JP5551525B2 - Separator made of ultrafine nonwoven fabric - Google Patents

Separator made of ultrafine nonwoven fabric Download PDF

Info

Publication number
JP5551525B2
JP5551525B2 JP2010141579A JP2010141579A JP5551525B2 JP 5551525 B2 JP5551525 B2 JP 5551525B2 JP 2010141579 A JP2010141579 A JP 2010141579A JP 2010141579 A JP2010141579 A JP 2010141579A JP 5551525 B2 JP5551525 B2 JP 5551525B2
Authority
JP
Japan
Prior art keywords
separator
separator according
aramid
fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010141579A
Other languages
Japanese (ja)
Other versions
JP2012009165A (en
Inventor
恵美 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2010141579A priority Critical patent/JP5551525B2/en
Publication of JP2012009165A publication Critical patent/JP2012009165A/en
Application granted granted Critical
Publication of JP5551525B2 publication Critical patent/JP5551525B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)

Description

本発明は、例えばリチウムイオン二次電池もしくはアルミ電解コンデンサ、電気二重層キャパシタ、リチウムイオンキャパシタのような電気化学デバイス内において、正極材と負極材を隔離し、電解液中の電解質もしくはイオンを通過させるセパレータおよびそのセパレータを用いてなる電池ならびにコンデンサ、キャパシタ等の電気化学デバイスに関するものである。   In the present invention, for example, in an electrochemical device such as a lithium ion secondary battery or an aluminum electrolytic capacitor, an electric double layer capacitor, or a lithium ion capacitor, the positive electrode material and the negative electrode material are isolated, and the electrolyte or ions in the electrolytic solution pass therethrough. And an electrochemical device such as a capacitor and a capacitor using the separator.

リチウムイオン二次電池、アルミ電解コンデンサ、電気二重層キャパシタ、リチウムイオンキャパシタは、携帯電子機器や大型機器の電源、充放電用素子として既に実用化されているが、さらなる小型化、軽量化、高容量化、また、長期使用にも耐えることが大きく期待されている。この期待に応えるためには、部材、例えば電極間の隔壁材料であるセパレータに関しても、技術・品質向上の期待が著しい。   Lithium ion secondary batteries, aluminum electrolytic capacitors, electric double layer capacitors, and lithium ion capacitors have already been put into practical use as power sources and charge / discharge devices for portable electronic devices and large devices. It is highly expected to increase capacity and withstand long-term use. In order to meet this expectation, there is a great expectation for improvement in technology and quality with respect to a member, for example, a separator as a material for a partition between electrodes.

セパレータに要求される一般的特性として、(1)電極材の隔離、(2)電解液を保持した状態では良好な電解質・イオン透過性、(3)電気絶縁性、(4)電解液に対する化学的・電気的安定性、(5)十分な機械的強度、(6)電解液に対する十分な濡れ性および電解液の十分な保持性、を挙げることができる。加えて、電気化学デバイスの小型化、軽量化に対する期待から、セパレータとしては、薄膜化しても前述の要求特性を兼ね備えている必要がある。   General characteristics required for separators include: (1) isolation of electrode material, (2) good electrolyte and ion permeability when the electrolyte is retained, (3) electrical insulation, and (4) chemistry for the electrolyte. And (5) sufficient mechanical strength, (6) sufficient wettability with respect to the electrolytic solution, and sufficient retention of the electrolytic solution. In addition, from the expectation for the miniaturization and weight reduction of the electrochemical device, it is necessary that the separator has the above-mentioned required characteristics even if it is made thin.

従来、リチウムイオン二次電池用セパレータとしては、ポリエチレンやポリプロピレンのようなポリオレフィン系ポリマーを用いて製膜された多孔質シート(特許文献1:特開昭63−273651号公報)、同ポリオレフィン系ポリマー繊維を用いてシート化した不織布(特許文献2:特開2001−11761号公報)、ナイロン繊維を用いてシート化した不織布(特許文献3:特開昭58−147956号公報)が広く使用されている。この種のセパレータは1層または複数層重ねて、あるいはロール状に巻いて電池内に用いられる。   Conventionally, as a separator for a lithium ion secondary battery, a porous sheet formed using a polyolefin polymer such as polyethylene or polypropylene (Patent Document 1: JP-A-63-273651), the polyolefin polymer Nonwoven fabric sheeted using fibers (Patent Document 2: Japanese Patent Laid-Open No. 2001-11761) and non-woven fabric sheeted using nylon fibers (Patent Document 3: Japanese Patent Laid-Open No. 58-147756) are widely used. Yes. This type of separator is used in a battery by stacking one layer or a plurality of layers or winding it in a roll.

これらの多孔質シートおよび不織布はセパレータとして良好な物性を有しているが、電気自動車用のリチウムイオン二次電池等に要求される高容量化や大出力化には必ずしも十分に対応することができるものではない。すなわち、電池の高容量化・大出力化に対して、より抵抗が低いセパレータ材料が求められている。また、より安全性が求められる用途に対して、耐熱性に優れ、高温下での化学的安定性に優れたセパレータ材料が求められている。   These porous sheets and non-woven fabrics have good physical properties as separators, but they can always cope with the increase in capacity and output required for lithium ion secondary batteries for electric vehicles. It is not possible. That is, a separator material having a lower resistance is required for increasing the capacity and output of a battery. Further, for applications that require higher safety, separator materials that are excellent in heat resistance and excellent in chemical stability at high temperatures are required.

これら課題を解決するために、パラ型アラミドフィブリッドを含む繊維シートからなるセパレータ(特許文献4:特開2007−242584号公報)等、耐熱性に優れたフィブリッドまたは短繊維を用いたセパレータが提案されている。これらのセパレータはアラミドフィブリッドを含むことから耐熱性は大きく向上するが、電池の高容量化・大出力化のためにセパレータに求められるイオン透過性や、工程時間短縮・電池のドライアップ低減のために求められる電解液の保液性は十分なものではなかった。   In order to solve these problems, a separator using fibrids or short fibers excellent in heat resistance, such as a separator made of a fiber sheet containing para-type aramid fibrids (Patent Document 4: Japanese Patent Application Laid-Open No. 2007-242584) is proposed. Has been. Although these separators contain aramid fibrids, their heat resistance is greatly improved. However, the ion permeability required for separators to increase the capacity and output of batteries, shorten the process time, and reduce battery dry-up. Therefore, the liquid retention of the electrolyte solution required for this is not sufficient.

また、繊維径5μm以下の耐熱性繊維を含むことを特徴とするセパレータ(特許文献5:特開2006−59717号公報)が提案されているが、実施例には湿式抄造法で作製したポリイミド不織布シート、いわゆる短繊維から抄造した「紙」の実施例が示されているのみである。   In addition, a separator (Patent Document 5: Japanese Patent Laid-Open No. 2006-59717) characterized by containing heat-resistant fibers having a fiber diameter of 5 μm or less has been proposed. In the examples, a polyimide nonwoven fabric produced by a wet papermaking method is used. Only examples of “paper” made from sheets, so-called short fibers, are shown.

また、特許文献6(国際公開第2005/057689号パンフレット)には、熱処理後の内部抵抗値(=マクミラン数×厚さ)の増加率が25%以内であることを特徴とする、電気電子部品用セパレータが示されている。ただし、耐熱性の指標のみが示されており、セパレータを構成する織布、不織布、紙等を構成する繊維の結晶化度や繊維径等については何ら規定されていない。   Patent Document 6 (WO 2005/057689 pamphlet) describes an electrical / electronic component characterized in that the increase rate of the internal resistance value (= Macmillan number × thickness) after heat treatment is within 25%. The separator for is shown. However, only the heat resistance index is shown, and there is no stipulation regarding the crystallinity, fiber diameter, etc. of the fibers constituting the woven fabric, non-woven fabric, paper, etc. constituting the separator.

特開昭63−273651号公報JP-A 63-273651 特開2001−11761号公報JP 2001-11761 A 特開昭58−147956号公報Japanese Patent Laid-Open No. 58-147756 特開2007−242584公報JP2007-242584A 特開2006−59717号公報JP 2006-59717 A 国際公開第2005/057689号パンフレットInternational Publication No. 2005/057689 Pamphlet

本発明の目的は、上記問題点に鑑み、耐熱性、耐薬品性、絶縁性に加え、抵抗が低く、電解質の保液性に優れ、取り扱い性に優れる、極細径繊維不織布セパレータを提供することにある。   In view of the above problems, an object of the present invention is to provide an ultrafine fiber nonwoven fabric separator that has low resistance, excellent electrolyte retention, and excellent handling properties in addition to heat resistance, chemical resistance, and insulation. It is in.

本発明者らは、鋭意研究を重ねた結果、特定の繊維径ならびに特定の結晶化度もしくは結晶サイズを有するアラミド繊維を主たる構成成分とした、不織布セパレータを用いることにより、上記課題を解決することを見出し、本発明を完成するに至った。   As a result of intensive research, the present inventors have solved the above problems by using a nonwoven fabric separator mainly composed of an aramid fiber having a specific fiber diameter and a specific crystallinity or crystal size. As a result, the present invention has been completed.

かくして本発明によれば、
アラミド繊維を含む不織布よりなる電気化学デバイス用のセパレータであって、X線回折から求めた該アラミド繊維の結晶化度が49.4〜55%もしくは結晶サイズが19.0〜30Åであることを特徴とするセパレータ、
及び、
上記セパレータを含む、リチウムイオン二次電池、電気二重層キャパシタ、アルミ電解コ
ンデンサ、及びリチウムイオンキャパシタ、
が提供される。
Thus, according to the present invention,
A separator for an electrochemical device consisting of a nonwoven fabric comprising aramid fibers, 55% degree of crystallinity 49.4~ of the aramid fibers obtained from X-ray diffraction also is properly in crystal size 19.0~ 30 Å A separator characterized by being,
as well as,
A lithium ion secondary battery, an electric double layer capacitor, an aluminum electrolytic capacitor, and a lithium ion capacitor, including the separator
Is provided.

本発明のセパレータは、アラミド繊維よりなるため耐熱性に優れ、極細繊維径化が容易であることから、緻密で短絡を抑制できる。加えて不織布構造により抵抗が低く、かつ電解液の保液性に優れることから、電池の大容量化、高出力化に有利である。
また、特定の結晶化度、あるいは結晶サイズを有することにより、電解液保液性が高く、例えばリチウム二次電池用等のセパレータとして使用した場合、サイクル特性に優れる等の利点がある。さらには、しなやかさを有し、折り曲げがしやすい等、セパレータとして使用する際に取り扱いやすい。
Since the separator of the present invention is made of an aramid fiber, it is excellent in heat resistance and can be easily made into an ultrafine fiber diameter, so that it is dense and can suppress a short circuit. In addition, the non-woven fabric structure has low resistance and excellent electrolyte retention, which is advantageous for increasing the battery capacity and output.
Further, by having a specific crystallinity or crystal size, the electrolyte solution retention is high. For example, when used as a separator for a lithium secondary battery, there are advantages such as excellent cycle characteristics. Furthermore, it is easy to handle when used as a separator because it has flexibility and is easy to bend.

以下、本発明について詳細に説明する。
本発明において、セパレータを構成する繊維に用いられるアラミドポリマーは、耐熱性、難燃性、耐薬品性、絶縁性に優れており、1種又は2種以上の2価の芳香族基が直接アミド結合により連結されているポリマーであって、該芳香族基は2個の芳香環が酸素、硫黄又はアルキレン基で結合されたものであってもよい。また、これらの2価の芳香族基には、メチル基やエチル基などの低級アルキル基、メトキシ基、クロルキなどのハロゲン基等が含まれていてもよい。さらには、これらアミド結合は限定されず、パラ型、メタ型のどちらでもよい。
Hereinafter, the present invention will be described in detail.
In the present invention, the aramid polymer used for the fibers constituting the separator is excellent in heat resistance, flame retardancy, chemical resistance and insulation, and one or more divalent aromatic groups are directly amides. A polymer linked by a bond, wherein the aromatic group may be one in which two aromatic rings are linked by an oxygen, sulfur or alkylene group. In addition, these divalent aromatic groups may include a lower alkyl group such as a methyl group or an ethyl group, a halogen group such as a methoxy group, or a chloro group. Furthermore, these amide bonds are not limited and may be either para-type or meta-type.

かかるアラミドポリマーとしては、ポリパラフェニレンテレフタルアミド、コポリパラフェニレン−3,4’オキシジフェニレン−テレフタルアミド、ポリメタフェニレンイソフタルアミド、ポリメタフェニレンテレフタルアミドなどが好ましく選択される。   As such an aramid polymer, polyparaphenylene terephthalamide, copolyparaphenylene-3,4'oxydiphenylene-terephthalamide, polymetaphenylene isophthalamide, polymetaphenylene terephthalamide and the like are preferably selected.

本発明のセパレータは、アラミドポリマーを含むため耐熱性が高い。よって、例えばリチウムイオン電池用セパレータとして用いた場合、異常発熱によって電池内部温度が200℃以上の高温になっても、セパレータが収縮することなく、セパレータ収縮による電極間ショートを防止することができる。電気二重層キャパシタ用等、活性炭中の水分乾燥が重要な用途に用いた場合、素子乾燥温度を上げることができるため、効率良く乾燥することができる。また、従来よりも高温で使用できる電気化学デバイスを作製することができる。   Since the separator of the present invention contains an aramid polymer, it has high heat resistance. Therefore, for example, when used as a separator for a lithium ion battery, even if the internal temperature of the battery reaches a high temperature of 200 ° C. or more due to abnormal heat generation, the separator does not contract and it is possible to prevent a short circuit between the electrodes due to the contraction of the separator. When used in applications where moisture drying in activated carbon is important, such as for electric double layer capacitors, the element drying temperature can be raised, so that drying can be performed efficiently. In addition, an electrochemical device that can be used at a higher temperature than before can be produced.

本発明のセパレータは不織布構造を有することによって、従来リチウムイオン二次電池用セパレータとして利用されているポリオレフィン微多孔膜に比べて通気性が高く、したがってイオン伝導度が高くなり、低抵抗性のセパレータとなる。すなわち、出力密度、エネルギー密度の高い、ハイレート放電に適するリチウムイオン二次電池、あるいは従来よりも低抵抗あるいは低背化した電気二重層キャパシタ等を作製することができる。   The separator of the present invention has a non-woven structure, so that it has higher air permeability than polyolefin microporous membranes conventionally used as separators for lithium ion secondary batteries, and therefore has high ionic conductivity and low resistance. It becomes. That is, a lithium ion secondary battery having high output density and energy density suitable for high-rate discharge, or an electric double layer capacitor having a lower resistance or a lower profile than conventional ones can be produced.

また、不織布構造を有することによって電解液保液性が高くなり、電解液含浸時間短縮による工程時間が短縮できる。また、電解液のドライアップ速度低減によるデバイスのサイクル特性向上、耐久性向上、安全性向上が期待できる。   Moreover, electrolyte solution retention property becomes high by having a nonwoven fabric structure, and the process time by electrolyte solution impregnation time shortening can be shortened. In addition, it can be expected to improve the cycle characteristics, durability and safety of the device by reducing the dry-up speed of the electrolyte.

前記不織布の製造方法としては、紡糸と直結で不織布として製造する方法、短繊維とフィブリッドを乾式ブレンドした後、気流を利用してシートを形成する乾式抄造法、あるいは短繊維とフィブリッドをいったん水中に分散させて抄紙機にかけて製造する湿式抄造法等が挙げられる。紡糸と直結で不織布として製造する方法の場合、連続繊維による絡み合いによって破断面の毛羽立ちが少ないセパレータとすることができるため好ましい。   As a method for producing the nonwoven fabric, a method of producing a nonwoven fabric by spinning and direct connection, a dry blending method in which a short fiber and a fibrid are dry-blended and then a sheet is formed using an air stream, or a short fiber and a fibrid are once submerged in water Examples include a wet papermaking method in which the paper is dispersed and manufactured on a paper machine. In the case of a method of producing a nonwoven fabric by direct coupling with spinning, it is preferable because a separator having less fuzz on the fracture surface can be obtained by entanglement with continuous fibers.

本発明のセパレータを構成するアラミド繊維の繊維径は、セパレータの細孔径を小さくするため、また、薄葉化を可能とするため、5μm以下であることが好ましく、2μm以下であることがより好ましく、1μm以下であることがさらに好ましい。微細繊維からなることによって、薄葉でも短絡防止性に優れたセパレータとすることができる。   The fiber diameter of the aramid fiber constituting the separator of the present invention is preferably 5 μm or less, more preferably 2 μm or less, in order to reduce the pore diameter of the separator and to enable thinning. More preferably, it is 1 μm or less. By being made of fine fibers, it is possible to obtain a separator excellent in short-circuit prevention even in a thin leaf.

本発明のセパレータを構成するアラミド繊維は、アラミドポリマー溶液の紡糸によって得ることができる。細径アラミド繊維の好適な製造方法としては、ポリマー溶液をバーストさせ細繊化する爆裂紡糸技術(国際公開第2002/052070号パンフレット)をアラミドポリマーに適用する方法、一般に溶融性ポリマーで行われているメルトブロー技術を改良し効果的に細繊化する技術(US6013223号公報)を、アラミドポリマーの溶液紡糸に適用する方法、特開2005−200779号公報、特開2006−336173号公報記載のエレクトロスピニング法等が挙げられる。   The aramid fiber constituting the separator of the present invention can be obtained by spinning an aramid polymer solution. As a preferred method for producing small-diameter aramid fibers, a method of applying explosive spinning technology (WO 2002/052070 pamphlet) for bursting a polymer solution into fine fibers and applying it to an aramid polymer, generally performed with a meltable polymer. Electrospinning described in Japanese Patent Application Laid-Open No. 2005-200779 and Japanese Patent Application Laid-Open No. 2006-336173, a method in which the melt blown technology is improved and effectively fined (US Pat. No. 6,013,223) is applied to solution spinning of aramid polymer Law.

上記紡糸条件の中から適切な範囲を選択し、また、不織布の後処理条件を適切な範囲から選択し、結晶化度を最適な範囲に調整することにより、セパレータに適した不織布とすることができる。具体的には、紡糸時の繊維の延伸倍率を適切な範囲から選択する、あるいは不織布の熱処理条件を適切な範囲から選択することによって、アラミド繊維の結晶化度を49.4〜55%、あるいは結晶サイズを19.0〜30Åとした場合、特に取り扱い性、保液性に優れた不織布とすることができる。 By selecting an appropriate range from the above spinning conditions, selecting a non-woven fabric post-treatment condition from an appropriate range, and adjusting the crystallinity to an optimal range, a nonwoven fabric suitable for a separator can be obtained. it can. Specifically, the degree of crystallinity of the aramid fiber is 49.4 to 55 % by selecting the draw ratio of the fiber during spinning from an appropriate range, or by selecting the heat treatment condition of the nonwoven fabric from the appropriate range , or If the crystal size and 19.0~ 30 Å, it is particularly to handling, liquid retention excellent nonwoven.

結晶化度が55%より高い、あるいは結晶サイズが30Åより大きく成長したアラミド繊維からなる不織布の場合、電気化学デバイス製造時に他の部材と積層した際、あるいはリチウムデンドライド発生時等に、一部に応力集中が起こりやすく、セパレータとして長期間使用した場合、マイクロショートが起こりやすいものと思われる。   In the case of non-woven fabric made of aramid fibers having a degree of crystallinity higher than 55% or a crystal size grown larger than 30 mm, partly when laminated with other members at the time of electrochemical device production, or when lithium dendride occurs Stress concentration is likely to occur, and when used as a separator for a long period of time, microshorts are likely to occur.

また、アラミド繊維の結晶化度が49.4〜55%場合、電解液との親和性がより高まるため、電解液のドライアップをさらに低減することができるものと思われる。また本発明のセパレータは結晶化度を特定の範囲とすることにより、しなやかさを有し、折り曲げがしやすい等、セパレータとして使用する際に取り扱いやすい。 Further, when the crystallinity of the aramid fiber is 49.4 to 55% , the affinity with the electrolytic solution is further increased, so that it is considered that the dry-up of the electrolytic solution can be further reduced. Moreover, the separator of the present invention is easy to handle when used as a separator because it has flexibility and is easy to bend by setting the crystallinity within a specific range.

本発明のセパレータはアラミドポリマー以外のポリマーからなる繊維ならびに無機材料を含んだ複合体でも良い。
例えば、アラミドポリマー以外のポリマーとして、ポリプロピレン、ポリエチレン等のポリオレフィン、ポリエステル、ナイロン、塩化ビニル、ポリフェニレンサルファイド、全芳香族ポリエステル、ポリパラフェニレンベンゾビスオキサゾール、ポリアミド、半芳香族ポリアミド、ポリイミド、ポリアミドイミド、メラミン、ポリベンゾイミダゾール、ポリケトン(ポリエーテルエーテルケトン等)、ポリアクリロニトリル、ポリビニルアルコール、ポリアセタール、ポリテトラフルオロエチレン、ポリビニリデンフルオライド、その他フルオロポリマー、セルロース、セルロース変性体(カルボキシメチルセルロース等)等を挙げることができる。
The separator of the present invention may be a composite containing a fiber other than an aramid polymer and an inorganic material.
For example, as polymers other than aramid polymer, polyolefins such as polypropylene and polyethylene, polyester, nylon, vinyl chloride, polyphenylene sulfide, wholly aromatic polyester, polyparaphenylene benzobisoxazole, polyamide, semi-aromatic polyamide, polyimide, polyamideimide, Examples include melamine, polybenzimidazole, polyketone (polyetheretherketone, etc.), polyacrylonitrile, polyvinyl alcohol, polyacetal, polytetrafluoroethylene, polyvinylidene fluoride, other fluoropolymers, cellulose, cellulose modified products (carboxymethylcellulose, etc.), etc. be able to.

また、無機材料として、シリカ、アルミナ、二酸化チタン、チタン酸バリウム、アルミナ−シリカ複合酸化物、炭化ケイ素、ジルコニア、ガラス等のほか、タルク、モンモリロナイトなどの粘土微粒子、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカなどの鉱物資源由来物質あるいはそれらの人造物等を挙げることができる。   Further, as inorganic materials, silica, alumina, titanium dioxide, barium titanate, alumina-silica composite oxide, silicon carbide, zirconia, glass, etc., clay particles such as talc, montmorillonite, boehmite, zeolite, apatite, kaolin, Mention may be made of substances derived from mineral resources such as mullite, spinel, olivine, sericite, bentonite and mica, or artificial products thereof.

本発明のセパレータは、単層構造であっても、上記ポリマーならびに無機材料を含む層とアラミドポリマーからなる層からなる多層構造であってもよい。
他成分を複合する、あるいは他成分との多層構造体とすることにより、セパレータの強度を増す等の効果を得ることができる。上記の他成分がポリオレフィンである場合には、リチウムイオン二次電池などの電気化学デバイスにおいて電気化学反応が暴走する温度領域(100〜160℃程度)で、ポリオレフィンが溶融するため、電極間の絶縁性が高まり、異常な電気化学反応を抑制することができる。
The separator of the present invention may have a single layer structure or a multilayer structure composed of a layer containing the above polymer and inorganic material and a layer made of an aramid polymer.
By combining other components or forming a multilayer structure with other components, effects such as increasing the strength of the separator can be obtained. When the other component is a polyolefin, the polyolefin melts in a temperature range (about 100 to 160 ° C.) where an electrochemical reaction runs away in an electrochemical device such as a lithium ion secondary battery. And the abnormal electrochemical reaction can be suppressed.

本発明のセパレータの厚みは、電気化学デバイスの種類や用途によって適宜選択されるが、5〜200μ mであることが好ましく、10〜100μ mであることがより好ましく、15〜80μmであることがさらに好ましい。また、空隙率は30〜80%であることが好ましく、50〜75%であることがより好ましい。ここで空隙率とは、坪量M(g/cm2)、厚さT(μm)、ポリマー密度D(g/cm3)より、下記式にて算出した値である。
空隙率(%)=[1−(M/T)/D]×100
Although the thickness of the separator of the present invention is appropriately selected depending on the type and application of the electrochemical device, it is preferably 5 to 200 μm, more preferably 10 to 100 μm, and 15 to 80 μm. Further preferred. Further, the porosity is preferably 30 to 80%, more preferably 50 to 75%. Here, the porosity is a value calculated from the basis weight M (g / cm 2), thickness T (μm), and polymer density D (g / cm 3) by the following formula.
Porosity (%) = [1- (M / T) / D] × 100

セパレータの厚さ、ならびに空隙率がかかる範囲にあることで、電解液保液性と、低抵抗性のバランスのとれたセパレータとすることができる。
セパレータの目付、すなわち単位面積の重量としては、電極間の隔壁として機能する範囲であれば特に制限されるものではないが、通常、4〜160g/m2であることが好ましく、8〜80g/m2であることがより好ましく、10〜65g/m2であることがさらに好ましい。
When the thickness of the separator and the porosity are within such ranges, a separator having a good balance between electrolyte solution retention and low resistance can be obtained.
The weight per unit area of the separator, that is, the weight of the unit area is not particularly limited as long as it is a range that functions as a partition wall between the electrodes, but is usually preferably 4 to 160 g / m2, and preferably 8 to 80 g / m2. It is more preferable that it is 10-65 g / m2.

以下、実施例により、本発明を更に具体的に説明する。なお、本発明はこれらの実施例に限られるものではない。実施例における各項目は次の方法で測定した。   Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to these examples. Each item in the examples was measured by the following method.

<固有粘度(IV)>
ポリマーをNMPに100mg/20 mLで溶解し、オストワルド粘度計を用い30
℃で測定した。
<Intrinsic viscosity (IV)>
Dissolve the polymer in NMP at 100 mg / 20 mL and use an Ostwald viscometer 30
Measured at ° C.

<平均繊維径>
得られた繊維から任意にサンプリングし、繊維50本について、走査型電子顕微鏡JS
M6330F(JEOL社製)にて観察および測長を行い、平均繊維径を算出した。なお
観察は、3,000倍の倍率で行った。
<Average fiber diameter>
An arbitrary sample was obtained from the obtained fibers, and 50 fibers were scanned using a scanning electron microscope JS.
Observation and length measurement were performed with M6330F (manufactured by JEOL), and the average fiber diameter was calculated. The observation was performed at a magnification of 3,000 times.

<厚み>
小野測器 ディジタルリニアゲージDG−925(測定端子部の直径1cm)を用い、任意に選択した20箇所において厚さを測定し、平均値を求めた。
<Thickness>
Ono Sokki Using a digital linear gauge DG-925 (measurement terminal diameter 1 cm), the thickness was measured at 20 arbitrarily selected locations, and the average value was obtained.

<目付>
JIS L1906の単位面積当たりの重量試験方法に準じて測定を行った。
<Unit weight>
Measurement was performed according to the weight test method per unit area of JIS L1906.

<透気度(ガーレー)>
JIS L1906の通気性試験方法(ガーレー形法)準じて測定を行った。
<Air permeability (Gurley)>
The measurement was performed according to the air permeability test method (Gurley type method) of JIS L1906.

<毛羽立ちの観察>
セパレータをカットした時の断面を指で軽く擦った時の繊維の脱落及び/又は毛羽立ちの有無を、目視ならびに顕微鏡にて観察した。
<Observation of fuzz>
The cross section when the separator was cut was lightly rubbed with a finger, and the presence or absence of fluffing and / or fluffing was observed visually and with a microscope.

<結晶化サイズ、結晶化度測定>
X線回折装置(D8 DISCOVER with GADDS Super Speed、Bruker AXS社製)を用い、2θ=10〜40°の範囲の測定を行った。なおこの際、試料の全方向のプロファイルを測定した。Hindelehら(A.M.Hideleh and D.J.Johnson,Polymer,19,27(1978))の方法に従い、市販のメタアラミドの全方位回折曲線を基にピーク分離し、分離後の最も強度の大きいピーク(ポリメタフェニレンイソフタルアミドの場合、2θ=23.5°付近)の半値幅から、下記に示すScherrerの式により、結晶サイズ(単位:Å)を算出した。
結晶サイズ=Kλ/(β×cosθ)
(ここで、Kは定数で0.94、λは使用X線の波長で1.54Å(CuKα線)、βは反射プロフィールのラジアン単位の半価幅で実測値をβM、装置定数をβEとして、β=βM−βEから求めた。θは回折線のブラッグ角である。)
また結晶化度は、上記分離後の結晶性ピーク強度の、全ピーク強度に対する割合から求めた。なお、結晶性ピークは、高度に結晶化されている市販のアラミド繊維の回折強度曲線のピーク位置を基準とした。
<Measurement of crystallization size and crystallinity>
Using an X-ray diffractometer (D8 DISCOVER with GADDS Super Speed, manufactured by Bruker AXS), measurement in the range of 2θ = 10 to 40 ° was performed. At this time, the profile in all directions of the sample was measured. According to the method of Hindeleh et al. (AM Hideleh and D. J. Johnson, Polymer, 19, 27 (1978)), peak separation is performed based on the omnidirectional diffraction curve of commercially available metaaramid, and the highest intensity after separation is obtained. From the full width at half maximum of the peak (in the case of polymetaphenylene isophthalamide, around 2θ = 23.5 °), the crystal size (unit: Å) was calculated by the Scherrer equation shown below.
Crystal size = Kλ / (β × cos θ)
(Where K is a constant of 0.94, λ is the wavelength of the X-ray used, 1.54 mm (CuK α- ray), β is the half-value width in radians of the reflection profile, the measured value is β M , and the device constant is β E was obtained from β = β M −β E. θ is the Bragg angle of the diffraction line.
The crystallinity was determined from the ratio of the crystalline peak intensity after the separation to the total peak intensity. The crystallinity peak was based on the peak position of the diffraction intensity curve of a commercially available aramid fiber that was highly crystallized.

<液体吸い上げ高さ>
JIS−L1907に規定されている吸水速度測定法(バイレック法)に準じて、プロピレンカーボネートの1分後の吸い上げ高さの測定を行った。
<Liquid suction height>
In accordance with the water absorption rate measuring method (Byreck method) defined in JIS-L1907, the height of the propylene carbonate after 1 minute was measured.

<電池評価試験>
正極活物質としてLiNi1/3Mn1/3Co1/3O2(平均粒径6μm)を89重量%、導電剤としてグラファイトを6重量%、バインダーとしてポリフッ化ビニリデンを5重量%の割合とし、さらに分散用溶剤としてN−メチル−2−ピロリドンを加えて混合して、ペースト状スラリーを作製した。このスラリーを正極集電体となるアルミニウム箔(厚さ15μm)に塗布し、乾燥後、ローラープレス機で圧縮成型を行い、正極を形成した。
また、負極活物質としてグラファイト(平均粒径20μm)を90重量%、バインダーとしてポリフッ化ビニリデンを10重量%の割合とし、さらに分散用溶剤としてN−メチル−2−ピロリドンを加えて混合して、ペースト状スラリーを作製した。このスラリーを負極集電体となる電解銅箔(厚さ10μm)に塗布し、乾燥後、ローラープレス機で圧縮成型を行い、負極を形成した。
ついで上記のようにして形成した正極および負極を、所定のサイズ(約30mm×約60mm)に打ち抜き、各実施例及び比較例のセパレータを介して積層し、タブを接着、外装を施して積層体を作製した。この積層体を80℃、8時間減圧乾燥した。この積層体に、プロピレンカーボネート30重量%とエチルメチルカーボネート70重量%の混合溶媒に1mol/Lの濃度でLiPFを添加した電解液を注入した。その後外装材の注液口のシールを行って、単層ラミネートセルを作製した。なお、電極乾燥後の作業は、露点−50℃以下のドライボックス中で行った。
<Battery evaluation test>
LiNi 1/3 Mn 1/3 Co 1/3 O2 (average particle size 6 μm) as the positive electrode active material is 89 wt%, graphite is 6 wt% as the conductive agent, and polyvinylidene fluoride is 5 wt% as the binder, Further, N-methyl-2-pyrrolidone as a solvent for dispersion was added and mixed to prepare a paste-like slurry. This slurry was applied to an aluminum foil (thickness: 15 μm) serving as a positive electrode current collector, dried, and then compression molded with a roller press to form a positive electrode.
Also, graphite (average particle size 20 μm) as a negative electrode active material is 90% by weight, polyvinylidene fluoride is 10% by weight as a binder, and N-methyl-2-pyrrolidone is added and mixed as a dispersion solvent. A pasty slurry was prepared. This slurry was applied to an electrolytic copper foil (thickness: 10 μm) serving as a negative electrode current collector, and after drying, compression molding was performed with a roller press to form a negative electrode.
Subsequently, the positive electrode and the negative electrode formed as described above are punched out to a predetermined size (about 30 mm × about 60 mm), laminated through the separators of the examples and comparative examples, and the tabs are bonded and the exterior is applied to obtain a laminate. Was made. This laminate was dried under reduced pressure at 80 ° C. for 8 hours. An electrolyte solution in which LiPF 6 was added at a concentration of 1 mol / L to a mixed solvent of 30% by weight of propylene carbonate and 70% by weight of ethyl methyl carbonate was injected into this laminate. Thereafter, the liquid inlet of the exterior material was sealed to produce a single-layer laminate cell. The work after electrode drying was performed in a dry box having a dew point of −50 ° C. or lower.

試験1(インピーダンス測定):
上述のようにして作製した単層ラミネートセルについて、20℃において、充電電圧4.2V、充電時間17時間の条件で満充電を行った。その後、3.8Vに充電調整し、ACインピーダンス測定を行った。測定は、測定周波数1kHz、印加電圧10mVの条件で行った。
対照品(ポリプロピレン微多孔質膜、Celgard社製)に比べて、インピーダンスが同等である場合を△、低い場合を○とした。
Test 1 (impedance measurement):
The single-layer laminated cell produced as described above was fully charged at 20 ° C. under the conditions of a charging voltage of 4.2 V and a charging time of 17 hours. Thereafter, the charge was adjusted to 3.8 V, and AC impedance measurement was performed. The measurement was performed under the conditions of a measurement frequency of 1 kHz and an applied voltage of 10 mV.
Compared to the control product (polypropylene microporous membrane, manufactured by Celgard), the case where the impedance was equal was indicated by Δ, and the case where the impedance was low was indicated by ○.

試験2(サイクル特性):
上述のようにして作製した単層ラミネートセルについて、20℃において、充電電圧4.2V、充電時間1.5時間の条件で充電を行い、その後、放電を行った。このサイクルを繰り返し行い、初回の充電容量に対する200回目の充電容量保持率を求めた。
容量保持率が85%以上の場合を○、85%未満80%以上の場合を△、80%未満の場合を×とした。
Test 2 (cycle characteristics):
The single-layer laminate cell produced as described above was charged at 20 ° C. under the conditions of a charging voltage of 4.2 V and a charging time of 1.5 hours, and then discharged. This cycle was repeated to determine the 200th charge capacity retention rate with respect to the initial charge capacity.
The case where the capacity retention rate was 85% or more was rated as “◯”, the case where it was less than 85% and 80% or more as Δ, and the case where it was less than 80% as “X”.

<電気二重層キャパシタ評価試験>
粒状活性炭、カーボンブラック、及びバインダーとしてポリフッ化ビニリデンのN−メチル−2−ピロリドン溶液を混合して混練を行い、ペースト状スラリーを作製した。また、集電体としてアルミ箔、セパレータとして各実施例及び比較例のセパレータ、及び電解液としてテトラエチルアンモニウム・テトラフルオロボレート((CN・BF)をプロピレンカーボネートに溶解させたものを用意した。
これら材料からコインセル型の電気二重層キャパシタを作製し、それらの内部抵抗を測定した。対照品(セルロース紙、ニッポン高度紙製)に比べて、内部抵抗が低い場合を○とした。
<Electric double layer capacitor evaluation test>
A granular activated carbon, carbon black, and an N-methyl-2-pyrrolidone solution of polyvinylidene fluoride as a binder were mixed and kneaded to prepare a paste slurry. In addition, aluminum foil as a current collector, separators of Examples and Comparative Examples as separators, and tetraethylammonium tetrafluoroborate ((C 2 H 5 ) 4 N · BF 4 ) as electrolytes were dissolved in propylene carbonate. I prepared something.
Coin cell type electric double layer capacitors were prepared from these materials, and their internal resistance was measured. A case where the internal resistance was lower than that of the control product (cellulose paper, Nippon Advanced Paper Co., Ltd.) was evaluated as ◯.

[実施例1〜6、9]
特公昭47−10863号公報記載の方法に準じた界面重合法により製造した固有粘度
(IV)=1.35のポリメタフェニレンイソフタルアミド粉未20重量部を、−10℃
に冷却したジメチルアセトアミド(DMAc)80重量部中に懸濁させ、スラリー状にした後、45℃まで昇温して溶解させ、透明なポリマー溶液を得た。
上記のポリマー溶液を、ギアポンプを使って特願2009−194917の紡糸装置に供給し、紡糸温度35℃として紡糸を行った。凝固液として水を使用し、吐出後のポリマー溶液に吹き付け、ポリマー溶液を固化させて連続繊維を得た。また紡糸装置の下方に補足ベルトを設置し、連続繊維を積層しつつベルトの搬送速度を調整することによって、表1記載の繊維径の不織布を得た。
得られた不織布を金属製カレンダーロールにて温度250℃(線圧設定50kg/cm)として熱処理した。上下ロール間のクリアランスを設けることによって任意に線圧調整し、表1、表2の厚さのセパレータを得た。
[Examples 1 to 6, 9]
20 parts by weight of polymetaphenylene isophthalamide powder having an intrinsic viscosity (IV) = 1.35, produced by an interfacial polymerization method according to the method described in Japanese Patent Publication No. 47-10863, is −10 ° C.
The slurry was suspended in 80 parts by weight of dimethylacetamide (DMAc) that had been cooled to 45 ° C., made into a slurry, and then heated to 45 ° C. to dissolve to obtain a transparent polymer solution.
The above polymer solution was supplied to the spinning device of Japanese Patent Application No. 2009-194917 using a gear pump, and spinning was performed at a spinning temperature of 35 ° C. Water was used as a coagulation liquid, sprayed onto the polymer solution after discharge, and the polymer solution was solidified to obtain continuous fibers. Further, a non-woven fabric having a fiber diameter shown in Table 1 was obtained by installing a supplementary belt below the spinning device and adjusting the belt conveyance speed while laminating continuous fibers.
The obtained nonwoven fabric was heat-treated with a metal calender roll at a temperature of 250 ° C. (linear pressure setting: 50 kg / cm). The linear pressure was arbitrarily adjusted by providing a clearance between the upper and lower rolls, and separators having thicknesses shown in Tables 1 and 2 were obtained.

[実施例7]
凝固液として水/DMAc混合液(混合比率50/50)を使用して不織布を作製した以外は、実施例と同様に不織布を作製し、同様の熱処理を行ってセパレータを得た。
[Example 7]
A non-woven fabric was prepared in the same manner as in the example except that a non-woven fabric was prepared using a water / DMAc mixed solution (mixing ratio 50/50) as a coagulating liquid, and a separator was obtained by performing the same heat treatment.

[実施例8]
実施例1で得られたセパレータを固定し、250℃で10分間熱処理を行った。熱処理の方法は、特開2007−84956に準じて行った。
[Example 8]
The separator obtained in Example 1 was fixed and heat-treated at 250 ° C. for 10 minutes. The heat treatment was performed according to Japanese Patent Application Laid-Open No. 2007-84956.

[比較例1]
実施例5で得られたセパレータを固定し、実施例8と同様に250℃で60分間熱処理を行った。
[Comparative Example 1]
The separator obtained in Example 5 was fixed, and heat treatment was performed at 250 ° C. for 60 minutes in the same manner as in Example 8.

[比較例2]
実施例1において、吐出後のアラミド繊維を延伸することによって、延伸繊維からなる不織布を作製した。なお、延伸の方法は、凝固糸状を40℃の30重量%NMP水溶液からなる延伸浴中にて3.4倍に延伸し、引き続き70℃の温水中に約50秒浸漬し、次いで表面温度130℃のローラーに沿わせて乾燥処理した後、表面温度340℃の熱板にて1.00倍に熱処理する方法で行った。
[Comparative Example 2]
In Example 1, a nonwoven fabric made of stretched fibers was produced by stretching the aramid fibers after discharge. In the stretching method, the coagulated yarn is stretched 3.4 times in a stretching bath made of a 30% by weight NMP aqueous solution at 40 ° C., then immersed in warm water at 70 ° C. for about 50 seconds, and then the surface temperature is 130. After drying along a roller of ° C., it was performed by a method of heat treatment 1.00 times with a hot plate having a surface temperature of 340 ° C.

[比較例3]
ポリプロピレン微多孔質膜(セルガードTM2400、Celgard社製)を用い、セパレータとしての性能評価を行った。
[Comparative Example 3]
A polypropylene microporous membrane (Celgard TM2400, manufactured by Celgard) was used to evaluate the performance as a separator.

[比較例4]
セルロース製セパレータ(TF4050、ニッポン高度紙工業製)を用い、セパレータとしての性能評価を行った。
電池特性評価に使用したセパレータの基礎特性、電池特性(サイクル特性)評価結果を表1に示す。
[Comparative Example 4]
A cellulose separator (TF4050, manufactured by Nippon Kogyo Paper Industries) was used to evaluate the performance as a separator.
Table 1 shows the basic characteristics and battery characteristics (cycle characteristics) evaluation results of the separator used for the battery characteristics evaluation.

Figure 0005551525
Figure 0005551525

キャパシタ評価に使用したセパレータの基礎特性、キャパシタ特性(キャパシタ抵抗)評価結果を表2に示す。   Table 2 shows the basic characteristics of the separator used for capacitor evaluation and the evaluation results of capacitor characteristics (capacitor resistance).

Figure 0005551525
Figure 0005551525

本発明によるセパレータは、耐熱性、耐薬品性、絶縁性加え、抵抗が低く、電解質の保液性に優れるため、大容量化、高出力化、あるいは低背化が求められる電気化学素子に対して極めて有用である。   The separator according to the present invention has low heat resistance, chemical resistance, insulation, low resistance, and excellent electrolyte retention. For electrochemical elements that require large capacity, high output, or low profile. And extremely useful.

Claims (15)

アラミド繊維を含む不織布よりなる電気化学デバイス用のセパレータであって、X線回折から求めた該アラミド繊維の結晶化度が49.4〜55%もしくは結晶サイズが19.0〜30Åであることを特徴とするセパレータ。 A separator for an electrochemical device consisting of a nonwoven fabric comprising aramid fibers, 55% degree of crystallinity 49.4~ of the aramid fibers obtained from X-ray diffraction also is properly in crystal size 19.0 to 30 Å A separator characterized by being. アラミド繊維の結晶サイズが19.0〜22Åである請求項1記載のセパレータ。 The separator according to claim 1 , wherein the crystal size of the aramid fiber is 19.0 to 22 Å . アラミド繊維が、連続繊維の形状で不織布に含まれる請求項1記載のセパレータ。   The separator according to claim 1, wherein the aramid fibers are contained in the nonwoven fabric in the form of continuous fibers. アラミド繊維が、ポリメタフェニレンイソフタルアミド繊維である請求項1記載のセパレータ。   The separator according to claim 1, wherein the aramid fiber is polymetaphenylene isophthalamide fiber. アラミド繊維が、ポリパラフェニレンテレフタルアミド繊維である請求項1記載のセパレータ。   The separator according to claim 1, wherein the aramid fiber is a polyparaphenylene terephthalamide fiber. アラミド繊維が、コポリパラフェニレン−3,4’オキシジフェニレン−テレフタルアミド繊維である請求項1記載のセパレータ。   The separator according to claim 1, wherein the aramid fiber is a copolyparaphenylene-3,4'oxydiphenylene-terephthalamide fiber. 連続繊維の平均繊維径が5μm以下である請求項1から6のいずれか1項に記載のセパレータ。   The separator according to any one of claims 1 to 6, wherein the continuous fibers have an average fiber diameter of 5 µm or less. 連続繊維の平均繊維径が2μm以下である請求項1から6のいずれか1項に記載のセパレータ。   The separator according to any one of claims 1 to 6, wherein an average fiber diameter of the continuous fibers is 2 µm or less. 連続繊維の平均繊維径が1μm以下である請求項1から6のいずれか1項に記載のセパレータ。   The separator according to any one of claims 1 to 6, wherein an average fiber diameter of the continuous fibers is 1 µm or less. 厚みが5μm以上、200μm以下である請求項1から9のいずれか1項に記載のセパレータ。   The separator according to any one of claims 1 to 9, which has a thickness of 5 µm or more and 200 µm or less. 空隙率が30%以上、80%以下である請求項1から9のいずれか1項に記載のセパレータ。   The separator according to any one of claims 1 to 9, wherein the porosity is 30% or more and 80% or less. 請求項1から11のいずれか1項に記載のセパレータを含むことを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery comprising the separator according to any one of claims 1 to 11. 請求項1から11のいずれか1項に記載のセパレータを含むことを特徴とする電気二重層キャパシタ。   The electric double layer capacitor characterized by including the separator of any one of Claim 1 to 11. 請求項1から11のいずれか1項に記載のセパレータを含むことを特徴とするアルミ電解コンデンサ。   An aluminum electrolytic capacitor comprising the separator according to any one of claims 1 to 11. 請求項1から11のいずれか1項に記載のセパレータを含むことを特徴とするリチウムイオンキャパシタ。   The lithium ion capacitor characterized by including the separator of any one of Claim 1 to 11.
JP2010141579A 2010-06-22 2010-06-22 Separator made of ultrafine nonwoven fabric Expired - Fee Related JP5551525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010141579A JP5551525B2 (en) 2010-06-22 2010-06-22 Separator made of ultrafine nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010141579A JP5551525B2 (en) 2010-06-22 2010-06-22 Separator made of ultrafine nonwoven fabric

Publications (2)

Publication Number Publication Date
JP2012009165A JP2012009165A (en) 2012-01-12
JP5551525B2 true JP5551525B2 (en) 2014-07-16

Family

ID=45539506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010141579A Expired - Fee Related JP5551525B2 (en) 2010-06-22 2010-06-22 Separator made of ultrafine nonwoven fabric

Country Status (1)

Country Link
JP (1) JP5551525B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6154101B2 (en) * 2012-03-02 2017-06-28 帝人株式会社 Separator made of aromatic polyamide nanofiber structure
JP5934027B2 (en) * 2012-05-30 2016-06-15 帝人株式会社 Extra fine fiber structure
WO2014010753A1 (en) * 2012-07-11 2014-01-16 帝人株式会社 Microfiber structure
KR20140075202A (en) * 2012-12-11 2014-06-19 도레이케미칼 주식회사 Method of Poly(m-phenylene terephthal amide separator and Poly(m-phenylene terephthal amide separator Produced thereof
KR102016038B1 (en) * 2012-12-11 2019-08-29 도레이케미칼 주식회사 Method of Poly(m-phenylene terephthal amide separator
JP6597631B2 (en) * 2014-10-21 2019-10-30 日本電気株式会社 Film exterior battery and battery module including the same
WO2016063868A1 (en) * 2014-10-21 2016-04-28 日本電気株式会社 Film pack battery and battery module provided with same
WO2016093246A1 (en) * 2014-12-11 2016-06-16 日本電気株式会社 Lithium ion secondary battery
JP6683191B2 (en) * 2015-03-05 2020-04-15 日本電気株式会社 Secondary battery
CN110024175B (en) * 2016-12-02 2022-08-02 旭化成株式会社 Inorganic particles for nonaqueous electrolyte battery and nonaqueous electrolyte battery using same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4017744B2 (en) * 1998-05-22 2007-12-05 帝人株式会社 Solid-type polymer electrolyte membrane and method for producing the same
JP5171150B2 (en) * 2000-03-07 2013-03-27 帝人株式会社 Separator for lithium ion secondary battery
JP2001266942A (en) * 2000-03-15 2001-09-28 Teijin Ltd Electrolyte carrying polymer membrane and secondary battery using it
JP4743747B2 (en) * 2004-12-08 2011-08-10 日立マクセル株式会社 Separator, manufacturing method thereof, and nonaqueous electrolyte battery
JP2007067155A (en) * 2005-08-31 2007-03-15 Mitsubishi Paper Mills Ltd Separator for electrochemical element
WO2008146895A1 (en) * 2007-05-31 2008-12-04 Dupont Teijin Advanced Papers, Ltd. Electrolyte and electric/electronic component using the same

Also Published As

Publication number Publication date
JP2012009165A (en) 2012-01-12

Similar Documents

Publication Publication Date Title
JP5551525B2 (en) Separator made of ultrafine nonwoven fabric
JP5706214B2 (en) Separator
JP5470255B2 (en) Lithium ion secondary battery separator, method for producing the same, and lithium ion secondary battery
TWI437749B (en) Non-aqueous battery separator, manufacturing method thereof, and nonaqueous battery
TWI415321B (en) Non-aqueous battery separator, manufacturing method thereof and non-water storage battery
JP4038868B2 (en) Para-aramid porous film and battery separator and lithium secondary battery using the same
JP6449888B2 (en) Separator paper for chemical batteries
WO2006123811A1 (en) Separator for lithium ion secondary battery and lithium ion secondary battery
WO2008105555A1 (en) Separator
JP2009231281A (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte secondary battery
KR20090122395A (en) Separator
TWI514646B (en) Separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
WO2019072144A1 (en) Separators, electrochemical devices comprising the separator, and methods for making the separator
JP4577819B2 (en) Wet nonwoven fabric, method for producing wet nonwoven fabric, separator for electric double layer capacitor, separator for lithium ion secondary battery, electric double layer capacitor, lithium ion secondary battery
JP2019216033A (en) Separator for nonaqueous secondary battery and the nonaqueous secondary battery
JP2018133245A (en) Separator for nonaqueous secondary battery and nonaqueous secondary battery
JP6347690B2 (en) Electrochemical element separator
WO2020235508A1 (en) Separator for non-aqueous secondary battery, method for producing same, and non-aqueous secondary battery
JPWO2020189796A1 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP2011210435A (en) Separator for nonaqueous secondary battery
JP6061735B2 (en) Battery separator and battery separator manufacturing method
JP2007277580A (en) Aramid porous film, and separator for battery and lithium secondary battery using the same
JP6154101B2 (en) Separator made of aromatic polyamide nanofiber structure
JP2011187515A (en) Separator for electrochemical element, and the electrochemical element using the same
KR101469050B1 (en) Battery Separator with Excellent Shut-down Function and Heat Resistance and Secondary Cell Battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140522

R150 Certificate of patent or registration of utility model

Ref document number: 5551525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees