況に応じて選択することも可能となる。   Furthermore, by preparing a plurality of frequency modulation sweep width expanding units and allowing the number of cascaded units to be changed by switch switching, the frequency modulation sweep width within the receiving unit in one ultrasonic detector is obtained. Can be selected according to the situation.

以下、本発明の実施例を図面を参照して説明する。
図1は、周波数変調掃引幅拡大回路(a)の実施例のブロック図である。
超音波探知装置の送受波器で受波され、受信部へ入力される信号をAsinωtの正弦波とする。ここでAは正弦波形の最大振幅値であり、定数である。ωは、周波数をfとしたときの角速度2πfであり、tは時間である。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram of an embodiment of a frequency modulation sweep width expanding circuit (a) .
The signal received by the transducer of the ultrasonic detector and input to the receiver is a sine wave of Asinωt. Here, A is the maximum amplitude value of the sine waveform and is a constant. ω is an angular velocity 2πf where f is a frequency, and t is time.

まず、図1について説明する。入力信号Asinωtが二乗算器1で二乗されるとその出力は、A(1−cos2ωt)/2となる。ここで、周波数が2倍のcos2ωtが現れる。これから、次段の直流分遮断器2によって直流分を遮断するとその出力は
(Acos2ωt)/2となる。これを見ると入力振幅がAであるのに対して出力振幅はAとなり二乗特性となっているため、これを比例特性に戻すためにこの出力を平方根算出器4を通すとA√cos2ωt/√2となる。この√cos2ωtの波形の周期は入力信号の2倍の2ωtである。しかし、正弦波形の平方根であるため、その波形は図3の(b)のような山谷の部分が幅広の波形になる。このような波形は、図3の(a)のような基本周波数の正弦波の他にいくつかの高調波を含んでいることによるものである。
First, FIG. 1 will be described. When the input signal Asinωt is squared by the double multiplier 1, its output becomes A 2 (1-cos2ωt) / 2. Here, cos2ωt whose frequency is twice appears. From this, when the DC component is interrupted by the DC component circuit breaker 2 at the next stage, the output becomes (A 2 cos2ωt) / 2. As seen from this, the input amplitude is A, whereas the output amplitude is A 2 , which is a square characteristic. Therefore, when this output is passed through the square root calculator 4 to return it to the proportional characteristic, A√cos 2ωt / √2. The period of the waveform of √cos 2ωt is 2ωt, which is twice the input signal. However, since it is the square root of a sine waveform, the waveform has a wide waveform at the peaks and valleys as shown in FIG. Such a waveform is due to the fact that some harmonics are included in addition to the sine wave having the fundamental frequency as shown in FIG.

図3の(b)の波形の周波数スペクトラムは図4の細線曲線のようになる。これに対して、図3の(a)の波形の周波数スペクトラムは、図4の太線曲線のように基本周波数のみでピークを有するものとなる。即ち、図3の(b)の波形のスペクトラムは、図3の(a)のスペクトラムと重なる部分の他に、それより高い周波領域でピーク(高調波成分)を複数箇所(図4では2箇所)有している。従ってこのピーク成分(高調波成分)を除去すれば、図3の(a)のような正弦波になるということである。   The frequency spectrum of the waveform in FIG. 3B is as shown by the thin line curve in FIG. On the other hand, the frequency spectrum of the waveform in FIG. 3A has a peak only at the fundamental frequency as shown by the thick curve in FIG. That is, the spectrum of the waveform of FIG. 3B has a plurality of peaks (harmonic components) in a higher frequency region in addition to a portion overlapping the spectrum of FIG. ) Therefore, if this peak component (harmonic component) is removed, a sine wave as shown in FIG.

図1の高調波遮断ろ波器5の作用は、このような高調波成分の通過を遮断するためのろ波器である。
かくしてその出力には、入力信号の周波数の2倍の周波数の正弦波(Acos2ωt)/√2のみが出力されることになる。
入力信号がAsinωtであるから、Acos2ωtは周波数が2倍の正弦波ということになる。ここでsin、cosの違いは問題とはならない。また、1/√2については単なる固定係数であるので後続回路におけるレベル調整に委ねて問題ない。
The action of the harmonic cutoff filter 5 of FIG. 1 is a filter for blocking the passage of such harmonic components.
Thus, only a sine wave (Acos 2ωt) / √2 having a frequency twice the frequency of the input signal is output as the output.
Since the input signal is Asinωt, Acos2ωt is a sine wave having a double frequency. Here, the difference between sin and cos is not a problem. Further, since 1 / √2 is a simple fixed coefficient, there is no problem in leaving the level adjustment in the subsequent circuit.

従って、今、周波数変調超音波パルスにおいて、パルス立ち上り時の周波数がf、パルス終了時(立ち下り時)がf(>f)即ち、パルス内周波数掃引幅がf−fである場合、本発明の周波数変調掃引幅拡大回路を1個通過させるとその周波数掃引幅は
2f−2f=2(f−f)、即ち2倍となる。更にもう1つ通過させるとその掃引幅は更に2倍で4(f−f)となり、これより、本発明回路をn個通過させると、その周波数掃引幅は2倍に拡大されることになる。この掃引幅の拡大が、すでに述べたように、窓関数を使用しているパルス圧縮超音波探知装置におけるレンジサイドローブレベルの抑圧に寄与することになるのである。
Therefore, now, in the frequency modulated ultrasonic pulse, the frequency at the rising edge of the pulse is f 1 , the end of the pulse (at the falling edge) is f 2 (> f 1 ), that is, the intra-pulse frequency sweep width is f 2 −f 1 . In some cases, when one frequency modulation sweep width expanding circuit of the present invention is passed, the frequency sweep width becomes 2f 2 −2f 1 = 2 (f 2 −f 1 ), that is, doubles. If one more pass is passed, the sweep width is further doubled to 4 (f 2 −f 1 ). When n passes through the circuit of the present invention, the frequency sweep width is expanded to 2 n times. It will be. As described above, the increase in the sweep width contributes to the suppression of the range sidelobe level in the pulse compression ultrasonic detector using the window function.

図2は、周波数変調掃引幅拡大回路(b)に対応する実施例のブロック図である。
図1の実施例では、入力信号を二乗算器1で二乗しているが、図2の実施例では、入力信号を二手に分け、一方は乗算器8へ直接入力し、他方は、(π/2)移相器7で位相をπ/2ラジアン移相させて乗算器8へ入力し、直接入力させた信号と乗算させている。
このように、π/2ラジアンだけ位相に差のある正弦波の乗算はsin波とcos波の積となり、両者の振幅をそれぞれAとすると乗算結果(乗算器8の出力)は、
(A/2)sin2ωtとなり、その角速度は入力信号のωに対して2ωとなり周波数が2倍になることになる。
FIG. 2 is a block diagram of an embodiment corresponding to the frequency modulation sweep width expanding circuit (b) .
In the embodiment of FIG. 1, the input signal is squared by the double multiplier 1, but in the embodiment of FIG. 2, the input signal is divided into two, one is directly input to the multiplier 8, and the other is (π / 2) The phase shifter 7 shifts the phase by π / 2 radians, inputs it to the multiplier 8, and multiplies it with the directly input signal.
Thus, multiplication of a sine wave having a phase difference of π / 2 radians is a product of a sin wave and a cos wave, and when the amplitude of both is A, the multiplication result (output of the multiplier 8) is
(A 2/2) sin2ωt next, the angular velocity 2ω next frequency will be doubled with respect to the input signal omega.

この後、図2では、乗算器8の出力を平方根算出器4を通して
(A/√2)√sin2ωtとし、入出力の振幅特性を直線特性にし、最後に高調波遮断ろ波器5で高調波を遮断して、(A/√2)sin2ωtの出力が得られるようにしている。また、1/√2については図1でのべたところと同様である。
Thereafter, in FIG. 2, the output of the multiplier 8 is set to (A / √2) √sin2ωt through the square root calculator 4, the input / output amplitude characteristics are set to linear characteristics, and finally the harmonics are filtered by the harmonic cutoff filter 5. Is cut off to obtain an output of (A / √2) sin2ωt. Further, 1 / √2 is the same as that described in FIG.

図5は、上記周波数変調掃引幅拡大回路(本発明構成中の(イ)の(a)又は(b))を、受信部(イ)内に設けた、本願発明のパルス圧縮超音波探知装置の構成ブロック図である。
パルス圧縮を行うために送信部11が出力する超音波パルス電気信号は、周波数変調を受けている。例えば図6の(a)に示すようにパルス立ち上り部分では周波数はfであり、これが時間とともに周波数が高くなって行き、パルス立ち下り(終了)時点でfとなると言うように周波数掃引変調を受けている。
Figure 5 is a top distichum wavenumber modulation sweep width expansion circuit (Invention configuration in the (i) (a) or (b)), provided in the receiving unit (A), pulse compression ultrasound of the present invention It is a block diagram of the configuration of the detection device.
The ultrasonic pulse electric signal output from the transmitter 11 for performing pulse compression is subjected to frequency modulation. For example, as shown in FIG. 6 (a), the frequency is f 1 at the rising edge of the pulse, and this frequency increases with time, and becomes f 2 at the falling edge (end) of the frequency. Is receiving.

その掃引態様は同図(b)のように時間の経過とともに、周波数が直線的に高くなって行くもの、(c)のように周波数が高くはなって行くが、その上昇率が時間の経過とともに低下して行くもの、(d)のように周波数が高くはなって行くがその上昇率が時間とともにって行くもの、その他周波数が時間の経過とともに下降して行く場合が考えられるが、これらに限定されず各種の態様が存在し得る。 The sweep mode is such that the frequency increases linearly with the passage of time as shown in FIG. 5B, and the frequency increases with the passage of time as shown in FIG. those that continue to decline along with the frequency as (d) is high and will go now and what the rate of increase go I above together with the time, but if the other frequency is going to fall with the passage of time is considered, The present invention is not limited to these, and various modes can exist.

このように、周波数掃引変調を受けた送信パルスは、図5の送受信切替器10で送受波器9の方へ送られ、送受波器9から超音波となって水中へ放射(送波)され、水中を伝搬して行き、魚体や水底その他の反射体で反射され送受波器9へ戻って来て受波され、電気信号に変換され受信器13へ入力される。この他に、受信器へは、送信部11の出力する送信パルスが送受信切替器10内で、受信器13が接続されている受信端へ漏洩し、その漏洩送信パルスが受信器13へ入力している。これを時間的に見れば、受信器13は、漏洩送信パルスを送信部11の送信時と殆ど同時に受け、その後に続いて、送受波器9が受波した反射信号を受けることになる。   In this way, the transmission pulse subjected to the frequency sweep modulation is sent to the transmitter / receiver 9 by the transmission / reception switch 10 in FIG. 5, and is radiated (transmitted) into the water as ultrasonic waves from the transmitter / receiver 9. Then, it propagates in the water, is reflected by the fish body, the bottom of the water and other reflectors, returns to the transducer 9 and is received, converted into an electrical signal, and input to the receiver 13. In addition, the transmission pulse output from the transmission unit 11 leaks to the receiver in the transmission / reception switch 10 to the receiving end to which the receiver 13 is connected, and the leaked transmission pulse is input to the receiver 13. ing. If this is seen in terms of time, the receiver 13 receives the leaked transmission pulse almost simultaneously with the transmission of the transmitter 11 and subsequently receives the reflected signal received by the transmitter / receiver 9.

受信部19では、必要に応じて増幅された後、周波数変調掃引幅拡大回路15で周波数掃引幅が拡大された漏洩送信パルスと受波信号が出力され、そのうち漏洩送信パルスはパルス圧縮相関係数生成回路12へ送られ窓関数のかかったパルス圧縮相関係数計数生成の元信号となり、受波信号はパルス圧縮器16へ送られ、ここでパルス圧縮相関係数生成回路12からの相関係数信号によってパルス圧縮されることになるが、周波数変調掃引幅が拡大されたことによって、パルス圧縮した後のレンジサイドローブレベルが、周波数変調掃引幅を拡大しない場合に較べて低くなるという効果が得られる。 The receiving unit 19 outputs a leaked transmission pulse and a received signal that are amplified as necessary and then expanded in frequency sweep width by the frequency modulation sweep width expanding circuit 15, and the leaked transmission pulse includes a pulse compression correlation coefficient. It is sent to the generation circuit 12 and becomes the original signal for generating the pulse compression correlation coefficient count with the window function, and the received signal is sent to the pulse compressor 16 where the correlation coefficient from the pulse compression correlation coefficient generation circuit 12 is sent. Although the signal is pulse-compressed, the frequency modulation sweep width is expanded, so that the range sidelobe level after pulse compression is lower than when the frequency modulation sweep width is not expanded. It is done.

パルス圧縮相関係数生成回路(以下単に相関係数発生器と呼ぶ)12もパルス圧縮器16もデジタル回路で構成するのが一般的であるので、受信部19から相関係数発生器12へ送られる漏洩送信パルス部分およびパルス圧縮器16へ送られる受波信号はデジタル信号が好都合である。このため図5の構成ブロック図では、受信器13で増幅等のアナログ処理を受けた後、A/D変換器14でデジタル化した信号をデジタル構成の周波数変調掃引幅拡大回路15で掃引幅を拡大したデジタル信号を相関係数発生器12とパルス圧縮器16へ送っている。   Since both the pulse compression correlation coefficient generation circuit (hereinafter simply referred to as a correlation coefficient generator) 12 and the pulse compressor 16 are generally composed of digital circuits, the receiver 19 sends the correlation coefficient generator 12 to the correlation coefficient generator 12. The leaky transmitted pulse portion and the received signal sent to the pulse compressor 16 are advantageously digital signals. For this reason, in the configuration block diagram of FIG. 5, after the analog processing such as amplification is performed by the receiver 13, the signal digitized by the A / D converter 14 is swept by the frequency modulation sweep width expanding circuit 15 having a digital configuration. The expanded digital signal is sent to the correlation coefficient generator 12 and the pulse compressor 16.

これに対して、周波数変調掃引幅拡大回路15がアナログ構成である場合には、これをA/D変換器14より上流側に設け、掃引幅が拡大されたアナログ信号をA/D変換器14でデジタル化しそれを相関係数発生器12およびパルス圧縮器16へ送ることになる。
また、掃引幅を更に拡大する場合には、A/D変換器の下流側或いは上流側において、掃引幅拡大回路を複数(n)個、縦続に接続することにより掃引幅は2倍に拡大されることになる。
On the other hand, when the frequency modulation sweep width expanding circuit 15 has an analog configuration, it is provided on the upstream side of the A / D converter 14, and an analog signal with an expanded sweep width is provided to the A / D converter 14. Digitized and sent to the correlation coefficient generator 12 and the pulse compressor 16.
When the sweep width is further expanded, the sweep width is expanded 2n times by connecting a plurality (n) of sweep width expansion circuits in cascade on the downstream side or upstream side of the A / D converter. Will be.

パルス圧縮の相関係数とは、基本的には、送信パルス1個の信号についてその時間軸を逆にした振幅信号である。
従って、図5の受信部19の出力のうち、送受信切替器10で漏洩して受信器13へ入って来た送信パルス部分の出力を利用することにより、相関係数の生成が可能になる。従って、受信部19の出力のうち、周波数掃引幅の拡大された送信パルス部分を相関係数発生器12へ取り込む。
The correlation coefficient of pulse compression is basically an amplitude signal obtained by reversing the time axis of one transmission pulse signal.
Therefore, the correlation coefficient can be generated by using the output of the transmission pulse portion leaked by the transmission / reception switch 10 and entered the receiver 13 among the outputs of the receiving unit 19 in FIG. Accordingly, the transmission pulse portion with an expanded frequency sweep width in the output of the receiving unit 19 is taken into the correlation coefficient generator 12.

まず、図7を参照して説明する。
図5の受信部19から出力されたデジタル信号は、相関係数RAM23へ入力される。一方、送信情報抽出器20から記憶素子アドレス指定器21へ、送信パルスの立ち上り時点であることを示す送信パルス立ち上り信号が送られると記憶アドレス指定器21は相関係数RAM23へ順次書込みアドレス指定信号を送る。これは、受信部19から入力された送信パルス出力を時間軸方向に、例えば1000に区分したその1区分毎の振幅情報を相関係数RAM23の記憶素子列の記憶素子1個々々に順次記憶させていくための記憶素子のアドレスを指定するためである。
First, a description will be given with reference to FIG.
The digital signal output from the receiving unit 19 in FIG. 5 is input to the correlation coefficient RAM 23. On the other hand, when a transmission pulse rising signal indicating that the transmission pulse rises is sent from the transmission information extractor 20 to the storage element addressing device 21 , the storage addressing device 21 sequentially writes the address to the correlation coefficient RAM 23. Send a signal. This is because the transmission pulse output input from the receiver 19 is sequentially stored in the time axis direction, for example, the amplitude information for each section divided into 1000 in each storage element 1 of the storage element array of the correlation coefficient RAM 23. This is for designating the address of the storage element to be followed.

そして、送信情報抽出器20から送信パルス終了信号が記憶素子アドレス指定器21に到来すると順次書き込みアドレス指定信号は停止し、今度は逆順読み出しアドレス指定信号を出力し、記憶素子列中の最後に記憶させた記憶素子から、記憶のときとは逆順序で相関係数RAM23から読み出す。こうして読み出した信号が相関係数信号である。
この相関係数信号は乗算器24で窓関数RAM22からの窓関数を乗算されて、窓関数付相関係数信号として出力され、図5のパルス圧縮器16へ出力される。
When the transmission pulse end signal arrives at the storage element addressing device 21 from the transmission information extractor 20, the write addressing signal is sequentially stopped, and this time a reverse read addressing signal is output and stored at the end of the storage element array. Data is read from the correlation coefficient RAM 23 in the reverse order from the stored memory element. The signal read out in this way is a correlation coefficient signal.
This correlation coefficient signal is multiplied by the window function from the window function RAM 22 in the multiplier 24, and is output as a correlation coefficient signal with a window function, and is output to the pulse compressor 16 in FIG.

図8の相関係数発生器は、受信器出力デジタル信号に対し、相関係数RAM23へ記憶させる前に、窓関数RAM22からの窓関数信号を乗算器24で乗算するもので、相関係数RAM23から読み出される相関係数信号は図7の構成のものと同じである。
パルス圧縮は、受信部19で周波数変調掃引幅が拡大された受波信号と、周波数変調掃引幅が拡大された漏洩送信パルスからパルス圧縮相関係数生成回路12で生成された窓関数付相関係数信号とをパルス圧縮器16へ送ることにより行われる。
このパルス圧縮器としてはFIR(Finite Impulse Response)が用いられ、これにより受信デジタル信号と相関係数との畳み込み演算が行われる。
The correlation coefficient generator shown in FIG. 8 multiplies the receiver output digital signal with the window function signal from the window function RAM 22 by the multiplier 24 before storing it in the correlation coefficient RAM 23. Ru correlation coefficient signal read from is the same as in the configuration of FIG 7.
In the pulse compression, the phase relationship with the window function generated by the pulse compression correlation coefficient generation circuit 12 from the received signal whose frequency modulation sweep width is expanded by the receiving unit 19 and the leaked transmission pulse whose frequency modulation sweep width is expanded. This is done by sending a number signal to the pulse compressor 16.
As this pulse compressor, an FIR (Finite Impulse Response) is used, whereby a convolution operation between the received digital signal and the correlation coefficient is performed.

図9は、FIRの構成を示す図である。
−1はシフトレジスタ、円内にクロスは乗算器、円内にプラスは加算器を表わしている。x(n)は入力デジタル信号であり、a(0)、a(1)、…、a(N−1)はパルス圧縮相関係数生成回路12から読み出された相関係数である。図9のFIRにより、畳み込み演算が行われることにより受信信号に対するパルス圧縮が行われることになる。
FIG. 9 is a diagram showing the configuration of the FIR.
Z- 1 represents a shift register, a cross in the circle represents a multiplier, and a plus in the circle represents an adder. x (n) is an input digital signal, and a (0), a (1),..., a (N−1) are correlation coefficients read from the pulse compression correlation coefficient generation circuit 12. The FIR in FIG. 9 performs pulse compression on the received signal by performing a convolution operation.

図10、図11はパルス内周波数掃引幅を拡大したときのレンジサイドローブレベルの抑圧程度を比較するシミュレーション図であり、窓関数はハミング窓を使用した。図10は、パルス内周波数掃引幅を10KHzから20KHz(2倍)に拡大した場合であり、レンジサイドローブレベルがd1(約6dB、振幅値で約2分の1に)だけ抑圧されていることが分かる。同時にパルス圧縮された信号のメインローブはt2からt3のようにパルス幅も約2分の1になっている。 FIGS. 10 and 11 are simulation diagrams for comparing the degree of suppression of the range sidelobe level when the frequency sweep width in the pulse is expanded, and a Hamming window is used as the window function. FIG. 10 shows a case where the intra-pulse frequency sweep width is expanded from 10 KHz to 20 KHz (2 times), and the range sidelobe level is suppressed by d1 (about 6 dB, about half the amplitude value). I understand. At the same time, the main lobe width of the pulse-compressed signal is about one-half as from t2 to t3.

図11は、パルス内周波数掃引幅を10KHzから40KHz(4倍)に拡大した場合であり、レンジサイドローブレベルがd2(約12dB、振幅値で約4分の1に)だけ抑圧されていることが分かる。同時にパルス圧縮された信号のメインローブはt2からt4のようにパルス幅も約4分の1になっている。
このように、パルス幅内の周波数掃引幅を拡大するとレンジサイドローブレベルが抑圧され、またパルス幅も圧縮されることが分かる。
FIG. 11 shows the case where the intra-pulse frequency sweep width is expanded from 10 KHz to 40 KHz (4 times), and the range sidelobe level is suppressed by d2 (about 12 dB, about 1/4 of the amplitude value). I understand. At the same time, the main lobe width of the pulse-compressed signal is about 1/4 of the pulse width from t2 to t4.
Thus, it can be seen that when the frequency sweep width within the pulse width is increased, the range sidelobe level is suppressed and the pulse width is also compressed.

1 二乗算器
2 直流分遮断器
4 平方根算出器
5 高調波遮断ろ波器
7 (π/2)移相器
8 乗算器
9 送受波器
10 送受信切替器
11 送信部
12 パルス圧縮相関係数生成回路(相関係数発生器)
13 受信器
14 A/D変換器
15 周波数変調掃引幅拡大回路
16 パルス圧縮器
17 整流器
18 表示器
19 受信部
20 送信情報抽出器
21 記憶素子アドレス指定器
22 窓関数RAM
23 相関係数RAM
24 乗算器



DESCRIPTION OF SYMBOLS 1 Double multiplier 2 DC component breaker 4 Square root calculator 5 Harmonic cutoff filter 7 (π / 2) Phase shifter 8 Multiplier 9 Transmitter / receiver 10 Transmission / reception switch 11 Transmitter 12 Pulse compression correlation coefficient generation Circuit (correlation coefficient generator)
DESCRIPTION OF SYMBOLS 13 Receiver 14 A / D converter 15 Frequency modulation sweep width expansion circuit 16 Pulse compressor 17 Rectifier 18 Display 19 Receiving part 20 Transmission information extractor 21 Memory element addressing device 22 Window function RAM
23 Correlation coefficient RAM
24 multiplier



Claims (1)

下記(イ)、(ロ)、(ハ)、(ニ)、(ホ)、(ヘ)の各手段を具備することを特徴とするパルス圧縮超音波探知装置。
(イ) 後記(ロ)の送受信切替器の受信端に接続され、受波信号を増幅する増幅器と、増幅された信号をデジタル信号に変換するA/D変換器と、受波信号の周波数掃引幅を拡大する、下記(a)又は(b)に記載の周波数変調掃引幅拡大回路とを具備し、その拡大出力デジタル信号を、後記(ニ)のパルス圧縮相関係数生成回路の相関係数RAMと、後記(ヘ)のパルス圧縮器へ送出する受信部
(a)入力された周波数変調パルス信号を二乗して出力する二乗算器と、
該二乗算器の出力を受けその出力中に含まれる直流成分を遮断する直流分遮断器と、
該直流分遮断器の出力の絶対値の平方根と前記出力の符号を乗算した値を出力する平方根算出器と、
該平方根算出器の出力中の基本周波数以外の高調波成分を除去して出力する高調波遮断ろ波器とから構成される、周波数変調パルス信号の周波数変調掃引幅拡大回路
(b)入力正弦波信号をπ/2ラジアン移相して出力する(π/2)移相器と、
該(π/2)移相器への入力信号と該移相器の出力信号とを受けてこれを乗算して出力する乗算器と、
該乗算器の出力の絶対値の平方根と前記出力の符号を乗算した値を出力する平方根算出器と、
該平方根算出器の出力信号を受け、その出力信号中に含まれる基本周波数以外の高調波成分を除去して出力する高調波遮断ろ波器とから構成される、周波数変調パルス信号の周波数変調掃引幅拡大回路
(ロ)送信端へ入力された送信信号が送受波器端へ伝送される他、一部が、受信器が接続される受信端へ漏出する送受信切替器
(ハ) 前記(ロ)の送受信切替器の送信端へ接続され、周波数変調された送信パルスを送出する送信部
(ニ) 受信部の出力中、送受信切替器において送信端から受信端へ漏出した送信パルス部分の受信部出力信号を、時間軸で細分化し、相関係数RAMの記憶素子列へ順次記憶させて行き、送信パルス終了後から前記記憶素子列から記憶順とは逆順で読み出したものに窓関数を乗じたものをパルス圧縮相関係数として出力し、又は前記送信パルス部分の受信部漏出出力信号を時間軸で細分化し、これに窓関数を乗じたものを前記相関係数RAMの記憶素子列へ順次記憶させて行き、送信パルス終了後逆順で読み出したものをパルス圧縮相関係数として出力するパルス圧縮相関係数生成回路
(ホ) 前記(ロ)の送受信切替器の送受波器端に接続された送受波器
(ヘ) 前記(イ)の受信部からの受信デジタル信号と、前記(ニ)のパルス圧縮相関係数生成回路からのパルス圧縮相関係数信号を受け、相関係数信号により受信デジタル信号に対し畳み込み演算によるパルス圧縮を行うパルス圧縮器
A pulse compression ultrasonic detection apparatus comprising the following means (a), (b), (c), (d), (e), and (f).
(A) An amplifier that amplifies a received signal, an A / D converter that converts the amplified signal into a digital signal, and a frequency sweep of the received signal, which are connected to the receiving end of the transmission / reception switcher described later (b) A frequency modulation sweep width expansion circuit described in (a) or (b) below , which expands the width, and outputs the expanded output digital signal as a correlation coefficient of a pulse compression correlation coefficient generation circuit described later in (d) RAM and receiver for sending to pulse compressor described later (f)
(A) a double multiplier that squares and outputs an input frequency modulation pulse signal;
A direct current circuit breaker that receives an output of the double multiplier and blocks a direct current component included in the output;
A square root calculator for outputting a value obtained by multiplying the square root of the absolute value of the output of the DC circuit breaker by the sign of the output;
A frequency modulation sweep width expansion circuit for a frequency modulation pulse signal, comprising: a harmonic cutoff filter that removes and outputs a harmonic component other than the fundamental frequency in the output of the square root calculator
(B) a phase shifter that shifts and outputs an input sine wave signal by π / 2 radians;
A multiplier for receiving and multiplying an input signal to the (π / 2) phase shifter and an output signal of the phase shifter;
A square root calculator that outputs a value obtained by multiplying the square root of the output of the multiplier by the sign of the output;
A frequency modulation sweep of a frequency modulation pulse signal, which comprises an output signal of the square root calculator and a harmonic cutoff filter that removes and outputs harmonic components other than the fundamental frequency contained in the output signal Widening circuit (b) A transmission signal input to the transmission end is transmitted to the transducer end, and a part of the transmission signal is leaked to the reception end to which the receiver is connected (c) The (b) Transmitter connected to the transmission end of the transmission / reception switch and transmitting the frequency-modulated transmission pulse (d) The output of the reception portion of the transmission pulse leaked from the transmission end to the reception end in the transmission / reception switch during the output of the reception unit The signal is subdivided along the time axis and stored sequentially in the storage element array of the correlation coefficient RAM. After the transmission pulse, the signal read from the storage element array in the reverse order of the storage order is multiplied by the window function. The pulse compression correlation coefficient and Or the reception part leakage output signal of the transmission pulse part is subdivided by the time axis, and the result multiplied by the window function is sequentially stored in the storage element array of the correlation coefficient RAM, and the transmission pulse ends. A pulse compression correlation coefficient generation circuit (e) that outputs the data read in the reverse order as a pulse compression correlation coefficient (e) A transmitter / receiver (f) connected to the transmitter / receiver end of the transmission / reception switcher of (b) B) receiving the received digital signal from the receiving unit and the pulse compressed correlation coefficient signal from the pulse compression correlation coefficient generating circuit of (d) above, and performing pulse compression by convolution operation on the received digital signal with the correlation coefficient signal Perform pulse compressor
JP2014049773A 2014-03-13 2014-03-13 Pulse compression ultrasonic detector Expired - Fee Related JP5553463B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014049773A JP5553463B1 (en) 2014-03-13 2014-03-13 Pulse compression ultrasonic detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014049773A JP5553463B1 (en) 2014-03-13 2014-03-13 Pulse compression ultrasonic detector

Publications (2)

Publication Number Publication Date
JP5553463B1 true JP5553463B1 (en) 2014-07-16
JP2015175614A JP2015175614A (en) 2015-10-05

Family

ID=51416841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014049773A Expired - Fee Related JP5553463B1 (en) 2014-03-13 2014-03-13 Pulse compression ultrasonic detector

Country Status (1)

Country Link
JP (1) JP5553463B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108196248A (en) * 2017-12-13 2018-06-22 北京华航无线电测量研究所 Direct methods are removed in a kind of digital radar pulse compression based on FPGA

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956579U (en) * 1982-10-06 1984-04-13 海上電機株式会社 Pre-processing arithmetic unit
JPS63249071A (en) * 1987-04-03 1988-10-17 Furuno Electric Co Ltd Pulse compression circuit in searching apparatus
JPH02120682A (en) * 1988-10-29 1990-05-08 Tech Res & Dev Inst Of Japan Def Agency Radar equipment
JPH02305005A (en) * 1989-05-18 1990-12-18 Nec Corp Frequency multiplier system
JPH10303708A (en) * 1997-04-24 1998-11-13 Nec Corp Frequency multiplier circuit
JPH1131922A (en) * 1997-07-08 1999-02-02 Yokogawa Electric Corp Frequency multiplier
JPH11304912A (en) * 1998-04-16 1999-11-05 Furuno Electric Co Ltd Echo hearing equipment
JP2001025081A (en) * 1999-06-14 2001-01-26 Nokia Mobile Phones Ltd Audio equipment
JP2002016440A (en) * 2000-04-27 2002-01-18 Toshiba Corp Frequency multiplication circuit and semiconductor integrated circuit
JP2007025480A (en) * 2005-07-20 2007-02-01 Kyushu Institute Of Technology Method and device for high-frequency signal interpolation
JP2008035083A (en) * 2006-07-27 2008-02-14 Eudyna Devices Inc Electronic circuit device
JP2009153047A (en) * 2007-12-21 2009-07-09 Sharp Corp Current-voltage conversion circuit, light reception amplifier circuit, and pulse regeneration circuit

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956579U (en) * 1982-10-06 1984-04-13 海上電機株式会社 Pre-processing arithmetic unit
JPS63249071A (en) * 1987-04-03 1988-10-17 Furuno Electric Co Ltd Pulse compression circuit in searching apparatus
JPH02120682A (en) * 1988-10-29 1990-05-08 Tech Res & Dev Inst Of Japan Def Agency Radar equipment
JPH02305005A (en) * 1989-05-18 1990-12-18 Nec Corp Frequency multiplier system
JPH10303708A (en) * 1997-04-24 1998-11-13 Nec Corp Frequency multiplier circuit
JPH1131922A (en) * 1997-07-08 1999-02-02 Yokogawa Electric Corp Frequency multiplier
JPH11304912A (en) * 1998-04-16 1999-11-05 Furuno Electric Co Ltd Echo hearing equipment
JP2001025081A (en) * 1999-06-14 2001-01-26 Nokia Mobile Phones Ltd Audio equipment
JP2002016440A (en) * 2000-04-27 2002-01-18 Toshiba Corp Frequency multiplication circuit and semiconductor integrated circuit
JP2007025480A (en) * 2005-07-20 2007-02-01 Kyushu Institute Of Technology Method and device for high-frequency signal interpolation
JP2008035083A (en) * 2006-07-27 2008-02-14 Eudyna Devices Inc Electronic circuit device
JP2009153047A (en) * 2007-12-21 2009-07-09 Sharp Corp Current-voltage conversion circuit, light reception amplifier circuit, and pulse regeneration circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108196248A (en) * 2017-12-13 2018-06-22 北京华航无线电测量研究所 Direct methods are removed in a kind of digital radar pulse compression based on FPGA
CN108196248B (en) * 2017-12-13 2021-04-20 北京华航无线电测量研究所 Radar digital pulse compression and DC removal method based on FPGA

Also Published As

Publication number Publication date
JP2015175614A (en) 2015-10-05

Similar Documents

Publication Publication Date Title
JP5411417B2 (en) Pulse signal transmission / reception device and transmission / reception method
JP4430997B2 (en) Ultrasonic transceiver
JP6637395B2 (en) Simulated target generator and method
JPWO2015136823A1 (en) Target extraction system, target extraction method, information processing apparatus, control method thereof, and control program
GB2566437A (en) Systems and methods for acoustic and/or electromagnetic imaging
JP2003190157A (en) Ultrasonic diagnostic system
AU656431B2 (en) Apparatus and method for pulse compression and pulse generation
Hassan et al. Digital signal processing methodologies for conventional digital medical ultrasound imaging system
JP5553463B1 (en) Pulse compression ultrasonic detector
US4079352A (en) Echo sounding technique
JP4080490B2 (en) Ultrasonic diagnostic equipment
JP5474241B1 (en) Pulse compression correlation coefficient generation circuit and pulse compression ultrasonic detector
JP4877789B2 (en) Pulse compression radar equipment
JP5474240B1 (en) Pulse compression correlation coefficient generation circuit and pulse compression ultrasonic detector
US3412372A (en) Sonar multibeam tracking system including a digital 90 deg. phase shifter
US3403247A (en) Analog beam pattern digital simulator
Hague Optimal waveform design using multi-tone sinusoidal frequency modulation
JPS5823595B2 (en) Ultrasonic image display device
JP2018187014A (en) Ultrasonic imaging device
JPS595298B2 (en) Ultrasonic imaging device
KR960001825B1 (en) Inspecting apparatus
JP2737703B2 (en) Ultrasonic receiver
JP2011191133A (en) Pulse compression device of radar reception signal
CN103356239B (en) Multi-beam processing method adopting beam enhancement and interpolation
Kouzai et al. 2P5-5 A Study on Improvement of Lateral Resolution in Ultrasound Super Resolution Method Based on Phase of Carrier Wave

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140526

R150 Certificate of patent or registration of utility model

Ref document number: 5553463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees