WO2014010753A1 - Microfiber structure - Google Patents

Microfiber structure Download PDF

Info

Publication number
WO2014010753A1
WO2014010753A1 PCT/JP2013/069569 JP2013069569W WO2014010753A1 WO 2014010753 A1 WO2014010753 A1 WO 2014010753A1 JP 2013069569 W JP2013069569 W JP 2013069569W WO 2014010753 A1 WO2014010753 A1 WO 2014010753A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine fiber
fiber structure
battery
test sample
separator
Prior art date
Application number
PCT/JP2013/069569
Other languages
French (fr)
Japanese (ja)
Inventor
丈也 出井
恵美 佐藤
航治 岩崎
恭介 高野
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Publication of WO2014010753A1 publication Critical patent/WO2014010753A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/80Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyamides
    • D01F6/805Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyamides from aromatic copolyamides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a fine fiber structure comprising a fine fiber layer composed of polymer fine fibers, and more specifically to a battery such as a lithium battery or an alkaline battery, a separator such as an electric double layer capacitor or a capacitor, or an insulating material.
  • the present invention relates to a fine fiber structure that can be suitably used.
  • the battery includes a separator positioned between the anode and cathode to prevent electrical connection or short circuit between the anode and cathode.
  • a short circuit occurs when the conductive particles bridge the separator or when the separator is degraded to allow electrode contact. In rare cases, battery shorts may occur all at once, but rather due to the accumulation of very small conductive paths called “soft shorts” over time.
  • “Dendrite short” is, for example, formed on one electrode of a battery with a dendrite containing a precipitate such as zincate in the case of an alkaline battery, or lithium metal in the case of a lithium battery, and through a separator. The other electrode is grown to provide an electrical connection between the anode and the cathode.
  • Primary alkaline batteries generally have a cathode, an anode, a separator disposed between the cathode and anode, and an alkaline electrolyte solution.
  • the cathode is typically formed from MnO 2 , carbon particles and a binder.
  • the anode can be formed from a gel containing zinc particles.
  • the electrolyte solution dispersed throughout the battery is most commonly an aqueous solution containing 30-40% potassium hydroxide.
  • Battery separators used in alkaline batteries have certain performance requirements. For example, such a separator needs to be stable in the presence of a strong alkaline electrolyte (for example, 30 to 40% KOH).
  • the lack of alkali chemical resistance can lead to internal shorts between the electrodes due to a loss of mechanical integrity.
  • Good electrolyte absorption is also necessary, meaning that the separator is fully impregnated with the electrolyte solution needed for the electrochemical reaction of the cell.
  • Another requirement of the separator is a barrier to the growing dendrites of conductive zinc oxide formed by electrochemical reactions in the cell that can cause a short circuit through the separator.
  • the separator must also allow the movement of ions between the electrodes, in other words, the separator should exhibit a low resistance to ion flow.
  • Secondary alkaline zinc-MnO 2 batteries have similar anode, cathode and electrolyte as primary alkaline batteries.
  • Certain additives eg, Bi 2 O 3 , BaSO 4 , organic inhibitors, etc.
  • additives eg, Bi 2 O 3 , BaSO 4 , organic inhibitors, etc.
  • Some of the additives can dissolve in the electrolyte and move to other electrodes.
  • the use of a separator with good dendrite barrier properties will help extend the cycle life of the zinc-MnO 2 secondary battery.
  • Battery separators for alkaline batteries conventionally have large pores with good (low) ionic resistance, but with a relatively poor barrier to growing dendrites (hereinafter sometimes referred to as “dendritic barriers”).
  • U.S. Patent No. 6,057,031 discloses a composite battery separator that includes at least one nonwoven layer and a layer that reduces dendritic shorts, which can be a microporous layer made of cellophane, polyvinyl alcohol, polysulfone, grafted polypropylene or polyamide. The thickness of the composite separator is about 8.3 mil.
  • the battery separator has an ionic resistance of less than 90 milliohm-cm 2 when measured in a 40% potassium hydroxide (KOH) electrolyte solution at 1 KHz.
  • the microporous layer is desirably mixed with a very high level of barrier to air, but it is not desirable to have high ionic resistance, poor electrolyte wettability, and poor electrolyte absorption properties.
  • Lithium batteries belong to three general categories: lithium primary batteries, lithium ion secondary batteries and lithium ion gel polymer batteries.
  • Lithium primary batteries use many different types of battery chemistries, each using lithium as the anode, but with different cathode materials and electrolytes.
  • lithium manganese oxide or Li-MnO 2 cells lithium is used as the anode and MnO 2 is used as the cathode material; the electrolyte contains a lithium salt in a mixed organic solvent such as propylene carbonate and 1,2-dimethoxyethane. contains.
  • Lithium iron sulfide or Li / FeS 2 batteries use lithium as the anode, iron disulfide as the cathode, and lithium iodide in the organic solvent blend as the electrolyte.
  • Lithium ion secondary batteries use lithium-inserted carbon as an anode, lithium metal oxide (eg, LiCoO 2 ) as a cathode and an organic solvent blend with 1M lithium hexafluorophosphate (LiPF 6 ) as an electrolyte.
  • Lithium ion gel polymer batteries use similar anode and cathode materials as lithium ion secondary batteries. The liquid organic electrolyte forms a gel with the polymer separator, which helps provide a good bond between the separator and the electrode.
  • Patent Document 3 discloses an ultrafine fibrous porous polymer separator film for use as a battery separator in a lithium secondary battery, and the separator film has a thickness of 1 to 100 ⁇ m.
  • the separator film is formed from fine fibers formed by electrospinning a polymer melt or polymer solution having a diameter of 1 to 3000 nm.
  • Nonwoven materials that are easily used as separators in alkaline batteries have large diameter fibers and therefore it is difficult to achieve thin separators.
  • Such nonwoven fabric also has large pores, for example between 15 and 35 ⁇ m.
  • the anode and cathode particles can move to each other through large pores, creating an internal short circuit.
  • thicker separators are formed using multiple layers.
  • such a thick separator is not preferable from the viewpoint of battery performance because it provides higher ionic resistance, and when used in coin cells and other small batteries that are useful in electronic devices, the separator is thick, and thus is not designed. The usage is limited.
  • the present invention has been made in view of the above-mentioned background art, and its purpose is that, during manufacture and use, pinholes due to burr and bending of the electrode sheet, bending, expansion and contraction of the electrode, etc. are unlikely to occur, so short-circuiting is unlikely to occur.
  • An object of the present invention is to provide a fine fiber structure capable of exhibiting stable performance as a separator or insulating material for batteries, electric double layer capacitors, capacitors and the like.
  • a fine fiber structure comprising a fine fiber layer composed of polymer fine fibers having an average diameter of 50 to 3000 nm, the maximum compression ratio at a surface pressure of 5 MPa measured by the following method of the fine fiber structure is 20% or more,
  • the average pore diameter is 0.01 to 15 ⁇ m
  • the thickness is 0.0025 to 0.3 mm
  • the porosity is 20 to 90%
  • the basis weight is 1 to 90 g / m 2
  • the fragile air permeability is 46 m 3. / Minute / m 2 and a fine fiber structure having a Macmillan number of 2 to 15.
  • ⁇ Maximum compression ratio> Using a test sample cut out from a fine fiber structure, the test sample is placed on a glass plate in a 25 ° C. atmosphere by a compression tester, and a test stress is 10 mN, that is, a surface pressure, with a flat indenter having a diameter of 50 ⁇ m. A compression test is performed in which a load of up to 5 MPa is applied, the load speed is 2.2 mN / sec, and load-unload is repeated three times, and the maximum change when the maximum thickness change occurs is the test before the compression test. The value divided by the thickness of the sample was taken as the “maximum compression rate”. The compression test is measured three times while changing the test sample, and the average value is obtained. 2. 2.
  • the fine fiber structure according to 1 above wherein the tear strength / basis weight is 0.9 g / (g / m 2 ) or more, which is a value obtained by dividing the tear strength measured by the following method by the basis weight.
  • ⁇ Tear strength> According to JIS P8116 (tear strength), an Elmendorf type tear tester is used, and the size of the test sample of the fine fiber structure is 70 mm wide ⁇ 63 mm tear direction, and the cutting length is 20 mm. 3.
  • the fine fiber structure according to 1 or 2 above wherein an impact absorption value measured by the following method is 290 kJ / m 2 or more.
  • ⁇ Shock absorption value> Measurement is performed according to JIS K 7111-1 (notch-free Charpy impact strength).
  • test sample 100 mm ⁇ 15 mm cut out from the fine fiber structure was used as the test sample, and this was made so that the striking blade of the pendulum hits the surface of the test sample so that the test sample was not loosened.
  • Tension is applied and it is installed on the test sample support with Cellophane tape (registered trademark) (manufactured by Nichiban Co., Ltd., Elpac S LP-18S).
  • the pendulum uses the 2J type. 4). 4.
  • the fine fiber structure according to any one of the above 1 to 3, wherein the penetration rate of the fine fiber structure measured by the following method is 20 cm 2 / min or more.
  • ⁇ Penetration rate> The fine fiber structure is cut into a 6 cm ⁇ 8 cm test sample, which is sandwiched between two glass plates of 20 cm ⁇ 30 cm ⁇ 5 mm thickness, and the surface pressure applied to the test sample on the upper glass plate is A weight is placed so that the weight is 0.1 kgf / cm 2 including the weight. At this time, a part of the test sample protrudes 6 cm ⁇ 1 cm from one side of the upper and lower glass plates, and the protruding part is immersed in the electrolyte bath. And the area (cm ⁇ 2 >) which penetrated the test sample by which electrolyte solution was pinched
  • Polymer fine fiber is aliphatic polyamide, semi-aromatic polyamide, aromatic polyamide, polyvinyl alcohol, cellulose, polyethylene terephthalate, polyethylene naphthalate, polyethylene, polypropylene, polyvinylidene fluoride, polyacrylonitrile, polyimide, and blends and mixtures thereof. 6.
  • the fine fiber structure according to any one of 1 to 5 above which comprises a polymer selected from the group consisting of copolymers. 7).
  • a battery comprising the fine fiber structure according to any one of 1 to 6 as a separator or an insulating material. 8).
  • An electric double layer capacitor comprising the fine fiber structure according to any one of 1 to 6 as a separator or an insulating material.
  • a capacitor comprising the fine fiber structure according to any one of 1 to 6 as a separator or an insulating material. 10.
  • the battery according to 7 above wherein the battery is a lithium battery, a lithium ion battery, or a lithium ion gel polymer battery.
  • the fine fiber structure of the present invention is in contact with a burr of an electrode sheet, is bent greatly, or used with an electrode material having a large expansion and contraction such as an alloy-based negative electrode during the production or use of a battery or the like. Even when the fine fiber structure has a predetermined compression characteristic, the fine fiber structure absorbs the burr of the electrode sheet and the volume change of the electrode, and it is difficult for a pinhole to occur, so that a short circuit hardly occurs. . For this reason, a high performance and stable performance can be exhibited as a battery, an electric double layer capacitor, a capacitor, or the like using the fine fiber structure as a separator or an insulating material.
  • the fine fiber structure of the present invention is excellent in thin, low ionic resistance and good dendrite barrier properties, soft short barrier properties, short circuit resistance, etc., and separators and insulating materials for batteries, electric double layer capacitors, capacitors, etc. Used for demonstrating excellent performance. That is, the fine fiber structure of the present invention has a high capacity for absorbing the electrolyte when used as a separator or insulating material for a battery, while the separator and the like are saturated even when saturated with an electrolyte solution. In order not to lose the dendrite barrier properties, it has excellent structure maintenance, chemical stability and dimensional stability in practical use.
  • the separator or the like when used as a separator or an insulating material for an electric double layer capacitor or capacitor, the separator or the like has a high capacity for absorbing the electrolyte, and when the separator is saturated with the electrolyte solution, the soft short barrier In order not to lose the characteristics, it has excellent structure maintainability, chemical stability, and dimensional stability in practical use.
  • electric double layer capacitor, capacitor separator and insulating material are all thinner, the materials used in the battery, electric double layer capacitor and capacitor (ie, anode, separator, insulating material, and cathode) Since the total thickness is reduced, a high electrochemically active material can be contained in a specific volume, and a large-capacity battery, an electric double layer capacitor, and a capacitor can be manufactured.
  • the separator or the like has a low ionic resistance, and ions easily flow between the anode and the cathode.
  • the fine fiber structure of the present invention includes at least one fine fiber layer composed of polymer fine fibers having an average diameter of 50 to 3000 nm, preferably 50 to 1000 nm, and more preferably 100 to 800 nm.
  • Such fine fibers can achieve good electrolyte absorbability and retention when used as separators or insulating materials for the above-mentioned batteries having a high surface area.
  • the crystallinity of the fine fibers is preferably 30% or more, more preferably 35% or more, still more preferably 40% or more, still more preferably 45% or more, and particularly preferably 50% or more. If the degree of crystallinity is less than 30%, when the fine fiber structure including the fine fiber layer is used as a separator or the like and the electrolyte is infiltrated, the fiber tends to expand greatly and the pore diameter tends to be narrowed. In some cases, the battery becomes large, and sufficient performance cannot be obtained with a battery, a capacitor, a capacitor, or the like.
  • the average pore diameter of the fine fiber layer is 0.01 to 15 ⁇ m, preferably 0.01 to 5 ⁇ m, more preferably 0.01 to 1 ⁇ m.
  • the fine fiber layer has a porosity of 20 to 90%, preferably 40 to 80%. By increasing the porosity, it is possible to achieve good electrolyte absorption and retention in a battery or the like as described above.
  • the thickness of the fine fiber layer is 0.0025 to 0.3 mm, preferably 0.0127 to 0.127 mm.
  • the thickness should be sufficient to prevent dendrite-induced shorts between the anode and cathode, while allowing ions to flow well between the cathode and anode. It is preferable that When the fine fiber structure including the thin fine fiber layer as described above is used as a separator or an insulating material, it can create a further space in the electrode in the cell, improve the performance as a battery, and extend the life. be able to.
  • the basis weight of the fine fiber layer is 1 to 90 g / m 2 , preferably 5 to 30 g / m 2 .
  • this basic weight exceeds 90 g / m ⁇ 2 >, ionic resistance may become large too much.
  • the separator may not be able to reduce the dendrite short and soft short barrier characteristics between the anode and the cathode.
  • the fragile air permeability of the fine fiber layer is less than 46 m 3 / min / m 2 , preferably less than 8 m 3 / min / m 2 , more preferably less than 1.5 m 3 / min / m 2 .
  • the maximum compression rate of the fine fiber structure measured by the following method at a surface pressure of 5 MPa is 20% or more, preferably 25% or more, more preferably 30% or more. .
  • the maximum compression ratio is less than 20%, a pinhole is generated during the manufacture or use of a battery, an electric double layer capacitor, a capacitor, etc., and a short circuit is likely to occur.
  • the maximum compression rate is preferably 60% or less, more preferably 55% or less, Preferably it is 50% or less.
  • a test stress was 10 mN, that is, a surface pressure of 5 MPa with a flat indenter having a diameter of 50 ⁇ m.
  • a compression test is performed in which the load speed is 2.2 mN / sec and load-unload is repeated three times.
  • the maximum change when the maximum thickness change occurs is the thickness of the sample before the compression test.
  • the value divided by this was taken as the “maximum compression rate”.
  • the compression test is measured three times with different samples, and the average value is obtained. That is, in the present invention, when the fine fiber structure is used as a separator or an insulating material, pinholes are generated during the production or use of a battery or the like, and stable performance may not be obtained. This occurs due to contact with the burr of the electrode sheet, bending it greatly, or using it with an electrode material having a large expansion and contraction such as an alloy-based negative electrode, and the maximum compressibility at a surface pressure of 5 MPa.
  • the value obtained by dividing the tear strength by the Elmendorf-type tear tester method of the fine fiber structure by the basis weight is preferably 0.9 g / (g / m 2 ) or more. More preferably, it is 1.0 g / (g / m 2 ) or more, more preferably 1.5 g / (g / m 2 ) or more, and particularly preferably 2.0 g / (g / m 2 ) or more.
  • the tear strength / basis weight is smaller than 0.9 g / (g / m 2 )
  • the fine fiber structure is wound between the electrodes, and the burrs of the electrodes are used as the starting point to stabilize the fine fiber structure.
  • the tear strength and basis weight refer to the tear strength and basis weight of the fine fiber structure.
  • the test sample test piece may be cut out from the fine fiber structure at any angle, for example, MD direction, CD direction, etc. It is sufficient if the tear strength / basis weight requirement is satisfied.
  • the impact absorption value by the Charpy impact test method of the fine fiber structure is preferably 290 kJ / m 2 or more, more preferably 320 kJ / m 2 or more, and further preferably 350 kJ / m 2 or more. Particularly preferably, it is 400 kJ / m 2 or more.
  • the fine fiber structure of the present invention has a high compression ratio of 20% or more at a surface pressure of 5 MPa, and at the same time has excellent tear strength and shock absorption value, which are characteristics contrary to this.
  • the separator and the like are not deformed or damaged in the manufacturing process of the separator and the insulating material, and further in the manufacturing process of the battery using the separator, or at the time of use.
  • a high-performance battery, a capacitor, a capacitor, and the like having high liquid absorbability described below can be provided.
  • the permeation rate of the fine fiber structure is preferably 20 cm 2 / min or more, more preferably 23 cm 2 / min or more, further preferably 25 cm 2 / min or more, and particularly preferably 30 cm 2 / min or more. .
  • the penetration rate of the electrolytic solution is less than 20 cm 2 / min, uniform penetration of the electrolytic solution into the interior of a battery, an electric double layer capacitor, a capacitor, or the like tends to be difficult. That is, in batteries, particularly lithium batteries, capacitors, capacitors, etc., the number of stacked electrodes and the area of the electrodes have increased due to the increase in capacity, and as a result, the penetration time of the electrolyte into the battery has increased and work efficiency has increased.
  • a separator or an insulating material that can cope with these problems can be obtained.
  • the residual solvent amount of the fine fiber structure is preferably less than 0.1% by weight, more preferably 0.05% by weight or less, and particularly preferably 0.03% by weight or less.
  • the residual solvent amount is 0.1% by weight or more, the solution retention at a high rate tends to be lowered.
  • the penetration rate of the electrolyte solution, the tear strength / basis weight, the impact absorption value, the crystallinity of the fine fiber, etc. in the fine fiber structure the above-mentioned and later details will be described. This can be realized by spinning and hot-pressure processing described below.
  • Suitable polymers that can be used in the fine fiber structure of the present invention include any thermoplastic and thermosetting that is substantially inert to the electrolyte solution used in batteries, electric double layer capacitors, capacitors, etc. Polymers. Polymers suitable for use in forming the separator fibers include, but are not limited to, polyvinyl alcohol, alicyclic polyamides, semi-aromatic polyamides, aromatic polyamides, polysulfones, cellulose acetates, cellulose, polyethylene terephthalate, polyethylene naphthalate.
  • aliphatic polyamide consisting of aliphatic polyamide, semi-aromatic polyamide, aromatic polyamide, polyvinyl alcohol, cellulose, polyethylene terephthalate, polyethylene naphthalate, polyethylene, polypropylene, polyvinylidene fluoride, polyacrylonitrile, polyimide, and blends, mixtures and copolymers thereof.
  • Those comprising a polymer selected from the group are preferred.
  • Certain polymers such as polyvinyl alcohol (PVA), polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene, polyethylene oxide, polyacrylonitrile, polymethyl methacrylate, swell or gel in the electrolyte, plugging the pores of the fine fiber structure There is a tendency. It will also soften or decompose in the electrolyte and provide structural integrity to the snare of the fine fiber structure.
  • various crosslinking agents and crosslinking conditions can be used. All of the above polymers can be crosslinked by known means such as chemical crosslinking, electron beam crosslinking or UV crosslinking.
  • PVA can be crosslinked either by chemical crosslinking, electron beam crosslinking or UV crosslinking.
  • Chemical cross-linking of the PVA fine fiber layer can be done by treating the PVA layer with dialdehyde and acid, then neutralizing the acid with NaHCO 3 and washing the layer with water.
  • Cross-linking of PVA makes it water-insoluble and increases its mechanical strength and its oxidation and chemical resistance.
  • a polyvinylidene fluoride-hexafluoropropylene separator is crosslinked by adding a crosslinking agent (PEGDMA oligomer) and a crosslinking initiator (2,2-azobisisobutyronitrile) and heating the separator at 80 ° C. for 12 hours. It is possible.
  • Polyacrylonitrile separators can be crosslinked by adding a crosslinking agent (eg, ethylene glycol dimethacrylate or triethylene glycol dimethacrylate) and an initiator (eg, benzoyl peroxide) and heating at 60 ° C. .
  • a crosslinking agent eg, ethylene glycol dimethacrylate or triethylene glycol dimethacrylate
  • an initiator eg, benzoyl peroxide
  • the battery can be, for example, a zinc-manganese oxide or Zn-MnO 2 battery in which the anode is zinc and the cathode is manganese oxide (MnO 2 ), or a zinc-air battery in which the anode is zinc and the cathode is air.
  • NiOOH nickel oxy-hydroxide
  • H 2 nickel metal hydride
  • alkaline batteries include zinc / mercury oxide where the anode is zinc and the cathode is mercury oxide (HgO), the anode is cadmium and the cadmium / mercury oxide where the cathode is mercury oxide, the anode is Zinc / silver oxide, which is zinc and the cathode is silver oxide (AgO), cadmium / silver oxide where the anode is cadmium and the cathode is silver oxide. All these battery types use 30-40% potassium hydroxide as the electrolyte. Another embodiment of the invention relates to a lithium battery.
  • the lithium battery of the present invention can be a lithium primary battery, such as a Li—MnO 2 or Li—FeS 2 lithium primary battery, a lithium ion secondary battery, or a lithium ion gel polymer battery.
  • Lithium primary batteries utilize many different types of battery chemistry, each using lithium as the anode, but different cathode materials (SO 2 , SOCl 2 , SO 2 Cl 2 , CFn, CuO, FeS 2 , MnO 2, etc. ) And an electrolyte.
  • lithium manganese oxide or Li-MnO 2 cells lithium is used as the anode and MnO 2 as the cathode material; the electrolyte contains a lithium salt in a mixed organic solvent such as propylene carbonate and 1,2-dimethoxyethane.
  • Lithium iron sulfide or Li / FeS 2 batteries use lithium as the anode, iron disulfide as the cathode, and lithium iodide in an organic solvent blend (eg, propylene carbonate, ethylene carbonate, dimethoxyethane, etc.) as the electrolyte.
  • Lithium ion secondary batteries use lithium-inserted carbon as an anode, lithium metal oxides (eg, LiCoO 2 , LiNiO 2 , LiMn 2 O 4, etc.) as cathodes and blends of organic solvents (eg, propylene carbonate, ethylene carbonate, Diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, etc.) are used as an electrolyte together with 1M lithium hexafluorophosphoric acid (LiPF 6 ).
  • Lithium ion gel polymer batteries use anodes and cathodes similar to lithium ion secondary batteries.
  • the liquid organic electrolyte forms a gel with a polymeric separator (eg, PVdF, PVdF-HFP, PMMA, PAN, PEO, etc.), which helps to obtain a good bond between the separator and the electrode.
  • Gel electrolytes have higher ionic resistance than liquid electrolytes, but offer additional advantages in terms of safety and formation requirements.
  • Another embodiment of the present invention is an electric double layer capacitor, wherein the carbon-based electrode is organic or non-aqueous such as, for example, a solution of acetonitrile or propylene carbonate and a 1.2 molar quaternary tetrafluoroammonium borate.
  • the electric double layer capacitor can be used together with an electrolyte or an aqueous electrolyte such as a 30 to 40% KOH solution. Moreover, in this invention, it can be set as the electric double layer capacitor depending on the reduction-oxidation chemical reaction which provides a capacitance.
  • Such electric double layer capacitors are referred to as “pseudocapacitors” or “redox capacitors”. Pseudocapacitors can use carbon, noble metal hydrated oxides, modified transition metal oxides and conductive polymer based electrodes, as well as aqueous and organic electrolytes.
  • Another embodiment of the present invention is an aluminum electrolytic capacitor that includes an etched aluminum foil anode, an aluminum foil or film cathode, and a separator interposed therebetween.
  • the separator and insulating material comprising the fine fiber structure of the present invention are impregnated with a liquid electrolytic solution or a conductive polymer.
  • the liquid electrolyte solution contains a polar solvent and at least one salt selected from an inorganic acid, an organic acid, an inorganic acid salt, and an organic acid salt.
  • the capacitor of the present invention includes two conductive aluminum foils and a separator immersed in an electrolyte, and one of the conductive aluminum foils may be coated with an insulating oxide layer.
  • the aluminum foil coated with the oxide layer is the anode, while the liquid electrolyte and the second foil function as the cathode.
  • the multilayer assembly is rolled up, secured with a pin connector, and placed in a cylindrical aluminum case.
  • the foil is high purity aluminum and billions of fine tunnels are chemically etched to increase the surface area in contact with the electrolyte.
  • the anode foil supports the capacitor dielectric, which is a thin layer of aluminum oxide (Al 2 O 3 ) chemically grown on the anode foil.
  • the electrolyte is a blend of components of different formulations according to voltage and operating temperature range. The main components are a solvent and a conductive salt as a solute that conducts electricity. Common solvents are ethylene glycol (EG), dimethylformamide (DMF) and gammabutyllactone (GBL). Common solutes are ammonium borate and other ammonium salts. A small amount of water is added to the electrolyte to maintain the integrity of the aluminum oxide dielectric.
  • the separator can prevent the foil electrolytes from contacting each other or from being short-circuited, and can hold the electrolyte container.
  • the fine fiber structure layer of the present invention and the formation process of the fine fiber layer constituting the fine fiber structure layer may be a known electrospinning process, or WO 2003/080905 (US Patent Application No. 10 / 822,325).
  • the electroblowing process disclosed in (1) can be employed.
  • a single fine fiber layer (fiber web) is formed by passing once through the transport and collection means passing through the above process (that is, once through the transport and collection means under the spin pack).
  • the fibrous web can also be multi-layered by passing under one or more spin packs arranged on the same conveying means.
  • the collected fine fiber layer can improve the tensile strength by bonding fibers, for example.
  • the bonding method between the fine fibers is not particularly limited, but a known method such as thermal calendering between heated and smooth nip rolls, ultrasonic bonding, point bonding, and bonding that can pass through a high-temperature atmosphere should be adopted. Can do.
  • the fine fiber layer Due to the bonding between the fibers, the fine fiber layer is improved in handleability, and the strength of the fine fiber layer can be imparted to form a separator for a battery, an electric double layer capacitor, a capacitor, or an insulating material.
  • physical properties such as thickness, density, hole diameter, and shape can be adjusted depending on the bonding method.
  • a fine fiber layer obtained by electrospinning, electroblowing or the like or a multilayer fine fiber layer obtained by laminating it is preliminarily dried with a hot air dryer at 250 to 350 ° C.
  • calendering can be preferably adopted by a method in which the roll surface temperature is 150 to 250 ° C. and the linear pressure is 100 to 200 kg / cm, which satisfies the above-mentioned maximum compression rate at a surface pressure of 5 MPa.
  • a fine fiber structure can be manufactured.
  • the fine fiber structure of the present invention may be a single layer or a multilayer of fine fiber layers made of polymer fine fibers.
  • the fiber structure may be composed of multiple layers, it may be composed of a fine fiber layer composed of the same polymer fine fiber, or may be composed of a fine fiber layer of different polymer fine fibers.
  • a fine fiber layer different in at least one of polymer, thickness, basis weight, pore diameter, fiber size, porosity, air permeability, ionic resistance, tensile strength, etc. is laminated. May be.
  • the fine fiber structure of the present invention only needs to include at least one fine fiber layer satisfying the requirements of the present invention, and does not satisfy the requirements of the present invention, for example, fibers, as long as the object of the present invention is not impaired.
  • a fiber structure such as a wet nonwoven fabric or a dry nonwoven fabric having a diameter exceeding 3000 nm, a porous resin film, or the like may be included.
  • each characteristic value in an Example was measured with the following method.
  • (1) Average diameter of fine fibers Arbitrary 50 fine fibers were sampled and measured with a scanning electron microscope JSM6330F (manufactured by JEOL) to obtain the average value of the fiber diameters. The measurement was performed at a magnification of 20,000 times.
  • Porosity From the basis weight (g / m 3 ) of the porous fine fiber layer, the density (g / cm 3 ) of the polymer constituting the fine fibers, and the thickness ( ⁇ m), the porosity was calculated by the following formula.
  • Porosity (%) 100-basis weight / (polymer density ⁇ thickness) ⁇ 100 (7) Macmillan number A fine fiber layer is cut into 20 mm ⁇ , sandwiched between two SUS electrodes, and calculated by dividing the ionic conductivity of the electrolyte by the conductivity calculated from the AC impedance at 10 kHz.
  • the electrolyte used was 0.5 molar lithium trifluoromethanesulfonate (LiTFS), propylene carbonate: ethylene carbonate: dimethoxyethane (22: 8: 70), and the measurement temperature was 25 ° C.
  • LiTFS lithium trifluoromethanesulfonate
  • propylene carbonate ethylene carbonate: dimethoxyethane (22: 8: 70)
  • the measurement temperature was 25 ° C.
  • Maximum compression rate Shimadzu microcompression tester Using MCT-W200, a test sample cut out from a fine fiber structure was placed on a glass plate in an atmosphere at 25 ° C., and a test stress was measured with a flat indenter having a diameter of 50 ⁇ m.
  • Electrode (positive electrode) 89.5 parts by mass of lithium cobaltate (LiCoO 2 manufactured by Nippon Chemical Industry Co., Ltd.) powder, 4.5 parts by mass of acetylene black, and a dry weight of PVdF of 6 parts by mass
  • a positive electrode paste was prepared using an N-methyl-pyrrolidone (NMP) solution of 6% by mass PVdF.
  • NMP N-methyl-pyrrolidone
  • electrode negative electrode
  • mesophase carbon microbeads manufactured by Osaka Gas Chemical Co., Ltd.
  • 3 mass parts of acetylene black 3 mass parts of acetylene black
  • 10 mass parts of PVdF 10 mass parts of PVdF are used as the negative electrode active material.
  • a negative electrode paste was prepared using an NMP solution of% PVdF. The obtained paste was applied to a 18 ⁇ m thick copper foil, dried and pressed to obtain a 90 ⁇ m thick negative electrode.
  • the electrolyte was prepared by dissolving lithium hexafluorophosphate at a concentration of 1M in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a weight ratio of 3: 7.
  • a laminate cell having a capacity of 40 mAh was produced using the above electrode, electrolyte, and separator, and the cell was compressed with a stress of 5 MPa.
  • an initial charge / discharge test is performed. The initial charge / discharge test is 0.2C, 4.2V constant current / constant voltage charge (8 hours), and then 0.2C, 2.75V cut-off constant current discharge.
  • test sample 100 mm ⁇ 15 mm cut out from the fine fiber structure was used as the test sample, and this was made so that the striking blade of the pendulum hits the surface of the test sample so that the test sample was not loosened.
  • Tension is applied and it is installed on the test sample support with Cellophane tape (registered trademark) (manufactured by Nichiban Co., Ltd., Elpac S LP-18S).
  • the pendulum uses the 2J type.
  • Example 1 The target polymer was produced by the following interfacial polymerization method according to the method described in Japanese Patent Publication No. 47-10863. 25.13 g (99 mol%) of isophthalic acid dichloride and 0.25 g (1 mol%) of terephthalic acid dichloride as a third component were dissolved in 125 ml of tetrahydrofuran having a water content of 2 mg / 100 ml and cooled to ⁇ 25 ° C.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • Example 2 In the process of hot-pressing the fine fiber web, Example 1 except that it was calendered at a roll surface temperature of 250 ° C. and a linear pressure of 200 kg / cm after drying at 350 ° C. for 1 minute with a hot air dryer. Similarly, the fine fiber structure shown in Table 1 was obtained. The residual solvent amount of the fine fiber structure was 0.01% by weight. The results are shown in Table 1.
  • Example 3 In the step of hot-pressing the fine fiber web, Example 1 except that it was dried at 250 ° C. for 1 minute with a hot air dryer and then calendered at a roll surface temperature of 150 ° C. and a linear pressure of 100 kg / cm. Similarly, the fine fiber structure shown in Table 1 was obtained. The residual solvent amount of the fine fiber structure was 0.02% by weight. The results are shown in Table 1.
  • the fine fibers shown in Table 1 are the same as in Example 1 except that in the step of hot-pressing the fine fiber web, calendering was performed at a roll surface temperature of 300 ° C. and a linear pressure of 75 kg / cm without performing a preliminary drying treatment. A structure was obtained.
  • the fine fiber structure of the present invention is in contact with a burr of an electrode sheet, is bent greatly, or used with an electrode material having a large expansion and contraction such as an alloy-based negative electrode during the production or use of a battery or the like. Even when doing so, pinholes are unlikely to occur, and short circuits are unlikely to occur. For this reason, a high performance and stable performance can be exhibited as a battery, an electric double layer capacitor, a capacitor, or the like using the fine fiber structure as a separator or an insulating material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Cell Separators (AREA)

Abstract

Provided is a microfiber structure with which short-circuiting does not occur easily and which is capable of exhibiting stable performance as a separator or insulating material for batteries, electric double layer capacitors, capacitors, etc. because pinholes due to electrode sheet burrs or bending, electrode swelling and contraction, etc. during manufacture or use do not occur easily. The microfiber structure obtained by comprising a microfiber layer obtained from polymer microfibers with a mean diameter of 50-3000 nm, is characterized in that: the maximum compressibility at a microfiber structure contact pressure of 5 MPa is 20% or more; the mean pore diameter in the microfiber layer is 0.01-15 µm; the thickness is 0.0025-0.3 mm; the porosity is 20-90%; the basis weight is 1-90 g/m2; the Frazier air permeability is less than 46 m3/min/m2; and the Macmillan number is 2-15.

Description

微細繊維構造体Fine fiber structure
 本発明は、高分子微細繊維からなる微細繊維層を含んでなる微細繊維構造体に関し、詳細には、リチウムバッテリー、アルカリバッテリー等のバッテリーや、電気二重層キャパシタ、コンデンサ等のセパレータや絶縁材に好適に用いることができる微細繊維構造体に関する。 The present invention relates to a fine fiber structure comprising a fine fiber layer composed of polymer fine fibers, and more specifically to a battery such as a lithium battery or an alkaline battery, a separator such as an electric double layer capacitor or a capacitor, or an insulating material. The present invention relates to a fine fiber structure that can be suitably used.
 バッテリーは、アノードおよびカソード間の電気接続または短絡を防ぐためにアノードおよびカソードの間に位置されたセパレータを含む。短絡は、導電性粒子がセパレータを橋絡したときまたはセパレータが電極の接触を許容するまでに劣化したときに発生する。まれに、バッテリー短絡が一斉に生じることもあるが、むしろ、経時的な「ソフトショート」と呼ばれるきわめて小さい導電路の蓄積によって生じる。「デンドライトショート」は、例えば、アルカリバッテリーの場合には亜鉛酸塩、またはリチウムバッテリーの場合にはリチウム金属といった析出物を含んでなるデンドライトがバッテリーの一方の電極に形成されると共に、セパレータを介して他方の電極に成長して、アノードおよびカソード間に電気接続をもたらす状態を指す。
 一次アルカリバッテリーは、一般的にはカソード(cathode)、アノード(anode)、カソードおよびアノードの間に配設されたセパレータ、およびアルカリ性電解質溶液を有する。カソードは、典型的には、MnO、炭素粒子およびバインダから形成される。アノードは、亜鉛粒子を含むゲルから形成されることが可能である。バッテリー全体に分散された電解質溶液は、最も一般的には、30~40%水酸化カリウムを含有する水溶液である。アルカリバッテリーにおいて用いられるバッテリーセパレータは、一定の性能要求を有する。例えば、このようなセパレータは、強アルカリ性電解質(例えば30~40%KOH)の存在下において安定である必要がある。耐アルカリ薬品性の欠如は、機械的完全性の損失による電極間の内部短絡をもたらす可能性がある。良好な電解質吸収もまた必要であり、セパレータは、セルの電気化学反応のために必要な電解質溶液に十分に含浸されることを意味する。セパレータの他の要求は、セパレータを貫通して短絡を生じさせる可能性がある、セル中における電気化学反応により形成される導電性酸化亜鉛の成長するデンドライトに対するバリアであることである。セパレータはまた、電極間のイオンの移動を許容しなければならず、換言すると、セパレータは、イオン流に対して低い抵抗を示すべきである。
 二次アルカリ亜鉛−MnOバッテリーは、類似のアノード、カソードおよび一次アルカリバッテリーとしての電解質を有する。一定の添加剤(例えばBi、BaSO、有機抑制剤等)が、度々、アノードおよびカソードに添加されて、バッテリーが放電した後に充電可能であるよう可逆性を向上すると共に、亜鉛腐食を低減させる。充電および放電中に、添加剤のいくつかは電解質中に溶解して、他の電極に移動することが可能である。良好なデンドライトバリア特性を有するセパレータの使用は、亜鉛−MnO二次バッテリーのサイクル寿命の延長化を助けるであろう。
 アルカリバッテリーのためのバッテリーセパレータは、従来、良好な(低い)イオン抵抗を有するが、成長するデンドライトに対する比較的劣ったバリア(以下、「デンドライトバリア」と称することがある)を有する大きな孔を有する厚い、多層化不織布、または良好なデンドライトバリアを有するが、きわめて高いイオン抵抗を有するきわめて小さい孔をその上に有する微孔質メンブランを備えた多層化不織布のいずれかである。デンドライトバリアおよびイオン抵抗の改善されたバランスを有するセパレータを備えるアルカリバッテリーを有することが望ましい。
 特許文献1は、少なくとも1つの不織層および、セロファン、ポリビニルアルコール、ポリスルホン、グラフト化ポリプロピレンまたはポリアミド製の微孔質層であり得るデンドライトショートを低減させる層を含む複合体バッテリーセパレータを開示する。複合体セパレータの厚さは約8.3ミルである。バッテリーセパレータは、1KHzで、40%水酸化カリウム(KOH)電解質溶液中に計測されたときに、90ミリオーム−cm未満のイオン抵抗を有する。微孔質層は、空気に対してきわめて高いレベルのバリアを有する混合ことが望ましいが、高いイオン抵抗、劣った電解質濡れ性、および劣った電解質吸収特性を有することは望ましくない。
 特許文献2は、厚さを低減させると共にアルカリバッテリーにおいて用いられるためのバッテリーセパレータのバリア特性を向上させるための、1.0デニール以上を有するセルロース繊維と組み合わせた、0.8デニール以下を有するPVA繊維の使用を開示する。しかし、セルロース繊維の繊度がこれより低減されると、より高い表面積繊維は、より速い劣化速度をもたらすこととなる。
 リチウムバッテリーは、リチウム一次バッテリー、リチウムイオン二次バッテリーおよびリチウムイオンゲルポリマーバッテリーの3つの一般的なカテゴリーに属する。リチウム一次バッテリーは、各々リチウムをアノードとして用いるがカソード材料および電解質が異なる、多くの異なるタイプのバッテリー化学を用いる。リチウムマンガンオキシドまたはLi−MnOセルにおいては、リチウムがアノードとして用いられると共にMnOがカソード材料として用いられ;電解質が、プロピレンカーボネートおよび1,2−ジメトキシエタンなどの混合有機溶剤中にリチウム塩を含有する。硫化鉄リチウムまたはLi/FeSバッテリーは、リチウムをアノードとして、二硫化鉄をカソードとして、および有機溶剤ブレンド中のヨウ化リチウムを電解質として用いる。リチウムイオン二次バッテリーは、リチウム挿入炭素をアノードとして、リチウム金属酸化物(例えばLiCoO)をカソードとしておよび1Mリチウムヘキサフルオロリン酸(LiPF)との有機溶剤のブレンドを電解質として用いる。リチウムイオンゲルポリマーバッテリーは、同様のアノードおよびカソード材料をリチウムイオン二次バッテリーとして用いる。液体有機電解質が高分子セパレータとのゲルを形成し、これが、セパレータおよび電極間の良好な結合の提供を補助する。ゲル電解質のイオン抵抗は液体電解質のものより高いが、ゲル電解質は、安全性および形成要件(すなわち、異なる形状およびサイズにバッテリーを形成する可能性)に関していくつかの利点を提供する。
 特許文献3は、リチウム二次バッテリー中のバッテリーセパレータとして用いるための極微細繊維状多孔性ポリマーセパレータフィルムを開示し、このセパレータフィルムは、1~100μmの厚さを有する。セパレータフィルムは、1~3000nmの間の直径を有する、高分子溶融物または高分子溶液を電界紡糸することにより形成された微細繊維から形成される。
 近年において、電子機器の小型化により、バッテリーは、従来のバッテリー性能を犠牲にすることなく小型化されなければならない。アルカリバッテリーにおいてセパレータとして簡便に用いられる不織布材料は大径繊維を有し、それ故、薄いセパレータを達成することが困難となっている。このような不織布はまた、例えば15~35μmの間の大きな孔を有する。アノードおよびカソードの粒子は、大きな孔を通って相互に移動して、内部短絡を生じさせ得る。大きな孔径を補うと共に、セパレータのデンドライトバリアを向上させる(すなわち、短絡からの保護)ために、より厚いセパレータが多層を用いて形成されている。しかしながら、こうした厚いセパレータは、より高いイオン抵抗をもたらすため、バッテリー性能の観点からは好ましくなく、また、電子機器において有用であるコインセルおよび他の小型バッテリー等に用いる際は、セパレータが厚いため設計上の制約を受けるか、用途が限られることになる。従って、より高いエネルギー密度を有するバッテリーや、電気二重層キャパシタ、コンデンサとするためには、より薄いセパレータを有することが望ましいが、従来のセパレータを単に薄くした場合には、十分なデンドライトバリアが得られない。よって、薄く形成することが可能であり、バリア特性を犠牲にすることなく低いイオン抵抗を有するセパレータを有することが望ましい。
 また、我々が検討したところ、電池の製造時や、電池の使用時において、セパレータ等にピンホールが生じ、短絡が起こり易くなり、安定した電池性能が得られないといった問題があることがわかった。また、電気二重層キャパシタ、コンデンサでも同様の問題があることがわかった。
The battery includes a separator positioned between the anode and cathode to prevent electrical connection or short circuit between the anode and cathode. A short circuit occurs when the conductive particles bridge the separator or when the separator is degraded to allow electrode contact. In rare cases, battery shorts may occur all at once, but rather due to the accumulation of very small conductive paths called “soft shorts” over time. “Dendrite short” is, for example, formed on one electrode of a battery with a dendrite containing a precipitate such as zincate in the case of an alkaline battery, or lithium metal in the case of a lithium battery, and through a separator. The other electrode is grown to provide an electrical connection between the anode and the cathode.
Primary alkaline batteries generally have a cathode, an anode, a separator disposed between the cathode and anode, and an alkaline electrolyte solution. The cathode is typically formed from MnO 2 , carbon particles and a binder. The anode can be formed from a gel containing zinc particles. The electrolyte solution dispersed throughout the battery is most commonly an aqueous solution containing 30-40% potassium hydroxide. Battery separators used in alkaline batteries have certain performance requirements. For example, such a separator needs to be stable in the presence of a strong alkaline electrolyte (for example, 30 to 40% KOH). The lack of alkali chemical resistance can lead to internal shorts between the electrodes due to a loss of mechanical integrity. Good electrolyte absorption is also necessary, meaning that the separator is fully impregnated with the electrolyte solution needed for the electrochemical reaction of the cell. Another requirement of the separator is a barrier to the growing dendrites of conductive zinc oxide formed by electrochemical reactions in the cell that can cause a short circuit through the separator. The separator must also allow the movement of ions between the electrodes, in other words, the separator should exhibit a low resistance to ion flow.
Secondary alkaline zinc-MnO 2 batteries have similar anode, cathode and electrolyte as primary alkaline batteries. Certain additives (eg, Bi 2 O 3 , BaSO 4 , organic inhibitors, etc.) are often added to the anode and cathode to improve reversibility so that it can be charged after the battery is discharged and zinc corrosion Reduce. During charging and discharging, some of the additives can dissolve in the electrolyte and move to other electrodes. The use of a separator with good dendrite barrier properties will help extend the cycle life of the zinc-MnO 2 secondary battery.
Battery separators for alkaline batteries conventionally have large pores with good (low) ionic resistance, but with a relatively poor barrier to growing dendrites (hereinafter sometimes referred to as “dendritic barriers”). Either a thick, multilayered nonwoven or a multilayered nonwoven with a microporous membrane having a very small pore on it with a good dendrite barrier but very high ionic resistance. It would be desirable to have an alkaline battery with a separator having an improved balance of dendrite barrier and ionic resistance.
U.S. Patent No. 6,057,031 discloses a composite battery separator that includes at least one nonwoven layer and a layer that reduces dendritic shorts, which can be a microporous layer made of cellophane, polyvinyl alcohol, polysulfone, grafted polypropylene or polyamide. The thickness of the composite separator is about 8.3 mil. The battery separator has an ionic resistance of less than 90 milliohm-cm 2 when measured in a 40% potassium hydroxide (KOH) electrolyte solution at 1 KHz. The microporous layer is desirably mixed with a very high level of barrier to air, but it is not desirable to have high ionic resistance, poor electrolyte wettability, and poor electrolyte absorption properties.
U.S. Patent No. 6,057,049 PVA having 0.8 denier or less in combination with cellulose fibers having 1.0 denier or more to reduce thickness and improve barrier properties of battery separators for use in alkaline batteries. Disclose the use of fibers. However, if the fineness of the cellulose fibers is reduced below this, the higher surface area fibers will result in a faster degradation rate.
Lithium batteries belong to three general categories: lithium primary batteries, lithium ion secondary batteries and lithium ion gel polymer batteries. Lithium primary batteries use many different types of battery chemistries, each using lithium as the anode, but with different cathode materials and electrolytes. In lithium manganese oxide or Li-MnO 2 cells, lithium is used as the anode and MnO 2 is used as the cathode material; the electrolyte contains a lithium salt in a mixed organic solvent such as propylene carbonate and 1,2-dimethoxyethane. contains. Lithium iron sulfide or Li / FeS 2 batteries use lithium as the anode, iron disulfide as the cathode, and lithium iodide in the organic solvent blend as the electrolyte. Lithium ion secondary batteries use lithium-inserted carbon as an anode, lithium metal oxide (eg, LiCoO 2 ) as a cathode and an organic solvent blend with 1M lithium hexafluorophosphate (LiPF 6 ) as an electrolyte. Lithium ion gel polymer batteries use similar anode and cathode materials as lithium ion secondary batteries. The liquid organic electrolyte forms a gel with the polymer separator, which helps provide a good bond between the separator and the electrode. Although the ionic resistance of gel electrolytes is higher than that of liquid electrolytes, gel electrolytes offer several advantages with respect to safety and forming requirements (ie, the possibility of forming batteries in different shapes and sizes).
Patent Document 3 discloses an ultrafine fibrous porous polymer separator film for use as a battery separator in a lithium secondary battery, and the separator film has a thickness of 1 to 100 μm. The separator film is formed from fine fibers formed by electrospinning a polymer melt or polymer solution having a diameter of 1 to 3000 nm.
In recent years, due to the miniaturization of electronic devices, batteries must be miniaturized without sacrificing conventional battery performance. Nonwoven materials that are easily used as separators in alkaline batteries have large diameter fibers and therefore it is difficult to achieve thin separators. Such nonwoven fabric also has large pores, for example between 15 and 35 μm. The anode and cathode particles can move to each other through large pores, creating an internal short circuit. To compensate for the large pore size and improve the separator's dendrite barrier (ie, protection from short circuit), thicker separators are formed using multiple layers. However, such a thick separator is not preferable from the viewpoint of battery performance because it provides higher ionic resistance, and when used in coin cells and other small batteries that are useful in electronic devices, the separator is thick, and thus is not designed. The usage is limited. Therefore, it is desirable to have a thinner separator for a battery having a higher energy density, an electric double layer capacitor, or a capacitor. However, if the conventional separator is simply made thinner, a sufficient dendrite barrier can be obtained. I can't. Therefore, it is desirable to have a separator that can be formed thin and has low ionic resistance without sacrificing barrier properties.
In addition, as a result of our investigation, it was found that there was a problem that pinholes were generated in the separator, etc. during the manufacture of the battery or when the battery was used, a short circuit was likely to occur, and stable battery performance could not be obtained. . In addition, it was found that the same problem occurs in electric double layer capacitors and capacitors.
国際公開第99/53555号パンフレットWO99 / 53555 pamphlet 米国特許第4,746,586号明細書US Pat. No. 4,746,586 国際公開第01/89022号パンフレットInternational Publication No. 01/89022 Pamphlet
 本発明は上記背景技術に鑑みなされたもので、その目的は、製造時や使用時において、電極シートのバリや、屈曲、電極の膨張収縮等によるピンホールが生じ難いため、短絡が起こり難く、バッテリー、電気二重層キャパシタ、コンデンサ等のセパレータや絶縁材として安定した性能を発揮できる微細繊維構造体を提供することにある。 The present invention has been made in view of the above-mentioned background art, and its purpose is that, during manufacture and use, pinholes due to burr and bending of the electrode sheet, bending, expansion and contraction of the electrode, etc. are unlikely to occur, so short-circuiting is unlikely to occur. An object of the present invention is to provide a fine fiber structure capable of exhibiting stable performance as a separator or insulating material for batteries, electric double layer capacitors, capacitors and the like.
 本発明者が検討した結果、微細繊維からなる微細繊維構造体では、バッテリーの製造や使用時においてピンホールが発生し易く、その原因が、電極シートのバリと接触したり、大きく屈曲させたり、合金系負極等のような膨張収縮が大きい電極材料と共に使用したりする場合に起きることを突き止め、次の構成により上記課題を解決できることを見出した。
 かくして、以下の発明が提供される。
 1.平均直径が50~3000nmの高分子微細繊維からなる微細繊維層を含んでなる微細繊維構造体であって、微細繊維構造体の下記方法で測定した面圧5MPaにおける最大圧縮率が20%以上、微細繊維層における、平均細孔径が0.01~15μm、厚さが0.0025~0.3mm、多孔度が20~90%、坪量が1~90g/m、フラジール通気度が46m/分/m未満、およびマクミラン数が2~15であることを特徴とする微細繊維構造体。
<最大圧縮率>
 微細繊維構造体から切り出した試験サンプルを用い、圧縮試験機により、25℃雰囲気下で、該試験サンプルをガラス板上に載せ、直径が50μmの平面圧子にて、試験応力を10mN、すなわち面圧で5MPaまで負荷をかけ、負荷速度を2.2mN/secとして、負荷−除荷の繰り返しを3回行う圧縮試験を行い、最大の厚み変化が起きたときの最大変化量を圧縮試験前の試験サンプルの厚さで除した値を「最大圧縮率」とした。上記圧縮試験を、試験サンプルを変えて3回測定し、その平均値を求める。
 2.下記方法により測定した引裂き強さを、坪量で除した値である、引裂き強さ/坪量が0.9g/(g/m)以上である上記1に記載の微細繊維構造体。
<引裂き強さ>
 JIS P8116(引裂き強さ)に準じ、エルメンドルフ形引裂試験機を用い、微細繊維構造体の試験サンプルのサイズを幅70mm×引裂方向63mm、切込み長を20mmとして測定する。
 3.下記方法により測定した衝撃吸収値が290kJ/m以上である上記1または2に記載の微細繊維構造体。
<衝撃吸収値>
 JIS K 7111−1(ノッチなしシャルピー衝撃強さ)に準じ測定を行う。この際、試験サンプルは、微細繊維構造体から切り出した100mm×15mmの試験サンプルを用い、これを振り子の打撃刃が該試験サンプルの面にあたるようにして、該試験サンプルに弛みが生じないように張力をかけて、試験サンプル支持台にセロハンテープ(登録商標)(ニチバン株式会社製、エルパックエス LP−18S)で設置する。また、振り子は2Jタイプを使用する。
 4.微細繊維構造体の下記方法で測定した浸透速度が20cm/分以上である上記1~3のいずれかに記載の微細繊維構造体。
<浸透速度>
 微細繊維構造体を6cm×8cmの試験サンプルに切り出し、これを20cm×30cm×厚さ5mmの2枚のガラス板により上下で挟み込み、上のガラス板上に試験サンプルにかかる面圧がガラス板の重量も含め0.1kgf/cmとなるように重りを乗せ、この際、上下ガラス板の一辺から試験サンプルの一部が6cm×1cmはみ出すようにし、このはみ出した部分を電解液浴中に浸漬し、1分間で電解液がガラス板に挟まれた試験サンプルに浸透した面積(cm)を測定する。電解液は、エチレンカルボナート(EC)/エチルメチルカルボナート(EMC)の混合液(重量比EC/EMC=3/7)を用い、25℃で測定を行う。
 5.高分子微細繊維の結晶化度が30%以上である上記1~4のいずれかに記載の微細繊維構造体。
 6.高分子微細繊維が、脂肪族ポリアミド、半芳香族ポリアミド、芳香族ポリアミド、ポリビニルアルコール、セルロース、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリイミド、ならびにこれらのブレンド、混合物およびコポリマーよりなる群から選択されるポリマーを含んでなる上記1~5のいずれかに記載の微細繊維構造体。
 7.上記1~6のいずれかに記載の微細繊維構造体をセパレータまたは絶縁材として含むバッテリー。
 8.上記1~6のいずれかに記載の微細繊維構造体をセパレータまたは絶縁材として含む電気二重層キャパシタ。
 9.上記1~6のいずれかに記載の微細繊維構造体をセパレータまたは絶縁材として含むコンデンサ。
 10.バッテリーが、リチウムバッテリー、リチウムイオンバッテリー、またはリチウムイオンゲルポリマーバッテリーである上記7に記載のバッテリー。
As a result of the study by the present inventors, in the fine fiber structure composed of fine fibers, pinholes are likely to occur during the production and use of the battery, the cause of which is in contact with the burrs of the electrode sheet, The present inventors have found out that this occurs when an electrode material having a large expansion and contraction such as an alloy-based negative electrode is used, and found that the above problem can be solved by the following configuration.
Thus, the following invention is provided.
1. A fine fiber structure comprising a fine fiber layer composed of polymer fine fibers having an average diameter of 50 to 3000 nm, the maximum compression ratio at a surface pressure of 5 MPa measured by the following method of the fine fiber structure is 20% or more, In the fine fiber layer, the average pore diameter is 0.01 to 15 μm, the thickness is 0.0025 to 0.3 mm, the porosity is 20 to 90%, the basis weight is 1 to 90 g / m 2 , and the fragile air permeability is 46 m 3. / Minute / m 2 and a fine fiber structure having a Macmillan number of 2 to 15.
<Maximum compression ratio>
Using a test sample cut out from a fine fiber structure, the test sample is placed on a glass plate in a 25 ° C. atmosphere by a compression tester, and a test stress is 10 mN, that is, a surface pressure, with a flat indenter having a diameter of 50 μm. A compression test is performed in which a load of up to 5 MPa is applied, the load speed is 2.2 mN / sec, and load-unload is repeated three times, and the maximum change when the maximum thickness change occurs is the test before the compression test. The value divided by the thickness of the sample was taken as the “maximum compression rate”. The compression test is measured three times while changing the test sample, and the average value is obtained.
2. 2. The fine fiber structure according to 1 above, wherein the tear strength / basis weight is 0.9 g / (g / m 2 ) or more, which is a value obtained by dividing the tear strength measured by the following method by the basis weight.
<Tear strength>
According to JIS P8116 (tear strength), an Elmendorf type tear tester is used, and the size of the test sample of the fine fiber structure is 70 mm wide × 63 mm tear direction, and the cutting length is 20 mm.
3. 3. The fine fiber structure according to 1 or 2 above, wherein an impact absorption value measured by the following method is 290 kJ / m 2 or more.
<Shock absorption value>
Measurement is performed according to JIS K 7111-1 (notch-free Charpy impact strength). At this time, a test sample of 100 mm × 15 mm cut out from the fine fiber structure was used as the test sample, and this was made so that the striking blade of the pendulum hits the surface of the test sample so that the test sample was not loosened. Tension is applied and it is installed on the test sample support with Cellophane tape (registered trademark) (manufactured by Nichiban Co., Ltd., Elpac S LP-18S). The pendulum uses the 2J type.
4). 4. The fine fiber structure according to any one of the above 1 to 3, wherein the penetration rate of the fine fiber structure measured by the following method is 20 cm 2 / min or more.
<Penetration rate>
The fine fiber structure is cut into a 6 cm × 8 cm test sample, which is sandwiched between two glass plates of 20 cm × 30 cm × 5 mm thickness, and the surface pressure applied to the test sample on the upper glass plate is A weight is placed so that the weight is 0.1 kgf / cm 2 including the weight. At this time, a part of the test sample protrudes 6 cm × 1 cm from one side of the upper and lower glass plates, and the protruding part is immersed in the electrolyte bath. And the area (cm < 2 >) which penetrated the test sample by which electrolyte solution was pinched | interposed into the glass plate in 1 minute is measured. The electrolyte is measured at 25 ° C. using a mixed solution of ethylene carbonate (EC) / ethyl methyl carbonate (EMC) (weight ratio EC / EMC = 3/7).
5. 5. The fine fiber structure according to any one of 1 to 4 above, wherein the polymer fine fiber has a crystallinity of 30% or more.
6). Polymer fine fiber is aliphatic polyamide, semi-aromatic polyamide, aromatic polyamide, polyvinyl alcohol, cellulose, polyethylene terephthalate, polyethylene naphthalate, polyethylene, polypropylene, polyvinylidene fluoride, polyacrylonitrile, polyimide, and blends and mixtures thereof. 6. The fine fiber structure according to any one of 1 to 5 above, which comprises a polymer selected from the group consisting of copolymers.
7). A battery comprising the fine fiber structure according to any one of 1 to 6 as a separator or an insulating material.
8). 7. An electric double layer capacitor comprising the fine fiber structure according to any one of 1 to 6 as a separator or an insulating material.
9. A capacitor comprising the fine fiber structure according to any one of 1 to 6 as a separator or an insulating material.
10. 8. The battery according to 7 above, wherein the battery is a lithium battery, a lithium ion battery, or a lithium ion gel polymer battery.
 本発明の微細繊維構造体は、バッテリー等の製造時や使用時において、電極シートのバリと接触したり、大きく屈曲させたり、合金系負極等のような膨張収縮が大きい電極材料と共に使用したりする場合でも、微細繊維構造体が所定の圧縮特性を有していると、微細繊維構造体が、電極シートのバリや電極の体積変化を吸収し、ピンホールが生じ難いため、短絡が起こり難い。このため、該微細繊維構造体をセパレータや絶縁材に用いた、バッテリー、電気二重層キャパシタ、コンデンサ等として、高性能かつ安定した性能を発揮できる。 The fine fiber structure of the present invention is in contact with a burr of an electrode sheet, is bent greatly, or used with an electrode material having a large expansion and contraction such as an alloy-based negative electrode during the production or use of a battery or the like. Even when the fine fiber structure has a predetermined compression characteristic, the fine fiber structure absorbs the burr of the electrode sheet and the volume change of the electrode, and it is difficult for a pinhole to occur, so that a short circuit hardly occurs. . For this reason, a high performance and stable performance can be exhibited as a battery, an electric double layer capacitor, a capacitor, or the like using the fine fiber structure as a separator or an insulating material.
 本発明の微細繊維構造体は、薄く、低いイオン抵抗および良好なデンドライトバリア特性、ソフトショートバリア特性、耐短絡性等に同時に優れており、バッテリー、電気二重層キャパシタ、コンデンサ等のセパレータや絶縁材に用い優れた性能を発揮する。つまり、本発明の微細繊維構造体は、バッテリーに用いるセパレータや絶縁材としたとき、電解質を吸収する高い容量を有する一方で、電解質溶液で飽和されたときにおいても、該セパレータ等が、それらのデンドライトバリア特性を損失しないよう、実用における優れた構造維持性、化学的安定性、および寸法安定性を有している。また、電気二重層キャパシタ、コンデンサに用いるセパレータや絶縁材としたときも、電解質を吸収する高い容量を有する一方で、電解質溶液で飽和されたときにおいても、該セパレータ等が、それらのソフトショートバリア特性を損失しないよう、実用における優れた構造維持性、化学的安定性、および寸法安定性を有している。
 上記の、バッテリー、電気二重層キャパシタ、コンデンサのセパレータや絶縁材はいずれもその厚みが薄いほど、バッテリー、電気二重層キャパシタ、コンデンサにおいて用いられる材料(すなわちアノード、セパレータや絶縁材、およびカソード)の全厚が薄くなるため、高い電気化学的に活性な材料を特定容積中に内在させることが可能であり、大容量のバッテリー、電気二重層キャパシタや、コンデンサを製造できる。上記セパレータ等は、低いイオン抵抗を有し、イオンは、アノードおよびカソード間を流れやすくなる。これらの性能はマクミラン数が2~15、好ましくは2~6となることによって実証されるが、本発明は後述する、微細繊維の平均直径、微細繊維構造体の構成等を満足させることによって実現できる。
 本発明の微細繊維構造体は、平均直径が50~3000nm、好ましくは50~1000nm、さらに好ましくは100~800nmの高分子微細繊維のからなる微細繊維層を少なくとも1層含んでいる。こうした微細繊維は、高い表面積を有する上記のバッテリー等のセパレータや絶縁材としたとき、良好な電解質吸収性および保持性を達成できる。
 本発明においては、微細繊維の結晶化度が、好ましくは30%以上、より好ましくは35%以上、さらに好ましくは40%以上、よりさらに好ましくは45%以上、特に好ましくは50%以上である。結晶化度が30%未満では、該微細繊維層を含む微細繊維構造体をセパレータ等に用い電解液を浸透した時、繊維が大きく膨張して細孔径が狭くなり易く、その結果、内部抵抗が大きくなり、バッテリー、キャパシタ、コンデンサ等して十分な性能が得られない場合がある。
 本発明においては、微細繊維層の平均細孔径は0.01~15μm、好ましくは0.01~5μm、より好ましくは0.01~1μmである。平均細孔径が0.01μmより小さいと、通気度が低く、イオン抵抗度が高くなってしまう。一方、平均細孔径が15μmより大きいと、短絡しやすくなり好ましくない。
 また、微細繊維層の多孔度は20~90%、好ましくは40~80%の多孔度を有する。上記多孔度を高くすることで、上記と同様にバッテリー等における良好な電解質の吸収性および保持性を達成できる。
 本発明においては、微細繊維層の厚さは0.0025~0.3mm、好ましくは0.0127~0.127mmである。バッテリー等のセパレータや絶縁材に用いた場合、アノードおよびカソード間のデンドライト誘起ショートを防止するのに十分な厚さとし、一方で、カソードおよびアノード間で良好にイオンが流れるようにするため、上記範囲とすることが好ましい。上記のような薄い微細繊維層を含む微細繊維構造体は、セパレータや絶縁材としたとき、セル中の電極にさらなる空間を作ることができ、バッテリー等として性能を改善し、長寿命化を図ることができる。
 本発明においては、微細繊維層の坪量は1~90g/m、好ましくは5~30g/mである。この坪量が90g/mを超える場合には、イオン抵抗が大きくなりすぎる可能性がある。一方、坪量が1g/m未満の場合には、セパレータは、アノードおよびカソード間のデンドライトショートやソフトショートバリア特性を低減することができない場合がある。
 本発明においては、微細繊維層のフラジール通気度は46m/分/m未満、好ましくは8m/分/m未満、より好ましくは1.5m/分/m未満である。一般には、フラジール通気度が高いほど、セパレータとしたときのイオン抵抗は低くなるため高いフラジール通気度を有するセパレータが望ましい。
 本発明においては、微細繊維構造体の下記方法で測定した面圧5MPaにおける最大圧縮率が20%以上であり、好ましくは25%以上であり、より好ましくは30%以上であることが肝要である。最大圧縮率が20%より小さいと、バッテリー、電気二重層キャパシタ、コンデンサ等の製造時や使用時において、ピンホールが生じ、短絡が起こり易くなる。一方、最大圧縮率があまり低すぎても取り扱い性が悪かったり、電池の構成時に微細繊維構造体の厚みが容易に変化してしまうため、好ましくは60%以下、より好ましくは55%以下、さらに好ましくは50%以下とすることが望ましい。
<最大圧縮率>
 微細繊維構造体から切り出したサンプルを用い、圧縮試験機により、25℃雰囲気下で、該サンプルをガラス板上に載せ、直径が50μmの平面圧子にて、試験応力を10mN、すなわち面圧で5MPaまで負荷をかけ、負荷速度を2.2mN/secとして、負荷−除荷の繰り返しを3回行う圧縮試験を行い、最大の厚み変化が起きたときの最大変化量を圧縮試験前のサンプルの厚さで除した値を「最大圧縮率」とした。上記圧縮試験を、サンプルを変えて3回測定し、その平均値を求める。
 すなわち、本発明は、上記微細繊維構造体をセパレータや絶縁材とした際、バッテリー等の製造時や使用時において、ピンホールが発生して、安定した性能が得られないことがあり、それが、電極シートのバリと接触したり、大きく屈曲させたり、合金系負極等のような膨張収縮が大きい電極材料と共に使用したりすることが原因で起きること、また、面圧5MPaにおける最大圧縮率を20%以上とすることでかかる変形等による応力に対応して上記課題を解決できること、さらにこのためには微細繊維構造体を構成する繊維の熱処理による結晶化度を高めておくことが重要であり、例えば後述するように、エレクトロスピニング等で得られた微細繊維ウェブを、熱圧処理工程で予備乾燥を施してから、カレンダー加工を実施する方法により、上記最大圧縮率を有する微細繊維構造体が得られることを見出し、本発明に到達したものである。
 本発明においては、微細繊維構造体のエルメンドルフ形引裂試験機法による引裂き強さを坪量で除した値、すなわち引裂き強さ/坪量が、好ましくは0.9g/(g/m)以上、より好ましくは1.0g/(g/m)以上、さらに好ましくは1.5g/(g/m)以上であり、特に好ましくは2.0g/(g/m)以上である。引裂き強さ/坪量が0.9g/(g/m)より小さいと、微細繊維構造体を、電極に挟んで捲回する工程で、電極のバリが起点となって引裂かれ、安定した製造が難しくなる傾向にある。なお、ここで引裂き強力および坪量は、上記微細繊維構造体の引裂き強力および坪量をいう。また、上記引裂き強力を測定する際、微細繊維構造体からの試験サンプル(試験片)の切り出しは、いかなる角度、例えば、MD方向、CD方向等で行っても良く、採取した試験サンプルのいずれかで上記引裂き強力/坪量の要件を満たしていればよい。
 さらに、本発明においては、微細繊維構造体のシャルピー衝撃試験法による衝撃吸収値が、好ましくは290kJ/m以上、より好ましくは320kJ/m以上であり、さらに好ましくは350kJ/m以上、特に好ましくは400kJ/m以上である。該衝撃吸収値が290kJ/mより小さいと、振動や衝撃が加わった際に、セパレータや絶縁材がその衝撃を吸収することができず、内部の部材が破損したり、ずれが生じたりし、該セパレータや絶縁材を含むバッテリー等の性能低下や故障を誘発しやすくなる傾向にある。
 本発明の微細繊維構造体は、面圧5MPaにおける最大圧縮率が20%以上という高い圧縮率を有しながら、これとは相反する特性である、優れた引裂き強力や衝撃吸収値を同時に有していることで、これらの相乗効果によって、セパレータ、絶縁材の製造加工工程や、さらにこれらを用いたバッテリー等の製造工程で、あるいはその使用時に、セパレータ等が変形や破損することがなく、なおかつ次に述べる高い吸液性をも有し、より高性能のバッテリー、キャパシタ、コンデンサ等を提供することができる。
 本発明においては、微細繊維構造体の浸透速度が、好ましくは20cm/分以上、より好ましくは23cm/分以上、さらに好ましくは25cm/分以上、特に好ましくは30cm/分以上である。電解液の浸透速度が20cm/分未満の場合は、バッテリーや電気二重層キャパシタ、コンデンサなどの内部への電解液の均一な浸透が難しくなる傾向にある。すなわち、バッテリー、特にリチウムバッテリー、キャパシタ、コンデンサ等では、大容量化のため、電極の積層枚数や電極面積の増加しており、それに伴い、バッテリー内部への電解液の浸透時間の増加し作業効率が悪くなるだけでなく、均一な浸透ができないといった問題が起きているが、上記の浸透速度を満足させることで、これらの課題に対して対応可能なセパレータや絶縁材とすることができる。
 本発明においては、微細繊維構造体の残存溶媒量は、好ましくは0.1重量%未満、より好ましくは0.05重量%以下、特に好ましくは0.03重量%以下である。該残存溶媒量が0.1重量%以上では、高レートでの溶液保持性が低下する傾向にある。
 以上の、微細繊維構造体における、電解液の浸透速度、さらには、引裂き強さ/坪量、衝撃吸収値、微細繊維の結晶化度等を同時に満足させるためには、前述した、また後に詳述する紡糸および熱圧処理加工等によりこれを実現することができる。
 本発明の微細繊維構造体に使用できる好適であるポリマーとしては、バッテリー、電気二重層キャパシタ、コンデンサ等に用いられる電解質溶液に対して実質的に不活性であるいずれかの熱可塑性および熱硬化性ポリマーが挙げられる。セパレータの繊維の形成に用いるために好適であるポリマーとしては、限定されないが、ポリビニルアルコール、脂肋族ポリアミド、半芳香族ポリアミド、芳香族ポリアミド、ポリスルホン、セルロースアセテート、セルロース、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリフッ化ビニリデン−ヘキサフルオロプロピレン、ポリエチレンオキシド、ポリメチルペンテン、ポリアクリロニトリル、ポリフェニレンスルフィド、ポリアセチル、ポリウレタン、ポリアクリロニトリル、ポリメチルメタクリレート、ポリスチレン、ポリイミドならびにこれらのコポリマーまたは誘導体化合物、およびこれらの組み合わせが挙げられる。特に、脂肪族ポリアミド、半芳香族ポリアミド、芳香族ポリアミド、ポリビニルアルコール、セルロース、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリイミド、ならびにこれらのブレンド、混合物およびコポリマーよりなる群から選択されるポリマーを含んでなるものが好ましい。
 本発明のいくつかの実施形態においては、多孔性構造を維持すると共に、構造的または機械的完全性を向上し、これによりこれから形成されるセパレータのデンドライトバリア、および熱安定性向上させるために、高分子微細繊維のポリマーを架橋することが好ましい。一定のポリマー、例えばポリビニルアルコール(PVA)、ポリフッ化ビニリデン、ポリフッ化ビニリデン−ヘキサフルオロプロピレン、ポリエチレンオキシド、ポリアクリロニトリル、ポリメチルメタクリレートは、電解質中に膨潤しまたはゲル化し、微細繊維構造の孔を塞ぐ傾向にある。また、電解質中において軟化または分解して、微細繊維構体の係蹄に造的完全性をもたらすであろう。バッテリーセパレータのポリマーに応じて、種々の架橋剤および架橋条件を用いることが可能である。上述のポリマーのすべてを化学的架橋、電子ビーム架橋またはUV架橋などの公知の手段によって架橋することが可能である。
 PVAは、化学的架橋、電子ビーム架橋またはUV架橋のいずれかによって架橋されることが可能である。PVA微細繊維層の化学的架橋は、PVA層をジアルデヒドおよび酸で処理し、その後、酸をNaHCOで中和し、および層を水で洗浄することにより行うことが可能である。PVAの架橋は、これを不水溶性として、その機械的強度およびその耐酸化および耐薬品性を増加させる。
 ポリフッ化ビニリデン−ヘキサフルオロプロピレンセパレータは、架橋剤(PEGDMAオリゴマー)および架橋開始剤(2,2−アゾビスイソブチロニトリル)を添加すると共に、セパレータを80℃で12時間加熱することにより架橋することが可能である。ポリアクリロニトリルセパレータは、架橋剤(例えば、エチレングリコールジメタクリレート、またはトリエチレングリコールジメタクリレート)および開始剤(例えば、ベンゾイルパーオキシド)を添加すると共に60℃で加熱することにより架橋することが可能である。
 本発明の一実施形態はアルカリバッテリーに関する。バッテリーは、例えば、アノードが亜鉛であり、およびカソードがマンガンオキシド(MnO)である亜鉛−マンガンオキシドまたはZn−MnOバッテリー、またはアノードが亜鉛であり、およびカソードが空気である亜鉛空気バッテリーといったアルカリ一次バッテリーであることができ、または例えば、アノードがカドミウムであり、およびカソードがニッケルオキシ−ヒドロキシド(NiOOH)であるニッケルカドミウムバッテリー、アノードが亜鉛であり、およびカソードがNiOOHであるニッケル亜鉛またはNi−Znバッテリー、アノードが金属水素化物(例えばLaNi)であり、およびカソードがNiOOHであるニッケル金属水素化物(NiMH)バッテリーまたはアノードが水素(H)であり、およびカソードがNiOOHであるニッケル−水素またはNiHバッテリーといったアルカリ二次バッテリーであることができる。アルカリバッテリーの他のタイプとしては、アノードが亜鉛であり、およびカソードが水銀オキシド(HgO)である亜鉛/水銀オキシド、アノードがカドミウムであり、およびカソードが水銀オキシドであるカドミウム/水銀オキシド、アノードが亜鉛であり、およびカソードが銀色オキシド(AgO)である亜鉛/銀色オキシド、アノードがカドミウムであり、およびカソードが銀色オキシドであるカドミウム/銀色オキシドが挙げられる。すべてのこれらのバッテリータイプは、30~40%水酸化カリウムを電解質として用いる。
 本発明の他の実施形態はリチウムバッテリーに関する。本発明のリチウムバッテリーは、Li−MnOまたはLi−FeSリチウム一次バッテリーなどのリチウム一次バッテリー、リチウムイオン二次バッテリーまたはリチウムイオンゲルポリマーバッテリーであることができる。
 リチウム一次バッテリーは、多くの異なるタイプのバッテリー化学を利用し、各々はリチウムをアノードとして用いるが、異なるカソード材料(SO、SOCl、SOCl、CFn、CuO、FeS、MnO等)および電解質を用いる。リチウムマンガンオキシドまたはLi−MnOセルにおいて、リチウムがアノードとしておよびMnOがカソード材料として用いられ;電解質は、リチウム塩を、プロピレンカーボネートおよび1,2−ジメトキシエタンなどの混合有機溶剤中に含有する。硫化鉄リチウムまたはLi/FeSバッテリーは、リチウムをアノードとして、二硫化鉄をカソードとして、および有機溶剤ブレンド(例えば、プロピレンカーボネート、エチレンカーボネート、ジメトキシエタン等)中のヨウ化リチウムを電解質として用いる。
 リチウムイオン二次バッテリーは、リチウム挿入炭素をアノードとして、リチウム金属酸化物(例えば、LiCoO、LiNiO、LiMn等)をカソードとしておよび有機溶剤のブレンド(例えば、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート等)を1Mリチウムヘキサフルオロリン酸(LiPF)と共に電解質として用いる。
 リチウムイオンゲルポリマーバッテリーは、リチウムイオン二次バッテリーと類似のアノードおよびカソードを用いる。液体有機電解質は、高分子セパレータ(例えば、PVdF、PVdF−HFP、PMMA、PAN、PEO等)とゲルを形成し、これが、セパレータおよび電極間の良好な接合を得るために補助する。ゲル電解質のイオン抵抗は液体電解質より高いが、安全性および形成要件の点で追加の利点を提供する。
 本発明の他の実施形態は電気二重層キャパシタであり、炭素ベースの電極を、例えば、アセトニトリルまたはプロピレンカーボネートの溶液および1.2モル濃度の第4級テトラフルオロアンモニウムホウ酸塩といった有機または非水性電解質、または例えば、30~40%KOH溶液といった水性電解質と共に用いる電気二重層キャパシタとすることができる。
 また、本発明においては、キャパシタンスを提供する還元−酸化化学反応に依存する電気二重層キャパシタとすることができる。このような電気二重層キャパシタは、「擬似キャパシタ(pseudo capacitors)」または「レドックスキャパシタ」として称される。擬似キャパシタは、炭素、貴金属水和酸化物、変性遷移金属酸化物および導電性ポリマーベースの電極、ならびに水性および有機電解質を用いることができる。
 本発明の他の実施形態は、エッチングされたアルミニウム箔アノードと、アルミニウム箔またはフィルムカソードと、それらの間に介挿されたセパレータとを含むアルミニウム電解コンデンサである。本発明の微細繊維構造体からなるセパレータおよび絶縁材は、液体電解溶液または導電性ポリマーで含浸されている。液体電解質溶液は、極性溶媒と、無機酸、有機酸、無機酸塩および有機酸塩から選択された少なくとも1つの塩とを含有している。
 本発明のコンデンサは、2つの導電性アルミニウム箔と、電解質に浸漬されたセパレータとを含み、導電性アルミニウム箔の一方は絶縁酸化物層でコートされているものを例示できる。酸化物層でコートされたアルミニウム箔はアノードである一方、液体電解質および第2の箔はカソードとして機能する。多層組立体が巻き上げられ、ピンコネクタで固定され、円筒アルミニウムケースに入れられる。箔は高純度アルミニウムであり、何十億もの微細なトンネルが化学的にエッチングされて、電解質と接触する表面積を広げる。アノード箔は、アノード箔上に化学的に成長した酸化アルミニウム(Al)の薄層であるコンデンサの誘電体を支える。電解質は、電圧および動作温度範囲に従って異なる処方の成分のブレンドである。主な成分は、溶媒と、電気伝導する溶質としての導電性塩である。一般的な溶媒は、エチレングリコール(EG)、ジメチルホルムアミド(DMF)およびガンマブチルラクトン(gammabutralactone)(GBL)である。一般的な溶質は、ホウ酸アンモニウムおよびその他のアンモニウム塩である。少量の水を電解質に添加して、酸化アルミニウム誘電体の完全性を維持する。セパレータは、箔電解質が互いに接触したり、短絡したりするのを防ぎ、電解質の容器を保持させることができる。
 本発明の微細繊維構造体層およびそれを構成する微細繊維層の形成プロセスは、公知のエレクトロスピニングプロセス、または、国際公開第2003/080905号パンフレット(米国特許出願第10/822,325号明細書)に開示されているエレクトロブローイングプロセスを採用することができる。
 本発明では、例えば、上記プロセスを通る搬送収集手段を一度通過(すなわち、スピンパック下の搬送収集手段に一度通過)することにより一層からなる微細繊維層(繊維ウェブ)が形成される。繊維ウェブは、同一の搬送手段上を配置された1つもしくはそれ以上のスピンパック下を通過させることによって多層構造とすることもできる。
 収集された微細繊維層は、例えば繊維同士を結合することによって、その引張強度を向上させることができる。特に縦方向(長さ方向)の引張強度を高くすることによって、セルの巻回性を向上させ、かつ使用におけるセパレータとしたとき良好なデンドライトバリア性にも寄与する。微細繊維同士の結合方法は、特に限定されないが、加熱された平滑なニップロールの間での熱カレンダー加工、超音波結合、点結合、および高温雰囲気中を通過せる結合など公知の方法を採用することができる。繊維同士の結合により、微細繊維層は取り扱い性が向上し、かつバッテリー、電気二重層キャパシタ、コンデンサ用のセパレータや絶縁材への形成に必要は微細繊維層の強度を付与することもできる。また、接合方法に応じて、厚さ、密度、孔径、および形状などの物理特性を調整することができる。熱カレンダー加工を用いる場合、微細繊維が溶融し、個々の繊維形態が失われるまで過度に融着させ、完全なフィルム状としないようにする必要がある。
 本発明においては、例えば、先ず、エレクトロスピニングやエレクトロブローイング等により得られた微細繊維層(微細繊維ウェブ)またはそれを積層した多層微細繊維層を、250~350℃の熱風乾燥機で予備乾燥を行い、その後、カレンダー加工を、ロール表面温度を150~250℃、線圧を100~200kg/cmで行う方法を好ましく採用することができ、これにより、前述した面圧5MPaにおける最大圧縮率を満足する微細繊維構造体を製造することができる。上記加工は、ポリマー等の限定はないが、特にポリイミドや芳香族ポリアミド、半芳香族ポリアミド等からなる微細繊維構造体の圧縮特性の調整に効果があることがわかった。
 本発明の微細繊維構造体は、高分子微細繊維からなる微細繊維層の単一層または多層のいずれでもよい。繊維構造体が多層からなる場合、同一の高分子微細繊維からなる微細繊維層から構成されても、あるいは、異なる高分子微細繊維の微細繊維層から構成されていてもよい。多層の場合は、特に限定されないが、ポリマー、厚さ、坪量、孔径、繊維サイズ、多孔度、通気度、イオン抵抗および引張強度などの少なくともいずれかで異なる微細繊維層を積層するものであっても良い。また、本発明の微細繊維構造体は、少なくとも一層は本発明の要件を満たす微細繊維層を含んでいればよく、本発明の目的を阻害しない範囲で、本発明の要件を満たさない、例えば繊維直径が3000nmを超える繊維からなる湿式不織布、乾式不織布等の繊維構造体や、多孔樹脂膜等を含んでいてもよい。
The fine fiber structure of the present invention is excellent in thin, low ionic resistance and good dendrite barrier properties, soft short barrier properties, short circuit resistance, etc., and separators and insulating materials for batteries, electric double layer capacitors, capacitors, etc. Used for demonstrating excellent performance. That is, the fine fiber structure of the present invention has a high capacity for absorbing the electrolyte when used as a separator or insulating material for a battery, while the separator and the like are saturated even when saturated with an electrolyte solution. In order not to lose the dendrite barrier properties, it has excellent structure maintenance, chemical stability and dimensional stability in practical use. In addition, when used as a separator or an insulating material for an electric double layer capacitor or capacitor, the separator or the like has a high capacity for absorbing the electrolyte, and when the separator is saturated with the electrolyte solution, the soft short barrier In order not to lose the characteristics, it has excellent structure maintainability, chemical stability, and dimensional stability in practical use.
As the above-mentioned battery, electric double layer capacitor, capacitor separator and insulating material are all thinner, the materials used in the battery, electric double layer capacitor and capacitor (ie, anode, separator, insulating material, and cathode) Since the total thickness is reduced, a high electrochemically active material can be contained in a specific volume, and a large-capacity battery, an electric double layer capacitor, and a capacitor can be manufactured. The separator or the like has a low ionic resistance, and ions easily flow between the anode and the cathode. These performances are demonstrated by a Macmillan number of 2 to 15, preferably 2 to 6, but the present invention is realized by satisfying the average diameter of fine fibers, the structure of fine fiber structures, etc., which will be described later. it can.
The fine fiber structure of the present invention includes at least one fine fiber layer composed of polymer fine fibers having an average diameter of 50 to 3000 nm, preferably 50 to 1000 nm, and more preferably 100 to 800 nm. Such fine fibers can achieve good electrolyte absorbability and retention when used as separators or insulating materials for the above-mentioned batteries having a high surface area.
In the present invention, the crystallinity of the fine fibers is preferably 30% or more, more preferably 35% or more, still more preferably 40% or more, still more preferably 45% or more, and particularly preferably 50% or more. If the degree of crystallinity is less than 30%, when the fine fiber structure including the fine fiber layer is used as a separator or the like and the electrolyte is infiltrated, the fiber tends to expand greatly and the pore diameter tends to be narrowed. In some cases, the battery becomes large, and sufficient performance cannot be obtained with a battery, a capacitor, a capacitor, or the like.
In the present invention, the average pore diameter of the fine fiber layer is 0.01 to 15 μm, preferably 0.01 to 5 μm, more preferably 0.01 to 1 μm. When the average pore diameter is smaller than 0.01 μm, the air permeability is low and the ionic resistance is high. On the other hand, if the average pore diameter is larger than 15 μm, short circuiting tends to occur, which is not preferable.
The fine fiber layer has a porosity of 20 to 90%, preferably 40 to 80%. By increasing the porosity, it is possible to achieve good electrolyte absorption and retention in a battery or the like as described above.
In the present invention, the thickness of the fine fiber layer is 0.0025 to 0.3 mm, preferably 0.0127 to 0.127 mm. When used in separators and insulating materials for batteries, etc., the thickness should be sufficient to prevent dendrite-induced shorts between the anode and cathode, while allowing ions to flow well between the cathode and anode. It is preferable that When the fine fiber structure including the thin fine fiber layer as described above is used as a separator or an insulating material, it can create a further space in the electrode in the cell, improve the performance as a battery, and extend the life. be able to.
In the present invention, the basis weight of the fine fiber layer is 1 to 90 g / m 2 , preferably 5 to 30 g / m 2 . When this basic weight exceeds 90 g / m < 2 >, ionic resistance may become large too much. On the other hand, when the basis weight is less than 1 g / m 2 , the separator may not be able to reduce the dendrite short and soft short barrier characteristics between the anode and the cathode.
In the present invention, the fragile air permeability of the fine fiber layer is less than 46 m 3 / min / m 2 , preferably less than 8 m 3 / min / m 2 , more preferably less than 1.5 m 3 / min / m 2 . In general, the higher the fragile air permeability, the lower the ionic resistance of the separator, so a separator having a high fragile air permeability is desirable.
In the present invention, it is important that the maximum compression rate of the fine fiber structure measured by the following method at a surface pressure of 5 MPa is 20% or more, preferably 25% or more, more preferably 30% or more. . When the maximum compression ratio is less than 20%, a pinhole is generated during the manufacture or use of a battery, an electric double layer capacitor, a capacitor, etc., and a short circuit is likely to occur. On the other hand, even if the maximum compression rate is too low, the handleability is poor, or the thickness of the fine fiber structure easily changes during the construction of the battery, so it is preferably 60% or less, more preferably 55% or less, Preferably it is 50% or less.
<Maximum compression ratio>
Using a sample cut out from the fine fiber structure, the sample was placed on a glass plate by a compression tester in an atmosphere at 25 ° C., and a test stress was 10 mN, that is, a surface pressure of 5 MPa with a flat indenter having a diameter of 50 μm. A compression test is performed in which the load speed is 2.2 mN / sec and load-unload is repeated three times. The maximum change when the maximum thickness change occurs is the thickness of the sample before the compression test. The value divided by this was taken as the “maximum compression rate”. The compression test is measured three times with different samples, and the average value is obtained.
That is, in the present invention, when the fine fiber structure is used as a separator or an insulating material, pinholes are generated during the production or use of a battery or the like, and stable performance may not be obtained. This occurs due to contact with the burr of the electrode sheet, bending it greatly, or using it with an electrode material having a large expansion and contraction such as an alloy-based negative electrode, and the maximum compressibility at a surface pressure of 5 MPa. It is important to be able to solve the above-mentioned problems corresponding to the stress due to such deformation by setting it to 20% or more, and for this purpose, it is important to increase the degree of crystallization by heat treatment of the fibers constituting the fine fiber structure. For example, as will be described later, a fine fiber web obtained by electrospinning or the like is subjected to preliminary drying in a hot press treatment step and then calendered. , It found that fine fiber structures with the maximum compression ratio is obtained, in which have reached the present invention.
In the present invention, the value obtained by dividing the tear strength by the Elmendorf-type tear tester method of the fine fiber structure by the basis weight, that is, the tear strength / basis weight is preferably 0.9 g / (g / m 2 ) or more. More preferably, it is 1.0 g / (g / m 2 ) or more, more preferably 1.5 g / (g / m 2 ) or more, and particularly preferably 2.0 g / (g / m 2 ) or more. When the tear strength / basis weight is smaller than 0.9 g / (g / m 2 ), the fine fiber structure is wound between the electrodes, and the burrs of the electrodes are used as the starting point to stabilize the fine fiber structure. Manufacturing tends to be difficult. Here, the tear strength and basis weight refer to the tear strength and basis weight of the fine fiber structure. Further, when measuring the tear strength, the test sample (test piece) may be cut out from the fine fiber structure at any angle, for example, MD direction, CD direction, etc. It is sufficient if the tear strength / basis weight requirement is satisfied.
Furthermore, in the present invention, the impact absorption value by the Charpy impact test method of the fine fiber structure is preferably 290 kJ / m 2 or more, more preferably 320 kJ / m 2 or more, and further preferably 350 kJ / m 2 or more. Particularly preferably, it is 400 kJ / m 2 or more. If the shock absorption value is smaller than 290 kJ / m 2 , when a vibration or impact is applied, the separator or insulating material cannot absorb the impact, and the internal members may be damaged or displaced. There is a tendency that performance degradation or failure of the battery including the separator or the insulating material is likely to be induced.
The fine fiber structure of the present invention has a high compression ratio of 20% or more at a surface pressure of 5 MPa, and at the same time has excellent tear strength and shock absorption value, which are characteristics contrary to this. Therefore, due to these synergistic effects, the separator and the like are not deformed or damaged in the manufacturing process of the separator and the insulating material, and further in the manufacturing process of the battery using the separator, or at the time of use. A high-performance battery, a capacitor, a capacitor, and the like having high liquid absorbability described below can be provided.
In the present invention, the permeation rate of the fine fiber structure is preferably 20 cm 2 / min or more, more preferably 23 cm 2 / min or more, further preferably 25 cm 2 / min or more, and particularly preferably 30 cm 2 / min or more. . When the penetration rate of the electrolytic solution is less than 20 cm 2 / min, uniform penetration of the electrolytic solution into the interior of a battery, an electric double layer capacitor, a capacitor, or the like tends to be difficult. That is, in batteries, particularly lithium batteries, capacitors, capacitors, etc., the number of stacked electrodes and the area of the electrodes have increased due to the increase in capacity, and as a result, the penetration time of the electrolyte into the battery has increased and work efficiency has increased. However, when the above penetration rate is satisfied, a separator or an insulating material that can cope with these problems can be obtained.
In the present invention, the residual solvent amount of the fine fiber structure is preferably less than 0.1% by weight, more preferably 0.05% by weight or less, and particularly preferably 0.03% by weight or less. When the residual solvent amount is 0.1% by weight or more, the solution retention at a high rate tends to be lowered.
In order to simultaneously satisfy the penetration rate of the electrolyte solution, the tear strength / basis weight, the impact absorption value, the crystallinity of the fine fiber, etc. in the fine fiber structure, the above-mentioned and later details will be described. This can be realized by spinning and hot-pressure processing described below.
Suitable polymers that can be used in the fine fiber structure of the present invention include any thermoplastic and thermosetting that is substantially inert to the electrolyte solution used in batteries, electric double layer capacitors, capacitors, etc. Polymers. Polymers suitable for use in forming the separator fibers include, but are not limited to, polyvinyl alcohol, alicyclic polyamides, semi-aromatic polyamides, aromatic polyamides, polysulfones, cellulose acetates, cellulose, polyethylene terephthalate, polyethylene naphthalate. , Polypropylene terephthalate, polybutylene terephthalate, polyethylene, polypropylene, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene, polyethylene oxide, polymethylpentene, polyacrylonitrile, polyphenylene sulfide, polyacetyl, polyurethane, polyacrylonitrile, polymethyl methacrylate, polystyrene , Polyimides and copolymers or derivative compounds thereof, and these Combinations thereof. In particular, consisting of aliphatic polyamide, semi-aromatic polyamide, aromatic polyamide, polyvinyl alcohol, cellulose, polyethylene terephthalate, polyethylene naphthalate, polyethylene, polypropylene, polyvinylidene fluoride, polyacrylonitrile, polyimide, and blends, mixtures and copolymers thereof. Those comprising a polymer selected from the group are preferred.
In some embodiments of the invention, in order to maintain a porous structure and improve structural or mechanical integrity, thereby improving the dendrite barrier and thermal stability of separators formed therefrom, It is preferable to crosslink the polymer of the polymer fine fiber. Certain polymers, such as polyvinyl alcohol (PVA), polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene, polyethylene oxide, polyacrylonitrile, polymethyl methacrylate, swell or gel in the electrolyte, plugging the pores of the fine fiber structure There is a tendency. It will also soften or decompose in the electrolyte and provide structural integrity to the snare of the fine fiber structure. Depending on the polymer of the battery separator, various crosslinking agents and crosslinking conditions can be used. All of the above polymers can be crosslinked by known means such as chemical crosslinking, electron beam crosslinking or UV crosslinking.
PVA can be crosslinked either by chemical crosslinking, electron beam crosslinking or UV crosslinking. Chemical cross-linking of the PVA fine fiber layer can be done by treating the PVA layer with dialdehyde and acid, then neutralizing the acid with NaHCO 3 and washing the layer with water. Cross-linking of PVA makes it water-insoluble and increases its mechanical strength and its oxidation and chemical resistance.
A polyvinylidene fluoride-hexafluoropropylene separator is crosslinked by adding a crosslinking agent (PEGDMA oligomer) and a crosslinking initiator (2,2-azobisisobutyronitrile) and heating the separator at 80 ° C. for 12 hours. It is possible. Polyacrylonitrile separators can be crosslinked by adding a crosslinking agent (eg, ethylene glycol dimethacrylate or triethylene glycol dimethacrylate) and an initiator (eg, benzoyl peroxide) and heating at 60 ° C. .
One embodiment of the invention relates to an alkaline battery. The battery can be, for example, a zinc-manganese oxide or Zn-MnO 2 battery in which the anode is zinc and the cathode is manganese oxide (MnO 2 ), or a zinc-air battery in which the anode is zinc and the cathode is air. Can be an alkaline primary battery or, for example, a nickel cadmium battery in which the anode is cadmium and the cathode is nickel oxy-hydroxide (NiOOH), nickel zinc or the anode is zinc and the cathode is NiOOH or A Ni—Zn battery, the anode is a metal hydride (eg, LaNi 5 ), and the cathode is NiOOH, a nickel metal hydride (NiMH) battery or the anode is hydrogen (H 2 ), and Can be hydrogen or NiH 2 alkaline secondary battery such as a battery - fine cathodes nickel is NiOOH. Other types of alkaline batteries include zinc / mercury oxide where the anode is zinc and the cathode is mercury oxide (HgO), the anode is cadmium and the cadmium / mercury oxide where the cathode is mercury oxide, the anode is Zinc / silver oxide, which is zinc and the cathode is silver oxide (AgO), cadmium / silver oxide where the anode is cadmium and the cathode is silver oxide. All these battery types use 30-40% potassium hydroxide as the electrolyte.
Another embodiment of the invention relates to a lithium battery. The lithium battery of the present invention can be a lithium primary battery, such as a Li—MnO 2 or Li—FeS 2 lithium primary battery, a lithium ion secondary battery, or a lithium ion gel polymer battery.
Lithium primary batteries utilize many different types of battery chemistry, each using lithium as the anode, but different cathode materials (SO 2 , SOCl 2 , SO 2 Cl 2 , CFn, CuO, FeS 2 , MnO 2, etc. ) And an electrolyte. In lithium manganese oxide or Li-MnO 2 cells, lithium is used as the anode and MnO 2 as the cathode material; the electrolyte contains a lithium salt in a mixed organic solvent such as propylene carbonate and 1,2-dimethoxyethane. . Lithium iron sulfide or Li / FeS 2 batteries use lithium as the anode, iron disulfide as the cathode, and lithium iodide in an organic solvent blend (eg, propylene carbonate, ethylene carbonate, dimethoxyethane, etc.) as the electrolyte.
Lithium ion secondary batteries use lithium-inserted carbon as an anode, lithium metal oxides (eg, LiCoO 2 , LiNiO 2 , LiMn 2 O 4, etc.) as cathodes and blends of organic solvents (eg, propylene carbonate, ethylene carbonate, Diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, etc.) are used as an electrolyte together with 1M lithium hexafluorophosphoric acid (LiPF 6 ).
Lithium ion gel polymer batteries use anodes and cathodes similar to lithium ion secondary batteries. The liquid organic electrolyte forms a gel with a polymeric separator (eg, PVdF, PVdF-HFP, PMMA, PAN, PEO, etc.), which helps to obtain a good bond between the separator and the electrode. Gel electrolytes have higher ionic resistance than liquid electrolytes, but offer additional advantages in terms of safety and formation requirements.
Another embodiment of the present invention is an electric double layer capacitor, wherein the carbon-based electrode is organic or non-aqueous such as, for example, a solution of acetonitrile or propylene carbonate and a 1.2 molar quaternary tetrafluoroammonium borate. The electric double layer capacitor can be used together with an electrolyte or an aqueous electrolyte such as a 30 to 40% KOH solution.
Moreover, in this invention, it can be set as the electric double layer capacitor depending on the reduction-oxidation chemical reaction which provides a capacitance. Such electric double layer capacitors are referred to as “pseudocapacitors” or “redox capacitors”. Pseudocapacitors can use carbon, noble metal hydrated oxides, modified transition metal oxides and conductive polymer based electrodes, as well as aqueous and organic electrolytes.
Another embodiment of the present invention is an aluminum electrolytic capacitor that includes an etched aluminum foil anode, an aluminum foil or film cathode, and a separator interposed therebetween. The separator and insulating material comprising the fine fiber structure of the present invention are impregnated with a liquid electrolytic solution or a conductive polymer. The liquid electrolyte solution contains a polar solvent and at least one salt selected from an inorganic acid, an organic acid, an inorganic acid salt, and an organic acid salt.
The capacitor of the present invention includes two conductive aluminum foils and a separator immersed in an electrolyte, and one of the conductive aluminum foils may be coated with an insulating oxide layer. The aluminum foil coated with the oxide layer is the anode, while the liquid electrolyte and the second foil function as the cathode. The multilayer assembly is rolled up, secured with a pin connector, and placed in a cylindrical aluminum case. The foil is high purity aluminum and billions of fine tunnels are chemically etched to increase the surface area in contact with the electrolyte. The anode foil supports the capacitor dielectric, which is a thin layer of aluminum oxide (Al 2 O 3 ) chemically grown on the anode foil. The electrolyte is a blend of components of different formulations according to voltage and operating temperature range. The main components are a solvent and a conductive salt as a solute that conducts electricity. Common solvents are ethylene glycol (EG), dimethylformamide (DMF) and gammabutyllactone (GBL). Common solutes are ammonium borate and other ammonium salts. A small amount of water is added to the electrolyte to maintain the integrity of the aluminum oxide dielectric. The separator can prevent the foil electrolytes from contacting each other or from being short-circuited, and can hold the electrolyte container.
The fine fiber structure layer of the present invention and the formation process of the fine fiber layer constituting the fine fiber structure layer may be a known electrospinning process, or WO 2003/080905 (US Patent Application No. 10 / 822,325). The electroblowing process disclosed in (1) can be employed.
In the present invention, for example, a single fine fiber layer (fiber web) is formed by passing once through the transport and collection means passing through the above process (that is, once through the transport and collection means under the spin pack). The fibrous web can also be multi-layered by passing under one or more spin packs arranged on the same conveying means.
The collected fine fiber layer can improve the tensile strength by bonding fibers, for example. In particular, by increasing the tensile strength in the longitudinal direction (longitudinal direction), the winding property of the cell is improved, and it contributes to good dendrite barrier properties when used as a separator in use. The bonding method between the fine fibers is not particularly limited, but a known method such as thermal calendering between heated and smooth nip rolls, ultrasonic bonding, point bonding, and bonding that can pass through a high-temperature atmosphere should be adopted. Can do. Due to the bonding between the fibers, the fine fiber layer is improved in handleability, and the strength of the fine fiber layer can be imparted to form a separator for a battery, an electric double layer capacitor, a capacitor, or an insulating material. In addition, physical properties such as thickness, density, hole diameter, and shape can be adjusted depending on the bonding method. When using thermal calendering, it is necessary that the fine fibers are melted and fused excessively until individual fiber forms are lost, so as not to form a complete film.
In the present invention, for example, first, a fine fiber layer (fine fiber web) obtained by electrospinning, electroblowing or the like or a multilayer fine fiber layer obtained by laminating it is preliminarily dried with a hot air dryer at 250 to 350 ° C. And then calendering can be preferably adopted by a method in which the roll surface temperature is 150 to 250 ° C. and the linear pressure is 100 to 200 kg / cm, which satisfies the above-mentioned maximum compression rate at a surface pressure of 5 MPa. A fine fiber structure can be manufactured. Although the said process does not have limitation of a polymer etc., it turned out that it is effective in adjustment of the compression characteristic of the fine fiber structure which consists of polyimide, aromatic polyamide, a semi-aromatic polyamide etc. especially.
The fine fiber structure of the present invention may be a single layer or a multilayer of fine fiber layers made of polymer fine fibers. When the fiber structure is composed of multiple layers, it may be composed of a fine fiber layer composed of the same polymer fine fiber, or may be composed of a fine fiber layer of different polymer fine fibers. In the case of a multilayer, although not particularly limited, a fine fiber layer different in at least one of polymer, thickness, basis weight, pore diameter, fiber size, porosity, air permeability, ionic resistance, tensile strength, etc. is laminated. May be. In addition, the fine fiber structure of the present invention only needs to include at least one fine fiber layer satisfying the requirements of the present invention, and does not satisfy the requirements of the present invention, for example, fibers, as long as the object of the present invention is not impaired. A fiber structure such as a wet nonwoven fabric or a dry nonwoven fabric having a diameter exceeding 3000 nm, a porous resin film, or the like may be included.
 以下、実施例に基づいて本発明をさらに詳細に説明する。しかし、以下の例によって、本発明が限定されることはない。なお、実施例中の各特性値は下記の方法で測定した。
(1)微細繊維の平均直径
 微細繊維を任意に50本サンプリングし、走査型電子顕微鏡JSM6330F(JEOL社製)にて測定し、繊維直径の平均値を求めた。なお測定は、20,000倍の倍率で行った。
(2)坪量
 微細繊維層を、1辺が25mmの正方形に切り出し、その重量を電子天秤を用いて測定し、1辺が1mの正方形として換算し、坪量とした。
(3)厚さ
 小野測器 デジタルリニアゲージDG−925(測定端子部の直径1cm)を用い、任意に選択した20箇所において厚さを測定し、平均値を求めた。
(4)平均細孔径
 微細繊維層をCapillary Flow Porometer CFP−1200−AEXL(Porous Materials,Inc.社製)を用いて、平均細孔径を求めた。
(5)フラジール通気度
 微細繊維層からサンプルを切り出し、JIS L1096(2010) 8.26 A法(フラジール形式)に準拠し、フラジール型試験機(TEXTEST社製 FX3300)を用い測定範囲を5cmとして測定し、測定値を単位m/分/mで示した。
(6)多孔度
 多孔微細繊維層の坪量(g/m)、微細繊維を構成するポリマーの密度(g/cm)、厚さ(μm)から、次の式により算出した。
多孔度(%)=100−坪量/(ポリマーの密度×厚さ)×100
(7)マクミラン数
 微細繊維層を20mmΦに切り出し、2枚のSUS電極に挟み、10kHzでの交流インピーダンスから算出した電導度で電解液のイオン電導度を除し、算出する。電解液は0.5モル濃度のリチウムトリフルオロメタンスルホネート(LiTFS)、プロピレンカーボネート:エチレンカーボネート:ジメトキシエタン(22:8:70)を用い、測定温度は25℃とした。
(8)最大圧縮率
 島津微小圧縮試験機 MCT−W200を用い、25℃雰囲気下で、微細繊維構造体から切り出した試験サンプルをガラス板上に載せ、直径が50μmの平面圧子にて、試験応力を10mN、すなわち面圧で5MPaまで負荷をかけ、負荷速度を2.2mN/secとして、負荷−除荷の繰り返しを3回行う圧縮試験を行い、最大の厚み変化が起きたときの最大変化量を圧縮試験前の試験サンプルの厚さで除した値を「最大圧縮率」とした。上記圧縮試験を、試験サンプルを変えて3回測定し、その平均値を求めた。
(9)電池性能
 電極(正極)の作成:コバルト酸リチウム(LiCoO 日本化学工業株式会社製)粉末89.5質量部とアセチレンブラック4.5質量部及び、PVdFの乾燥重量が6質量部となるように、6質量%のPVdFのN−メチル−ピロリドン(NMP)溶液を用い、正極剤ペーストを作製した。得られたペーストを厚さ20μmのアルミ箔上に塗布乾燥後プレスして厚さ97μmの正極を得た。
 電極(負極)の作成:負極活物質としてメゾフェーズカーボンマイクロビーズ(大阪瓦斯化学株式会社製)粉末87質量部とアセチレンブラック3質量部及びPVdFの乾燥重量が10質量部となるように、6質量%のPVdFのNMP溶液を用い、負極剤ペーストを作製した。得られたペーストを厚さ18μmの銅箔状に塗布乾燥後プレスして、厚さ90μmの負極を得た。
 非水系電解液の作成:電解液はエチレンカーボネートとエチルメチルカーボネートとを3:7の重量比で混合した混合溶媒に1Mの濃度で六フッ化リン酸リチウムを溶解して作成した。
 上述の電極、電解液、セパレータを用いて、容量40mAhのラミネートセルを作製し、5MPaの応力で、セルを圧縮した。電池特性試験として、初回充放電試験を行い、初回充放電試験は0.2C、4.2Vの定電流・定電圧充電(8時間)後、0.2C、2.75Vカットオフの定電流放電を実施し、短絡が起きなかったものを良好、短絡が起きたものを不良とした。
(10)引裂き強さ
 JIS P 8116(引裂き強さ)に準じ、株式会社東洋精機製作所製のエルメンドルフ形引裂試験機(半径24cm)を用い、微細繊維構造体の試験サンプルのサイズを幅70mm×引裂方向63mm、切込み長を20mmとして測定した。
 具体的には、エルメンドルフ形引裂試験機を用い、以下の方法により測定した。
(11)衝撃吸収値
 JIS K 7111−1(2006)(ノッチなしシャルピー衝撃強さ)に準じ測定を行う。この際、試験サンプルは、微細繊維構造体から切り出した100mm×15mmの試験サンプルを用い、これを振り子の打撃刃が該試験サンプルの面にあたるようにして、該試験サンプルに弛みが生じないように張力をかけて、試験サンプル支持台にセロハンテープ(登録商標)(ニチバン株式会社製、エルパックエス LP−18S)で設置する。また、振り子は2Jタイプを使用する。
(12)浸透速度
 微細繊維構造体を6cm×8cmの試験サンプルに切り出し、これを20cm×30cm×厚さ5mmの2枚のガラス板により上下で挟み込み、上のガラス板上に試験サンプルにかかる面圧がガラス板の重量も含め0.1kgf/cmとなるように重りを乗せ、この際、上下ガラス板の一辺から試験サンプルの一部が6cm×1cmはみ出すようにし、このはみ出した部分を電解液浴中に浸漬し、1分間で電解液がガラス板に挟まれた試験サンプルに浸透した面積(cm)を測定する。電解液は、エチレンカルボナート(EC)/エチルメチルカルボナート(EMC)の混合液(重量比EC/EMC=3/7)を用い、25℃で測定を行う。
[実施例1]
 特公昭47−10863号公報記載の方法に準じた下記の界面重合法により目的ポリマーを製造した。
 イソフタル酸ジクロライド25.13g(99mol%)と第3成分としてテレフタル酸ジクロライド0.25g(1mol%)を水分含有率2mg/100mlのテトラヒドロフラン125mlに溶解し、−25℃に冷却した。これを撹拌しながらメタフェニレンジアミン13.52g(100mol%)を、上記テトラヒドロフラン125mlに溶解した溶液を細流として約15分間にわたって添加し、白色の乳濁液(A)を作製した。これとは別に無水炭酸ナトリウム13.25gを水250mlに室温で溶かし、これを撹拌しながら5℃まで冷却して炭酸ナトリウム水和物結晶を析出させ分散液(B)を作製した。上記乳濁液(A)と分散液(B)とを激しく混合した。更に2分間混合を続けた後、200mlの水を加えて希釈し、生成重合体を白色粉末として沈殿させた。重合終了系からろ過、水洗、乾燥して目的とするポリマー(密度:1.38g/cm)を得た。
 得られた芳香族コポリアミドポリマーをN,N−ジメチルアセトアミドに、20重量%となるように溶解させエレクトロスピニング用の紡糸溶液とした。このポリマー溶液をノズルから吐出させ、電界紡糸法により印加電圧を40kVとし微細繊維を成形し、該ノズルから20cm下の搬送ネットでこれを回収し微細繊維ウェッブを得た。
 続いて、微細繊維ウェッブを熱圧処理する工程において、熱風乾燥機で300℃、1分間の乾燥処理(予備乾燥処理)をしてから、ロール表面温度200℃、線圧150kg/cmでカレンダー加工して、微細繊維層一層からなる微細繊維構造体を得た。微細繊維構造体の残留溶媒量は0.01重量%であった。結果を表1に示す。
[実施例2]
 微細繊維ウェッブを熱圧処理する工程において、熱風乾燥機で350℃、1分間の乾燥処理をしてから、ロール表面温度250℃、線圧200kg/cmでカレンダー加工した以外は、実施例1と同様にして表1に示す微細繊維構造体を得た。微細繊維構造体の残留溶媒量は0.01重量%であった。結果を表1に示す。
[実施例3]
 微細繊維ウェッブを熱圧処理する工程において、熱風乾燥機で250℃、1分間の乾燥処理をしてから、ロール表面温度150℃、線圧100kg/cmでカレンダー加工した以外は、実施例1と同様にして表1に示す微細繊維構造体を得た。微細繊維構造体の残留溶媒量は0.02重量%であった。結果を表1に示す。
[比較例1]
 微細繊維ウェッブを熱圧処理する工程において、予備乾燥処理を行うことなく、ロール表面温度300℃、線圧75kg/cmでカレンダー加工した以外は、実施例1と同様にして表1に示す微細繊維構造体を得た。結果を表1に示す。
[比較例2]
 微細繊維構造体の替わりに、蓄電デバイス用セルロースセパレーター(日本高度紙工業株式会社製、ポリマー密度1.5g/cm)を用いて評価を行った。結果を表1に示す。
Hereinafter, the present invention will be described in more detail based on examples. However, the present invention is not limited by the following examples. In addition, each characteristic value in an Example was measured with the following method.
(1) Average diameter of fine fibers Arbitrary 50 fine fibers were sampled and measured with a scanning electron microscope JSM6330F (manufactured by JEOL) to obtain the average value of the fiber diameters. The measurement was performed at a magnification of 20,000 times.
(2) Basis Weight A fine fiber layer was cut into a square with a side of 25 mm, and the weight was measured using an electronic balance, and the basis weight was converted to a square with a side of 1 m.
(3) Thickness Ono Sokki Using a digital linear gauge DG-925 (diameter of measurement terminal portion 1 cm), thickness was measured at 20 arbitrarily selected locations, and an average value was obtained.
(4) Average pore diameter The average pore diameter of the fine fiber layer was determined using Capillary Flow Porometer CFP-1200-AEXL (manufactured by Porous Materials, Inc.).
(5) Frazier permeability The sample is cut out from the fine fiber layer, conforms to JIS L1096 (2010) 8.26 A method (Fragile format), and the measurement range is 5 cm 2 using a Fragil tester (FX3300 manufactured by TEXTEST). The measured value was shown in the unit m 3 / min / m 2 .
(6) Porosity From the basis weight (g / m 3 ) of the porous fine fiber layer, the density (g / cm 3 ) of the polymer constituting the fine fibers, and the thickness (μm), the porosity was calculated by the following formula.
Porosity (%) = 100-basis weight / (polymer density × thickness) × 100
(7) Macmillan number A fine fiber layer is cut into 20 mmΦ, sandwiched between two SUS electrodes, and calculated by dividing the ionic conductivity of the electrolyte by the conductivity calculated from the AC impedance at 10 kHz. The electrolyte used was 0.5 molar lithium trifluoromethanesulfonate (LiTFS), propylene carbonate: ethylene carbonate: dimethoxyethane (22: 8: 70), and the measurement temperature was 25 ° C.
(8) Maximum compression rate Shimadzu microcompression tester Using MCT-W200, a test sample cut out from a fine fiber structure was placed on a glass plate in an atmosphere at 25 ° C., and a test stress was measured with a flat indenter having a diameter of 50 μm. 10 mN, that is, applying a load up to 5 MPa at a surface pressure, with a load speed of 2.2 mN / sec, conducting a compression test in which load-unload is repeated three times, and the maximum amount of change when the maximum thickness change occurs The value obtained by dividing by the thickness of the test sample before the compression test was defined as the “maximum compression rate”. The compression test was measured three times with different test samples, and the average value was obtained.
(9) Battery performance Preparation of electrode (positive electrode): 89.5 parts by mass of lithium cobaltate (LiCoO 2 manufactured by Nippon Chemical Industry Co., Ltd.) powder, 4.5 parts by mass of acetylene black, and a dry weight of PVdF of 6 parts by mass Thus, a positive electrode paste was prepared using an N-methyl-pyrrolidone (NMP) solution of 6% by mass PVdF. The obtained paste was applied onto an aluminum foil having a thickness of 20 μm, dried and pressed to obtain a positive electrode having a thickness of 97 μm.
Preparation of electrode (negative electrode): 6 masses so that 87 mass parts of mesophase carbon microbeads (manufactured by Osaka Gas Chemical Co., Ltd.), 3 mass parts of acetylene black, and 10 mass parts of PVdF are used as the negative electrode active material. A negative electrode paste was prepared using an NMP solution of% PVdF. The obtained paste was applied to a 18 μm thick copper foil, dried and pressed to obtain a 90 μm thick negative electrode.
Preparation of non-aqueous electrolyte: The electrolyte was prepared by dissolving lithium hexafluorophosphate at a concentration of 1M in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a weight ratio of 3: 7.
A laminate cell having a capacity of 40 mAh was produced using the above electrode, electrolyte, and separator, and the cell was compressed with a stress of 5 MPa. As a battery characteristic test, an initial charge / discharge test is performed. The initial charge / discharge test is 0.2C, 4.2V constant current / constant voltage charge (8 hours), and then 0.2C, 2.75V cut-off constant current discharge. The case where the short circuit did not occur was determined to be good, and the case where the short circuit occurred was determined to be defective.
(10) Tear strength In accordance with JIS P 8116 (Tear strength), the size of the test sample of the fine fiber structure is 70 mm wide × tear using an Elmendorf type tear tester (radius 24 cm) manufactured by Toyo Seiki Seisakusho Co., Ltd. Measurement was performed with a direction of 63 mm and a cutting length of 20 mm.
Specifically, the measurement was performed by the following method using an Elmendorf tear tester.
(11) Impact absorption value Measured in accordance with JIS K 7111-1 (2006) (unnotched Charpy impact strength). At this time, a test sample of 100 mm × 15 mm cut out from the fine fiber structure was used as the test sample, and this was made so that the striking blade of the pendulum hits the surface of the test sample so that the test sample was not loosened. Tension is applied and it is installed on the test sample support with Cellophane tape (registered trademark) (manufactured by Nichiban Co., Ltd., Elpac S LP-18S). The pendulum uses the 2J type.
(12) Penetration rate The fine fiber structure is cut into a 6 cm × 8 cm test sample, which is sandwiched between two glass plates of 20 cm × 30 cm × thickness 5 mm, and the surface of the test sample on the upper glass plate A weight is placed so that the pressure is 0.1 kgf / cm 2 including the weight of the glass plate. At this time, a part of the test sample protrudes 6 cm × 1 cm from one side of the upper and lower glass plates, and the protruding portion is electrolyzed. It is immersed in a liquid bath, and the area (cm 2 ) permeating the test sample in which the electrolyte is sandwiched between glass plates in 1 minute is measured. The electrolyte is measured at 25 ° C. using a mixed solution of ethylene carbonate (EC) / ethyl methyl carbonate (EMC) (weight ratio EC / EMC = 3/7).
[Example 1]
The target polymer was produced by the following interfacial polymerization method according to the method described in Japanese Patent Publication No. 47-10863.
25.13 g (99 mol%) of isophthalic acid dichloride and 0.25 g (1 mol%) of terephthalic acid dichloride as a third component were dissolved in 125 ml of tetrahydrofuran having a water content of 2 mg / 100 ml and cooled to −25 ° C. While stirring this, 13.52 g (100 mol%) of metaphenylenediamine was added over about 15 minutes as a trickle of a solution obtained by dissolving 125 ml of the above tetrahydrofuran to prepare a white emulsion (A). Separately, 13.25 g of anhydrous sodium carbonate was dissolved in 250 ml of water at room temperature, and this was cooled to 5 ° C. with stirring to precipitate sodium carbonate hydrate crystals to prepare a dispersion (B). The emulsion (A) and dispersion (B) were mixed vigorously. After further mixing for 2 minutes, 200 ml of water was added for dilution, and the resulting polymer was precipitated as a white powder. Filtration, washing with water and drying were carried out from the polymerization completed system to obtain the desired polymer (density: 1.38 g / cm 3 ).
The obtained aromatic copolyamide polymer was dissolved in N, N-dimethylacetamide so as to be 20% by weight to obtain a spinning solution for electrospinning. The polymer solution was discharged from a nozzle, and an applied voltage was set to 40 kV by an electrospinning method to form fine fibers. The fine fibers were collected by a transport net 20 cm below the nozzle to obtain a fine fiber web.
Subsequently, in the process of hot-pressing the fine fiber web, a hot air dryer is used for 300 ° C. for 1 minute (preliminary drying), and then calendered at a roll surface temperature of 200 ° C. and a linear pressure of 150 kg / cm. Thus, a fine fiber structure composed of one fine fiber layer was obtained. The residual solvent amount of the fine fiber structure was 0.01% by weight. The results are shown in Table 1.
[Example 2]
In the process of hot-pressing the fine fiber web, Example 1 except that it was calendered at a roll surface temperature of 250 ° C. and a linear pressure of 200 kg / cm after drying at 350 ° C. for 1 minute with a hot air dryer. Similarly, the fine fiber structure shown in Table 1 was obtained. The residual solvent amount of the fine fiber structure was 0.01% by weight. The results are shown in Table 1.
[Example 3]
In the step of hot-pressing the fine fiber web, Example 1 except that it was dried at 250 ° C. for 1 minute with a hot air dryer and then calendered at a roll surface temperature of 150 ° C. and a linear pressure of 100 kg / cm. Similarly, the fine fiber structure shown in Table 1 was obtained. The residual solvent amount of the fine fiber structure was 0.02% by weight. The results are shown in Table 1.
[Comparative Example 1]
The fine fibers shown in Table 1 are the same as in Example 1 except that in the step of hot-pressing the fine fiber web, calendering was performed at a roll surface temperature of 300 ° C. and a linear pressure of 75 kg / cm without performing a preliminary drying treatment. A structure was obtained. The results are shown in Table 1.
[Comparative Example 2]
Instead of the fine fiber structure, evaluation was performed using a cellulose separator for an electricity storage device (manufactured by Nippon Advanced Paper Industries Co., Ltd., polymer density 1.5 g / cm 3 ). The results are shown in Table 1.
 本発明の微細繊維構造体は、バッテリー等の製造時や使用時において、電極シートのバリと接触したり、大きく屈曲させたり、合金系負極等のような膨張収縮が大きい電極材料と共に使用したりする場合でも、ピンホールが生じ難いため、短絡が起こり難い。このため、該微細繊維構造体をセパレータや絶縁材に用いた、バッテリー、電気二重層キャパシタ、コンデンサ等として、高性能かつ安定した性能を発揮できる。
Figure JPOXMLDOC01-appb-T000001
The fine fiber structure of the present invention is in contact with a burr of an electrode sheet, is bent greatly, or used with an electrode material having a large expansion and contraction such as an alloy-based negative electrode during the production or use of a battery or the like. Even when doing so, pinholes are unlikely to occur, and short circuits are unlikely to occur. For this reason, a high performance and stable performance can be exhibited as a battery, an electric double layer capacitor, a capacitor, or the like using the fine fiber structure as a separator or an insulating material.
Figure JPOXMLDOC01-appb-T000001

Claims (10)

  1. 平均直径が50~3000nmの高分子微細繊維からなる微細繊維層を含んでなる微細繊維構造体であって、微細繊維構造体の下記方法で測定した面圧5MPaにおける最大圧縮率が20%以上、微細繊維層における、平均細孔径が0.01~15μm、厚さが0.0025~0.3mm、多孔度が20~90%、坪量が1~90g/m、フラジール通気度が46m/分/m未満、およびマクミラン数が2~15であることを特徴とする微細繊維構造体。
    <最大圧縮率>
     微細繊維構造体から切り出した試験サンプルを用い、圧縮試験機により、25℃雰囲気下で、該試験サンプルをガラス板上に載せ、直径が50μmの平面圧子にて、試験応力を10mN、すなわち面圧で5MPaまで負荷をかけ、負荷速度を2.2mN/secとして、負荷−除荷の繰り返しを3回行う圧縮試験を行い、最大の厚み変化が起きたときの最大変化量を圧縮試験前の試験サンプルの厚さで除した値を「最大圧縮率」とした。上記圧縮試験を、試験サンプルを変えて3回測定し、その平均値を求める。
    A fine fiber structure comprising a fine fiber layer composed of polymer fine fibers having an average diameter of 50 to 3000 nm, the maximum compression ratio at a surface pressure of 5 MPa measured by the following method of the fine fiber structure is 20% or more, In the fine fiber layer, the average pore diameter is 0.01 to 15 μm, the thickness is 0.0025 to 0.3 mm, the porosity is 20 to 90%, the basis weight is 1 to 90 g / m 2 , and the fragile air permeability is 46 m 3. / Minute / m 2 and a fine fiber structure having a Macmillan number of 2 to 15.
    <Maximum compression ratio>
    Using a test sample cut out from a fine fiber structure, the test sample is placed on a glass plate in a 25 ° C. atmosphere by a compression tester, and a test stress is 10 mN, that is, a surface pressure, with a flat indenter having a diameter of 50 μm. A compression test is performed in which a load of up to 5 MPa is applied, the load speed is 2.2 mN / sec, and load-unload is repeated three times, and the maximum change when the maximum thickness change occurs is the test before the compression test. The value divided by the thickness of the sample was taken as the “maximum compression rate”. The compression test is measured three times while changing the test sample, and the average value is obtained.
  2. 下記方法により測定した引裂き強さを、坪量で除した値である、引裂き強さ/坪量が0.9g/(g/m)以上である請求項1に記載の微細繊維構造体。
    <引裂き強さ>
     JIS P8116(引裂き強さ)に準じ、エルメンドルフ形引裂試験機を用い、微細繊維構造体の試験サンプルのサイズを幅70mm×引裂方向63mm、切込み長を20mmとして測定する。
    The fine fiber structure according to claim 1, wherein the tear strength / basis weight is 0.9 g / (g / m 2 ) or more, which is a value obtained by dividing the tear strength measured by the following method by the basis weight.
    <Tear strength>
    According to JIS P8116 (tear strength), an Elmendorf type tear tester is used, and the size of the test sample of the fine fiber structure is 70 mm wide × 63 mm tear direction, and the cutting length is 20 mm.
  3. 下記方法により測定した衝撃吸収値が290kJ/m以上である請求項1または2に記載の微細繊維構造体。
    <衝撃吸収値>
     JIS K 7111−1(ノッチなしシャルピー衝撃強さ)に準じ測定を行う。この際、試験サンプルは、微細繊維構造体から切り出した100mm×15mmの試験サンプルを用い、これを振り子の打撃刃が該試験サンプルの面にあたるようにして、該試験サンプルに弛みが生じないように張力をかけて、試験サンプル支持台にセロハンテープ(登録商標)(ニチバン株式会社製、エルパックエス LP−18S)で設置する。また、振り子は2Jタイプを使用する。
    The fine fiber structure according to claim 1 or 2, wherein an impact absorption value measured by the following method is 290 kJ / m 2 or more.
    <Shock absorption value>
    Measurement is performed according to JIS K 7111-1 (notch-free Charpy impact strength). At this time, a test sample of 100 mm × 15 mm cut out from the fine fiber structure was used as the test sample, and this was made so that the striking blade of the pendulum hits the surface of the test sample so that the test sample was not loosened. Tension is applied and it is installed on the test sample support with Cellophane tape (registered trademark) (manufactured by Nichiban Co., Ltd., Elpac S LP-18S). The pendulum uses the 2J type.
  4. 微細繊維構造体の下記方法で測定した浸透速度が20cm/分以上である請求項1~3のいずれかに記載の微細繊維構造体。
    <浸透速度>
     微細繊維構造体を6cm×8cmの試験サンプルに切り出し、これを20cm×30cm×厚さ5mmの2枚のガラス板により上下で挟み込み、上のガラス板上に試験サンプルにかかる面圧がガラス板の重量も含め0.1kgf/cmとなるように重りを乗せ、この際、上下ガラス板の一辺から試験サンプルの一部が6cm×1cmはみ出すようにし、このはみ出した部分を電解液浴中に浸漬し、1分間で電解液がガラス板に挟まれた試験サンプルに浸透した面積(cm)を測定する。電解液は、エチレンカルボナート(EC)/エチルメチルカルボナート(EMC)の混合液(重量比EC/EMC=3/7)を用い、25℃で測定を行う。
    The fine fiber structure according to any one of claims 1 to 3, wherein the penetration rate of the fine fiber structure measured by the following method is 20 cm 2 / min or more.
    <Penetration rate>
    The fine fiber structure is cut into a 6 cm × 8 cm test sample, which is sandwiched between two glass plates of 20 cm × 30 cm × 5 mm thickness, and the surface pressure applied to the test sample on the upper glass plate is A weight is placed so that the weight is 0.1 kgf / cm 2 including the weight. At this time, a part of the test sample protrudes 6 cm × 1 cm from one side of the upper and lower glass plates, and the protruding part is immersed in the electrolyte bath. And the area (cm < 2 >) which penetrated the test sample by which electrolyte solution was pinched | interposed into the glass plate in 1 minute is measured. The electrolyte is measured at 25 ° C. using a mixed solution of ethylene carbonate (EC) / ethyl methyl carbonate (EMC) (weight ratio EC / EMC = 3/7).
  5. 高分子微細繊維の結晶化度が30%以上である請求項1~4のいずれかに記載の微細繊維構造体。 5. The fine fiber structure according to claim 1, wherein the crystallinity of the polymer fine fiber is 30% or more.
  6. 高分子微細繊維が、脂肪族ポリアミド、半芳香族ポリアミド、芳香族ポリアミド、ポリビニルアルコール、セルロース、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリイミド、ならびにこれらのブレンド、混合物およびコポリマーよりなる群から選択されるポリマーを含んでなる請求項1~5のいずれかに記載の微細繊維構造体。 Polymer fine fiber is aliphatic polyamide, semi-aromatic polyamide, aromatic polyamide, polyvinyl alcohol, cellulose, polyethylene terephthalate, polyethylene naphthalate, polyethylene, polypropylene, polyvinylidene fluoride, polyacrylonitrile, polyimide, and blends and mixtures thereof. 6. The fine fiber structure according to claim 1, comprising a polymer selected from the group consisting of a copolymer and a copolymer.
  7. 請求項1~6のいずれかに記載の微細繊維構造体をセパレータまたは絶縁材として含むバッテリー。 A battery comprising the fine fiber structure according to any one of claims 1 to 6 as a separator or an insulating material.
  8. 請求項1~6のいずれかに記載の微細繊維構造体をセパレータまたは絶縁材として含む電気二重層キャパシタ。 An electric double layer capacitor comprising the fine fiber structure according to any one of claims 1 to 6 as a separator or an insulating material.
  9. 請求項1~6のいずれかに記載の微細繊維構造体をセパレータまたは絶縁材として含むコンデンサ。 A capacitor comprising the fine fiber structure according to any one of claims 1 to 6 as a separator or an insulating material.
  10. バッテリーが、リチウムバッテリー、リチウムイオンバッテリー、またはリチウムイオンゲルポリマーバッテリーである請求項7に記載のバッテリー。 The battery according to claim 7, wherein the battery is a lithium battery, a lithium ion battery, or a lithium ion gel polymer battery.
PCT/JP2013/069569 2012-07-11 2013-07-11 Microfiber structure WO2014010753A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012155544 2012-07-11
JP2012-155544 2012-07-11

Publications (1)

Publication Number Publication Date
WO2014010753A1 true WO2014010753A1 (en) 2014-01-16

Family

ID=49916190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069569 WO2014010753A1 (en) 2012-07-11 2013-07-11 Microfiber structure

Country Status (1)

Country Link
WO (1) WO2014010753A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015170450A (en) * 2014-03-06 2015-09-28 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
CN110106635A (en) * 2019-05-21 2019-08-09 江西先材纳米纤维科技有限公司 A kind of ultrashort electrospinning polyimide nano-fiber and preparation method thereof
KR20200126402A (en) 2018-03-28 2020-11-06 후지필름 가부시키가이샤 Non-woven fabric, fiber forming method and non-woven fabric manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689712A (en) * 1992-09-09 1994-03-29 Hitachi Maxell Ltd Manufacture of alkaline storage battery
JP2009510700A (en) * 2005-09-30 2009-03-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Battery with improved fine fiber separator
JP2012009165A (en) * 2010-06-22 2012-01-12 Teijin Techno Products Ltd Separator formed of extra fine nonwoven fabric

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689712A (en) * 1992-09-09 1994-03-29 Hitachi Maxell Ltd Manufacture of alkaline storage battery
JP2009510700A (en) * 2005-09-30 2009-03-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Battery with improved fine fiber separator
JP2012009165A (en) * 2010-06-22 2012-01-12 Teijin Techno Products Ltd Separator formed of extra fine nonwoven fabric

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015170450A (en) * 2014-03-06 2015-09-28 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
KR20200126402A (en) 2018-03-28 2020-11-06 후지필름 가부시키가이샤 Non-woven fabric, fiber forming method and non-woven fabric manufacturing method
CN111918993A (en) * 2018-03-28 2020-11-10 富士胶片株式会社 Nonwoven fabric, fiber forming method, and nonwoven fabric manufacturing method
CN111918993B (en) * 2018-03-28 2022-07-26 富士胶片株式会社 Nonwoven fabric, fiber forming method, and nonwoven fabric manufacturing method
CN110106635A (en) * 2019-05-21 2019-08-09 江西先材纳米纤维科技有限公司 A kind of ultrashort electrospinning polyimide nano-fiber and preparation method thereof
WO2020232929A1 (en) * 2019-05-21 2020-11-26 江西先材纳米纤维科技有限公司 Ultra-short electrostatically spun polyimide nanofiber and method for fabrication thereof

Similar Documents

Publication Publication Date Title
JP5611505B2 (en) Battery separator and lithium secondary battery
KR100775310B1 (en) Organic/inorganic composite microporous membrane and electrochemical device prepared thereby
JP5384631B2 (en) Separator provided with porous coating layer, method for producing the same, and electrochemical device provided with the same
JP5403857B2 (en) Battery separator, method for producing the same, and lithium secondary battery
TW201733186A (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
EP2372813A1 (en) Batteries Including Improved Fine Fiber Separators
WO2013051079A1 (en) Heat resistant porous membrane, separator for nonaqueous cell, and nonaqueous cell
JP6371905B2 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
KR20200093546A (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP2014022051A (en) Separator for electrochemical element and electrochemical element
WO2014010753A1 (en) Microfiber structure
JP2001222988A (en) Polymer membrane carrying electrolyte and secondary battery therewith
CN112042006B (en) Separator for electrochemical element
JP2014025184A (en) Fine fiber structure
JP2014007068A (en) Fine fiber structure
JP2014015697A (en) Fine fiber structure
WO2014003192A1 (en) Fine fiber structure
JP7341957B2 (en) Non-aqueous secondary battery
JP2014015694A (en) Fine fiber structure
JP7413180B2 (en) Non-aqueous secondary battery
JP7402766B2 (en) Non-aqueous secondary battery
JP2014005568A (en) Fine fiber structure
JP6034086B2 (en) Fine fiber structure
JP2014005569A (en) Fine fiber structure
JP2014012904A (en) Fine fiber structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13817505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP