WO2008146895A1 - Electrolyte and electric/electronic component using the same - Google Patents

Electrolyte and electric/electronic component using the same Download PDF

Info

Publication number
WO2008146895A1
WO2008146895A1 PCT/JP2008/059955 JP2008059955W WO2008146895A1 WO 2008146895 A1 WO2008146895 A1 WO 2008146895A1 JP 2008059955 W JP2008059955 W JP 2008059955W WO 2008146895 A1 WO2008146895 A1 WO 2008146895A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
aramid
organic solvent
electrolyte according
electric
Prior art date
Application number
PCT/JP2008/059955
Other languages
French (fr)
Japanese (ja)
Inventor
Shinji Naruse
Original Assignee
Dupont Teijin Advanced Papers, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dupont Teijin Advanced Papers, Ltd. filed Critical Dupont Teijin Advanced Papers, Ltd.
Publication of WO2008146895A1 publication Critical patent/WO2008146895A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte useful for electrical and electronic parts such as non-aqueous batteries and capacitors.
  • solvents include, for example, ethylene carbonate, propylene carbonate, dimethylolate carbonate, and jetinolet.
  • ionic species include the following combinations of cations and ions.
  • the object of the present invention is to be suitable as an electrolytic solution in electrical / electronic components, capable of withstanding a large current due to high capacity and large output, high conductivity, high withstand voltage, chemical ⁇ electrochemically stable It is to provide an electrolyte material.
  • the present invention provides an electrolyte characterized by containing a amide, an ionic species, and an organic solvent.
  • the electrolyte of the present invention is useful as an electrolyte used between conductive members in electrical and electronic parts because it has a sufficiently high electrical conductivity, high withstand voltage, long life, and a wide operating temperature range.
  • a battery and a capacitor using the electrolyte of the present invention Electric and electronic parts such as can be used advantageously in a large current environment such as an electric vehicle.
  • the amide used in the electrolyte of the present invention includes a linear polymer compound in which 60% or more of amide bonds (one CONOH) are directly bonded to an aromatic ring (for example, a benzene ring).
  • amides include polymetaphenylene isophthalamide and copolymers thereof, polyparaphenylene terephthalamide and copolymers thereof, poly (paraphenylene) -copoly (3,4 diphenyl ether) terephthal amine. And so on.
  • These amides are industrially produced by, for example, known interfacial polymerization methods and solution polymerization methods using isophthalate salt and meta-phenylenediamine, and are obtained as commercial products. However, it is not limited to this.
  • polymetaphenylene isophthalamide is preferably used since it has good molding processability, thermal adhesiveness, flame retardancy, heat resistance and the like. Ionic species
  • ionic species used in the electrolyte of the present invention those conventionally used in electrolytes used between conductive members such as anodes and positive electrodes in electric / electronic parts such as batteries and capacitors are also used. Is possible. For example, the following combinations of cation and pheon can be mentioned, but are not limited to these combinations. Good solubility in organic solvents and desired properties such as electrical conductivity and withstand voltage For example, any material can be used as long as it has an electrical conductivity of lm S / cm or more (20 ° C.) and a withstand voltage of 2 V or more in a state dissolved in an organic solvent.
  • organic solvent used in the present invention those conventionally used in electrolytes used between conductive members such as anodes and cathodes in electrical and electronic parts such as batteries and capacitors can be used as well.
  • Examples include hydride, N, N 'mono-methylimidazolidinone, amidin, and mixtures of two or more thereof
  • the characteristics show desired values (for example, if the electrical conductivity is 1 m SZ cm or more (20 ° C) and the withstand voltage is 2 V or more in the state in which the ionic species is dissolved), it is limited to these. It is not something. Among these, ethylene carbonate, propylene carbonate, dimethylolate carbonate, jetyl carbonate, ethylene glycol, propylene carbonate, dimethylolate, etc.
  • a carbonate-based organic solvent containing a carbonate bond in the molecule such as thiomethylocarbonate and butylene carbonate, is suitable.
  • the degree of crystallinity in the present invention is a standard for classifying aramid crystals and non-crystals, and represents the ratio of the crystal portion in the entire aramid. If the crystallinity of the aramid used is too high, it will be difficult to swell even if it has a high affinity with an organic solvent. Therefore, it is generally preferably 15% or less, particularly preferably 10% or less. If the crystallinity of the aramid used exceeds 15%, homogenization is difficult after mixing with an organic solvent, and the withstand voltage of the electrolyte may be lowered.
  • the crystallinity of the aramide is the same as the diffraction peak value measured by the X-ray wide-angle scattering method, the Nomettas (r) paper measured by the same X-ray wide-angle scattering method. And the relative value when the crystallinity of Nomex (r) paper 5 T 4 11 is 23%. Average particle size
  • the average particle size of aramide is expressed as a particle size having a cumulative weight of 50% by weight.
  • the aramid used in the present invention is preferably spherical, since the spherical shape has the largest surface area and swells quickly upon contact with an organic solvent.
  • the aramid is generally preferably in the form of particles having an average particle size of 200 mm or less. Basically, the smaller the average particle size, the better the aramid, since the surface area per unit weight is larger. However, if it is too small, handling such as mixing becomes difficult. A spherical particle having an average particle diameter within the range is particularly preferable. Electrolyte production
  • the electrolyte of the present invention can be prepared by mixing the aramid, ionic species and organic solvent described above.
  • the order of mixing is not particularly limited as long as the electrolyte is kept in a homogeneous state, such as swelling and dissolution, but in order to prepare a swollen homogeneous gel, it is usually necessary to first mix an ionic species and an organic solvent. Later, it is preferable to mix with aramid in order to maintain a homogeneous state.
  • electrical conductivity, withstand voltage Other additives such as antioxidants can be mixed as long as the properties desired for the electrolyte are not substantially adversely affected.
  • the preparation of the electrolyte in the presence of the separator facilitates handling, and in particular, a heat-resistant separator such as the aramid thin leaf material described in Japanese Patent Application Laid-Open No. 20 03-3-065 595. If aramid, ionic species, and organic solvent are mixed in the presence of water to form a uniform gel, a highly workable and heat resistant member in which the electrolyte and separator are integrated can be produced.
  • the electrolyte of the present invention is a separator such as a ramid thin leaf material as an electrolyte used between a conductive member such as a battery, a capacitor, etc., which requires a high capacity and a large output, and an anode, a positive electrode, etc.
  • the base material is impregnated, or as described above, aramid, ionic species, and organic solvent are mixed in the presence of a heat-resistant separator such as aramid thin leaf material to form a homogeneous gel, and the electrolyte and separator are integrated. Later, it can be incorporated as a non-aqueous electrolytic battery, particularly as an interelectrode separator such as a lithium secondary battery or an electric double layer capacitor.
  • Electric and electronic parts such as a battery and a capacitor using the electrolyte of the present invention can be advantageously used as a power source for a mobile phone, a computer, etc., or as a power source for an electric vehicle, a hybrid automobile, or the like.
  • Example 1 Electric and electronic parts such as a battery and a capacitor using the electrolyte of the present invention can be advantageously used as a power source for a mobile phone, a computer, etc., or as a power source for an electric vehicle, a hybrid automobile, or the like.
  • the electrolytes of Examples 1 and 2 have an electric conductivity in a range that can be used as an electrolyte used between conductive members of electric and electronic parts, and have reduced hygroscopicity. Therefore, water decomposes the organic solvent. However, it is unlikely that the characteristics of electrical and electronic parts will deteriorate, especially the withstand voltage, and it is thought that the service life is extended.
  • the electrolyte of Example 2 has a gelled structure and contains a amide that is homogeneous and inherently has high electrochemical stability. .
  • the electrolytes of Examples 1 and 2 contain aramid, the freezing point of the organic solvent is lowered, it can be used at a low temperature, and it can be used at a high temperature due to the high heat resistance of aramid. It is thought that the life has been extended.
  • the electrolyte of the present invention is useful as an electrolyte used between conductive members in electric and electronic parts such as batteries and capacitors in electric vehicles.

Abstract

Provided is an electrolyte, which contains an aramid, ionic species and an organic solvent, is suitable as an electrolytic solution in an electric/electronic component, has high conductivity and withstand voltage and is chemically and electrochemically stable.

Description

明細書  Specification
電解質およびそれを使用した電気電子部品 技術分野  Electrolyte and electrical and electronic parts using it
本発明は、 非水系の電池、 キャパシタなどの電気電子部品に有用な電解質に 関する。 背景技術  The present invention relates to an electrolyte useful for electrical and electronic parts such as non-aqueous batteries and capacitors. Background art
携帯通信機器や高速情報処理機器などの電気電子機器の最近の進歩に象徴さ れるように、 エレク トロニクス機器の小型軽量化、 高性能化には目覚しいもの がある。 なかでも、 小型、 軽量かつ高容量で長期保存にも耐える高性能な電池、 キャパシタなどへの期待は大きく、 幅広い応用が図られ、 部品開発が急速に進 展している。 これに応えるため、 各種電気電子部材、 例えば、 電子の移動が連 続的に起こって電気エネルギーがとりだせるように正極と負極の間でイオンを 移動させるための電解質に関しても、 技術'品質開発の必要性が高まっている。 電池、 キャパシタ等の電気■電子部品中の陽極、 正極などの導電部材間に使 用される電解質において、 従来、 溶媒として、 例えば、 エチレンカーボーネー ト、 プロピレンカーボネート、 ジメチノレカーボネート、 ジェチノレカーボネート、 ェチノレメチノレカ一ボネ一ト、 ブチレンカーボネート、 グルタロニトリル、 アジ ポニトリル、 ァセトニトニル、 メ トキシァセトニトリル、 3—メ トキシプロピ ォェトリノレ、 yーブチロラク トン、 γ—バレロラタ トン、 ス /レホラン、 3ーメ チルスルホラン、 ニトロェタン、 ニトロメタン、 リン酸トリメチノレ、 Ν—メチ ルォキサゾリジノン、 Ν, Ν—ジメチルホルムアミ ド、 Ν—メチルピロリ ドン、 ジメチルス^/ホキシド、 Ν, Ν, 一シメチ イミダゾリジノン、 アミジン、 水、 及ぴそれらの 2種もしくはそれ以上の混合物などが使用されている。  As symbolized by recent advances in electrical and electronic equipment such as portable communication equipment and high-speed information processing equipment, there is a remarkable reduction in size and weight of electronic equipment and performance. In particular, expectations are high for compact, lightweight, high-capacity, high-performance batteries and capacitors that can withstand long-term storage, and a wide range of applications are being made, and parts development is progressing rapidly. In response to this, various electrical and electronic components, for example, electrolytes that move ions between the positive and negative electrodes so that the movement of electrons can take place and take out electrical energy, can There is a growing need. For electrolytes used between conductive members such as anodes and cathodes in batteries, capacitors, and other electrical components, conventional solvents include, for example, ethylene carbonate, propylene carbonate, dimethylolate carbonate, and jetinolet. Carbonate, ethinoremethinorebonate, butylene carbonate, glutaronitrile, adiponitrile, acetonitonyl, methoxyacetonitrile, 3-methoxypropetolinol, y-butyrolacton, γ-valerolataton, S / leforane, 3 -Methylsulfolane, nitroethane, nitromethane, trimethinole phosphate, Ν-methyloxazolidinone, Ν, Ν-dimethylformamide, Ν-methylpyrrolidone, dimethyls ^ / oxide, Ν, Ν, mono-imidazolidinone, Amidine, water, A mixture of two or more of them is used.
また、 イオン種としては、 例えば、 以下のカチオンとァ-オンの組み合わせ が挙げられる。 ( 1 ) 'カチオン: 第 4級アンモ-ゥムイオン、 第 4級ホスホニゥムイオン、 リチウムイオン、 ナトリゥムイオン、 アンモニゥムイオン、 水素イオンなど、 及びそれらの混合物。 Examples of the ionic species include the following combinations of cations and ions. (1) 'Cation: quaternary ammonium ion, quaternary phosphonium ion, lithium ion, sodium ion, ammonium ion, hydrogen ion, etc., and mixtures thereof.
( 2 ) ァニオン: 過塩素酸イオン、 ホウフッ化イオン、 六フッ化リン酸ィォ ン、 硫酸イオン、 水酸化物イオンなど、 及びそれらの混合物。 これらの溶媒とィオン種の組み合わせは電解質として良好な物性を有してい るが、 近年、 電気自動車用の電池、 キャパシタ等に要求されている高容量化や 大出力化には必ずしも十分に対応することができない。  (2) Anion: perchlorate ion, borofluoride ion, hexafluorophosphate ion, sulfate ion, hydroxide ion, etc., and mixtures thereof. The combination of these solvents and ionic species has good physical properties as an electrolyte. However, in recent years, the combination of these solvents and ionic species does not always adequately cope with the increase in capacity and output required for batteries and capacitors for electric vehicles. I can't.
高容量、 大出力が要求される電池、 キャパシタ等の電気 ·電子部品中の陽極、 正極などの導電部材間に使用される電解質に対しては、  For electrolytes used between conductive members such as anodes and cathodes in electrical and electronic parts such as batteries and capacitors that require high capacity and high output.
( 1 ) 導電性が良いこと、  (1) Good conductivity,
( 2 ) 分解電圧が高いこと、  (2) High decomposition voltage,
( 3 ) 使用温度範囲が広いこと、  (3) Wide operating temperature range,
( 4 ) 化学的 ·電気化学的に安定であること (長寿命) 、  (4) Chemical and electrochemical stability (long life)
の四つの特性を同時に満たすことが必要とされている。 特に、 長寿命であるこ とは、 大電流を使用する、 例えば電気自動車用の駆動電源としての電池のよう な電気 ·電子部品においては極めて重要な要件であると考えられる。 発明の開示 It is necessary to satisfy these four characteristics simultaneously. In particular, long life is considered to be a very important requirement for electric and electronic parts that use large currents, such as batteries as drive power sources for electric vehicles. Disclosure of the invention
本発明の目的は、 電気■電子部品中の電解液として好適な、 高容量化 ·大出 力化による大電流に耐えうる、 導電性、 耐電圧が高く、 化学的■電気化学的に 安定な電解質材料を提供することである。  The object of the present invention is to be suitable as an electrolytic solution in electrical / electronic components, capable of withstanding a large current due to high capacity and large output, high conductivity, high withstand voltage, chemical ■ electrochemically stable It is to provide an electrolyte material.
本発明は、 ァラミドとイオン種と有機溶媒とを含有することを特徴とする電 解質を提供するものである。  The present invention provides an electrolyte characterized by containing a amide, an ionic species, and an organic solvent.
本発明の電解質は、 電気伝導度が十分に大きく、 高耐電圧、 長寿命で、 使用 温度範囲が広いと考えられることから、 電気 '電子部品中の導電部材間に使用 される電解質として有用であり、 本発明の電解質を使用した電池、 キャパシタ 等の電気■電子部品は電気自動車等の大電流環境下で有利に使用することがで さる。 The electrolyte of the present invention is useful as an electrolyte used between conductive members in electrical and electronic parts because it has a sufficiently high electrical conductivity, high withstand voltage, long life, and a wide operating temperature range. A battery and a capacitor using the electrolyte of the present invention Electric and electronic parts such as can be used advantageously in a large current environment such as an electric vehicle.
以下、 本発明の電解質についてさらに詳細に説明する。 ァラミド  Hereinafter, the electrolyte of the present invention will be described in more detail. Aramid
本発明の電解質において使用されるァラミ ドには、 アミ ド結合 (一 C O N H 一) の 6 0 %以上が芳香環 (例えば、 ベンゼン環) に直接結合した線状高分子 化合物が包含される。 そのようなァラミドとしては、 例えば、 ポリメタフエ二 レンイソフタルアミドおよびその共重合体、 ポリパラフエ二レンテレフタルァ ミドおよびその共重合体、 ポリ (パラフエ二レン) ーコポリ (3, 4ジフヱ二 ルエーテル) テレフタールアミ ドなどが挙げられる。 これらのァラミ ドは、 例 えば、 イソフタル酸塩ィ匕物およびメタフエ-レンジアミンを用いるそれ自体既 知の界面重合法、 溶液重合法などにより工業的に製造されており、 市販品とし て入手することができるが、 これに限定されるものではない。 これらのァラミ ドの中で、 特に、 ポリメタフエ二レンイソフタルアミドが、 良好な成型加工性、 熱接着性、 難燃性、 耐熱性などの特性を備えている点で好ましく用いられる。 イオン種  The amide used in the electrolyte of the present invention includes a linear polymer compound in which 60% or more of amide bonds (one CONOH) are directly bonded to an aromatic ring (for example, a benzene ring). Examples of such amides include polymetaphenylene isophthalamide and copolymers thereof, polyparaphenylene terephthalamide and copolymers thereof, poly (paraphenylene) -copoly (3,4 diphenyl ether) terephthal amine. And so on. These amides are industrially produced by, for example, known interfacial polymerization methods and solution polymerization methods using isophthalate salt and meta-phenylenediamine, and are obtained as commercial products. However, it is not limited to this. Among these amides, in particular, polymetaphenylene isophthalamide is preferably used since it has good molding processability, thermal adhesiveness, flame retardancy, heat resistance and the like. Ionic species
本発明の電解質において使用されるイオン種としては、 電池、 キャパシタ等 の電気 ·電子部品中の陽極、 正極などの導電部材間に使用される電解質におい て従来から使用されているものが同様に使用可能である。 例えば、 以下のカチ オンとァェオンの組み合わせが挙げられるが、 これらに限定されるものではな く、 有機溶媒に対し良好な溶解性を示し、 電気伝導度、 耐電圧などの特性が所 望の値を示すもの、 例えば、 有機溶媒に溶解した状態で電気伝導度が l m S / c m以上 (2 0 °C) 、 耐電圧が 2 V以上であれば、 いずれも使用可能である。  As the ionic species used in the electrolyte of the present invention, those conventionally used in electrolytes used between conductive members such as anodes and positive electrodes in electric / electronic parts such as batteries and capacitors are also used. Is possible. For example, the following combinations of cation and pheon can be mentioned, but are not limited to these combinations. Good solubility in organic solvents and desired properties such as electrical conductivity and withstand voltage For example, any material can be used as long as it has an electrical conductivity of lm S / cm or more (20 ° C.) and a withstand voltage of 2 V or more in a state dissolved in an organic solvent.
( 1 ) カチオン: 第 4級アンモニゥムイオン、 第 4級ホスホニゥムイオン、 リチウムイオン、 ナトリウムイオン、 アンモニゥムイオン、 水素イオンなど、 及びそれらの 2種もしくはそれ以上の混合 物。 (1) Cations: Quaternary ammonium ion, quaternary phosphonium ion, lithium ion, sodium ion, ammonium ion, Hydrogen ions, etc., and mixtures of two or more thereof.
( 2 ) ァニオン: 過塩素酸イオン、 ホウフッ化イオン、 六フッ化リン酸ィォ ン、 硫酸イオン、 水酸化物イオンなど、 及びそれらの 2種も しくはそれ以上の混合物。 有機溶媒  (2) Anion: Perchlorate ion, borofluoride ion, hexafluorophosphate ion, sulfate ion, hydroxide ion, etc., and a mixture of two or more thereof. Organic solvent
本宪明において使用される有機溶媒としては、 電池、 キャパシタ等の電気 - 電子部品中の陽極、 正極などの導電部材間に使用される電解質において従来か ら使用されているものが同様に使用可能であり、 例えば、 エチレンカーボーネ 一,ト、 プロピレンカーボネート、 ジメチノレカーボネート、 ジェチルカーボネー ト、 ェチルメチルカーボネート、 ブチレンカーボネート、 グルタロニトリノレ、 アジポニトリル、 ァセトニトニル、 メ トキシァセトエトリル、 3—メ トキシプ 口ピオ二トリル、 y—ブチロラタ トン、 y—バレロラタ トン、 スルホラン、 3 ーメチノレスルホラン、 ニトロェタン、 ニトロメタン、 リン酸トリメチル、 N— メチルォキサゾリジノン、 N, N—ジメチルホルムアミ ド、 N—メチルピロリ ドン、 ジメチルスルホキシド、 N, N ' 一シメチルイミダゾリジノン、 アミジ ンなど、 及びそれらの 2種もしくはそれ以上の混合物が挙げられるが、 イオン 種の良好な溶解性を示し、 電気伝導度、 耐電圧などの特性が所望の値を示せば (例えば、 イオン種を溶解した状態で電気伝導度が 1 m S Z c m以上 (2 0 °C) 、 耐電圧が 2 V以上であれば) 、 特にこれらに限定されるものではない。 この中でも、 特に、 ァラミ ドと良好に親和し、 膨潤性を示し、 混合比によって はゲノレイヒし、 均質状態となる、 エチレンカーボーネート、 プロピレンカーボネ ート、 ジメチノレカーボネート、 ジェチルカーボネート、 ェチ メチノレカーボネ ート、 ブチレンカーボネートなどのカーボネート結合を分子内に含有するカー ボネート系有機溶媒が好適である。 結晶化度 本発明における結晶化度は、 ァラミドの結晶、 非結晶を分類する目安となる ものであり、 ァラミド全体に占める結晶部分の割合を表す。 使用するァラミド の結晶化度があまりにも高いと、 有機溶媒と親和性が高くても膨潤し難くなる ので、 一般には 1 5 %以下、 特に 1 0 %以下であることが好ましい。 使用する ァラミドの結晶化度が 1 5 %を超えると、 有機溶媒と混合した後、 均一化が困 難で、 電解質の耐電圧が低くなる可能性がある。 As the organic solvent used in the present invention, those conventionally used in electrolytes used between conductive members such as anodes and cathodes in electrical and electronic parts such as batteries and capacitors can be used as well. For example, ethylene carbonate, propylene carbonate, dimethylolate, jetyl carbonate, ethylmethyl carbonate, butylene carbonate, glutaronitrinole, adiponitrile, acetonitonyl, methoxycetate etyl, 3- Methoxip oral pionitrile, y-butyroratatone, y-valerolataton, sulfolane, 3-methylolsulfolane, nitroethane, nitromethane, trimethyl phosphate, N-methyloxazolidinone, N, N-dimethylformamide, N-methylpyrrolidone, dimethyls Examples include hydride, N, N 'mono-methylimidazolidinone, amidin, and mixtures of two or more thereof, but exhibit good solubility of ionic species, such as electrical conductivity, withstand voltage, etc. If the characteristics show desired values (for example, if the electrical conductivity is 1 m SZ cm or more (20 ° C) and the withstand voltage is 2 V or more in the state in which the ionic species is dissolved), it is limited to these. It is not something. Among these, ethylene carbonate, propylene carbonate, dimethylolate carbonate, jetyl carbonate, ethylene glycol, propylene carbonate, dimethylolate, etc. A carbonate-based organic solvent containing a carbonate bond in the molecule, such as thiomethylocarbonate and butylene carbonate, is suitable. Crystallinity The degree of crystallinity in the present invention is a standard for classifying aramid crystals and non-crystals, and represents the ratio of the crystal portion in the entire aramid. If the crystallinity of the aramid used is too high, it will be difficult to swell even if it has a high affinity with an organic solvent. Therefore, it is generally preferably 15% or less, particularly preferably 10% or less. If the crystallinity of the aramid used exceeds 15%, homogenization is difficult after mixing with an organic solvent, and the withstand voltage of the electrolyte may be lowered.
本明細書において、 ァラミ ドの結晶化度は、 X線広角散乱法により測定した 回折ピーク値を、 同じ X線広角散乱法により測定したノーメッタス( r )紙 5 T 4 1 1 (デュポン帝人アドバンスドペーパー社製) の回折ピーク値と対比し、 ノーメックス(r )紙 5 T 4 1 1の結晶化度を 2 3 %をとしたときの相対値とし て表示したものである。 平均粒径  In this specification, the crystallinity of the aramide is the same as the diffraction peak value measured by the X-ray wide-angle scattering method, the Nomettas (r) paper measured by the same X-ray wide-angle scattering method. And the relative value when the crystallinity of Nomex (r) paper 5 T 4 11 is 23%. Average particle size
本明細書において、 ァラミドの平均粒径は、 累積重量 50重量%の粒径とし て表示する。 本発明で使用するァラミドは、 形態として、 球形が最も表面積が 大きく、 有機溶媒と接触して速やかに膨潤するため、 球状であることが好まし レ、。 また、 該ァラミドは、 一般に、 平均粒径が 2 0 0 ΙΏ以下の粒子形態であ ることが好ましい。 基本的には、 ァラミドは平均粒径が小さいほど単位重量当 たりの表面積が大きくなるので好ましいが、 あまりに小さいと混合などのハン ドリングが困難となるため、 通常、 1 0〜 1 5 0 mの範囲内の平均粒径を有 する球状粒子であることが特に好ましい。 電解質の製造  In the present specification, the average particle size of aramide is expressed as a particle size having a cumulative weight of 50% by weight. The aramid used in the present invention is preferably spherical, since the spherical shape has the largest surface area and swells quickly upon contact with an organic solvent. In addition, the aramid is generally preferably in the form of particles having an average particle size of 200 mm or less. Basically, the smaller the average particle size, the better the aramid, since the surface area per unit weight is larger. However, if it is too small, handling such as mixing becomes difficult. A spherical particle having an average particle diameter within the range is particularly preferable. Electrolyte production
本発明の電解質は、 以上に述べたァラミド、 イオン種及ぴ有機溶媒を混合す ることにより調製することができる。 膨潤、 溶解など電解質として均質な状態 が保持されれば、 混合順序などに特に制限はないが、 膨潤状態の均質ゲルを調 製するためには、 通常、 イオン種と有機溶媒を先に混合した後、 ァラミドと混 合するのが均質な状態を保持しやすく好適である。 また、 電気伝導度、 耐電圧 などの電解質に望まれる特性に実質的に悪影響を与えない限り、 他の添加物、 例えば、 酸化防止剤などを混合することも可能である。 The electrolyte of the present invention can be prepared by mixing the aramid, ionic species and organic solvent described above. The order of mixing is not particularly limited as long as the electrolyte is kept in a homogeneous state, such as swelling and dissolution, but in order to prepare a swollen homogeneous gel, it is usually necessary to first mix an ionic species and an organic solvent. Later, it is preferable to mix with aramid in order to maintain a homogeneous state. Also, electrical conductivity, withstand voltage Other additives such as antioxidants can be mixed as long as the properties desired for the electrolyte are not substantially adversely affected.
また、 セパレータの存在下で電解質の調製を行うことにより取り扱いが容易 になり、 特に、 特開 2 0 0 3— 0 6 4 5 9 5号公報に記載のァラミド薄葉材の ような耐熱性のセパレータの存在下でァラミド、 イオン種及び有機溶媒を混合 し、 均質ゲル化すれば、 電解質とセパレータとが一体化した加工性、 耐熱性の 高い部材を作製することができる。 用途  In addition, the preparation of the electrolyte in the presence of the separator facilitates handling, and in particular, a heat-resistant separator such as the aramid thin leaf material described in Japanese Patent Application Laid-Open No. 20 03-3-065 595. If aramid, ionic species, and organic solvent are mixed in the presence of water to form a uniform gel, a highly workable and heat resistant member in which the electrolyte and separator are integrated can be produced. Application
本発明の電解質は、 高容量、 大出力が要求される電池、 キャパシタ等の電 気 -電子部品中の陽極、 正極などの導電部材間に使用される電解質として、 了 ラミド薄葉材のようなセパレータ基材に含浸させ、 或いは前述の如く、 ァラミ ド薄葉材のような耐熱性のセパレータの存在下でァラミド、 ィオン種及び有機 溶媒を混合し、 均質ゲル化し、 電解質とセパレータとを一体化させた後、 非水 電解電池、 特にリチウム 2次電池や電気二重層キャパシタなどの電極間セパレ ータとして組み込むことができる。  The electrolyte of the present invention is a separator such as a ramid thin leaf material as an electrolyte used between a conductive member such as a battery, a capacitor, etc., which requires a high capacity and a large output, and an anode, a positive electrode, etc. The base material is impregnated, or as described above, aramid, ionic species, and organic solvent are mixed in the presence of a heat-resistant separator such as aramid thin leaf material to form a homogeneous gel, and the electrolyte and separator are integrated. Later, it can be incorporated as a non-aqueous electrolytic battery, particularly as an interelectrode separator such as a lithium secondary battery or an electric double layer capacitor.
本発明の電解質を使用してなる電池やキャパシタなどの電気電子部品は、 携 帯電話、 コンピュータなどの電源として、 或いは電気自動車、 ハイブリッド自 動車などの電源として有利に使用することができる。 実施例  Electric and electronic parts such as a battery and a capacitor using the electrolyte of the present invention can be advantageously used as a power source for a mobile phone, a computer, etc., or as a power source for an electric vehicle, a hybrid automobile, or the like. Example
以下、 実施例を挙げて本発明をさらに具体的に説明する。 なお、 これらの実 施例は単なる例示であり、 本発明の内容を何ら限定するためのものではない。 物性測定方法  Hereinafter, the present invention will be described more specifically with reference to examples. These examples are merely examples and are not intended to limit the contents of the present invention. Physical property measurement method
( 1 ) ゲル化の判定  (1) Determination of gelation
ァラミドと予めイオン種を溶解した有機溶媒を混合した後、 攪拌し、 2層に 分離せず単層白濁し、 粘度が増加した場合、 ゲル化したと判定した。 (2) 電気伝導度 After mixing aramid and an organic solvent in which ionic species had been dissolved in advance, the mixture was stirred and was not separated into two layers. (2) Electric conductivity
電気伝導度メーターを使用し、 30 c cサンプル瓶で測定した。 .  Measurements were made in a 30 cc sample bottle using an electrical conductivity meter. .
(3) 吸湿性  (3) Hygroscopicity
温度 23 °C、 相対湿度 5 5 %の雰囲気中で 1 6時間保存後の重量変化を測定 した。  The change in weight after storage for 16 hours in an atmosphere at a temperature of 23 ° C and a relative humidity of 55% was measured.
(4) 結晶化度  (4) Crystallinity
X線広角散乱法により、 ノーメッタス(r)紙 5 T4 1 1 (デュポン帝人アド バンスドペーパー社製) の結晶化度を 2 3 %を基準とした相対値として測定し た。 実施例 1及び 2  The crystallinity of Normetus (r) paper 5 T4 11 (manufactured by DuPont Teijin Advanced Paper Co.) was measured as a relative value based on 23% by the X-ray wide angle scattering method. Examples 1 and 2
N, N, N—トリエチノレー N—メチ レアンモニゥムテトラフ/レオロボレ一ト (TEMA) の 1. 5Mプロピレンカーボネート (キシダ化学株式会社製、 リ チウムバッテリーグレード) 溶液を調製し、 その溶液にポリメタフヱニレンィ ソフタルアミド (結晶化度 3 %、 平均粒径 90 μπι) を表 1に示す割合で混合 し、 電気伝導度、 吸湿性を測定した。 その結果を表 1に示す。 比較例 1  Prepare a 1.5M propylene carbonate (lithium battery grade, manufactured by Kishida Chemical Co., Ltd.) solution of N, N, N-triethinole N-methylammonium tetraf / leoloborate (TEMA) and add polyヱ Nylene sophthalamide (crystallinity 3%, average particle size 90 μπι) was mixed in the proportions shown in Table 1 and the electrical conductivity and hygroscopicity were measured. The results are shown in Table 1. Comparative Example 1
上記 ΤΕΜΑの 1. 5Μプロピレンカーボネート (キシダ化学株式会社製、 リチウムバッテリーグレード) 溶液を調製し、 電気伝導度、 吸湿性を測定した。 その結果を表 1に示す。 表 1  A 1.5Μ propylene carbonate (made by Kishida Chemical Co., Ltd., lithium battery grade) solution was prepared, and the electrical conductivity and hygroscopicity were measured. The results are shown in Table 1. table 1
Figure imgf000008_0001
実施例 1及び 2の電解質は、 電気伝導度が電気電子部品の導電部材間に使用 される電解質として使用可能な範囲内にあり、 吸湿性が低下していることから、 水が有機溶媒を分解し、 電気電子部品の特性劣化、 特に耐電圧の劣化を生じる 可能性は低く、 また、 長寿命化していると考えられる。
Figure imgf000008_0001
The electrolytes of Examples 1 and 2 have an electric conductivity in a range that can be used as an electrolyte used between conductive members of electric and electronic parts, and have reduced hygroscopicity. Therefore, water decomposes the organic solvent. However, it is unlikely that the characteristics of electrical and electronic parts will deteriorate, especially the withstand voltage, and it is thought that the service life is extended.
また、 実施例 2の電解質は、 ゲル化した構造となっており、 均質でかつ本質 的に電気化学安定性の高いァラミドを含有するため、 特に、 耐電圧の向上の度 合が大きいと考えられる。  In addition, the electrolyte of Example 2 has a gelled structure and contains a amide that is homogeneous and inherently has high electrochemical stability. .
さらに、 実施例 1及び 2の電解質は、 ァラミドを含有するので、 有機溶媒の 凝固点が降下し、 低温での使用も可能でありかつァラミドの高い耐熱性から高 温での使用も可能となり、 長寿命化していると考えられる。  Further, since the electrolytes of Examples 1 and 2 contain aramid, the freezing point of the organic solvent is lowered, it can be used at a low temperature, and it can be used at a high temperature due to the high heat resistance of aramid. It is thought that the life has been extended.
以上のことから、 本発明の電解質は、 電気自動車中の電池、 キャパシタ等の 電気 ·電子部品中の導電部材間に使用される電解質として有用である。  From the above, the electrolyte of the present invention is useful as an electrolyte used between conductive members in electric and electronic parts such as batteries and capacitors in electric vehicles.

Claims

請求の範囲 The scope of the claims
1 . ァラミドとイオン種と有機溶媒とを含有することを特徴とする電解質, 1. an electrolyte characterized by containing an aramid, an ionic species and an organic solvent,
2 . ァラミドがポリメタフエ二レンイソフタルアミドである請求の範囲第 1 項に記載の電解質。 2. The electrolyte according to claim 1, wherein the aramid is polymetaphenylene isophthalamide.
3 . ァラミドの結晶化度が 1 5 %以下であることを特徴とする請求の範囲第 1又は 2項に記載の電解質。 3. The electrolyte according to claim 1 or 2, wherein the crystallinity of the aramid is 15% or less.
4. ァラミドが平均粒径が 2 0 0 μ m以下の球状粒子であることを特徴とす る請求の範囲第 1〜 3項のいずれか 1項に記載の電解質。 4. The electrolyte according to any one of claims 1 to 3, wherein the aramid is a spherical particle having an average particle diameter of 200 μm or less.
5 . イオン種がカチオンとァニオンの組み合わせであり、 有機溶媒に溶解した 状態で電気伝導度が 1 m S / c m以上 ( 2 0 °C) で且つ耐電圧が 2 V以上であ るものであることを特徴とする請求の範囲第 1〜 4項のいずれか 1項に記載の 電解質。 5. The ionic species is a combination of cation and anion, and the electric conductivity is 1 m S / cm or more (20 ° C) and the withstand voltage is 2 V or more when dissolved in an organic solvent. The electrolyte according to any one of claims 1 to 4, wherein the electrolyte is characterized by the above.
6 . 有機溶媒がカーボネート系有機溶媒であることを特徴とする請求の範囲 第 1〜 5項のいずれか 1項に記載の電解質。 6. The electrolyte according to any one of claims 1 to 5, wherein the organic solvent is a carbonate-based organic solvent.
7 . 請求の範囲第 1〜 6項のいずれか 1項に記載の電解質を導電部材間に使 用してなることを特徴とする電気電子部品。 7. An electrical and electronic component comprising the electrolyte according to any one of claims 1 to 6 between conductive members.
8 . 請求の範固第 1〜 6項のいずれか 1項に記載の電解質を導電部材間に使 用してなることを特徴とする電池。 8. A battery comprising the electrolyte according to any one of claims 1 to 6 between conductive members.
9 . 請求の範囲第 1〜 6項のいずれか 1項に記載の電解質を導電部材間に使 用してなることを特徴とするキャパシタ。 9. A capacitor comprising the electrolyte according to any one of claims 1 to 6 between conductive members.
PCT/JP2008/059955 2007-05-31 2008-05-23 Electrolyte and electric/electronic component using the same WO2008146895A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007144813 2007-05-31
JP2007-144813 2007-05-31

Publications (1)

Publication Number Publication Date
WO2008146895A1 true WO2008146895A1 (en) 2008-12-04

Family

ID=40075127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/059955 WO2008146895A1 (en) 2007-05-31 2008-05-23 Electrolyte and electric/electronic component using the same

Country Status (2)

Country Link
TW (1) TW200912958A (en)
WO (1) WO2008146895A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009165A (en) * 2010-06-22 2012-01-12 Teijin Techno Products Ltd Separator formed of extra fine nonwoven fabric

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995031499A1 (en) * 1994-05-18 1995-11-23 Asahi Kasei Kogyo Kabushiki Kaisha Ion-conductive film and precursor film therefor
JPH09134739A (en) * 1995-11-07 1997-05-20 Asahi Chem Ind Co Ltd Solid electrolyte and battery
JP2000173655A (en) * 1998-12-07 2000-06-23 Matsushita Electric Ind Co Ltd High polymer gel electrolyte
JP2000315523A (en) * 1999-04-30 2000-11-14 Teijin Ltd Electrolytic solution carrying polymer film and secondary battery using it
JP2002352859A (en) * 2001-05-24 2002-12-06 Ube Ind Ltd Composite polymer solid electrolyte and its production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995031499A1 (en) * 1994-05-18 1995-11-23 Asahi Kasei Kogyo Kabushiki Kaisha Ion-conductive film and precursor film therefor
JPH09134739A (en) * 1995-11-07 1997-05-20 Asahi Chem Ind Co Ltd Solid electrolyte and battery
JP2000173655A (en) * 1998-12-07 2000-06-23 Matsushita Electric Ind Co Ltd High polymer gel electrolyte
JP2000315523A (en) * 1999-04-30 2000-11-14 Teijin Ltd Electrolytic solution carrying polymer film and secondary battery using it
JP2002352859A (en) * 2001-05-24 2002-12-06 Ube Ind Ltd Composite polymer solid electrolyte and its production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009165A (en) * 2010-06-22 2012-01-12 Teijin Techno Products Ltd Separator formed of extra fine nonwoven fabric

Also Published As

Publication number Publication date
TW200912958A (en) 2009-03-16

Similar Documents

Publication Publication Date Title
Huang et al. [BMIM] BF 4-modified PVDF-HFP composite polymer electrolyte for high-performance solid-state lithium metal battery
US10892521B2 (en) Solid polymer electrolyte based on modified cellulose and its use in lithium or sodium secondary batteries
SG174024A1 (en) High performance ultracapacitors with carbon nanomaterials and ionic liquids
Ma et al. 3D Printing Flexible Sodium‐Ion Microbatteries with Ultrahigh Areal Capacity and Robust Rate Capability
JP2001526451A (en) Bis (perfluoroalkylsulfonyl) imide surfactant salts in electrochemical systems
CN1449069A (en) Material for electrolyte solution and uses thereof
JP2004146361A (en) Lithium battery negative electrode, and lithium battery including same
Verma et al. Recent progress in electrolyte development and design strategies for next‐generation potassium‐ion batteries
JP2019050183A (en) Aqueous electrolyte including protonic ionic liquid, and battery using the same
CN114450768B (en) Electrolyte for electrochemical capacitor
JP5526491B2 (en) Non-aqueous electrolyte for primary battery and non-aqueous electrolyte primary battery using the same
Hansen et al. Materials and structure design for solid-state zinc-ion batteries: A mini-review
Sharma et al. All-solid-state electric double layer supercapacitors using Li1. 3Al0. 3Ti1. 7 (PO4) 3 reinforced solid polymer electrolyte
JP5533871B2 (en) Lithium secondary battery having solid electrolyte and solid electrolyte
JPWO2016159083A1 (en) Electrochemical capacitor
JP2016192279A (en) Aqueous pseudo solid secondary battery
WO2008146895A1 (en) Electrolyte and electric/electronic component using the same
JP4249495B2 (en) Ion conductive material
Venkateswarlu et al. Graphene/β‐MnO2 composites—synthesis and its electroanalytical properties study in the Mg storage battery
JP2007280658A (en) Solid polymer electrolyte
JP2007257875A (en) Electrolyte for nonaqueous electrolyte battery, electrolyte and nonaqueous electrolyte battery
KR20170027141A (en) Sulfone containing organic electrolyte for lithium-air battery having good energy efficiency and oxygen efficiency and lithium-air battery using the same
CN104078721A (en) Electrolyte solution for lithium-air battery
JP4858107B2 (en) Electrolyte
KR20180095562A (en) An electrolyte and a battery cell containing the electrolyte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08764874

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08764874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP